| 1 | /* NOLINT(build/header_guard) */ |
| 2 | /* Copyright 2013 Google Inc. All Rights Reserved. |
| 3 | |
| 4 | Distributed under MIT license. |
| 5 | See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| 6 | */ |
| 7 | |
| 8 | /* template parameters: FN, CODE */ |
| 9 | |
| 10 | #define HistogramType FN(Histogram) |
| 11 | |
| 12 | /* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if |
| 13 | it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */ |
| 14 | BROTLI_INTERNAL void FN(BrotliCompareAndPushToQueue)( |
| 15 | const HistogramType* out, const uint32_t* cluster_size, uint32_t idx1, |
| 16 | uint32_t idx2, size_t max_num_pairs, HistogramPair* pairs, |
| 17 | size_t* num_pairs) CODE({ |
| 18 | BROTLI_BOOL is_good_pair = BROTLI_FALSE; |
| 19 | HistogramPair p; |
| 20 | p.idx1 = p.idx2 = 0; |
| 21 | p.cost_diff = p.cost_combo = 0; |
| 22 | if (idx1 == idx2) { |
| 23 | return; |
| 24 | } |
| 25 | if (idx2 < idx1) { |
| 26 | uint32_t t = idx2; |
| 27 | idx2 = idx1; |
| 28 | idx1 = t; |
| 29 | } |
| 30 | p.idx1 = idx1; |
| 31 | p.idx2 = idx2; |
| 32 | p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]); |
| 33 | p.cost_diff -= out[idx1].bit_cost_; |
| 34 | p.cost_diff -= out[idx2].bit_cost_; |
| 35 | |
| 36 | if (out[idx1].total_count_ == 0) { |
| 37 | p.cost_combo = out[idx2].bit_cost_; |
| 38 | is_good_pair = BROTLI_TRUE; |
| 39 | } else if (out[idx2].total_count_ == 0) { |
| 40 | p.cost_combo = out[idx1].bit_cost_; |
| 41 | is_good_pair = BROTLI_TRUE; |
| 42 | } else { |
| 43 | double threshold = *num_pairs == 0 ? 1e99 : |
| 44 | BROTLI_MAX(double, 0.0, pairs[0].cost_diff); |
| 45 | HistogramType combo = out[idx1]; |
| 46 | double cost_combo; |
| 47 | FN(HistogramAddHistogram)(&combo, &out[idx2]); |
| 48 | cost_combo = FN(BrotliPopulationCost)(&combo); |
| 49 | if (cost_combo < threshold - p.cost_diff) { |
| 50 | p.cost_combo = cost_combo; |
| 51 | is_good_pair = BROTLI_TRUE; |
| 52 | } |
| 53 | } |
| 54 | if (is_good_pair) { |
| 55 | p.cost_diff += p.cost_combo; |
| 56 | if (*num_pairs > 0 && HistogramPairIsLess(&pairs[0], &p)) { |
| 57 | /* Replace the top of the queue if needed. */ |
| 58 | if (*num_pairs < max_num_pairs) { |
| 59 | pairs[*num_pairs] = pairs[0]; |
| 60 | ++(*num_pairs); |
| 61 | } |
| 62 | pairs[0] = p; |
| 63 | } else if (*num_pairs < max_num_pairs) { |
| 64 | pairs[*num_pairs] = p; |
| 65 | ++(*num_pairs); |
| 66 | } |
| 67 | } |
| 68 | }) |
| 69 | |
| 70 | BROTLI_INTERNAL size_t FN(BrotliHistogramCombine)(HistogramType* out, |
| 71 | uint32_t* cluster_size, |
| 72 | uint32_t* symbols, |
| 73 | uint32_t* clusters, |
| 74 | HistogramPair* pairs, |
| 75 | size_t num_clusters, |
| 76 | size_t symbols_size, |
| 77 | size_t max_clusters, |
| 78 | size_t max_num_pairs) CODE({ |
| 79 | double cost_diff_threshold = 0.0; |
| 80 | size_t min_cluster_size = 1; |
| 81 | size_t num_pairs = 0; |
| 82 | |
| 83 | { |
| 84 | /* We maintain a vector of histogram pairs, with the property that the pair |
| 85 | with the maximum bit cost reduction is the first. */ |
| 86 | size_t idx1; |
| 87 | for (idx1 = 0; idx1 < num_clusters; ++idx1) { |
| 88 | size_t idx2; |
| 89 | for (idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) { |
| 90 | FN(BrotliCompareAndPushToQueue)(out, cluster_size, clusters[idx1], |
| 91 | clusters[idx2], max_num_pairs, &pairs[0], &num_pairs); |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | while (num_clusters > min_cluster_size) { |
| 97 | uint32_t best_idx1; |
| 98 | uint32_t best_idx2; |
| 99 | size_t i; |
| 100 | if (pairs[0].cost_diff >= cost_diff_threshold) { |
| 101 | cost_diff_threshold = 1e99; |
| 102 | min_cluster_size = max_clusters; |
| 103 | continue; |
| 104 | } |
| 105 | /* Take the best pair from the top of heap. */ |
| 106 | best_idx1 = pairs[0].idx1; |
| 107 | best_idx2 = pairs[0].idx2; |
