| 1 | /* |
| 2 | * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"). |
| 5 | * You may not use this file except in compliance with the License. |
| 6 | * A copy of the License is located at |
| 7 | * |
| 8 | * http://aws.amazon.com/apache2.0 |
| 9 | * |
| 10 | * or in the "license" file accompanying this file. This file is distributed |
| 11 | * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either |
| 12 | * express or implied. See the License for the specific language governing |
| 13 | * permissions and limitations under the License. |
| 14 | */ |
| 15 | |
| 16 | #include <aws/common/atomics.h> |
| 17 | #include <aws/common/byte_buf.h> |
| 18 | #include <aws/common/hash_table.h> |
| 19 | #include <aws/common/logging.h> |
| 20 | #include <aws/common/mutex.h> |
| 21 | #include <aws/common/priority_queue.h> |
| 22 | #include <aws/common/string.h> |
| 23 | #include <aws/common/system_info.h> |
| 24 | #include <aws/common/time.h> |
| 25 | |
| 26 | /* describes a single live allocation */ |
| 27 | struct alloc_info { |
| 28 | size_t size; |
| 29 | time_t time; |
| 30 | uint64_t stack; /* hash of stack frame pointers */ |
| 31 | }; |
| 32 | |
| 33 | /* Using a flexible array member is the C99 compliant way to have the frames immediately follow the header. |
| 34 | * |
| 35 | * MSVC doesn't know this for some reason so we need to use a pragma to make |
| 36 | * it happy. |
| 37 | */ |
| 38 | #ifdef _MSC_VER |
| 39 | # pragma warning(push) |
| 40 | # pragma warning(disable : 4200) /* nonstandard extension used: zero-sized array in struct/union */ |
| 41 | #endif |
| 42 | |
| 43 | /* one of these is stored per unique stack */ |
| 44 | struct stack_trace { |
| 45 | size_t depth; /* length of frames[] */ |
| 46 | void *const frames[]; /* rest of frames are allocated after */ |
| 47 | }; |
| 48 | |
| 49 | #ifdef _MSC_VER |
| 50 | # pragma warning(pop) |
| 51 | #endif |
| 52 | |
| 53 | /* Tracking structure, used as the allocator impl */ |
| 54 | struct alloc_tracer { |
| 55 | struct aws_allocator *allocator; /* underlying allocator */ |
| 56 | struct aws_allocator *system_allocator; /* bookkeeping allocator */ |
| 57 | enum aws_mem_trace_level level; /* level to trace at */ |
| 58 | size_t frames_per_stack; /* how many frames to keep per stack */ |
| 59 | struct aws_atomic_var allocated; /* bytes currently allocated */ |
| 60 | struct aws_mutex mutex; /* protects everything below */ |
| 61 | struct aws_hash_table allocs; /* live allocations, maps address -> alloc_info */ |
| 62 | struct aws_hash_table stacks; /* unique stack traces, maps hash -> stack_trace */ |
| 63 | struct aws_hash_table stack_info; /* only used during dumps, maps stack hash/id -> stack_metadata */ |
| 64 | }; |
| 65 | |
| 66 | /* number of frames to skip in call stacks (s_alloc_tracer_track, and the vtable function) */ |
| 67 | #define FRAMES_TO_SKIP 2 |
| 68 | |
| 69 | static void *s_trace_mem_acquire(struct aws_allocator *allocator, size_t size); |
| 70 | static void s_trace_mem_release(struct aws_allocator *allocator, void *ptr); |
| 71 | static void *s_trace_mem_realloc(struct aws_allocator *allocator, void *ptr, size_t old_size, size_t new_size); |
| 72 | static void *s_trace_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size); |
| 73 | |
| 74 | static struct aws_allocator s_trace_allocator = { |
| 75 | .mem_acquire = s_trace_mem_acquire, |
| 76 | .mem_release = s_trace_mem_release, |
