1 | // Licensed to the Apache Software Foundation (ASF) under one |
2 | // or more contributor license agreements. See the NOTICE file |
3 | // distributed with this work for additional information |
4 | // regarding copyright ownership. The ASF licenses this file |
5 | // to you under the Apache License, Version 2.0 (the |
6 | // "License"); you may not use this file except in compliance |
7 | // with the License. You may obtain a copy of the License at |
8 | // |
9 | // http://www.apache.org/licenses/LICENSE-2.0 |
10 | // |
11 | // Unless required by applicable law or agreed to in writing, |
12 | // software distributed under the License is distributed on an |
13 | // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
14 | // KIND, either express or implied. See the License for the |
15 | // specific language governing permissions and limitations |
16 | // under the License. |
17 | |
18 | #include "parquet/encoding.h" |
19 | |
20 | #include <algorithm> |
21 | #include <cstdint> |
22 | #include <cstdlib> |
23 | #include <memory> |
24 | #include <utility> |
25 | #include <vector> |
26 | |
27 | #include "arrow/array.h" |
28 | #include "arrow/builder.h" |
29 | #include "arrow/util/bit_stream_utils.h" |
30 | #include "arrow/util/checked_cast.h" |
31 | #include "arrow/util/hashing.h" |
32 | #include "arrow/util/logging.h" |
33 | #include "arrow/util/rle_encoding.h" |
34 | #include "arrow/util/ubsan.h" |
35 | |
36 | #include "parquet/exception.h" |
37 | #include "parquet/platform.h" |
38 | #include "parquet/schema.h" |
39 | #include "parquet/types.h" |
40 | |
41 | using arrow::Status; |
42 | using arrow::internal::checked_cast; |
43 | |
44 | namespace parquet { |
45 | |
46 | constexpr int64_t kInMemoryDefaultCapacity = 1024; |
47 | |
48 | class EncoderImpl : virtual public Encoder { |
49 | public: |
50 | EncoderImpl(const ColumnDescriptor* descr, Encoding::type encoding, MemoryPool* pool) |
51 | : descr_(descr), |
52 | encoding_(encoding), |
53 | pool_(pool), |
54 | type_length_(descr ? descr->type_length() : -1) {} |
55 | |
56 | Encoding::type encoding() const override { return encoding_; } |
57 | |
58 | MemoryPool* memory_pool() const override { return pool_; } |
59 | |
60 | protected: |
61 | // For accessing type-specific metadata, like FIXED_LEN_BYTE_ARRAY |
62 | const ColumnDescriptor* descr_; |
63 | const Encoding::type encoding_; |
64 | MemoryPool* pool_; |
65 | |
66 | /// Type length from descr |
67 | int type_length_; |
68 | }; |
69 | |
70 | // ---------------------------------------------------------------------- |
71 | // Plain encoder implementation |
72 | |
73 | template <typename DType> |
74 | class PlainEncoder : public EncoderImpl, virtual public TypedEncoder<DType> { |
75 | public: |
76 | using T = typename DType::c_type; |
77 | |
78 | explicit PlainEncoder(const ColumnDescriptor* descr, MemoryPool* pool) |
79 | : EncoderImpl(descr, Encoding::PLAIN, pool), sink_(pool) {} |
80 | |
81 | int64_t EstimatedDataEncodedSize() override { return sink_.length(); } |
82 | |
83 | std::shared_ptr<Buffer> FlushValues() override { |
84 | std::shared_ptr<Buffer> buffer; |
85 | PARQUET_THROW_NOT_OK(sink_.Finish(&buffer)); |
86 | return buffer; |
87 | } |
88 | |
89 | void Put(const T* buffer, int num_values) override; |
90 | |
91 | void Put(const arrow::Array& values) override; |
92 | |
93 | void PutSpaced(const T* src, int num_values, const uint8_t* valid_bits, |
94 | int64_t valid_bits_offset) override { |
95 | std::shared_ptr<ResizableBuffer> buffer; |
96 | PARQUET_THROW_NOT_OK(arrow::AllocateResizableBuffer(this->memory_pool(), |
97 | num_values * sizeof(T), &buffer)); |
98 | int32_t num_valid_values = 0; |
99 | arrow::internal::BitmapReader valid_bits_reader(valid_bits, valid_bits_offset, |
100 | num_values); |
101 | T* data = reinterpret_cast<T*>(buffer->mutable_data()); |
102 | for (int32_t i = 0; i < num_values; i++) { |
103 | if (valid_bits_reader.IsSet()) { |
104 | data[num_valid_values++] = src[i]; |
105 | } |
106 | valid_bits_reader.Next(); |
107 | } |
108 | Put(data, num_valid_values); |
109 | } |
110 | |
111 | void UnsafePutByteArray(const void* data, uint32_t length) { |
112 | DCHECK(length == 0 || data != nullptr) << "Value ptr cannot be NULL" ; |
113 | sink_.UnsafeAppend(&length, sizeof(uint32_t)); |
114 | sink_.UnsafeAppend(data, static_cast<int64_t>(length)); |
115 | } |
116 | |
117 | void Put(const ByteArray& val) { |
118 | // Write the result to the output stream |
119 | const int64_t increment = static_cast<int64_t>(val.len + sizeof(uint32_t)); |
120 | if (ARROW_PREDICT_FALSE(sink_.length() + increment > sink_.capacity())) { |
121 | PARQUET_THROW_NOT_OK(sink_.Reserve(increment)); |
122 | } |
123 | UnsafePutByteArray(val.ptr, val.len); |
124 | } |
125 | |
126 | protected: |
127 | arrow::BufferBuilder sink_; |
128 | }; |
129 | |
130 | template <typename DType> |
131 | void PlainEncoder<DType>::Put(const T* buffer, int num_values) { |
132 | if (num_values > 0) { |
133 | PARQUET_THROW_NOT_OK(sink_.Append(buffer, num_values * sizeof(T))); |
134 | } |
135 | } |
136 | |
137 | template <> |
138 | inline void PlainEncoder<ByteArrayType>::Put(const ByteArray* src, int num_values) { |
139 | for (int i = 0; i < num_values; ++i) { |
140 | Put(src[i]); |
141 | } |
142 | } |
143 | |
144 | template <typename DType> |
145 | void PlainEncoder<DType>::Put(const arrow::Array& values) { |
146 | ParquetException::NYI(values.type()->ToString()); |
147 | } |
148 | |
149 | void AssertBinary(const arrow::Array& values) { |
150 | if (values.type_id() != arrow::Type::BINARY && |
151 | values.type_id() != arrow::Type::STRING) { |
152 | throw ParquetException("Only BinaryArray and subclasses supported" ); |
153 | } |
154 | } |
155 | |
156 | template <> |
157 | void PlainEncoder<ByteArrayType>::Put(const arrow::Array& values) { |
158 | AssertBinary(values); |
159 | const auto& data = checked_cast<const arrow::BinaryArray&>(values); |
160 | const int64_t total_bytes = data.value_offset(data.length()) - data.value_offset(0); |
161 | PARQUET_THROW_NOT_OK(sink_.Reserve(total_bytes + data.length() * sizeof(uint32_t))); |
162 | |
163 | if (data.null_count() == 0) { |
164 | // no nulls, just dump the data |
165 | for (int64_t i = 0; i < data.length(); i++) { |
166 | auto view = data.GetView(i); |
167 | UnsafePutByteArray(view.data(), static_cast<uint32_t>(view.size())); |
168 | } |
169 | } else { |
170 | for (int64_t i = 0; i < data.length(); i++) { |
171 | if (data.IsValid(i)) { |
172 | auto view = data.GetView(i); |
173 | UnsafePutByteArray(view.data(), static_cast<uint32_t>(view.size())); |
174 | } |
175 | } |
176 | } |
177 | } |
178 | |
179 | template <> |
180 | inline void PlainEncoder<FLBAType>::Put(const FixedLenByteArray* src, int num_values) { |
181 | if (descr_->type_length() == 0) { |
182 | return; |
183 | } |
184 | for (int i = 0; i < num_values; ++i) { |
185 | // Write the result to the output stream |
186 | DCHECK(src[i].ptr != nullptr) << "Value ptr cannot be NULL" ; |
187 | PARQUET_THROW_NOT_OK(sink_.Append(src[i].ptr, descr_->type_length())); |
188 | } |
189 | } |
190 | |
191 | class PlainFLBAEncoder : public PlainEncoder<FLBAType>, virtual public FLBAEncoder { |
192 | public: |
193 | using BASE = PlainEncoder<FLBAType>; |
194 | using BASE::PlainEncoder; |
195 | }; |
196 | |
197 | class PlainBooleanEncoder : public EncoderImpl, |
198 | virtual public TypedEncoder<BooleanType>, |
199 | virtual public BooleanEncoder { |
200 | public: |
201 | explicit PlainBooleanEncoder(const ColumnDescriptor* descr, MemoryPool* pool) |
202 | : EncoderImpl(descr, Encoding::PLAIN, pool), |
203 | bits_available_(kInMemoryDefaultCapacity * 8), |
204 | bits_buffer_(AllocateBuffer(pool, kInMemoryDefaultCapacity)), |
205 | sink_(pool), |
206 | bit_writer_(bits_buffer_->mutable_data(), |
207 | static_cast<int>(bits_buffer_->size())) {} |
208 | |
209 | int64_t EstimatedDataEncodedSize() override; |
210 | std::shared_ptr<Buffer> FlushValues() override; |
211 | |
212 | void Put(const bool* src, int num_values) override; |
213 | void Put(const std::vector<bool>& src, int num_values) override; |
214 | |
215 | void PutSpaced(const bool* src, int num_values, const uint8_t* valid_bits, |
216 | int64_t valid_bits_offset) override { |
217 | std::shared_ptr<ResizableBuffer> buffer; |
218 | PARQUET_THROW_NOT_OK(arrow::AllocateResizableBuffer(this->memory_pool(), |
219 | num_values * sizeof(T), &buffer)); |
220 | int32_t num_valid_values = 0; |