| 108 | FN(HistogramAddHistogram)(&out[best_idx1], &out[best_idx2]); |
| 109 | out[best_idx1].bit_cost_ = pairs[0].cost_combo; |
| 110 | cluster_size[best_idx1] += cluster_size[best_idx2]; |
| 111 | for (i = 0; i < symbols_size; ++i) { |
| 112 | if (symbols[i] == best_idx2) { |
| 113 | symbols[i] = best_idx1; |
| 114 | } |
| 115 | } |
| 116 | for (i = 0; i < num_clusters; ++i) { |
| 117 | if (clusters[i] == best_idx2) { |
| 118 | memmove(&clusters[i], &clusters[i + 1], |
| 119 | (num_clusters - i - 1) * sizeof(clusters[0])); |
| 120 | break; |
| 121 | } |
| 122 | } |
| 123 | --num_clusters; |
| 124 | { |
| 125 | /* Remove pairs intersecting the just combined best pair. */ |
| 126 | size_t copy_to_idx = 0; |
| 127 | for (i = 0; i < num_pairs; ++i) { |
| 128 | HistogramPair* p = &pairs[i]; |
| 129 | if (p->idx1 == best_idx1 || p->idx2 == best_idx1 || |
| 130 | p->idx1 == best_idx2 || p->idx2 == best_idx2) { |
| 131 | /* Remove invalid pair from the queue. */ |
| 132 | continue; |
| 133 | } |
| 134 | if (HistogramPairIsLess(&pairs[0], p)) { |
| 135 | /* Replace the top of the queue if needed. */ |
| 136 | HistogramPair front = pairs[0]; |
| 137 | pairs[0] = *p; |
| 138 | pairs[copy_to_idx] = front; |
| 139 | } else { |
| 140 | pairs[copy_to_idx] = *p; |
| 141 | } |
| 142 | ++copy_to_idx; |
| 143 | } |
| 144 | num_pairs = copy_to_idx; |
| 145 | } |
| 146 | |
| 147 | /* Push new pairs formed with the combined histogram to the heap. */ |
| 148 | for (i = 0; i < num_clusters; ++i) { |
| 149 | FN(BrotliCompareAndPushToQueue)(out, cluster_size, best_idx1, clusters[i], |
| 150 | max_num_pairs, &pairs[0], &num_pairs); |
| 151 | } |
| 152 | } |
| 153 | return num_clusters; |
| 154 | }) |
| 155 | |
| 156 | /* What is the bit cost of moving histogram from cur_symbol to candidate. */ |
| 157 | BROTLI_INTERNAL double FN(BrotliHistogramBitCostDistance)( |
| 158 | const HistogramType* histogram, const HistogramType* candidate) CODE({ |
| 159 | if (histogram->total_count_ == 0) { |
| 160 | return 0.0; |
| 161 | } else { |
| 162 | HistogramType tmp = *histogram; |
| 163 | FN(HistogramAddHistogram)(&tmp, candidate); |
| 164 | return FN(BrotliPopulationCost)(&tmp) - candidate->bit_cost_; |
| 165 | } |
| 166 | }) |
| 167 | |
| 168 | /* Find the best 'out' histogram for each of the 'in' histograms. |
| 169 | When called, clusters[0..num_clusters) contains the unique values from |
| 170 | symbols[0..in_size), but this property is not preserved in this function. |
| 171 | Note: we assume that out[]->bit_cost_ is already up-to-date. */ |
| 172 | BROTLI_INTERNAL void FN(BrotliHistogramRemap)(const HistogramType* in, |
| 173 | size_t in_size, const uint32_t* clusters, size_t num_clusters, |
| 174 | HistogramType* out, uint32_t* symbols) CODE({ |
| 175 | size_t i; |
| 176 | for (i = 0; i < in_size; ++i) { |
| 177 | uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1]; |
| 178 | double best_bits = |
| 179 | FN(BrotliHistogramBitCostDistance)(&in[i], &out[best_out]); |
| 180 | size_t j; |
| 181 | for (j = 0; j < num_clusters; ++j) { |
| 182 | const double cur_bits = |
| 183 | FN(BrotliHistogramBitCostDistance)(&in[i], &out[clusters[j]]); |
| 184 | if (cur_bits < best_bits) { |
| 185 | best_bits = cur_bits; |
| 186 | best_out = clusters[j]; |
| 187 | } |
| 188 | } |
| 189 | symbols[i] = best_out; |
| 190 | } |
| 191 | |
| 192 | /* Recompute each out based on raw and symbols. */ |
| 193 | for (i = 0; i < num_clusters; ++i) { |
| 194 | FN(HistogramClear)(&out[clusters[i]]); |
| 195 | } |
| 196 | for (i = 0; i < in_size; ++i) { |
| 197 | FN(HistogramAddHistogram)(&out[symbols[i]], &in[i]); |
| 198 | } |
| 199 | }) |
| 200 | |
| 201 | /* Reorders elements of the out[0..length) array and changes values in |
| 202 | symbols[0..length) array in the following way: |
| 203 | * when called, symbols[] contains indexes into out[], and has N unique |