| 77 | .mem_realloc = s_trace_mem_realloc, |
| 78 | .mem_calloc = s_trace_mem_calloc, |
| 79 | }; |
| 80 | |
| 81 | /* for the hash table, to destroy elements */ |
| 82 | static void s_destroy_alloc(void *data) { |
| 83 | struct aws_allocator *allocator = aws_default_allocator(); |
| 84 | struct alloc_info *alloc = data; |
| 85 | aws_mem_release(allocator, alloc); |
| 86 | } |
| 87 | |
| 88 | static void s_destroy_stacktrace(void *data) { |
| 89 | struct aws_allocator *allocator = aws_default_allocator(); |
| 90 | struct stack_trace *stack = data; |
| 91 | aws_mem_release(allocator, stack); |
| 92 | } |
| 93 | |
| 94 | static void s_alloc_tracer_init( |
| 95 | struct alloc_tracer *tracer, |
| 96 | struct aws_allocator *allocator, |
| 97 | struct aws_allocator *system_allocator, |
| 98 | enum aws_mem_trace_level level, |
| 99 | size_t frames_per_stack) { |
| 100 | |
| 101 | void *stack[1]; |
| 102 | if (!aws_backtrace(stack, 1)) { |
| 103 | /* clamp level if tracing isn't available */ |
| 104 | level = level > AWS_MEMTRACE_BYTES ? AWS_MEMTRACE_BYTES : level; |
| 105 | } |
| 106 | |
| 107 | tracer->allocator = allocator; |
| 108 | tracer->system_allocator = system_allocator; |
| 109 | tracer->level = level; |
| 110 | |
| 111 | if (tracer->level >= AWS_MEMTRACE_BYTES) { |
| 112 | aws_atomic_init_int(&tracer->allocated, 0); |
| 113 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_mutex_init(&tracer->mutex)); |
| 114 | AWS_FATAL_ASSERT( |
| 115 | AWS_OP_SUCCESS == |
| 116 | aws_hash_table_init( |
| 117 | &tracer->allocs, tracer->system_allocator, 1024, aws_hash_ptr, aws_ptr_eq, NULL, s_destroy_alloc)); |
| 118 | } |
| 119 | |
| 120 | if (tracer->level == AWS_MEMTRACE_STACKS) { |
| 121 | if (frames_per_stack > 128) { |
| 122 | frames_per_stack = 128; |
| 123 | } |
| 124 | tracer->frames_per_stack = (frames_per_stack) ? frames_per_stack : 8; |
| 125 | AWS_FATAL_ASSERT( |
| 126 | AWS_OP_SUCCESS == |
| 127 | aws_hash_table_init( |
| 128 | &tracer->stacks, tracer->system_allocator, 1024, aws_hash_ptr, aws_ptr_eq, NULL, s_destroy_stacktrace)); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | static void s_alloc_tracer_track(struct alloc_tracer *tracer, void *ptr, size_t size) { |
| 133 | if (tracer->level == AWS_MEMTRACE_NONE) { |
| 134 | return; |
| 135 | } |
| 136 | |
| 137 | aws_atomic_fetch_add(&tracer->allocated, size); |
| 138 | |
| 139 | struct alloc_info *alloc = aws_mem_calloc(tracer->system_allocator, 1, sizeof(struct alloc_info)); |
| 140 | alloc->size = size; |
| 141 | alloc->time = time(NULL); |
| 142 | |
| 143 | if (tracer->level == AWS_MEMTRACE_STACKS) { |
| 144 | /* capture stack frames, skip 2 for this function and the allocation vtable function */ |
| 145 | AWS_VARIABLE_LENGTH_ARRAY(void *, stack_frames, (FRAMES_TO_SKIP + tracer->frames_per_stack)); |
| 146 | size_t stack_depth = aws_backtrace(stack_frames, FRAMES_TO_SKIP + tracer->frames_per_stack); |
| 147 | if (stack_depth) { |
| 148 | /* hash the stack pointers */ |
| 149 | struct aws_byte_cursor stack_cursor = |
| 150 | aws_byte_cursor_from_array(stack_frames, stack_depth * sizeof(void *)); |
| 151 | uint64_t stack_id = aws_hash_byte_cursor_ptr(&stack_cursor); |
| 152 | alloc->stack = stack_id; /* associate the stack with the alloc */ |
| 153 | |
| 154 | aws_mutex_lock(&tracer->mutex); |
| 155 | struct aws_hash_element *item = NULL; |
| 156 | int was_created = 0; |
| 157 | AWS_FATAL_ASSERT( |
| 158 | AWS_OP_SUCCESS == |
