| 1 | /* |
| 2 | * Copyright 2010-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"). |
| 5 | * You may not use this file except in compliance with the License. |
| 6 | * A copy of the License is located at |
| 7 | * |
| 8 | * http://aws.amazon.com/apache2.0 |
| 9 | * |
| 10 | * or in the "license" file accompanying this file. This file is distributed |
| 11 | * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either |
| 12 | * express or implied. See the License for the specific language governing |
| 13 | * permissions and limitations under the License. |
| 14 | */ |
| 15 | |
| 16 | #include <aws/common/ring_buffer.h> |
| 17 | |
| 18 | #include <aws/common/byte_buf.h> |
| 19 | |
| 20 | #ifdef CBMC |
| 21 | # define AWS_ATOMIC_LOAD_PTR(ring_buf, dest_ptr, atomic_ptr, memory_order) \ |
| 22 | dest_ptr = aws_atomic_load_ptr_explicit(atomic_ptr, memory_order); \ |
| 23 | assert(__CPROVER_POINTER_OBJECT(dest_ptr) == __CPROVER_POINTER_OBJECT(ring_buf->allocation)); \ |
| 24 | assert(aws_ring_buffer_check_atomic_ptr(ring_buf, dest_ptr)); |
| 25 | # define AWS_ATOMIC_STORE_PTR(ring_buf, atomic_ptr, src_ptr, memory_order) \ |
| 26 | assert(aws_ring_buffer_check_atomic_ptr(ring_buf, src_ptr)); \ |
| 27 | aws_atomic_store_ptr_explicit(atomic_ptr, src_ptr, memory_order); |
| 28 | #else |
| 29 | # define AWS_ATOMIC_LOAD_PTR(ring_buf, dest_ptr, atomic_ptr, memory_order) \ |
| 30 | dest_ptr = aws_atomic_load_ptr_explicit(atomic_ptr, memory_order); |
| 31 | # define AWS_ATOMIC_STORE_PTR(ring_buf, atomic_ptr, src_ptr, memory_order) \ |
| 32 | aws_atomic_store_ptr_explicit(atomic_ptr, src_ptr, memory_order); |
| 33 | #endif |
| 34 | #define AWS_ATOMIC_LOAD_TAIL_PTR(ring_buf, dest_ptr) \ |
| 35 | AWS_ATOMIC_LOAD_PTR(ring_buf, dest_ptr, &(ring_buf)->tail, aws_memory_order_acquire); |
| 36 | #define AWS_ATOMIC_STORE_TAIL_PTR(ring_buf, src_ptr) \ |
| 37 | AWS_ATOMIC_STORE_PTR(ring_buf, &(ring_buf)->tail, src_ptr, aws_memory_order_release); |
| 38 | #define AWS_ATOMIC_LOAD_HEAD_PTR(ring_buf, dest_ptr) \ |
| 39 | AWS_ATOMIC_LOAD_PTR(ring_buf, dest_ptr, &(ring_buf)->head, aws_memory_order_relaxed); |
| 40 | #define AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, src_ptr) \ |
| 41 | AWS_ATOMIC_STORE_PTR(ring_buf, &(ring_buf)->head, src_ptr, aws_memory_order_relaxed); |
| 42 | |
| 43 | int aws_ring_buffer_init(struct aws_ring_buffer *ring_buf, struct aws_allocator *allocator, size_t size) { |
| 44 | AWS_PRECONDITION(ring_buf != NULL); |
| 45 | AWS_PRECONDITION(allocator != NULL); |
| 46 | AWS_PRECONDITION(size > 0); |
| 47 | |
| 48 | AWS_ZERO_STRUCT(*ring_buf); |
| 49 | |
| 50 | ring_buf->allocation = aws_mem_acquire(allocator, size); |
| 51 | |
| 52 | if (!ring_buf->allocation) { |
| 53 | return AWS_OP_ERR; |
| 54 | } |
| 55 | |
| 56 | ring_buf->allocator = allocator; |
| 57 | aws_atomic_init_ptr(&ring_buf->head, ring_buf->allocation); |
| 58 | aws_atomic_init_ptr(&ring_buf->tail, ring_buf->allocation); |
| 59 | ring_buf->allocation_end = ring_buf->allocation + size; |
| 60 | |
| 61 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 62 | return AWS_OP_SUCCESS; |
| 63 | } |
| 64 | |
| 65 | void aws_ring_buffer_clean_up(struct aws_ring_buffer *ring_buf) { |
| 66 | AWS_PRECONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 67 | if (ring_buf->allocation) { |
| 68 | aws_mem_release(ring_buf->allocator, ring_buf->allocation); |
| 69 | } |
| 70 | |
| 71 | AWS_ZERO_STRUCT(*ring_buf); |
| 72 | } |
| 73 | |
| 74 | int aws_ring_buffer_acquire(struct aws_ring_buffer *ring_buf, size_t requested_size, struct aws_byte_buf *dest) { |
| 75 | AWS_PRECONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 76 | AWS_PRECONDITION(aws_byte_buf_is_valid(dest)); |
| 77 | AWS_ERROR_PRECONDITION(requested_size != 0); |
| 78 | |
| 79 | uint8_t *tail_cpy; |
| 80 | uint8_t *head_cpy; |
| 81 | AWS_ATOMIC_LOAD_TAIL_PTR(ring_buf, tail_cpy); |
| 82 | AWS_ATOMIC_LOAD_HEAD_PTR(ring_buf, head_cpy); |