221 | arrow::internal::BitmapReader valid_bits_reader(valid_bits, valid_bits_offset, |
222 | num_values); |
223 | T* data = reinterpret_cast<T*>(buffer->mutable_data()); |
224 | for (int32_t i = 0; i < num_values; i++) { |
225 | if (valid_bits_reader.IsSet()) { |
226 | data[num_valid_values++] = src[i]; |
227 | } |
228 | valid_bits_reader.Next(); |
229 | } |
230 | Put(data, num_valid_values); |
231 | } |
232 | |
233 | void Put(const arrow::Array& values) override { |
234 | ParquetException::NYI("Direct Arrow to Boolean writes not implemented" ); |
235 | } |
236 | |
237 | private: |
238 | int bits_available_; |
239 | std::shared_ptr<ResizableBuffer> bits_buffer_; |
240 | arrow::BufferBuilder sink_; |
241 | arrow::BitUtil::BitWriter bit_writer_; |
242 | |
243 | template <typename SequenceType> |
244 | void PutImpl(const SequenceType& src, int num_values); |
245 | }; |
246 | |
247 | template <typename SequenceType> |
248 | void PlainBooleanEncoder::PutImpl(const SequenceType& src, int num_values) { |
249 | int bit_offset = 0; |
250 | if (bits_available_ > 0) { |
251 | int bits_to_write = std::min(bits_available_, num_values); |
252 | for (int i = 0; i < bits_to_write; i++) { |
253 | bit_writer_.PutValue(src[i], 1); |
254 | } |
255 | bits_available_ -= bits_to_write; |
256 | bit_offset = bits_to_write; |
257 | |
258 | if (bits_available_ == 0) { |
259 | bit_writer_.Flush(); |
260 | PARQUET_THROW_NOT_OK( |
261 | sink_.Append(bit_writer_.buffer(), bit_writer_.bytes_written())); |
262 | bit_writer_.Clear(); |
263 | } |
264 | } |
265 | |
266 | int bits_remaining = num_values - bit_offset; |
267 | while (bit_offset < num_values) { |
268 | bits_available_ = static_cast<int>(bits_buffer_->size()) * 8; |
269 | |
270 | int bits_to_write = std::min(bits_available_, bits_remaining); |
271 | for (int i = bit_offset; i < bit_offset + bits_to_write; i++) { |
272 | bit_writer_.PutValue(src[i], 1); |
273 | } |
274 | bit_offset += bits_to_write; |
275 | bits_available_ -= bits_to_write; |
276 | bits_remaining -= bits_to_write; |
277 | |
278 | if (bits_available_ == 0) { |
279 | bit_writer_.Flush(); |
280 | PARQUET_THROW_NOT_OK( |
281 | sink_.Append(bit_writer_.buffer(), bit_writer_.bytes_written())); |
282 | bit_writer_.Clear(); |
283 | } |
284 | } |
285 | } |
286 | |
287 | int64_t PlainBooleanEncoder::EstimatedDataEncodedSize() { |
288 | int64_t position = sink_.length(); |
289 | return position + bit_writer_.bytes_written(); |
290 | } |
291 | |
292 | std::shared_ptr<Buffer> PlainBooleanEncoder::FlushValues() { |
293 | if (bits_available_ > 0) { |
294 | bit_writer_.Flush(); |
295 | PARQUET_THROW_NOT_OK(sink_.Append(bit_writer_.buffer(), bit_writer_.bytes_written())); |
296 | bit_writer_.Clear(); |
297 | bits_available_ = static_cast<int>(bits_buffer_->size()) * 8; |
298 | } |
299 | |
300 | std::shared_ptr<Buffer> buffer; |
301 | PARQUET_THROW_NOT_OK(sink_.Finish(&buffer)); |
302 | return buffer; |
303 | } |
304 | |
305 | void PlainBooleanEncoder::Put(const bool* src, int num_values) { |
306 | PutImpl(src, num_values); |
307 | } |
308 | |
309 | void PlainBooleanEncoder::Put(const std::vector<bool>& src, int num_values) { |
310 | PutImpl(src, num_values); |
311 | } |
312 | |
313 | // ---------------------------------------------------------------------- |
314 | // DictEncoder<T> implementations |
315 | |
316 | template <typename DType> |
317 | struct DictEncoderTraits { |
318 | using c_type = typename DType::c_type; |
319 | using MemoTableType = arrow::internal::ScalarMemoTable<c_type>; |
320 | }; |
321 | |
322 | template <> |
323 | struct DictEncoderTraits<ByteArrayType> { |
324 | using MemoTableType = arrow::internal::BinaryMemoTable; |
325 | }; |
326 | |
327 | template <> |
328 | struct DictEncoderTraits<FLBAType> { |
329 | using MemoTableType = arrow::internal::BinaryMemoTable; |
330 | }; |
331 | |
332 | // Initially 1024 elements |
333 | static constexpr int32_t kInitialHashTableSize = 1 << 10; |
334 | |
335 | /// See the dictionary encoding section of |
336 | /// https://github.com/Parquet/parquet-format. The encoding supports |
337 | /// streaming encoding. Values are encoded as they are added while the |
338 | /// dictionary is being constructed. At any time, the buffered values |
339 | /// can be written out with the current dictionary size. More values |
340 | /// can then be added to the encoder, including new dictionary |
341 | /// entries. |
342 | template <typename DType> |
343 | class DictEncoderImpl : public EncoderImpl, virtual public DictEncoder<DType> { |
344 | using MemoTableType = typename DictEncoderTraits<DType>::MemoTableType; |
345 | |
346 | public: |
347 | typedef typename DType::c_type T; |
348 | |
349 | explicit DictEncoderImpl(const ColumnDescriptor* desc, MemoryPool* pool) |
350 | : EncoderImpl(desc, Encoding::PLAIN_DICTIONARY, pool), |
351 | dict_encoded_size_(0), |
352 | memo_table_(pool, kInitialHashTableSize) {} |
353 | |
354 | ~DictEncoderImpl() override { DCHECK(buffered_indices_.empty()); } |
355 | |
356 | int dict_encoded_size() override { return dict_encoded_size_; } |
357 | |
358 | int WriteIndices(uint8_t* buffer, int buffer_len) override { |
359 | // Write bit width in first byte |
360 | *buffer = static_cast<uint8_t>(bit_width()); |
361 | ++buffer; |
362 | --buffer_len; |
363 | |
364 | arrow::util::RleEncoder encoder(buffer, buffer_len, bit_width()); |
365 | |
366 | for (int32_t index : buffered_indices_) { |
367 | if (!encoder.Put(index)) return -1; |
368 | } |
369 | encoder.Flush(); |
370 | |
371 | ClearIndices(); |
372 | return 1 + encoder.len(); |
373 | } |
374 | |
375 | void set_type_length(int type_length) { this->type_length_ = type_length; } |
376 | |
377 | /// Returns a conservative estimate of the number of bytes needed to encode the buffered |
378 | /// indices. Used to size the buffer passed to WriteIndices(). |
379 | int64_t EstimatedDataEncodedSize() override { |
380 | // Note: because of the way RleEncoder::CheckBufferFull() is called, we have to |
381 | // reserve |
382 | // an extra "RleEncoder::MinBufferSize" bytes. These extra bytes won't be used |
383 | // but not reserving them would cause the encoder to fail. |
384 | return 1 + |
385 | arrow::util::RleEncoder::MaxBufferSize( |
386 | bit_width(), static_cast<int>(buffered_indices_.size())) + |
387 | arrow::util::RleEncoder::MinBufferSize(bit_width()); |
388 | } |
389 | |
390 | /// The minimum bit width required to encode the currently buffered indices. |
391 | int bit_width() const override { |
392 | if (ARROW_PREDICT_FALSE(num_entries() == 0)) return 0; |
393 | if (ARROW_PREDICT_FALSE(num_entries() == 1)) return 1; |
394 | return BitUtil::Log2(num_entries()); |
395 | } |
396 | |
397 | /// Encode value. Note that this does not actually write any data, just |
398 | /// buffers the value's index to be written later. |
399 | inline void Put(const T& value); |
400 | |
401 | // Not implemented for other data types |
402 | inline void PutByteArray(const void* ptr, int32_t length); |
403 | |
404 | void Put(const T* src, int num_values) override { |
405 | for (int32_t i = 0; i < num_values; i++) { |
406 | Put(src[i]); |
407 | } |
408 | } |
409 | |
410 | void PutSpaced(const T* src, int num_values, const uint8_t* valid_bits, |
411 | int64_t valid_bits_offset) override { |
412 | arrow::internal::BitmapReader valid_bits_reader(valid_bits, valid_bits_offset, |
413 | num_values); |
414 | for (int32_t i = 0; i < num_values; i++) { |
415 | if (valid_bits_reader.IsSet()) { |
416 | Put(src[i]); |
417 | } |
418 | valid_bits_reader.Next(); |
419 | } |
420 | } |
421 | |
422 | void Put(const arrow::Array& values) override; |
423 | void PutDictionary(const arrow::Array& values) override; |
424 | |
425 | template <typename ArrowType> |
426 | void PutIndicesTyped(const arrow::Array& data) { |
427 | using ArrayType = typename arrow::TypeTraits<ArrowType>::ArrayType; |
428 | const auto& indices = checked_cast<const ArrayType&>(data); |
429 | auto values = indices.raw_values(); |
430 | |
431 | size_t buffer_position = buffered_indices_.size(); |
432 | buffered_indices_.resize( |
433 | buffer_position + static_cast<size_t>(indices.length() - indices.null_count())); |
434 | if (indices.null_count() > 0) { |
435 | arrow::internal::BitmapReader valid_bits_reader(indices.null_bitmap_data(), |
436 | indices.offset(), indices.length()); |
437 | for (int64_t i = 0; i < indices.length(); ++i) { |
438 | if (valid_bits_reader.IsSet()) { |
439 | buffered_indices_[buffer_position++] = static_cast<int32_t>(values[i]); |
440 | } |