| 159 | aws_hash_table_create(&tracer->stacks, (void *)(uintptr_t)stack_id, &item, &was_created)); |
| 160 | /* If this is a new stack, save it to the hash */ |
| 161 | if (was_created) { |
| 162 | struct stack_trace *stack = aws_mem_calloc( |
| 163 | tracer->system_allocator, |
| 164 | 1, |
| 165 | sizeof(struct stack_trace) + (sizeof(void *) * tracer->frames_per_stack)); |
| 166 | memcpy( |
| 167 | (void **)&stack->frames[0], |
| 168 | &stack_frames[FRAMES_TO_SKIP], |
| 169 | (stack_depth - FRAMES_TO_SKIP) * sizeof(void *)); |
| 170 | stack->depth = stack_depth - FRAMES_TO_SKIP; |
| 171 | item->value = stack; |
| 172 | } |
| 173 | aws_mutex_unlock(&tracer->mutex); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | aws_mutex_lock(&tracer->mutex); |
| 178 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_put(&tracer->allocs, ptr, alloc, NULL)); |
| 179 | aws_mutex_unlock(&tracer->mutex); |
| 180 | } |
| 181 | |
| 182 | static void s_alloc_tracer_untrack(struct alloc_tracer *tracer, void *ptr) { |
| 183 | if (tracer->level == AWS_MEMTRACE_NONE) { |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | aws_mutex_lock(&tracer->mutex); |
| 188 | struct aws_hash_element *item; |
| 189 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_find(&tracer->allocs, ptr, &item)); |
| 190 | /* because the tracer can be installed at any time, it is possible for an allocation to not |
| 191 | * be tracked. Therefore, we make sure the find succeeds, but then check the returned |
| 192 | * value */ |
| 193 | if (item) { |
| 194 | AWS_FATAL_ASSERT(item->key == ptr && item->value); |
| 195 | struct alloc_info *alloc = item->value; |
| 196 | aws_atomic_fetch_sub(&tracer->allocated, alloc->size); |
| 197 | s_destroy_alloc(item->value); |
| 198 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_remove_element(&tracer->allocs, item)); |
| 199 | } |
| 200 | aws_mutex_unlock(&tracer->mutex); |
| 201 | } |
| 202 | |
| 203 | /* used only to resolve stacks -> trace, count, size at dump time */ |
| 204 | struct stack_metadata { |
| 205 | struct aws_string *trace; |
| 206 | size_t count; |
| 207 | size_t size; |
| 208 | }; |
| 209 | |
| 210 | static int s_collect_stack_trace(void *context, struct aws_hash_element *item) { |
| 211 | struct alloc_tracer *tracer = context; |
| 212 | struct aws_hash_table *all_stacks = &tracer->stacks; |
| 213 | struct aws_allocator *allocator = tracer->system_allocator; |
| 214 | struct stack_metadata *stack_info = item->value; |
| 215 | struct aws_hash_element *stack_item = NULL; |
| 216 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_find(all_stacks, item->key, &stack_item)); |
| 217 | AWS_FATAL_ASSERT(stack_item); |
| 218 | struct stack_trace *stack = stack_item->value; |
| 219 | void *const *stack_frames = &stack->frames[0]; |
| 220 | |
| 221 | /* convert the frame pointers to symbols, and concat into a buffer */ |
| 222 | char buf[4096] = {0}; |
| 223 | struct aws_byte_buf stacktrace = aws_byte_buf_from_empty_array(buf, AWS_ARRAY_SIZE(buf)); |
| 224 | struct aws_byte_cursor newline = aws_byte_cursor_from_c_str("\n" ); |
| 225 | char **symbols = aws_backtrace_addr2line(stack_frames, stack->depth); |
| 226 | for (size_t idx = 0; idx < stack->depth; ++idx) { |
| 227 | if (idx > 0) { |
| 228 | aws_byte_buf_append(&stacktrace, &newline); |
| 229 | } |
| 230 | const char *caller = symbols[idx]; |
| 231 | if (!caller || !caller[0]) { |
| 232 | break; |
| 233 | } |