| 83 | |
| 84 | /* this branch is, we don't have any vended buffers. */ |
| 85 | if (head_cpy == tail_cpy) { |
| 86 | size_t ring_space = ring_buf->allocation_end - ring_buf->allocation; |
| 87 | |
| 88 | if (requested_size > ring_space) { |
| 89 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 90 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 91 | return aws_raise_error(AWS_ERROR_OOM); |
| 92 | } |
| 93 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, ring_buf->allocation + requested_size); |
| 94 | AWS_ATOMIC_STORE_TAIL_PTR(ring_buf, ring_buf->allocation); |
| 95 | *dest = aws_byte_buf_from_empty_array(ring_buf->allocation, requested_size); |
| 96 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 97 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 98 | return AWS_OP_SUCCESS; |
| 99 | } |
| 100 | |
| 101 | /* you'll constantly bounce between the next two branches as the ring buffer is traversed. */ |
| 102 | /* after N + 1 wraps */ |
| 103 | if (tail_cpy > head_cpy) { |
| 104 | size_t space = tail_cpy - head_cpy - 1; |
| 105 | |
| 106 | if (space >= requested_size) { |
| 107 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, head_cpy + requested_size); |
| 108 | *dest = aws_byte_buf_from_empty_array(head_cpy, requested_size); |
| 109 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 110 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 111 | return AWS_OP_SUCCESS; |
| 112 | } |
| 113 | /* After N wraps */ |
| 114 | } else if (tail_cpy < head_cpy) { |
| 115 | /* prefer the head space for efficiency. */ |
| 116 | if ((size_t)(ring_buf->allocation_end - head_cpy) >= requested_size) { |
| 117 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, head_cpy + requested_size); |
| 118 | *dest = aws_byte_buf_from_empty_array(head_cpy, requested_size); |
| 119 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 120 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 121 | return AWS_OP_SUCCESS; |
| 122 | } |
| 123 | |
| 124 | if ((size_t)(tail_cpy - ring_buf->allocation) > requested_size) { |
| 125 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, ring_buf->allocation + requested_size); |
| 126 | *dest = aws_byte_buf_from_empty_array(ring_buf->allocation, requested_size); |
| 127 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 128 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 129 | return AWS_OP_SUCCESS; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 134 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 135 | return aws_raise_error(AWS_ERROR_OOM); |
| 136 | } |
| 137 | |
| 138 | int aws_ring_buffer_acquire_up_to( |
| 139 | struct aws_ring_buffer *ring_buf, |
| 140 | size_t minimum_size, |
| 141 | size_t requested_size, |
| 142 | struct aws_byte_buf *dest) { |
| 143 | AWS_PRECONDITION(requested_size >= minimum_size); |
| 144 | AWS_PRECONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 145 | AWS_PRECONDITION(aws_byte_buf_is_valid(dest)); |
| 146 | |
| 147 | if (requested_size == 0 || minimum_size == 0 || !ring_buf || !dest) { |
| 148 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 149 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 150 | return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT); |
| 151 | } |
| 152 | |
| 153 | uint8_t *tail_cpy; |
| 154 | uint8_t *head_cpy; |
| 155 | AWS_ATOMIC_LOAD_TAIL_PTR(ring_buf, tail_cpy); |
| 156 | AWS_ATOMIC_LOAD_HEAD_PTR(ring_buf, head_cpy); |
| 157 | |
| 158 | /* this branch is, we don't have any vended buffers. */ |
| 159 | if (head_cpy == tail_cpy) { |
| 160 | size_t ring_space = ring_buf->allocation_end - ring_buf->allocation; |
| 161 | |
| 162 | size_t allocation_size = ring_space > requested_size ? requested_size : ring_space; |
| 163 | |
| 164 | if (allocation_size < minimum_size) { |
| 165 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 166 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 167 | return aws_raise_error(AWS_ERROR_OOM); |
