| 1 | // Licensed to the Apache Software Foundation (ASF) under one |
| 2 | // or more contributor license agreements. See the NOTICE file |
| 3 | // distributed with this work for additional information |
| 4 | // regarding copyright ownership. The ASF licenses this file |
| 5 | // to you under the Apache License, Version 2.0 (the |
| 6 | // "License"); you may not use this file except in compliance |
| 7 | // with the License. You may obtain a copy of the License at |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, |
| 12 | // software distributed under the License is distributed on an |
| 13 | // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | // KIND, either express or implied. See the License for the |
| 15 | // specific language governing permissions and limitations |
| 16 | // under the License. |
| 17 | |
| 18 | #pragma once |
| 19 | |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <memory> |
| 23 | |
| 24 | #include "parquet/exception.h" |
| 25 | #include "parquet/platform.h" |
| 26 | #include "parquet/types.h" |
| 27 | |
| 28 | namespace arrow { |
| 29 | |
| 30 | class Array; |
| 31 | |
| 32 | namespace BitUtil { |
| 33 | class BitWriter; |
| 34 | } // namespace BitUtil |
| 35 | |
| 36 | namespace util { |
| 37 | class RleEncoder; |
| 38 | } // namespace util |
| 39 | |
| 40 | } // namespace arrow |
| 41 | |
| 42 | namespace parquet { |
| 43 | |
| 44 | struct ArrowWriteContext; |
| 45 | class ColumnDescriptor; |
| 46 | class CompressedDataPage; |
| 47 | class DictionaryPage; |
| 48 | class ColumnChunkMetaDataBuilder; |
| 49 | class WriterProperties; |
| 50 | |
| 51 | class PARQUET_EXPORT LevelEncoder { |
| 52 | public: |
| 53 | LevelEncoder(); |
| 54 | ~LevelEncoder(); |
| 55 | |
| 56 | static int MaxBufferSize(Encoding::type encoding, int16_t max_level, |
| 57 | int num_buffered_values); |
| 58 | |
| 59 | // Initialize the LevelEncoder. |
| 60 | void Init(Encoding::type encoding, int16_t max_level, int num_buffered_values, |
| 61 | uint8_t* data, int data_size); |
| 62 | |
| 63 | // Encodes a batch of levels from an array and returns the number of levels encoded |
| 64 | int Encode(int batch_size, const int16_t* levels); |
| 65 | |
| 66 | int32_t len() { |
| 67 | if (encoding_ != Encoding::RLE) { |
| 68 | throw ParquetException("Only implemented for RLE encoding" ); |
| 69 | } |
| 70 | return rle_length_; |
| 71 | } |
| 72 | |
| 73 | private: |
| 74 | int bit_width_; |
| 75 | int rle_length_; |
| 76 | Encoding::type encoding_; |
| 77 | std::unique_ptr<::arrow::util::RleEncoder> rle_encoder_; |
| 78 | std::unique_ptr<::arrow::BitUtil::BitWriter> bit_packed_encoder_; |
| 79 | }; |
| 80 | |
| 81 | class PARQUET_EXPORT PageWriter { |
| 82 | public: |
| 83 | virtual ~PageWriter() {} |
| 84 | |
| 85 | static std::unique_ptr<PageWriter> Open( |
| 86 | const std::shared_ptr<ArrowOutputStream>& sink, Compression::type codec, |
| 87 | int compression_level, ColumnChunkMetaDataBuilder* metadata, |
| 88 | ::arrow::MemoryPool* pool = ::arrow::default_memory_pool(), |
| 89 | bool buffered_row_group = false); |
| 90 | |
| 91 | // The Column Writer decides if dictionary encoding is used if set and |
| 92 | // if the dictionary encoding has fallen back to default encoding on reaching dictionary |
| 93 | // page limit |
| 94 | virtual void Close(bool has_dictionary, bool fallback) = 0; |
| 95 | |
| 96 | virtual int64_t WriteDataPage(const CompressedDataPage& page) = 0; |
| 97 | |
| 98 | virtual int64_t WriteDictionaryPage(const DictionaryPage& page) = 0; |
| 99 | |
| 100 | virtual bool has_compressor() = 0; |
| 101 | |
| 102 | virtual void Compress(const Buffer& src_buffer, ResizableBuffer* dest_buffer) = 0; |
| 103 | }; |
| 104 | |
| 105 | static constexpr int WRITE_BATCH_SIZE = 1000; |