441 | valid_bits_reader.Next(); |
442 | } |
443 | } else { |
444 | for (int64_t i = 0; i < indices.length(); ++i) { |
445 | buffered_indices_[buffer_position++] = static_cast<int32_t>(values[i]); |
446 | } |
447 | } |
448 | } |
449 | |
450 | void PutIndices(const arrow::Array& data) override { |
451 | switch (data.type()->id()) { |
452 | case arrow::Type::INT8: |
453 | return PutIndicesTyped<arrow::Int8Type>(data); |
454 | case arrow::Type::INT16: |
455 | return PutIndicesTyped<arrow::Int16Type>(data); |
456 | case arrow::Type::INT32: |
457 | return PutIndicesTyped<arrow::Int32Type>(data); |
458 | case arrow::Type::INT64: |
459 | return PutIndicesTyped<arrow::Int64Type>(data); |
460 | default: |
461 | throw ParquetException("Dictionary indices were not signed integer" ); |
462 | } |
463 | } |
464 | |
465 | std::shared_ptr<Buffer> FlushValues() override { |
466 | std::shared_ptr<ResizableBuffer> buffer = |
467 | AllocateBuffer(this->pool_, EstimatedDataEncodedSize()); |
468 | int result_size = WriteIndices(buffer->mutable_data(), |
469 | static_cast<int>(EstimatedDataEncodedSize())); |
470 | PARQUET_THROW_NOT_OK(buffer->Resize(result_size, false)); |
471 | return std::move(buffer); |
472 | } |
473 | |
474 | /// Writes out the encoded dictionary to buffer. buffer must be preallocated to |
475 | /// dict_encoded_size() bytes. |
476 | void WriteDict(uint8_t* buffer) override; |
477 | |
478 | /// The number of entries in the dictionary. |
479 | int num_entries() const override { return memo_table_.size(); } |
480 | |
481 | private: |
482 | /// Clears all the indices (but leaves the dictionary). |
483 | void ClearIndices() { buffered_indices_.clear(); } |
484 | |
485 | /// Indices that have not yet be written out by WriteIndices(). |
486 | std::vector<int32_t> buffered_indices_; |
487 | |
488 | /// The number of bytes needed to encode the dictionary. |
489 | int dict_encoded_size_; |
490 | |
491 | MemoTableType memo_table_; |
492 | }; |
493 | |
494 | template <typename DType> |
495 | void DictEncoderImpl<DType>::WriteDict(uint8_t* buffer) { |
496 | // For primitive types, only a memcpy |
497 | DCHECK_EQ(static_cast<size_t>(dict_encoded_size_), sizeof(T) * memo_table_.size()); |
498 | memo_table_.CopyValues(0 /* start_pos */, reinterpret_cast<T*>(buffer)); |
499 | } |
500 | |
501 | // ByteArray and FLBA already have the dictionary encoded in their data heaps |
502 | template <> |
503 | void DictEncoderImpl<ByteArrayType>::WriteDict(uint8_t* buffer) { |
504 | memo_table_.VisitValues(0, [&buffer](const arrow::util::string_view& v) { |
505 | uint32_t len = static_cast<uint32_t>(v.length()); |
506 | memcpy(buffer, &len, sizeof(len)); |
507 | buffer += sizeof(len); |
508 | memcpy(buffer, v.data(), len); |
509 | buffer += len; |
510 | }); |
511 | } |
512 | |
513 | template <> |
514 | void DictEncoderImpl<FLBAType>::WriteDict(uint8_t* buffer) { |
515 | memo_table_.VisitValues(0, [&](const arrow::util::string_view& v) { |
516 | DCHECK_EQ(v.length(), static_cast<size_t>(type_length_)); |
517 | memcpy(buffer, v.data(), type_length_); |
518 | buffer += type_length_; |
519 | }); |
520 | } |
521 | |
522 | template <typename DType> |
523 | inline void DictEncoderImpl<DType>::Put(const T& v) { |
524 | // Put() implementation for primitive types |
525 | auto on_found = [](int32_t memo_index) {}; |
526 | auto on_not_found = [this](int32_t memo_index) { |
527 | dict_encoded_size_ += static_cast<int>(sizeof(T)); |
528 | }; |
529 | |
530 | auto memo_index = memo_table_.GetOrInsert(v, on_found, on_not_found); |
531 | buffered_indices_.push_back(memo_index); |
532 | } |
533 | |
534 | template <typename DType> |
535 | inline void DictEncoderImpl<DType>::PutByteArray(const void* ptr, int32_t length) { |
536 | DCHECK(false); |
537 | } |
538 | |
539 | template <> |
540 | inline void DictEncoderImpl<ByteArrayType>::PutByteArray(const void* ptr, |
541 | int32_t length) { |
542 | static const uint8_t empty[] = {0}; |
543 | |
544 | auto on_found = [](int32_t memo_index) {}; |
545 | auto on_not_found = [&](int32_t memo_index) { |
546 | dict_encoded_size_ += static_cast<int>(length + sizeof(uint32_t)); |
547 | }; |
548 | |
549 | DCHECK(ptr != nullptr || length == 0); |
550 | ptr = (ptr != nullptr) ? ptr : empty; |
551 | auto memo_index = memo_table_.GetOrInsert(ptr, length, on_found, on_not_found); |
552 | buffered_indices_.push_back(memo_index); |
553 | } |
554 | |
555 | template <> |
556 | inline void DictEncoderImpl<ByteArrayType>::Put(const ByteArray& val) { |
557 | return PutByteArray(val.ptr, static_cast<int32_t>(val.len)); |
558 | } |
559 | |
560 | template <> |
561 | inline void DictEncoderImpl<FLBAType>::Put(const FixedLenByteArray& v) { |
562 | static const uint8_t empty[] = {0}; |
563 | |
564 | auto on_found = [](int32_t memo_index) {}; |
565 | auto on_not_found = [this](int32_t memo_index) { dict_encoded_size_ += type_length_; }; |
566 | |
567 | DCHECK(v.ptr != nullptr || type_length_ == 0); |
568 | const void* ptr = (v.ptr != nullptr) ? v.ptr : empty; |
569 | auto memo_index = memo_table_.GetOrInsert(ptr, type_length_, on_found, on_not_found); |
570 | buffered_indices_.push_back(memo_index); |
571 | } |
572 | |
573 | template <typename DType> |
574 | void DictEncoderImpl<DType>::Put(const arrow::Array& values) { |
575 | ParquetException::NYI(values.type()->ToString()); |
576 | } |
577 | |
578 | template <> |
579 | void DictEncoderImpl<ByteArrayType>::Put(const arrow::Array& values) { |
580 | AssertBinary(values); |
581 | const auto& data = checked_cast<const arrow::BinaryArray&>(values); |
582 | if (data.null_count() == 0) { |
583 | // no nulls, just dump the data |
584 | for (int64_t i = 0; i < data.length(); i++) { |
585 | auto view = data.GetView(i); |
586 | PutByteArray(view.data(), static_cast<int32_t>(view.size())); |
587 | } |
588 | } else { |
589 | for (int64_t i = 0; i < data.length(); i++) { |
590 | if (data.IsValid(i)) { |
591 | auto view = data.GetView(i); |
592 | PutByteArray(view.data(), static_cast<int32_t>(view.size())); |
593 | } |
594 | } |
595 | } |
596 | } |
597 | |
598 | template <typename DType> |
599 | void DictEncoderImpl<DType>::PutDictionary(const arrow::Array& values) { |
600 | ParquetException::NYI(values.type()->ToString()); |
601 | } |
602 | |
603 | template <> |
604 | void DictEncoderImpl<ByteArrayType>::PutDictionary(const arrow::Array& values) { |
605 | AssertBinary(values); |
606 | if (this->num_entries() > 0) { |
607 | throw ParquetException("Can only call PutDictionary on an empty DictEncoder" ); |
608 | } |
609 | |
610 | const auto& data = checked_cast<const arrow::BinaryArray&>(values); |
611 | if (data.null_count() > 0) { |
612 | throw ParquetException("Inserted binary dictionary cannot cannot contain nulls" ); |
613 | } |
614 | for (int64_t i = 0; i < data.length(); i++) { |
615 | auto v = data.GetView(i); |
616 | dict_encoded_size_ += static_cast<int>(v.size() + sizeof(uint32_t)); |
617 | ARROW_IGNORE_EXPR( |
618 | memo_table_.GetOrInsert(v.data(), static_cast<int32_t>(v.size()), |
619 | /*on_found=*/[](int32_t memo_index) {}, |
620 | /*on_not_found=*/[](int32_t memo_index) {})); |
621 | } |
622 | } |
623 | |
624 | // ---------------------------------------------------------------------- |
625 | // Encoder and decoder factory functions |
626 | |
627 | std::unique_ptr<Encoder> MakeEncoder(Type::type type_num, Encoding::type encoding, |
628 | bool use_dictionary, const ColumnDescriptor* descr, |
629 | MemoryPool* pool) { |
630 | if (use_dictionary) { |
631 | switch (type_num) { |
632 | case Type::INT32: |
633 | return std::unique_ptr<Encoder>(new DictEncoderImpl<Int32Type>(descr, pool)); |
634 | case Type::INT64: |
635 | return std::unique_ptr<Encoder>(new DictEncoderImpl<Int64Type>(descr, pool)); |
636 | case Type::INT96: |
637 | return std::unique_ptr<Encoder>(new DictEncoderImpl<Int96Type>(descr, pool)); |
638 | case Type::FLOAT: |
639 | return std::unique_ptr<Encoder>(new DictEncoderImpl<FloatType>(descr, pool)); |
640 | case Type::DOUBLE: |
641 | return std::unique_ptr<Encoder>(new DictEncoderImpl<DoubleType>(descr, pool)); |
642 | case Type::BYTE_ARRAY: |
643 | return std::unique_ptr<Encoder>(new DictEncoderImpl<ByteArrayType>(descr, pool)); |
644 | case Type::FIXED_LEN_BYTE_ARRAY: |
645 | return std::unique_ptr<Encoder>(new DictEncoderImpl<FLBAType>(descr, pool)); |
646 | default: |
647 | DCHECK(false) << "Encoder not implemented" ; |
648 | break; |
649 | } |
650 | } else if (encoding == Encoding::PLAIN) { |