| 168 | } |
| 169 | |
| 170 | /* go as big as we can. */ |
| 171 | /* we don't have any vended, so this should be safe. */ |
| 172 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, ring_buf->allocation + allocation_size); |
| 173 | AWS_ATOMIC_STORE_TAIL_PTR(ring_buf, ring_buf->allocation); |
| 174 | *dest = aws_byte_buf_from_empty_array(ring_buf->allocation, allocation_size); |
| 175 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 176 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 177 | return AWS_OP_SUCCESS; |
| 178 | } |
| 179 | /* you'll constantly bounce between the next two branches as the ring buffer is traversed. */ |
| 180 | /* after N + 1 wraps */ |
| 181 | if (tail_cpy > head_cpy) { |
| 182 | size_t space = tail_cpy - head_cpy; |
| 183 | /* this shouldn't be possible. */ |
| 184 | AWS_ASSERT(space); |
| 185 | space -= 1; |
| 186 | |
| 187 | size_t returnable_size = space > requested_size ? requested_size : space; |
| 188 | |
| 189 | if (returnable_size >= minimum_size) { |
| 190 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, head_cpy + returnable_size); |
| 191 | *dest = aws_byte_buf_from_empty_array(head_cpy, returnable_size); |
| 192 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 193 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 194 | return AWS_OP_SUCCESS; |
| 195 | } |
| 196 | /* after N wraps */ |
| 197 | } else if (tail_cpy < head_cpy) { |
| 198 | size_t head_space = ring_buf->allocation_end - head_cpy; |
| 199 | size_t tail_space = tail_cpy - ring_buf->allocation; |
| 200 | |
| 201 | /* if you can vend the whole thing do it. Also prefer head space to tail space. */ |
| 202 | if (head_space >= requested_size) { |
| 203 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, head_cpy + requested_size); |
| 204 | *dest = aws_byte_buf_from_empty_array(head_cpy, requested_size); |
| 205 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 206 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 207 | return AWS_OP_SUCCESS; |
| 208 | } |
| 209 | |
| 210 | if (tail_space > requested_size) { |
| 211 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, ring_buf->allocation + requested_size); |
| 212 | *dest = aws_byte_buf_from_empty_array(ring_buf->allocation, requested_size); |
| 213 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 214 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 215 | return AWS_OP_SUCCESS; |
| 216 | } |
| 217 | |
| 218 | /* now vend as much as possible, once again preferring head space. */ |
| 219 | if (head_space >= minimum_size && head_space >= tail_space) { |
| 220 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, head_cpy + head_space); |
| 221 | *dest = aws_byte_buf_from_empty_array(head_cpy, head_space); |
| 222 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 223 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 224 | return AWS_OP_SUCCESS; |
| 225 | } |
| 226 | |
| 227 | if (tail_space > minimum_size) { |
| 228 | AWS_ATOMIC_STORE_HEAD_PTR(ring_buf, ring_buf->allocation + tail_space - 1); |
| 229 | *dest = aws_byte_buf_from_empty_array(ring_buf->allocation, tail_space - 1); |
| 230 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 231 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 232 | return AWS_OP_SUCCESS; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buf)); |
| 237 | AWS_POSTCONDITION(aws_byte_buf_is_valid(dest)); |
| 238 | return aws_raise_error(AWS_ERROR_OOM); |
| 239 | } |
| 240 | |
| 241 | static inline bool s_buf_belongs_to_pool(const struct aws_ring_buffer *ring_buffer, const struct aws_byte_buf *buf) { |
| 242 | #ifdef CBMC |
| 243 | /* only continue if buf points-into ring_buffer because comparison of pointers to different objects is undefined |
| 244 | * (C11 6.5.8) */ |
| 245 | if ((__CPROVER_POINTER_OBJECT(buf->buffer) != __CPROVER_POINTER_OBJECT(ring_buffer->allocation)) || |