| 106 | class PARQUET_EXPORT ColumnWriter { |
| 107 | public: |
| 108 | virtual ~ColumnWriter() = default; |
| 109 | |
| 110 | static std::shared_ptr<ColumnWriter> Make(ColumnChunkMetaDataBuilder*, |
| 111 | std::unique_ptr<PageWriter>, |
| 112 | const WriterProperties* properties); |
| 113 | |
| 114 | /// \brief Closes the ColumnWriter, commits any buffered values to pages. |
| 115 | /// \return Total size of the column in bytes |
| 116 | virtual int64_t Close() = 0; |
| 117 | |
| 118 | /// \brief The physical Parquet type of the column |
| 119 | virtual Type::type type() const = 0; |
| 120 | |
| 121 | /// \brief The schema for the column |
| 122 | virtual const ColumnDescriptor* descr() const = 0; |
| 123 | |
| 124 | /// \brief The number of rows written so far |
| 125 | virtual int64_t rows_written() const = 0; |
| 126 | |
| 127 | /// \brief The total size of the compressed pages + page headers. Some values |
| 128 | /// might be still buffered an not written to a page yet |
| 129 | virtual int64_t total_compressed_bytes() const = 0; |
| 130 | |
| 131 | /// \brief The total number of bytes written as serialized data and |
| 132 | /// dictionary pages to the ColumnChunk so far |
| 133 | virtual int64_t total_bytes_written() const = 0; |
| 134 | |
| 135 | /// \brief The file-level writer properties |
| 136 | virtual const WriterProperties* properties() = 0; |
| 137 | |
| 138 | /// \brief Write Apache Arrow columnar data directly to ColumnWriter. Returns |
| 139 | /// error status if the array data type is not compatible with the concrete |
| 140 | /// writer type |
| 141 | virtual ::arrow::Status WriteArrow(const int16_t* def_levels, const int16_t* rep_levels, |
| 142 | int64_t num_levels, const ::arrow::Array& array, |
| 143 | ArrowWriteContext* ctx) = 0; |
| 144 | }; |
| 145 | |
| 146 | // API to write values to a single column. This is the main client facing API. |
| 147 | template <typename DType> |
| 148 | class TypedColumnWriter : public ColumnWriter { |
| 149 | public: |
| 150 | using T = typename DType::c_type; |
| 151 | |
| 152 | // Write a batch of repetition levels, definition levels, and values to the |
| 153 | // column. |
| 154 | virtual void WriteBatch(int64_t num_values, const int16_t* def_levels, |
| 155 | const int16_t* rep_levels, const T* values) = 0; |
| 156 | |
| 157 | /// Write a batch of repetition levels, definition levels, and values to the |
| 158 | /// column. |
| 159 | /// |
| 160 | /// In comparision to WriteBatch the length of repetition and definition levels |
| 161 | /// is the same as of the number of values read for max_definition_level == 1. |
| 162 | /// In the case of max_definition_level > 1, the repetition and definition |
| 163 | /// levels are larger than the values but the values include the null entries |
| 164 | /// with definition_level == (max_definition_level - 1). Thus we have to differentiate |
| 165 | /// in the parameters of this function if the input has the length of num_values or the |
| 166 | /// _number of rows in the lowest nesting level_. |
| 167 | /// |
| 168 | /// In the case that the most inner node in the Parquet is required, the _number of rows |
| 169 | /// in the lowest nesting level_ is equal to the number of non-null values. If the |
| 170 | /// inner-most schema node is optional, the _number of rows in the lowest nesting level_ |
| 171 | /// also includes all values with definition_level == (max_definition_level - 1). |
| 172 | /// |
| 173 | /// @param num_values number of levels to write. |
| 174 | /// @param def_levels The Parquet definiton levels, length is num_values |
| 175 | /// @param rep_levels The Parquet repetition levels, length is num_values |