651 | switch (type_num) { |
652 | case Type::BOOLEAN: |
653 | return std::unique_ptr<Encoder>(new PlainBooleanEncoder(descr, pool)); |
654 | case Type::INT32: |
655 | return std::unique_ptr<Encoder>(new PlainEncoder<Int32Type>(descr, pool)); |
656 | case Type::INT64: |
657 | return std::unique_ptr<Encoder>(new PlainEncoder<Int64Type>(descr, pool)); |
658 | case Type::INT96: |
659 | return std::unique_ptr<Encoder>(new PlainEncoder<Int96Type>(descr, pool)); |
660 | case Type::FLOAT: |
661 | return std::unique_ptr<Encoder>(new PlainEncoder<FloatType>(descr, pool)); |
662 | case Type::DOUBLE: |
663 | return std::unique_ptr<Encoder>(new PlainEncoder<DoubleType>(descr, pool)); |
664 | case Type::BYTE_ARRAY: |
665 | return std::unique_ptr<Encoder>(new PlainEncoder<ByteArrayType>(descr, pool)); |
666 | case Type::FIXED_LEN_BYTE_ARRAY: |
667 | return std::unique_ptr<Encoder>(new PlainEncoder<FLBAType>(descr, pool)); |
668 | default: |
669 | DCHECK(false) << "Encoder not implemented" ; |
670 | break; |
671 | } |
672 | } else { |
673 | ParquetException::NYI("Selected encoding is not supported" ); |
674 | } |
675 | DCHECK(false) << "Should not be able to reach this code" ; |
676 | return nullptr; |
677 | } |
678 | |
679 | class DecoderImpl : virtual public Decoder { |
680 | public: |
681 | void SetData(int num_values, const uint8_t* data, int len) override { |
682 | num_values_ = num_values; |
683 | data_ = data; |
684 | len_ = len; |
685 | } |
686 | |
687 | int values_left() const override { return num_values_; } |
688 | Encoding::type encoding() const override { return encoding_; } |
689 | |
690 | protected: |
691 | explicit DecoderImpl(const ColumnDescriptor* descr, Encoding::type encoding) |
692 | : descr_(descr), encoding_(encoding), num_values_(0), data_(NULLPTR), len_(0) {} |
693 | |
694 | // For accessing type-specific metadata, like FIXED_LEN_BYTE_ARRAY |
695 | const ColumnDescriptor* descr_; |
696 | |
697 | const Encoding::type encoding_; |
698 | int num_values_; |
699 | const uint8_t* data_; |
700 | int len_; |
701 | int type_length_; |
702 | }; |
703 | |
704 | template <typename DType> |
705 | class PlainDecoder : public DecoderImpl, virtual public TypedDecoder<DType> { |
706 | public: |
707 | using T = typename DType::c_type; |
708 | explicit PlainDecoder(const ColumnDescriptor* descr); |
709 | |
710 | int Decode(T* buffer, int max_values) override; |
711 | }; |
712 | |
713 | template <typename DType> |
714 | PlainDecoder<DType>::PlainDecoder(const ColumnDescriptor* descr) |
715 | : DecoderImpl(descr, Encoding::PLAIN) { |
716 | if (descr_ && descr_->physical_type() == Type::FIXED_LEN_BYTE_ARRAY) { |
717 | type_length_ = descr_->type_length(); |
718 | } else { |
719 | type_length_ = -1; |
720 | } |
721 | } |
722 | |
723 | // Decode routine templated on C++ type rather than type enum |
724 | template <typename T> |
725 | inline int DecodePlain(const uint8_t* data, int64_t data_size, int num_values, |
726 | int type_length, T* out) { |
727 | int bytes_to_decode = num_values * static_cast<int>(sizeof(T)); |
728 | if (data_size < bytes_to_decode) { |
729 | ParquetException::EofException(); |
730 | } |
731 | // If bytes_to_decode == 0, data could be null |
732 | if (bytes_to_decode > 0) { |
733 | memcpy(out, data, bytes_to_decode); |
734 | } |
735 | return bytes_to_decode; |
736 | } |
737 | |
738 | // Template specialization for BYTE_ARRAY. The written values do not own their |
739 | // own data. |
740 | template <> |
741 | inline int DecodePlain<ByteArray>(const uint8_t* data, int64_t data_size, int num_values, |
742 | int type_length, ByteArray* out) { |
743 | int bytes_decoded = 0; |
744 | int increment; |
745 | for (int i = 0; i < num_values; ++i) { |
746 | uint32_t len = out[i].len = arrow::util::SafeLoadAs<uint32_t>(data); |
747 | increment = static_cast<int>(sizeof(uint32_t) + len); |
748 | if (data_size < increment) ParquetException::EofException(); |
749 | out[i].ptr = data + sizeof(uint32_t); |
750 | data += increment; |
751 | data_size -= increment; |
752 | bytes_decoded += increment; |
753 | } |
754 | return bytes_decoded; |
755 | } |
756 | |
757 | // Template specialization for FIXED_LEN_BYTE_ARRAY. The written values do not |
758 | // own their own data. |
759 | template <> |
760 | inline int DecodePlain<FixedLenByteArray>(const uint8_t* data, int64_t data_size, |
761 | int num_values, int type_length, |
762 | FixedLenByteArray* out) { |
763 | int bytes_to_decode = type_length * num_values; |
764 | if (data_size < bytes_to_decode) { |
765 | ParquetException::EofException(); |
766 | } |
767 | for (int i = 0; i < num_values; ++i) { |
768 | out[i].ptr = data; |
769 | data += type_length; |
770 | data_size -= type_length; |
771 | } |
772 | return bytes_to_decode; |
773 | } |
774 | |
775 | template <typename DType> |
776 | int PlainDecoder<DType>::Decode(T* buffer, int max_values) { |
777 | max_values = std::min(max_values, num_values_); |
778 | int bytes_consumed = DecodePlain<T>(data_, len_, max_values, type_length_, buffer); |
779 | data_ += bytes_consumed; |
780 | len_ -= bytes_consumed; |
781 | num_values_ -= max_values; |
782 | return max_values; |
783 | } |
784 | |
785 | class PlainBooleanDecoder : public DecoderImpl, |
786 | virtual public TypedDecoder<BooleanType>, |
787 | virtual public BooleanDecoder { |
788 | public: |
789 | explicit PlainBooleanDecoder(const ColumnDescriptor* descr); |
790 | void SetData(int num_values, const uint8_t* data, int len) override; |
791 | |
792 | // Two flavors of bool decoding |
793 | int Decode(uint8_t* buffer, int max_values) override; |
794 | int Decode(bool* buffer, int max_values) override; |
795 | |
796 | private: |
797 | std::unique_ptr<arrow::BitUtil::BitReader> bit_reader_; |
798 | }; |
799 | |
800 | PlainBooleanDecoder::PlainBooleanDecoder(const ColumnDescriptor* descr) |
801 | : DecoderImpl(descr, Encoding::PLAIN) {} |
802 | |
803 | void PlainBooleanDecoder::SetData(int num_values, const uint8_t* data, int len) { |
804 | num_values_ = num_values; |
805 | bit_reader_.reset(new BitUtil::BitReader(data, len)); |
806 | } |
807 | |
808 | int PlainBooleanDecoder::Decode(uint8_t* buffer, int max_values) { |
809 | max_values = std::min(max_values, num_values_); |
810 | bool val; |
811 | arrow::internal::BitmapWriter bit_writer(buffer, 0, max_values); |
812 | for (int i = 0; i < max_values; ++i) { |
813 | if (!bit_reader_->GetValue(1, &val)) { |
814 | ParquetException::EofException(); |
815 | } |
816 | if (val) { |
817 | bit_writer.Set(); |
818 | } |
819 | bit_writer.Next(); |
820 | } |
821 | bit_writer.Finish(); |
822 | num_values_ -= max_values; |
823 | return max_values; |
824 | } |
825 | |
826 | int PlainBooleanDecoder::Decode(bool* buffer, int max_values) { |
827 | max_values = std::min(max_values, num_values_); |
828 | if (bit_reader_->GetBatch(1, buffer, max_values) != max_values) { |
829 | ParquetException::EofException(); |
830 | } |
831 | num_values_ -= max_values; |
832 | return max_values; |
833 | } |
834 | |
835 | struct ArrowBinaryHelper { |
836 | explicit ArrowBinaryHelper(ArrowBinaryAccumulator* out) { |
837 | this->out = out; |
838 | this->builder = out->builder.get(); |
839 | this->chunk_space_remaining = |
840 | ::arrow::kBinaryMemoryLimit - this->builder->value_data_length(); |
841 | } |
842 | |
843 | Status PushChunk() { |
844 | std::shared_ptr<::arrow::Array> result; |
845 | RETURN_NOT_OK(builder->Finish(&result)); |
846 | out->chunks.push_back(result); |
847 | chunk_space_remaining = ::arrow::kBinaryMemoryLimit; |
848 | return Status::OK(); |
849 | } |
850 | |
851 | bool CanFit(int64_t length) const { return length <= chunk_space_remaining; } |
852 | |
853 | void UnsafeAppend(const uint8_t* data, int32_t length) { |
854 | chunk_space_remaining -= length; |
855 | builder->UnsafeAppend(data, length); |
856 | } |
857 | |
858 | void UnsafeAppendNull() { builder->UnsafeAppendNull(); } |
859 | |
860 | Status Append(const uint8_t* data, int32_t length) { |
861 | chunk_space_remaining -= length; |
862 | return builder->Append(data, length); |
863 | } |
864 | |
865 | Status AppendNull() { return builder->AppendNull(); } |
866 | |
867 | ArrowBinaryAccumulator* out; |
868 | arrow::BinaryBuilder* builder; |
869 | int64_t chunk_space_remaining; |
870 | }; |
871 | |
872 | class PlainByteArrayDecoder : public PlainDecoder<ByteArrayType>, |
873 | virtual public ByteArrayDecoder { |
874 | public: |
875 | using Base = PlainDecoder<ByteArrayType>; |
876 | using Base::DecodeSpaced; |