| 234 | struct aws_byte_cursor cursor = aws_byte_cursor_from_c_str(caller); |
| 235 | aws_byte_buf_append(&stacktrace, &cursor); |
| 236 | } |
| 237 | free(symbols); |
| 238 | /* record the resultant buffer as a string */ |
| 239 | stack_info->trace = aws_string_new_from_array(allocator, stacktrace.buffer, stacktrace.len); |
| 240 | aws_byte_buf_clean_up(&stacktrace); |
| 241 | return AWS_COMMON_HASH_TABLE_ITER_CONTINUE; |
| 242 | } |
| 243 | |
| 244 | static int s_stack_info_compare_size(const void *a, const void *b) { |
| 245 | const struct stack_metadata *stack_a = *(const struct stack_metadata **)a; |
| 246 | const struct stack_metadata *stack_b = *(const struct stack_metadata **)b; |
| 247 | return stack_b->size > stack_a->size; |
| 248 | } |
| 249 | |
| 250 | static int s_stack_info_compare_count(const void *a, const void *b) { |
| 251 | const struct stack_metadata *stack_a = *(const struct stack_metadata **)a; |
| 252 | const struct stack_metadata *stack_b = *(const struct stack_metadata **)b; |
| 253 | return stack_b->count > stack_a->count; |
| 254 | } |
| 255 | |
| 256 | static void s_stack_info_destroy(void *data) { |
| 257 | struct stack_metadata *stack = data; |
| 258 | struct aws_allocator *allocator = stack->trace->allocator; |
| 259 | aws_string_destroy(stack->trace); |
| 260 | aws_mem_release(allocator, stack); |
| 261 | } |
| 262 | |
| 263 | /* tally up count/size per stack from all allocs */ |
| 264 | static int s_collect_stack_stats(void *context, struct aws_hash_element *item) { |
| 265 | struct alloc_tracer *tracer = context; |
| 266 | struct alloc_info *alloc = item->value; |
| 267 | struct aws_hash_element *stack_item = NULL; |
| 268 | int was_created = 0; |
| 269 | AWS_FATAL_ASSERT( |
| 270 | AWS_OP_SUCCESS == |
| 271 | aws_hash_table_create(&tracer->stack_info, (void *)(uintptr_t)alloc->stack, &stack_item, &was_created)); |
| 272 | if (was_created) { |
| 273 | stack_item->value = aws_mem_calloc(tracer->system_allocator, 1, sizeof(struct stack_metadata)); |
| 274 | } |
| 275 | struct stack_metadata *stack = stack_item->value; |
| 276 | stack->count++; |
| 277 | stack->size += alloc->size; |
| 278 | return AWS_COMMON_HASH_TABLE_ITER_CONTINUE; |
| 279 | } |
| 280 | |
| 281 | static int s_insert_stacks(void *context, struct aws_hash_element *item) { |
| 282 | struct aws_priority_queue *pq = context; |
| 283 | struct stack_metadata *stack = item->value; |
| 284 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_priority_queue_push(pq, &stack)); |
| 285 | return AWS_COMMON_HASH_TABLE_ITER_CONTINUE; |
| 286 | } |
| 287 | |
| 288 | static int s_insert_allocs(void *context, struct aws_hash_element *item) { |
| 289 | struct aws_priority_queue *allocs = context; |
| 290 | struct alloc_info *alloc = item->value; |
| 291 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_priority_queue_push(allocs, &alloc)); |
| 292 | return AWS_COMMON_HASH_TABLE_ITER_CONTINUE; |
| 293 | } |
| 294 | |
| 295 | static int s_alloc_compare(const void *a, const void *b) { |
| 296 | const struct alloc_info *alloc_a = *(const struct alloc_info **)a; |
| 297 | const struct alloc_info *alloc_b = *(const struct alloc_info **)b; |
| 298 | return alloc_a->time > alloc_b->time; |
| 299 | } |
| 300 | |
| 301 | static void s_alloc_tracer_dump(struct alloc_tracer *tracer) { |
| 302 | if (tracer->level == AWS_MEMTRACE_NONE || aws_atomic_load_int(&tracer->allocated) == 0) { |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | aws_mutex_lock(&tracer->mutex); |