| 246 | (__CPROVER_POINTER_OBJECT(buf->buffer) != __CPROVER_POINTER_OBJECT(ring_buffer->allocation_end))) { |
| 247 | return false; |
| 248 | } |
| 249 | #endif |
| 250 | return buf->buffer && ring_buffer->allocation && ring_buffer->allocation_end && |
| 251 | buf->buffer >= ring_buffer->allocation && buf->buffer + buf->capacity <= ring_buffer->allocation_end; |
| 252 | } |
| 253 | |
| 254 | void aws_ring_buffer_release(struct aws_ring_buffer *ring_buffer, struct aws_byte_buf *buf) { |
| 255 | AWS_PRECONDITION(aws_ring_buffer_is_valid(ring_buffer)); |
| 256 | AWS_PRECONDITION(aws_byte_buf_is_valid(buf)); |
| 257 | AWS_PRECONDITION(s_buf_belongs_to_pool(ring_buffer, buf)); |
| 258 | AWS_ATOMIC_STORE_TAIL_PTR(ring_buffer, buf->buffer + buf->capacity); |
| 259 | AWS_ZERO_STRUCT(*buf); |
| 260 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buffer)); |
| 261 | } |
| 262 | |
| 263 | bool aws_ring_buffer_buf_belongs_to_pool(const struct aws_ring_buffer *ring_buffer, const struct aws_byte_buf *buf) { |
| 264 | AWS_PRECONDITION(aws_ring_buffer_is_valid(ring_buffer)); |
| 265 | AWS_PRECONDITION(aws_byte_buf_is_valid(buf)); |
| 266 | bool rval = s_buf_belongs_to_pool(ring_buffer, buf); |
| 267 | AWS_POSTCONDITION(aws_ring_buffer_is_valid(ring_buffer)); |
| 268 | AWS_POSTCONDITION(aws_byte_buf_is_valid(buf)); |
| 269 | return rval; |
| 270 | } |
| 271 | |
| 272 | /* Ring buffer allocator implementation */ |
| 273 | static void *s_ring_buffer_mem_acquire(struct aws_allocator *allocator, size_t size) { |
| 274 | struct aws_ring_buffer *buffer = allocator->impl; |
| 275 | struct aws_byte_buf buf; |
| 276 | AWS_ZERO_STRUCT(buf); |
| 277 | /* allocate extra space for the size */ |
| 278 | if (aws_ring_buffer_acquire(buffer, size + sizeof(size_t), &buf)) { |
| 279 | return NULL; |
| 280 | } |
| 281 | /* store the size ahead of the allocation */ |
| 282 | *((size_t *)buf.buffer) = buf.capacity; |
| 283 | return buf.buffer + sizeof(size_t); |
| 284 | } |
| 285 | |
| 286 | static void s_ring_buffer_mem_release(struct aws_allocator *allocator, void *ptr) { |
| 287 | /* back up to where the size is stored */ |
| 288 | const void *addr = ((uint8_t *)ptr - sizeof(size_t)); |
| 289 | const size_t size = *((size_t *)addr); |
| 290 | |
| 291 | struct aws_byte_buf buf = aws_byte_buf_from_array(addr, size); |
| 292 | buf.allocator = allocator; |
| 293 | |
| 294 | struct aws_ring_buffer *buffer = allocator->impl; |
| 295 | aws_ring_buffer_release(buffer, &buf); |
| 296 | } |
| 297 | |
| 298 | static void *s_ring_buffer_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size) { |
| 299 | void *mem = s_ring_buffer_mem_acquire(allocator, num * size); |
| 300 | if (!mem) { |
| 301 | return NULL; |
| 302 | } |
| 303 | memset(mem, 0, num * size); |
| 304 | return mem; |
| 305 | } |
| 306 | |
| 307 | static void *s_ring_buffer_mem_realloc(struct aws_allocator *allocator, void *ptr, size_t old_size, size_t new_size) { |
| 308 | (void)allocator; |
| 309 | (void)ptr; |
| 310 | (void)old_size; |
| 311 | (void)new_size; |
| 312 | AWS_FATAL_ASSERT(!"ring_buffer_allocator does not support realloc, as it breaks allocation ordering" ); |
| 313 | return NULL; |
| 314 | } |
| 315 | |
| 316 | int aws_ring_buffer_allocator_init(struct aws_allocator *allocator, struct aws_ring_buffer *ring_buffer) { |
| 317 | if (allocator == NULL || ring_buffer == NULL) { |
| 318 | return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT); |
| 319 | } |
| 320 | |
| 321 | allocator->impl = ring_buffer; |
| 322 | allocator->mem_acquire = s_ring_buffer_mem_acquire; |
| 323 | allocator->mem_release = s_ring_buffer_mem_release; |
| 324 | allocator->mem_calloc = s_ring_buffer_mem_calloc; |
| 325 | allocator->mem_realloc = s_ring_buffer_mem_realloc; |
| 326 | return AWS_OP_SUCCESS; |
| 327 | } |
| 328 | |
| 329 | void aws_ring_buffer_allocator_clean_up(struct aws_allocator *allocator) { |
| 330 | AWS_ZERO_STRUCT(*allocator); |
| 331 | } |
| 332 | |