877 | using Base::PlainDecoder; |
878 | |
879 | // ---------------------------------------------------------------------- |
880 | // Dictionary read paths |
881 | |
882 | int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits, |
883 | int64_t valid_bits_offset, |
884 | arrow::BinaryDictionary32Builder* builder) override { |
885 | int result = 0; |
886 | PARQUET_THROW_NOT_OK(DecodeArrow(num_values, null_count, valid_bits, |
887 | valid_bits_offset, builder, &result)); |
888 | return result; |
889 | } |
890 | |
891 | int DecodeArrowNonNull(int num_values, |
892 | arrow::BinaryDictionary32Builder* builder) override { |
893 | int result = 0; |
894 | PARQUET_THROW_NOT_OK(DecodeArrowNonNull(num_values, builder, &result)); |
895 | return result; |
896 | } |
897 | |
898 | // ---------------------------------------------------------------------- |
899 | // Optimized dense binary read paths |
900 | |
901 | int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits, |
902 | int64_t valid_bits_offset, ArrowBinaryAccumulator* out) override { |
903 | int result = 0; |
904 | PARQUET_THROW_NOT_OK(DecodeArrowDense(num_values, null_count, valid_bits, |
905 | valid_bits_offset, out, &result)); |
906 | return result; |
907 | } |
908 | |
909 | int DecodeArrowNonNull(int num_values, ArrowBinaryAccumulator* out) override { |
910 | int result = 0; |
911 | PARQUET_THROW_NOT_OK(DecodeArrowDenseNonNull(num_values, out, &result)); |
912 | return result; |
913 | } |
914 | |
915 | private: |
916 | Status DecodeArrowDense(int num_values, int null_count, const uint8_t* valid_bits, |
917 | int64_t valid_bits_offset, ArrowBinaryAccumulator* out, |
918 | int* out_values_decoded) { |
919 | ArrowBinaryHelper helper(out); |
920 | arrow::internal::BitmapReader bit_reader(valid_bits, valid_bits_offset, num_values); |
921 | int values_decoded = 0; |
922 | |
923 | RETURN_NOT_OK(helper.builder->Reserve(num_values)); |
924 | RETURN_NOT_OK(helper.builder->ReserveData( |
925 | std::min<int64_t>(len_, helper.chunk_space_remaining))); |
926 | for (int i = 0; i < num_values; ++i) { |
927 | if (bit_reader.IsSet()) { |
928 | auto value_len = static_cast<int32_t>(arrow::util::SafeLoadAs<uint32_t>(data_)); |
929 | int increment = static_cast<int>(sizeof(uint32_t) + value_len); |
930 | if (ARROW_PREDICT_FALSE(len_ < increment)) ParquetException::EofException(); |
931 | if (ARROW_PREDICT_FALSE(!helper.CanFit(value_len))) { |
932 | // This element would exceed the capacity of a chunk |
933 | RETURN_NOT_OK(helper.PushChunk()); |
934 | RETURN_NOT_OK(helper.builder->Reserve(num_values - i)); |
935 | RETURN_NOT_OK(helper.builder->ReserveData( |
936 | std::min<int64_t>(len_, helper.chunk_space_remaining))); |
937 | } |
938 | helper.UnsafeAppend(data_ + sizeof(uint32_t), value_len); |
939 | data_ += increment; |
940 | len_ -= increment; |
941 | ++values_decoded; |
942 | } else { |
943 | helper.UnsafeAppendNull(); |
944 | } |
945 | bit_reader.Next(); |
946 | } |
947 | |
948 | num_values_ -= values_decoded; |
949 | *out_values_decoded = values_decoded; |
950 | return Status::OK(); |
951 | } |
952 | |
953 | Status DecodeArrowDenseNonNull(int num_values, ArrowBinaryAccumulator* out, |
954 | int* values_decoded) { |
955 | ArrowBinaryHelper helper(out); |
956 | num_values = std::min(num_values, num_values_); |
957 | RETURN_NOT_OK(helper.builder->Reserve(num_values)); |
958 | RETURN_NOT_OK(helper.builder->ReserveData( |
959 | std::min<int64_t>(len_, helper.chunk_space_remaining))); |
960 | for (int i = 0; i < num_values; ++i) { |
961 | int32_t value_len = static_cast<int32_t>(arrow::util::SafeLoadAs<uint32_t>(data_)); |
962 | int increment = static_cast<int>(sizeof(uint32_t) + value_len); |
963 | if (ARROW_PREDICT_FALSE(len_ < increment)) ParquetException::EofException(); |
964 | if (ARROW_PREDICT_FALSE(!helper.CanFit(value_len))) { |
965 | // This element would exceed the capacity of a chunk |
966 | RETURN_NOT_OK(helper.PushChunk()); |
967 | RETURN_NOT_OK(helper.builder->Reserve(num_values - i)); |
968 | RETURN_NOT_OK(helper.builder->ReserveData( |
969 | std::min<int64_t>(len_, helper.chunk_space_remaining))); |
970 | } |
971 | helper.UnsafeAppend(data_ + sizeof(uint32_t), value_len); |
972 | data_ += increment; |
973 | len_ -= increment; |
974 | } |
975 | |
976 | num_values_ -= num_values; |
977 | *values_decoded = num_values; |
978 | return Status::OK(); |
979 | } |
980 | |
981 | template <typename BuilderType> |
982 | Status DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits, |
983 | int64_t valid_bits_offset, BuilderType* builder, |
984 | int* out_values_decoded) { |
985 | RETURN_NOT_OK(builder->Reserve(num_values)); |
986 | arrow::internal::BitmapReader bit_reader(valid_bits, valid_bits_offset, num_values); |
987 | int values_decoded = 0; |
988 | for (int i = 0; i < num_values; ++i) { |
989 | if (bit_reader.IsSet()) { |
990 | uint32_t value_len = arrow::util::SafeLoadAs<uint32_t>(data_); |
991 | int increment = static_cast<int>(sizeof(uint32_t) + value_len); |
992 | if (len_ < increment) { |
993 | ParquetException::EofException(); |
994 | } |
995 | RETURN_NOT_OK(builder->Append(data_ + sizeof(uint32_t), value_len)); |
996 | data_ += increment; |
997 | len_ -= increment; |
998 | ++values_decoded; |
999 | } else { |
1000 | RETURN_NOT_OK(builder->AppendNull()); |
1001 | } |
1002 | bit_reader.Next(); |
1003 | } |
1004 | num_values_ -= values_decoded; |
1005 | *out_values_decoded = values_decoded; |
1006 | return Status::OK(); |
1007 | } |
1008 | |
1009 | template <typename BuilderType> |
1010 | Status DecodeArrowNonNull(int num_values, BuilderType* builder, int* values_decoded) { |
1011 | num_values = std::min(num_values, num_values_); |
1012 | RETURN_NOT_OK(builder->Reserve(num_values)); |
1013 | for (int i = 0; i < num_values; ++i) { |
1014 | uint32_t value_len = arrow::util::SafeLoadAs<uint32_t>(data_); |
1015 | int increment = static_cast<int>(sizeof(uint32_t) + value_len); |
1016 | if (len_ < increment) ParquetException::EofException(); |
1017 | RETURN_NOT_OK(builder->Append(data_ + sizeof(uint32_t), value_len)); |
1018 | data_ += increment; |
1019 | len_ -= increment; |
1020 | } |
1021 | num_values_ -= num_values; |
1022 | *values_decoded = num_values; |
1023 | return Status::OK(); |
1024 | } |
1025 | }; |
1026 | |
1027 | class PlainFLBADecoder : public PlainDecoder<FLBAType>, virtual public FLBADecoder { |
1028 | public: |
1029 | using Base = PlainDecoder<FLBAType>; |
1030 | using Base::PlainDecoder; |
1031 | }; |
1032 | |
1033 | // ---------------------------------------------------------------------- |
1034 | // Dictionary encoding and decoding |
1035 | |
1036 | template <typename Type> |
1037 | class DictDecoderImpl : public DecoderImpl, virtual public DictDecoder<Type> { |
1038 | public: |
1039 | typedef typename Type::c_type T; |
1040 | |
1041 | // Initializes the dictionary with values from 'dictionary'. The data in |
1042 | // dictionary is not guaranteed to persist in memory after this call so the |
1043 | // dictionary decoder needs to copy the data out if necessary. |
1044 | explicit DictDecoderImpl(const ColumnDescriptor* descr, |
1045 | MemoryPool* pool = arrow::default_memory_pool()) |
1046 | : DecoderImpl(descr, Encoding::RLE_DICTIONARY), |
1047 | dictionary_(AllocateBuffer(pool, 0)), |
1048 | dictionary_length_(0), |
1049 | byte_array_data_(AllocateBuffer(pool, 0)), |
1050 | byte_array_offsets_(AllocateBuffer(pool, 0)), |
1051 | indices_scratch_space_(AllocateBuffer(pool, 0)) {} |
1052 | |
1053 | // Perform type-specific initiatialization |
1054 | void SetDict(TypedDecoder<Type>* dictionary) override; |
1055 | |
1056 | void SetData(int num_values, const uint8_t* data, int len) override { |
1057 | num_values_ = num_values; |
1058 | if (len == 0) return; |
1059 | uint8_t bit_width = *data; |
1060 | ++data; |
1061 | --len; |
1062 | idx_decoder_ = arrow::util::RleDecoder(data, len, bit_width); |
1063 | } |
1064 | |
1065 | int Decode(T* buffer, int num_values) override { |
1066 | num_values = std::min(num_values, num_values_); |
1067 | int decoded_values = idx_decoder_.GetBatchWithDict( |
1068 | reinterpret_cast<const T*>(dictionary_->data()), buffer, num_values); |
1069 | if (decoded_values != num_values) { |
1070 | ParquetException::EofException(); |
1071 | } |
1072 | num_values_ -= num_values; |
1073 | return num_values; |
1074 | } |
1075 | |
1076 | int DecodeSpaced(T* buffer, int num_values, int null_count, const uint8_t* valid_bits, |
1077 | int64_t valid_bits_offset) override { |