| 307 | |
| 308 | size_t num_allocs = aws_hash_table_get_entry_count(&tracer->allocs); |
| 309 | AWS_LOGF_TRACE( |
| 310 | AWS_LS_COMMON_MEMTRACE, "################################################################################\n" ); |
| 311 | AWS_LOGF_TRACE( |
| 312 | AWS_LS_COMMON_MEMTRACE, "# BEGIN MEMTRACE DUMP #\n" ); |
| 313 | AWS_LOGF_TRACE( |
| 314 | AWS_LS_COMMON_MEMTRACE, "################################################################################\n" ); |
| 315 | AWS_LOGF_TRACE( |
| 316 | AWS_LS_COMMON_MEMTRACE, |
| 317 | "tracer: %zu bytes still allocated in %zu allocations\n" , |
| 318 | aws_atomic_load_int(&tracer->allocated), |
| 319 | num_allocs); |
| 320 | |
| 321 | /* convert stacks from pointers -> symbols */ |
| 322 | if (tracer->level == AWS_MEMTRACE_STACKS) { |
| 323 | AWS_FATAL_ASSERT( |
| 324 | AWS_OP_SUCCESS == |
| 325 | aws_hash_table_init( |
| 326 | &tracer->stack_info, tracer->allocator, 64, aws_hash_ptr, aws_ptr_eq, NULL, s_stack_info_destroy)); |
| 327 | /* collect active stacks, tally up sizes and counts */ |
| 328 | aws_hash_table_foreach(&tracer->allocs, s_collect_stack_stats, tracer); |
| 329 | /* collect stack traces for active stacks */ |
| 330 | aws_hash_table_foreach(&tracer->stack_info, s_collect_stack_trace, tracer); |
| 331 | } |
| 332 | |
| 333 | /* sort allocs by time */ |
| 334 | struct aws_priority_queue allocs; |
| 335 | aws_priority_queue_init_dynamic( |
| 336 | &allocs, tracer->allocator, num_allocs, sizeof(struct alloc_info *), s_alloc_compare); |
| 337 | aws_hash_table_foreach(&tracer->allocs, s_insert_allocs, &allocs); |
| 338 | /* dump allocs by time */ |
| 339 | AWS_LOGF_TRACE( |
| 340 | AWS_LS_COMMON_MEMTRACE, "################################################################################\n" ); |
| 341 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "Leaks in order of allocation:\n" ); |
| 342 | AWS_LOGF_TRACE( |
| 343 | AWS_LS_COMMON_MEMTRACE, "################################################################################\n" ); |
| 344 | while (aws_priority_queue_size(&allocs)) { |
| 345 | struct alloc_info *alloc = NULL; |
| 346 | aws_priority_queue_pop(&allocs, &alloc); |
| 347 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "ALLOC %zu bytes\n" , alloc->size); |
| 348 | if (alloc->stack) { |
| 349 | struct aws_hash_element *item = NULL; |
| 350 | AWS_FATAL_ASSERT( |
| 351 | AWS_OP_SUCCESS == aws_hash_table_find(&tracer->stack_info, (void *)(uintptr_t)alloc->stack, &item)); |
| 352 | struct stack_metadata *stack = item->value; |
| 353 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, " stacktrace:\n%s\n" , (const char *)aws_string_bytes(stack->trace)); |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | aws_priority_queue_clean_up(&allocs); |
| 358 | |
| 359 | if (tracer->level == AWS_MEMTRACE_STACKS) { |
| 360 | size_t num_stacks = aws_hash_table_get_entry_count(&tracer->stack_info); |
| 361 | /* sort stacks by total size leaked */ |
| 362 | struct aws_priority_queue stacks_by_size; |
| 363 | AWS_FATAL_ASSERT( |
| 364 | AWS_OP_SUCCESS == aws_priority_queue_init_dynamic( |
| 365 | &stacks_by_size, |
| 366 | tracer->allocator, |
| 367 | num_stacks, |
| 368 | sizeof(struct stack_metadata *), |
| 369 | s_stack_info_compare_size)); |
| 370 | aws_hash_table_foreach(&tracer->stack_info, s_insert_stacks, &stacks_by_size); |
| 371 | AWS_LOGF_TRACE( |
| 372 | AWS_LS_COMMON_MEMTRACE, |