| 176 | /// @param valid_bits Bitmap that indicates if the row is null on the lowest nesting |
| 177 | /// level. The length is number of rows in the lowest nesting level. |
| 178 | /// @param valid_bits_offset The offset in bits of the valid_bits where the |
| 179 | /// first relevant bit resides. |
| 180 | /// @param values The values in the lowest nested level including |
| 181 | /// spacing for nulls on the lowest levels; input has the length |
| 182 | /// of the number of rows on the lowest nesting level. |
| 183 | virtual void WriteBatchSpaced(int64_t num_values, const int16_t* def_levels, |
| 184 | const int16_t* rep_levels, const uint8_t* valid_bits, |
| 185 | int64_t valid_bits_offset, const T* values) = 0; |
| 186 | |
| 187 | // Estimated size of the values that are not written to a page yet |
| 188 | virtual int64_t EstimatedBufferedValueBytes() const = 0; |
| 189 | }; |
| 190 | |
| 191 | using BoolWriter = TypedColumnWriter<BooleanType>; |
| 192 | using Int32Writer = TypedColumnWriter<Int32Type>; |
| 193 | using Int64Writer = TypedColumnWriter<Int64Type>; |
| 194 | using Int96Writer = TypedColumnWriter<Int96Type>; |
| 195 | using FloatWriter = TypedColumnWriter<FloatType>; |
| 196 | using DoubleWriter = TypedColumnWriter<DoubleType>; |
| 197 | using ByteArrayWriter = TypedColumnWriter<ByteArrayType>; |
| 198 | using FixedLenByteArrayWriter = TypedColumnWriter<FLBAType>; |
| 199 | |
| 200 | namespace internal { |
| 201 | |
| 202 | /** |
| 203 | * Timestamp conversion constants |
| 204 | */ |
| 205 | constexpr int64_t kJulianEpochOffsetDays = INT64_C(2440588); |
| 206 | |
| 207 | template <int64_t UnitPerDay, int64_t NanosecondsPerUnit> |
| 208 | inline void ArrowTimestampToImpalaTimestamp(const int64_t time, Int96* impala_timestamp) { |
| 209 | int64_t julian_days = (time / UnitPerDay) + kJulianEpochOffsetDays; |
| 210 | (*impala_timestamp).value[2] = (uint32_t)julian_days; |
| 211 | |
| 212 | int64_t last_day_units = time % UnitPerDay; |
| 213 | auto last_day_nanos = last_day_units * NanosecondsPerUnit; |
| 214 | // impala_timestamp will be unaligned every other entry so do memcpy instead |
| 215 | // of assign and reinterpret cast to avoid undefined behavior. |
| 216 | std::memcpy(impala_timestamp, &last_day_nanos, sizeof(int64_t)); |
| 217 | } |
| 218 | |
| 219 | constexpr int64_t kSecondsInNanos = INT64_C(1000000000); |
| 220 | |
| 221 | inline void SecondsToImpalaTimestamp(const int64_t seconds, Int96* impala_timestamp) { |
| 222 | ArrowTimestampToImpalaTimestamp<kSecondsPerDay, kSecondsInNanos>(seconds, |
| 223 | impala_timestamp); |
| 224 | } |
| 225 | |
| 226 | constexpr int64_t kMillisecondsInNanos = kSecondsInNanos / INT64_C(1000); |
| 227 | |
| 228 | inline void MillisecondsToImpalaTimestamp(const int64_t milliseconds, |
| 229 | Int96* impala_timestamp) { |
| 230 | ArrowTimestampToImpalaTimestamp<kMillisecondsPerDay, kMillisecondsInNanos>( |
| 231 | milliseconds, impala_timestamp); |
| 232 | } |
| 233 | |
| 234 | constexpr int64_t kMicrosecondsInNanos = kMillisecondsInNanos / INT64_C(1000); |
| 235 | |
| 236 | inline void MicrosecondsToImpalaTimestamp(const int64_t microseconds, |
| 237 | Int96* impala_timestamp) { |
| 238 | ArrowTimestampToImpalaTimestamp<kMicrosecondsPerDay, kMicrosecondsInNanos>( |
| 239 | microseconds, impala_timestamp); |
| 240 | } |
| 241 | |
| 242 | constexpr int64_t kNanosecondsInNanos = INT64_C(1); |
| 243 | |
| 244 | inline void NanosecondsToImpalaTimestamp(const int64_t nanoseconds, |
| 245 | Int96* impala_timestamp) { |
| 246 | ArrowTimestampToImpalaTimestamp<kNanosecondsPerDay, kNanosecondsInNanos>( |
| 247 | nanoseconds, impala_timestamp); |
| 248 | } |
| 249 | |
| 250 | } // namespace internal |
| 251 | } // namespace parquet |
| 252 | |