1078 | num_values = std::min(num_values, num_values_); |
1079 | if (num_values != idx_decoder_.GetBatchWithDictSpaced( |
1080 | reinterpret_cast<const T*>(dictionary_->data()), buffer, |
1081 | num_values, null_count, valid_bits, valid_bits_offset)) { |
1082 | ParquetException::EofException(); |
1083 | } |
1084 | num_values_ -= num_values; |
1085 | return num_values; |
1086 | } |
1087 | |
1088 | void InsertDictionary(arrow::ArrayBuilder* builder) override; |
1089 | |
1090 | int DecodeIndicesSpaced(int num_values, int null_count, const uint8_t* valid_bits, |
1091 | int64_t valid_bits_offset, |
1092 | arrow::ArrayBuilder* builder) override { |
1093 | if (num_values > 0) { |
1094 | // TODO(wesm): Refactor to batch reads for improved memory use. It is not |
1095 | // trivial because the null_count is relative to the entire bitmap |
1096 | PARQUET_THROW_NOT_OK(indices_scratch_space_->TypedResize<int32_t>( |
1097 | num_values, /*shrink_to_fit=*/false)); |
1098 | } |
1099 | |
1100 | auto indices_buffer = |
1101 | reinterpret_cast<int32_t*>(indices_scratch_space_->mutable_data()); |
1102 | |
1103 | if (num_values != idx_decoder_.GetBatchSpaced(num_values, null_count, valid_bits, |
1104 | valid_bits_offset, indices_buffer)) { |
1105 | ParquetException::EofException(); |
1106 | } |
1107 | |
1108 | /// XXX(wesm): Cannot append "valid bits" directly to the builder |
1109 | std::vector<uint8_t> valid_bytes(num_values); |
1110 | arrow::internal::BitmapReader bit_reader(valid_bits, valid_bits_offset, num_values); |
1111 | for (int64_t i = 0; i < num_values; ++i) { |
1112 | valid_bytes[i] = static_cast<uint8_t>(bit_reader.IsSet()); |
1113 | bit_reader.Next(); |
1114 | } |
1115 | |
1116 | auto binary_builder = checked_cast<arrow::BinaryDictionary32Builder*>(builder); |
1117 | PARQUET_THROW_NOT_OK( |
1118 | binary_builder->AppendIndices(indices_buffer, num_values, valid_bytes.data())); |
1119 | num_values_ -= num_values - null_count; |
1120 | return num_values - null_count; |
1121 | } |
1122 | |
1123 | int DecodeIndices(int num_values, arrow::ArrayBuilder* builder) override { |
1124 | num_values = std::min(num_values, num_values_); |
1125 | num_values = std::min(num_values, num_values_); |
1126 | if (num_values > 0) { |
1127 | // TODO(wesm): Refactor to batch reads for improved memory use. This is |
1128 | // relatively simple here because we don't have to do any bookkeeping of |
1129 | // nulls |
1130 | PARQUET_THROW_NOT_OK(indices_scratch_space_->TypedResize<int32_t>( |
1131 | num_values, /*shrink_to_fit=*/false)); |
1132 | } |
1133 | auto indices_buffer = |
1134 | reinterpret_cast<int32_t*>(indices_scratch_space_->mutable_data()); |
1135 | if (num_values != idx_decoder_.GetBatch(indices_buffer, num_values)) { |
1136 | ParquetException::EofException(); |
1137 | } |
1138 | auto binary_builder = checked_cast<arrow::BinaryDictionary32Builder*>(builder); |
1139 | PARQUET_THROW_NOT_OK(binary_builder->AppendIndices(indices_buffer, num_values)); |
1140 | num_values_ -= num_values; |
1141 | return num_values; |
1142 | } |
1143 | |
1144 | protected: |
1145 | inline void DecodeDict(TypedDecoder<Type>* dictionary) { |
1146 | dictionary_length_ = static_cast<int32_t>(dictionary->values_left()); |
1147 | PARQUET_THROW_NOT_OK(dictionary_->Resize(dictionary_length_ * sizeof(T), |
1148 | /*shrink_to_fit=*/false)); |
1149 | dictionary->Decode(reinterpret_cast<T*>(dictionary_->mutable_data()), |
1150 | dictionary_length_); |
1151 | } |
1152 | |
1153 | // Only one is set. |
1154 | std::shared_ptr<ResizableBuffer> dictionary_; |
1155 | |
1156 | int32_t dictionary_length_; |
1157 | |
1158 | // Data that contains the byte array data (byte_array_dictionary_ just has the |
1159 | // pointers). |
1160 | std::shared_ptr<ResizableBuffer> byte_array_data_; |
1161 | |
1162 | // Arrow-style byte offsets for each dictionary value. We maintain two |
1163 | // representations of the dictionary, one as ByteArray* for non-Arrow |
1164 | // consumers and this one for Arrow conumers. Since dictionaries are |
1165 | // generally pretty small to begin with this doesn't mean too much extra |
1166 | // memory use in most cases |
1167 | std::shared_ptr<ResizableBuffer> byte_array_offsets_; |
1168 | |
1169 | // Reusable buffer for decoding dictionary indices to be appended to a |
1170 | // BinaryDictionary32Builder |
1171 | std::shared_ptr<ResizableBuffer> indices_scratch_space_; |
1172 | |
1173 | arrow::util::RleDecoder idx_decoder_; |
1174 | }; |
1175 | |
1176 | template <typename Type> |
1177 | void DictDecoderImpl<Type>::SetDict(TypedDecoder<Type>* dictionary) { |
1178 | DecodeDict(dictionary); |
1179 | } |
1180 | |
1181 | template <> |
1182 | void DictDecoderImpl<BooleanType>::SetDict(TypedDecoder<BooleanType>* dictionary) { |
1183 | ParquetException::NYI("Dictionary encoding is not implemented for boolean values" ); |
1184 | } |
1185 | |
1186 | template <> |
1187 | void DictDecoderImpl<ByteArrayType>::SetDict(TypedDecoder<ByteArrayType>* dictionary) { |
1188 | DecodeDict(dictionary); |
1189 | |
1190 | auto dict_values = reinterpret_cast<ByteArray*>(dictionary_->mutable_data()); |
1191 | |
1192 | int total_size = 0; |
1193 | for (int i = 0; i < dictionary_length_; ++i) { |
1194 | total_size += dict_values[i].len; |
1195 | } |
1196 | if (total_size > 0) { |
1197 | PARQUET_THROW_NOT_OK(byte_array_data_->Resize(total_size, |
1198 | /*shrink_to_fit=*/false)); |
1199 | PARQUET_THROW_NOT_OK( |
1200 | byte_array_offsets_->Resize((dictionary_length_ + 1) * sizeof(int32_t), |
1201 | /*shrink_to_fit=*/false)); |
1202 | } |
1203 | |
1204 | int32_t offset = 0; |
1205 | uint8_t* bytes_data = byte_array_data_->mutable_data(); |
1206 | int32_t* bytes_offsets = |
1207 | reinterpret_cast<int32_t*>(byte_array_offsets_->mutable_data()); |
1208 | for (int i = 0; i < dictionary_length_; ++i) { |
1209 | memcpy(bytes_data + offset, dict_values[i].ptr, dict_values[i].len); |
1210 | bytes_offsets[i] = offset; |
1211 | dict_values[i].ptr = bytes_data + offset; |
1212 | offset += dict_values[i].len; |
1213 | } |
1214 | bytes_offsets[dictionary_length_] = offset; |
1215 | } |
1216 | |
1217 | template <> |
1218 | inline void DictDecoderImpl<FLBAType>::SetDict(TypedDecoder<FLBAType>* dictionary) { |
1219 | DecodeDict(dictionary); |
1220 | |
1221 | auto dict_values = reinterpret_cast<FLBA*>(dictionary_->mutable_data()); |
1222 | |
1223 | int fixed_len = descr_->type_length(); |
1224 | int total_size = dictionary_length_ * fixed_len; |
1225 | |
1226 | PARQUET_THROW_NOT_OK(byte_array_data_->Resize(total_size, |
1227 | /*shrink_to_fit=*/false)); |
1228 | uint8_t* bytes_data = byte_array_data_->mutable_data(); |
1229 | for (int32_t i = 0, offset = 0; i < dictionary_length_; ++i, offset += fixed_len) { |
1230 | memcpy(bytes_data + offset, dict_values[i].ptr, fixed_len); |
1231 | dict_values[i].ptr = bytes_data + offset; |
1232 | } |
1233 | } |
1234 | |
1235 | template <typename Type> |
1236 | void DictDecoderImpl<Type>::InsertDictionary(arrow::ArrayBuilder* builder) { |
1237 | ParquetException::NYI("InsertDictionary only implemented for BYTE_ARRAY types" ); |
1238 | } |
1239 | |
1240 | template <> |
1241 | void DictDecoderImpl<ByteArrayType>::InsertDictionary(arrow::ArrayBuilder* builder) { |
1242 | auto binary_builder = checked_cast<arrow::BinaryDictionary32Builder*>(builder); |
1243 | |
1244 | // Make an BinaryArray referencing the internal dictionary data |
1245 | auto arr = std::make_shared<arrow::BinaryArray>(dictionary_length_, byte_array_offsets_, |
1246 | byte_array_data_); |
1247 | PARQUET_THROW_NOT_OK(binary_builder->InsertMemoValues(*arr)); |
1248 | } |
1249 | |
1250 | class DictByteArrayDecoderImpl : public DictDecoderImpl<ByteArrayType>, |
1251 | virtual public ByteArrayDecoder { |
1252 | public: |
1253 | using BASE = DictDecoderImpl<ByteArrayType>; |
1254 | using BASE::DictDecoderImpl; |
1255 | |
1256 | int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits, |
1257 | int64_t valid_bits_offset, |
1258 | arrow::BinaryDictionary32Builder* builder) override { |
1259 | int result = 0; |
1260 | PARQUET_THROW_NOT_OK(DecodeArrow(num_values, null_count, valid_bits, |
1261 | valid_bits_offset, builder, &result)); |
1262 | return result; |
1263 | } |
1264 | |
1265 | int DecodeArrowNonNull(int num_values, |
1266 | arrow::BinaryDictionary32Builder* builder) override { |
1267 | int result = 0; |
1268 | PARQUET_THROW_NOT_OK(DecodeArrowNonNull(num_values, builder, &result)); |
1269 | return result; |
1270 | } |
1271 | |