| 373 | "################################################################################\n" ); |
| 374 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "Stacks by bytes leaked:\n" ); |
| 375 | AWS_LOGF_TRACE( |
| 376 | AWS_LS_COMMON_MEMTRACE, |
| 377 | "################################################################################\n" ); |
| 378 | while (aws_priority_queue_size(&stacks_by_size) > 0) { |
| 379 | struct stack_metadata *stack = NULL; |
| 380 | aws_priority_queue_pop(&stacks_by_size, &stack); |
| 381 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "%zu bytes in %zu allocations:\n" , stack->size, stack->count); |
| 382 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "%s\n" , (const char *)aws_string_bytes(stack->trace)); |
| 383 | } |
| 384 | aws_priority_queue_clean_up(&stacks_by_size); |
| 385 | |
| 386 | /* sort stacks by number of leaks */ |
| 387 | struct aws_priority_queue stacks_by_count; |
| 388 | AWS_FATAL_ASSERT( |
| 389 | AWS_OP_SUCCESS == aws_priority_queue_init_dynamic( |
| 390 | &stacks_by_count, |
| 391 | tracer->allocator, |
| 392 | num_stacks, |
| 393 | sizeof(struct stack_metadata *), |
| 394 | s_stack_info_compare_count)); |
| 395 | AWS_LOGF_TRACE( |
| 396 | AWS_LS_COMMON_MEMTRACE, |
| 397 | "################################################################################\n" ); |
| 398 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "Stacks by number of leaks:\n" ); |
| 399 | AWS_LOGF_TRACE( |
| 400 | AWS_LS_COMMON_MEMTRACE, |
| 401 | "################################################################################\n" ); |
| 402 | aws_hash_table_foreach(&tracer->stack_info, s_insert_stacks, &stacks_by_count); |
| 403 | while (aws_priority_queue_size(&stacks_by_count) > 0) { |
| 404 | struct stack_metadata *stack = NULL; |
| 405 | aws_priority_queue_pop(&stacks_by_count, &stack); |
| 406 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "%zu allocations leaking %zu bytes:\n" , stack->count, stack->size); |
| 407 | AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "%s\n" , (const char *)aws_string_bytes(stack->trace)); |
| 408 | } |
| 409 | aws_priority_queue_clean_up(&stacks_by_count); |
| 410 | aws_hash_table_clean_up(&tracer->stack_info); |
| 411 | } |
| 412 | |
| 413 | AWS_LOGF_TRACE( |
| 414 | AWS_LS_COMMON_MEMTRACE, "################################################################################\n" ); |
| 415 | AWS_LOGF_TRACE( |
| 416 | AWS_LS_COMMON_MEMTRACE, "# END MEMTRACE DUMP #\n" ); |
| 417 | AWS_LOGF_TRACE( |
| 418 | AWS_LS_COMMON_MEMTRACE, "################################################################################\n" ); |
| 419 | |
| 420 | aws_mutex_unlock(&tracer->mutex); |
| 421 | } |
| 422 | |
| 423 | static void *s_trace_mem_acquire(struct aws_allocator *allocator, size_t size) { |
| 424 | struct alloc_tracer *tracer = allocator->impl; |
| 425 | void *ptr = aws_mem_acquire(tracer->allocator, size); |
| 426 | s_alloc_tracer_track(tracer, ptr, size); |
| 427 | return ptr; |
| 428 | } |
| 429 | |
| 430 | static void s_trace_mem_release(struct aws_allocator *allocator, void *ptr) { |
| 431 | struct alloc_tracer *tracer = allocator->impl; |
| 432 | s_alloc_tracer_untrack(tracer, ptr); |
| 433 | aws_mem_release(tracer->allocator, ptr); |
| 434 | } |
| 435 | |
| 436 | static void *s_trace_mem_realloc(struct aws_allocator *allocator, void *ptr, size_t old_size, size_t new_size) { |
| 437 | struct alloc_tracer *tracer = allocator->impl; |