1272 | int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits, |
1273 | int64_t valid_bits_offset, ArrowBinaryAccumulator* out) override { |
1274 | int result = 0; |
1275 | PARQUET_THROW_NOT_OK(DecodeArrowDense(num_values, null_count, valid_bits, |
1276 | valid_bits_offset, out, &result)); |
1277 | return result; |
1278 | } |
1279 | |
1280 | int DecodeArrowNonNull(int num_values, ArrowBinaryAccumulator* out) override { |
1281 | int result = 0; |
1282 | PARQUET_THROW_NOT_OK(DecodeArrowDenseNonNull(num_values, out, &result)); |
1283 | return result; |
1284 | } |
1285 | |
1286 | private: |
1287 | Status DecodeArrowDense(int num_values, int null_count, const uint8_t* valid_bits, |
1288 | int64_t valid_bits_offset, ArrowBinaryAccumulator* out, |
1289 | int* out_num_values) { |
1290 | constexpr int32_t buffer_size = 1024; |
1291 | int32_t indices_buffer[buffer_size]; |
1292 | |
1293 | ArrowBinaryHelper helper(out); |
1294 | |
1295 | arrow::internal::BitmapReader bit_reader(valid_bits, valid_bits_offset, num_values); |
1296 | |
1297 | auto dict_values = reinterpret_cast<const ByteArray*>(dictionary_->data()); |
1298 | int values_decoded = 0; |
1299 | int num_appended = 0; |
1300 | while (num_appended < num_values) { |
1301 | bool is_valid = bit_reader.IsSet(); |
1302 | bit_reader.Next(); |
1303 | |
1304 | if (is_valid) { |
1305 | int32_t batch_size = |
1306 | std::min<int32_t>(buffer_size, num_values - num_appended - null_count); |
1307 | int num_indices = idx_decoder_.GetBatch(indices_buffer, batch_size); |
1308 | |
1309 | int i = 0; |
1310 | while (true) { |
1311 | // Consume all indices |
1312 | if (is_valid) { |
1313 | const auto& val = dict_values[indices_buffer[i]]; |
1314 | if (ARROW_PREDICT_FALSE(!helper.CanFit(val.len))) { |
1315 | RETURN_NOT_OK(helper.PushChunk()); |
1316 | } |
1317 | RETURN_NOT_OK(helper.Append(val.ptr, static_cast<int32_t>(val.len))); |
1318 | ++i; |
1319 | ++values_decoded; |
1320 | } else { |
1321 | RETURN_NOT_OK(helper.AppendNull()); |
1322 | --null_count; |
1323 | } |
1324 | ++num_appended; |
1325 | if (i == num_indices) { |
1326 | // Do not advance the bit_reader if we have fulfilled the decode |
1327 | // request |
1328 | break; |
1329 | } |
1330 | is_valid = bit_reader.IsSet(); |
1331 | bit_reader.Next(); |
1332 | } |
1333 | } else { |
1334 | RETURN_NOT_OK(helper.AppendNull()); |
1335 | --null_count; |
1336 | ++num_appended; |
1337 | } |
1338 | } |
1339 | *out_num_values = values_decoded; |
1340 | return Status::OK(); |
1341 | } |
1342 | |
1343 | Status DecodeArrowDenseNonNull(int num_values, ArrowBinaryAccumulator* out, |
1344 | int* out_num_values) { |
1345 | constexpr int32_t buffer_size = 2048; |
1346 | int32_t indices_buffer[buffer_size]; |
1347 | int values_decoded = 0; |
1348 | |
1349 | ArrowBinaryHelper helper(out); |
1350 | auto dict_values = reinterpret_cast<const ByteArray*>(dictionary_->data()); |
1351 | |
1352 | while (values_decoded < num_values) { |
1353 | int32_t batch_size = std::min<int32_t>(buffer_size, num_values - values_decoded); |
1354 | int num_indices = idx_decoder_.GetBatch(indices_buffer, batch_size); |
1355 | if (num_indices == 0) ParquetException::EofException(); |
1356 | for (int i = 0; i < num_indices; ++i) { |
1357 | const auto& val = dict_values[indices_buffer[i]]; |
1358 | if (ARROW_PREDICT_FALSE(!helper.CanFit(val.len))) { |
1359 | RETURN_NOT_OK(helper.PushChunk()); |
1360 | } |
1361 | RETURN_NOT_OK(helper.Append(val.ptr, static_cast<int32_t>(val.len))); |
1362 | } |
1363 | values_decoded += num_indices; |
1364 | } |
1365 | *out_num_values = values_decoded; |
1366 | return Status::OK(); |
1367 | } |
1368 | |
1369 | template <typename BuilderType> |
1370 | Status DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits, |
1371 | int64_t valid_bits_offset, BuilderType* builder, |
1372 | int* out_num_values) { |
1373 | constexpr int32_t buffer_size = 1024; |
1374 | int32_t indices_buffer[buffer_size]; |
1375 | |
1376 | RETURN_NOT_OK(builder->Reserve(num_values)); |
1377 | arrow::internal::BitmapReader bit_reader(valid_bits, valid_bits_offset, num_values); |
1378 | |
1379 | auto dict_values = reinterpret_cast<const ByteArray*>(dictionary_->data()); |
1380 | |
1381 | int values_decoded = 0; |
1382 | int num_appended = 0; |
1383 | while (num_appended < num_values) { |
1384 | bool is_valid = bit_reader.IsSet(); |
1385 | bit_reader.Next(); |
1386 | |
1387 | if (is_valid) { |
1388 | int32_t batch_size = |
1389 | std::min<int32_t>(buffer_size, num_values - num_appended - null_count); |
1390 | int num_indices = idx_decoder_.GetBatch(indices_buffer, batch_size); |
1391 | |
1392 | int i = 0; |
1393 | while (true) { |
1394 | // Consume all indices |
1395 | if (is_valid) { |
1396 | const auto& val = dict_values[indices_buffer[i]]; |
1397 | RETURN_NOT_OK(builder->Append(val.ptr, val.len)); |
1398 | ++i; |
1399 | ++values_decoded; |
1400 | } else { |
1401 | RETURN_NOT_OK(builder->AppendNull()); |
1402 | --null_count; |
1403 | } |
1404 | ++num_appended; |
1405 | if (i == num_indices) { |
1406 | // Do not advance the bit_reader if we have fulfilled the decode |
1407 | // request |
1408 | break; |
1409 | } |
1410 | is_valid = bit_reader.IsSet(); |
1411 | bit_reader.Next(); |
1412 | } |
1413 | } else { |
1414 | RETURN_NOT_OK(builder->AppendNull()); |
1415 | --null_count; |
1416 | ++num_appended; |
1417 | } |
1418 | } |
1419 | *out_num_values = values_decoded; |
1420 | return Status::OK(); |
1421 | } |
1422 | |
1423 | template <typename BuilderType> |
1424 | Status DecodeArrowNonNull(int num_values, BuilderType* builder, int* out_num_values) { |
1425 | constexpr int32_t buffer_size = 2048; |
1426 | int32_t indices_buffer[buffer_size]; |
1427 | int values_decoded = 0; |
1428 | RETURN_NOT_OK(builder->Reserve(num_values)); |
1429 | |
1430 | auto dict_values = reinterpret_cast<const ByteArray*>(dictionary_->data()); |
1431 | |
1432 | while (values_decoded < num_values) { |
1433 | int32_t batch_size = std::min<int32_t>(buffer_size, num_values - values_decoded); |
1434 | int num_indices = idx_decoder_.GetBatch(indices_buffer, batch_size); |
1435 | if (num_indices == 0) ParquetException::EofException(); |
1436 | for (int i = 0; i < num_indices; ++i) { |
1437 | const auto& val = dict_values[indices_buffer[i]]; |
1438 | RETURN_NOT_OK(builder->Append(val.ptr, val.len)); |
1439 | } |
1440 | values_decoded += num_indices; |
1441 | } |
1442 | *out_num_values = values_decoded; |
1443 | return Status::OK(); |
1444 | } |
1445 | }; |
1446 | |
1447 | class DictFLBADecoder : public DictDecoderImpl<FLBAType>, virtual public FLBADecoder { |
1448 | public: |
1449 | using BASE = DictDecoderImpl<FLBAType>; |
1450 | using BASE::DictDecoderImpl; |
1451 | }; |
1452 | |
1453 | // ---------------------------------------------------------------------- |
1454 | // DeltaBitPackDecoder |
1455 | |
1456 | template <typename DType> |
1457 | class DeltaBitPackDecoder : public DecoderImpl, virtual public TypedDecoder<DType> { |
1458 | public: |
1459 | typedef typename DType::c_type T; |
1460 | |
1461 | explicit DeltaBitPackDecoder(const ColumnDescriptor* descr, |
1462 | MemoryPool* pool = arrow::default_memory_pool()) |
1463 | : DecoderImpl(descr, Encoding::DELTA_BINARY_PACKED), pool_(pool) { |
1464 | if (DType::type_num != Type::INT32 && DType::type_num != Type::INT64) { |
1465 | throw ParquetException("Delta bit pack encoding should only be for integer data." ); |
1466 | } |
1467 | } |
1468 | |
1469 | virtual void SetData(int num_values, const uint8_t* data, int len) { |
1470 | this->num_values_ = num_values; |
1471 | decoder_ = arrow::BitUtil::BitReader(data, len); |
1472 | values_current_block_ = 0; |
1473 | values_current_mini_block_ = 0; |
1474 | } |
1475 | |
1476 | virtual int Decode(T* buffer, int max_values) { |
1477 | return GetInternal(buffer, max_values); |
1478 | } |
1479 | |
1480 | private: |
1481 | void InitBlock() { |
1482 | int32_t block_size; |
1483 | if (!decoder_.GetVlqInt(&block_size)) ParquetException::EofException(); |
1484 | if (!decoder_.GetVlqInt(&num_mini_blocks_)) ParquetException::EofException(); |
1485 | if (!decoder_.GetVlqInt(&values_current_block_)) { |
1486 | ParquetException::EofException(); |
1487 | } |
1488 | if (!decoder_.GetZigZagVlqInt(&last_value_)) ParquetException::EofException(); |
1489 | |
1490 | delta_bit_widths_ = AllocateBuffer(pool_, num_mini_blocks_); |
1491 | uint8_t* bit_width_data = delta_bit_widths_->mutable_data(); |
1492 | |
1493 | if (!decoder_.GetZigZagVlqInt(&min_delta_)) ParquetException::EofException(); |
1494 | for (int i = 0; i < num_mini_blocks_; ++i) { |
1495 | if (!decoder_.GetAligned<uint8_t>(1, bit_width_data + i)) { |
1496 | ParquetException::EofException(); |
1497 | } |
1498 | } |
1499 | values_per_mini_block_ = block_size / num_mini_blocks_; |
1500 | mini_block_idx_ = 0; |
1501 | delta_bit_width_ = bit_width_data[0]; |
1502 | values_current_mini_block_ = values_per_mini_block_; |
1503 | } |
1504 | |
1505 | template <typename T> |
1506 | int GetInternal(T* buffer, int max_values) { |
1507 | max_values = std::min(max_values, this->num_values_); |
1508 | const uint8_t* bit_width_data = delta_bit_widths_->data(); |
1509 | for (int i = 0; i < max_values; ++i) { |
1510 | if (ARROW_PREDICT_FALSE(values_current_mini_block_ == 0)) { |
1511 | ++mini_block_idx_; |
1512 | if (mini_block_idx_ < static_cast<size_t>(delta_bit_widths_->size())) { |
1513 | delta_bit_width_ = bit_width_data[mini_block_idx_]; |
1514 | values_current_mini_block_ = values_per_mini_block_; |
1515 | } else { |
1516 | InitBlock(); |
1517 | buffer[i] = last_value_; |
1518 | continue; |
1519 | } |
1520 | } |
1521 | |
1522 | // TODO: the key to this algorithm is to decode the entire miniblock at once. |
1523 | int64_t delta; |
1524 | if (!decoder_.GetValue(delta_bit_width_, &delta)) ParquetException::EofException(); |
1525 | delta += min_delta_; |
1526 | last_value_ += static_cast<int32_t>(delta); |
1527 | buffer[i] = last_value_; |
1528 | --values_current_mini_block_; |
1529 | } |
1530 | this->num_values_ -= max_values; |
1531 | return max_values; |
1532 | } |
1533 | |
1534 | MemoryPool* pool_; |
1535 | arrow::BitUtil::BitReader decoder_; |
1536 | int32_t values_current_block_; |
1537 | int32_t num_mini_blocks_; |
1538 | uint64_t values_per_mini_block_; |
1539 | uint64_t values_current_mini_block_; |
1540 | |
1541 | int32_t min_delta_; |
1542 | size_t mini_block_idx_; |
1543 | std::shared_ptr<ResizableBuffer> delta_bit_widths_; |
1544 | int delta_bit_width_; |
1545 | |
1546 | int32_t last_value_; |
1547 | }; |
1548 | |
1549 | // ---------------------------------------------------------------------- |
1550 | // DELTA_LENGTH_BYTE_ARRAY |
1551 | |
1552 | class DeltaLengthByteArrayDecoder : public DecoderImpl, |
1553 | virtual public TypedDecoder<ByteArrayType> { |
1554 | public: |
1555 | explicit DeltaLengthByteArrayDecoder(const ColumnDescriptor* descr, |
1556 | MemoryPool* pool = arrow::default_memory_pool()) |
1557 | : DecoderImpl(descr, Encoding::DELTA_LENGTH_BYTE_ARRAY), |
1558 | len_decoder_(nullptr, pool) {} |
1559 | |
1560 | virtual void SetData(int num_values, const uint8_t* data, int len) { |
1561 | num_values_ = num_values; |
1562 | if (len == 0) return; |
1563 | int total_lengths_len = arrow::util::SafeLoadAs<int32_t>(data); |
1564 | data += 4; |
1565 | this->len_decoder_.SetData(num_values, data, total_lengths_len); |
1566 | data_ = data + total_lengths_len; |
1567 | this->len_ = len - 4 - total_lengths_len; |
1568 | } |
1569 | |
1570 | virtual int Decode(ByteArray* buffer, int max_values) { |
1571 | max_values = std::min(max_values, num_values_); |
1572 | std::vector<int> lengths(max_values); |
1573 | len_decoder_.Decode(lengths.data(), max_values); |
1574 | for (int i = 0; i < max_values; ++i) { |
1575 | buffer[i].len = lengths[i]; |
1576 | buffer[i].ptr = data_; |
1577 | this->data_ += lengths[i]; |
1578 | this->len_ -= lengths[i]; |
1579 | } |
1580 | this->num_values_ -= max_values; |
1581 | return max_values; |
1582 | } |
1583 | |
1584 | private: |
1585 | DeltaBitPackDecoder<Int32Type> len_decoder_; |
1586 | }; |
1587 | |
1588 | // ---------------------------------------------------------------------- |
1589 | // DELTA_BYTE_ARRAY |
1590 | |
1591 | class DeltaByteArrayDecoder : public DecoderImpl, |
1592 | virtual public TypedDecoder<ByteArrayType> { |
1593 | public: |
1594 | explicit DeltaByteArrayDecoder(const ColumnDescriptor* descr, |
1595 | MemoryPool* pool = arrow::default_memory_pool()) |
1596 | : DecoderImpl(descr, Encoding::DELTA_BYTE_ARRAY), |
1597 | prefix_len_decoder_(nullptr, pool), |
1598 | suffix_decoder_(nullptr, pool), |
1599 | last_value_(0, nullptr) {} |
1600 | |
1601 | virtual void SetData(int num_values, const uint8_t* data, int len) { |
1602 | num_values_ = num_values; |
1603 | if (len == 0) return; |
1604 | int prefix_len_length = arrow::util::SafeLoadAs<int32_t>(data); |
1605 | data += 4; |
1606 | len -= 4; |
1607 | prefix_len_decoder_.SetData(num_values, data, prefix_len_length); |
1608 | data += prefix_len_length; |
1609 | len -= prefix_len_length; |
1610 | suffix_decoder_.SetData(num_values, data, len); |
1611 | } |
1612 | |
1613 | // TODO: this doesn't work and requires memory management. We need to allocate |
1614 | // new strings to store the results. |
1615 | virtual int Decode(ByteArray* buffer, int max_values) { |
1616 | max_values = std::min(max_values, this->num_values_); |
1617 | for (int i = 0; i < max_values; ++i) { |
1618 | int prefix_len = 0; |
1619 | prefix_len_decoder_.Decode(&prefix_len, 1); |
1620 | ByteArray suffix = {0, nullptr}; |
1621 | suffix_decoder_.Decode(&suffix, 1); |
1622 | buffer[i].len = prefix_len + suffix.len; |
1623 | |
1624 | uint8_t* result = reinterpret_cast<uint8_t*>(malloc(buffer[i].len)); |
1625 | memcpy(result, last_value_.ptr, prefix_len); |
1626 | memcpy(result + prefix_len, suffix.ptr, suffix.len); |
1627 | |
1628 | buffer[i].ptr = result; |
1629 | last_value_ = buffer[i]; |
1630 | } |
1631 | this->num_values_ -= max_values; |
1632 | return max_values; |
1633 | } |
1634 | |
1635 | private: |
1636 | DeltaBitPackDecoder<Int32Type> prefix_len_decoder_; |
1637 | DeltaLengthByteArrayDecoder suffix_decoder_; |
1638 | ByteArray last_value_; |
1639 | }; |
1640 | |
1641 | // ---------------------------------------------------------------------- |
1642 | |
1643 | std::unique_ptr<Decoder> MakeDecoder(Type::type type_num, Encoding::type encoding, |
1644 | const ColumnDescriptor* descr) { |
1645 | if (encoding == Encoding::PLAIN) { |
1646 | switch (type_num) { |
1647 | case Type::BOOLEAN: |
1648 | return std::unique_ptr<Decoder>(new PlainBooleanDecoder(descr)); |
1649 | case Type::INT32: |
1650 | return std::unique_ptr<Decoder>(new PlainDecoder<Int32Type>(descr)); |
1651 | case Type::INT64: |
1652 | return std::unique_ptr<Decoder>(new PlainDecoder<Int64Type>(descr)); |
1653 | case Type::INT96: |
1654 | return std::unique_ptr<Decoder>(new PlainDecoder<Int96Type>(descr)); |
1655 | case Type::FLOAT: |
1656 | return std::unique_ptr<Decoder>(new PlainDecoder<FloatType>(descr)); |
1657 | case Type::DOUBLE: |
1658 | return std::unique_ptr<Decoder>(new PlainDecoder<DoubleType>(descr)); |
1659 | case Type::BYTE_ARRAY: |
1660 | return std::unique_ptr<Decoder>(new PlainByteArrayDecoder(descr)); |
1661 | case Type::FIXED_LEN_BYTE_ARRAY: |
1662 | return std::unique_ptr<Decoder>(new PlainFLBADecoder(descr)); |
1663 | default: |
1664 | break; |
1665 | } |
1666 | } else { |
1667 | ParquetException::NYI("Selected encoding is not supported" ); |
1668 | } |
1669 | DCHECK(false) << "Should not be able to reach this code" ; |
1670 | return nullptr; |
1671 | } |
1672 | |
1673 | namespace detail { |
1674 | |
1675 | std::unique_ptr<Decoder> MakeDictDecoder(Type::type type_num, |
1676 | const ColumnDescriptor* descr, |
1677 | MemoryPool* pool) { |
1678 | switch (type_num) { |
1679 | case Type::BOOLEAN: |
1680 | ParquetException::NYI("Dictionary encoding not implemented for boolean type" ); |
1681 | case Type::INT32: |
1682 | return std::unique_ptr<Decoder>(new DictDecoderImpl<Int32Type>(descr, pool)); |
1683 | case Type::INT64: |
1684 | return std::unique_ptr<Decoder>(new DictDecoderImpl<Int64Type>(descr, pool)); |
1685 | case Type::INT96: |
1686 | return std::unique_ptr<Decoder>(new DictDecoderImpl<Int96Type>(descr, pool)); |
1687 | case Type::FLOAT: |
1688 | return std::unique_ptr<Decoder>(new DictDecoderImpl<FloatType>(descr, pool)); |
1689 | case Type::DOUBLE: |
1690 | return std::unique_ptr<Decoder>(new DictDecoderImpl<DoubleType>(descr, pool)); |
1691 | case Type::BYTE_ARRAY: |
1692 | return std::unique_ptr<Decoder>(new DictByteArrayDecoderImpl(descr, pool)); |
1693 | case Type::FIXED_LEN_BYTE_ARRAY: |
1694 | return std::unique_ptr<Decoder>(new DictFLBADecoder(descr, pool)); |
1695 | default: |
1696 | break; |
1697 | } |
1698 | DCHECK(false) << "Should not be able to reach this code" ; |
1699 | return nullptr; |
1700 | } |
1701 | |
1702 | } // namespace detail |
1703 | } // namespace parquet |
1704 | |