| 438 | void *new_ptr = ptr; |
| 439 | |
| 440 | AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_mem_realloc(tracer->allocator, &new_ptr, old_size, new_size)); |
| 441 | |
| 442 | s_alloc_tracer_untrack(tracer, ptr); |
| 443 | s_alloc_tracer_track(tracer, new_ptr, new_size); |
| 444 | |
| 445 | return new_ptr; |
| 446 | } |
| 447 | |
| 448 | static void *s_trace_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size) { |
| 449 | struct alloc_tracer *tracer = allocator->impl; |
| 450 | void *ptr = aws_mem_calloc(tracer->allocator, num, size); |
| 451 | s_alloc_tracer_track(tracer, ptr, num * size); |
| 452 | return ptr; |
| 453 | } |
| 454 | |
| 455 | struct aws_allocator *aws_mem_tracer_new( |
| 456 | struct aws_allocator *allocator, |
| 457 | struct aws_allocator *system_allocator, |
| 458 | enum aws_mem_trace_level level, |
| 459 | size_t frames_per_stack) { |
| 460 | |
| 461 | if (!system_allocator) { |
| 462 | system_allocator = aws_default_allocator(); |
| 463 | } |
| 464 | |
| 465 | struct alloc_tracer *tracer = NULL; |
| 466 | struct aws_allocator *trace_allocator = NULL; |
| 467 | aws_mem_acquire_many( |
| 468 | system_allocator, 2, &tracer, sizeof(struct alloc_tracer), &trace_allocator, sizeof(struct aws_allocator)); |
| 469 | |
| 470 | AWS_FATAL_ASSERT(trace_allocator); |
| 471 | AWS_FATAL_ASSERT(tracer); |
| 472 | |
| 473 | AWS_ZERO_STRUCT(*trace_allocator); |
| 474 | AWS_ZERO_STRUCT(*tracer); |
| 475 | |
| 476 | /* copy the template vtable s*/ |
| 477 | *trace_allocator = s_trace_allocator; |
| 478 | trace_allocator->impl = tracer; |
| 479 | |
| 480 | s_alloc_tracer_init(tracer, allocator, system_allocator, level, frames_per_stack); |
| 481 | return trace_allocator; |
| 482 | } |
| 483 | |
| 484 | struct aws_allocator *aws_mem_tracer_destroy(struct aws_allocator *trace_allocator) { |
| 485 | struct alloc_tracer *tracer = trace_allocator->impl; |
| 486 | struct aws_allocator *allocator = tracer->allocator; |
| 487 | |
| 488 | /* This is not necessary, as if you are destroying the allocator, what are your |
| 489 | * expectations? Either way, we can, so we might as well... |
| 490 | */ |
| 491 | aws_mutex_lock(&tracer->mutex); |
| 492 | aws_hash_table_clean_up(&tracer->allocs); |
| 493 | aws_hash_table_clean_up(&tracer->stacks); |
| 494 | aws_mutex_unlock(&tracer->mutex); |
| 495 | aws_mutex_clean_up(&tracer->mutex); |
| 496 | |
| 497 | struct aws_allocator *system_allocator = tracer->system_allocator; |
| 498 | aws_mem_release(system_allocator, tracer); |
| 499 | /* trace_allocator is freed as part of the block tracer was allocated in */ |
| 500 | return allocator; |
| 501 | } |
| 502 | |
| 503 | void aws_mem_tracer_dump(struct aws_allocator *trace_allocator) { |
| 504 | struct alloc_tracer *tracer = trace_allocator->impl; |
| 505 | s_alloc_tracer_dump(tracer); |
| 506 | } |
| 507 | |
| 508 | size_t aws_mem_tracer_bytes(struct aws_allocator *trace_allocator) { |
| 509 | struct alloc_tracer *tracer = trace_allocator->impl; |
| 510 | return aws_atomic_load_int(&tracer->allocated); |
| 511 | } |
| 512 | |
| 513 | size_t aws_mem_tracer_count(struct aws_allocator *trace_allocator) { |
| 514 | struct alloc_tracer *tracer = trace_allocator->impl; |
| 515 | aws_mutex_lock(&tracer->mutex); |
| 516 | size_t count = aws_hash_table_get_entry_count(&tracer->allocs); |
| 517 | aws_mutex_unlock(&tracer->mutex); |
| 518 | return count; |
| 519 | } |
| 520 | |