| 204 | values (possibly N < length) |
| 205 | * on return, symbols'[i] = f(symbols[i]) and |
| 206 | out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length, |
| 207 | where f is a bijection between the range of symbols[] and [0..N), and |
| 208 | the first occurrences of values in symbols'[i] come in consecutive |
| 209 | increasing order. |
| 210 | Returns N, the number of unique values in symbols[]. */ |
| 211 | BROTLI_INTERNAL size_t FN(BrotliHistogramReindex)(MemoryManager* m, |
| 212 | HistogramType* out, uint32_t* symbols, size_t length) CODE({ |
| 213 | static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX; |
| 214 | uint32_t* new_index = BROTLI_ALLOC(m, uint32_t, length); |
| 215 | uint32_t next_index; |
| 216 | HistogramType* tmp; |
| 217 | size_t i; |
| 218 | if (BROTLI_IS_OOM(m)) return 0; |
| 219 | for (i = 0; i < length; ++i) { |
| 220 | new_index[i] = kInvalidIndex; |
| 221 | } |
| 222 | next_index = 0; |
| 223 | for (i = 0; i < length; ++i) { |
| 224 | if (new_index[symbols[i]] == kInvalidIndex) { |
| 225 | new_index[symbols[i]] = next_index; |
| 226 | ++next_index; |
| 227 | } |
| 228 | } |
| 229 | /* TODO: by using idea of "cycle-sort" we can avoid allocation of |
| 230 | tmp and reduce the number of copying by the factor of 2. */ |
| 231 | tmp = BROTLI_ALLOC(m, HistogramType, next_index); |
| 232 | if (BROTLI_IS_OOM(m)) return 0; |
| 233 | next_index = 0; |
| 234 | for (i = 0; i < length; ++i) { |
| 235 | if (new_index[symbols[i]] == next_index) { |
| 236 | tmp[next_index] = out[symbols[i]]; |
| 237 | ++next_index; |
| 238 | } |
| 239 | symbols[i] = new_index[symbols[i]]; |
| 240 | } |
| 241 | BROTLI_FREE(m, new_index); |
| 242 | for (i = 0; i < next_index; ++i) { |
| 243 | out[i] = tmp[i]; |
| 244 | } |
| 245 | BROTLI_FREE(m, tmp); |
| 246 | return next_index; |
| 247 | }) |
| 248 | |
| 249 | BROTLI_INTERNAL void FN(BrotliClusterHistograms)( |
| 250 | MemoryManager* m, const HistogramType* in, const size_t in_size, |
| 251 | size_t max_histograms, HistogramType* out, size_t* out_size, |
| 252 | uint32_t* histogram_symbols) CODE({ |
| 253 | uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, in_size); |
| 254 | uint32_t* clusters = BROTLI_ALLOC(m, uint32_t, in_size); |
| 255 | size_t num_clusters = 0; |
| 256 | const size_t max_input_histograms = 64; |
| 257 | size_t pairs_capacity = max_input_histograms * max_input_histograms / 2; |
| 258 | /* For the first pass of clustering, we allow all pairs. */ |
| 259 | HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity + 1); |
| 260 | size_t i; |
| 261 | |
| 262 | if (BROTLI_IS_OOM(m)) return; |
| 263 | |
| 264 | for (i = 0; i < in_size; ++i) { |
| 265 | cluster_size[i] = 1; |
| 266 | } |
| 267 | |
| 268 | for (i = 0; i < in_size; ++i) { |
| 269 | out[i] = in[i]; |
| 270 | out[i].bit_cost_ = FN(BrotliPopulationCost)(&in[i]); |
| 271 | histogram_symbols[i] = (uint32_t)i; |
| 272 | } |
| 273 | |
| 274 | for (i = 0; i < in_size; i += max_input_histograms) { |
| 275 | size_t num_to_combine = |
| 276 | BROTLI_MIN(size_t, in_size - i, max_input_histograms); |
| 277 | size_t num_new_clusters; |
| 278 | size_t j; |
| 279 | for (j = 0; j < num_to_combine; ++j) { |
| 280 | clusters[num_clusters + j] = (uint32_t)(i + j); |
| 281 | } |
| 282 | num_new_clusters = |
| 283 | FN(BrotliHistogramCombine)(out, cluster_size, |
| 284 | &histogram_symbols[i], |
| 285 | &clusters[num_clusters], pairs, |
| 286 | num_to_combine, num_to_combine, |
| 287 | max_histograms, pairs_capacity); |
| 288 | num_clusters += num_new_clusters; |
| 289 | } |
| 290 | |
| 291 | { |
| 292 | /* For the second pass, we limit the total number of histogram pairs. |
| 293 | After this limit is reached, we only keep searching for the best pair. */ |
| 294 | size_t max_num_pairs = BROTLI_MIN(size_t, |
| 295 | 64 * num_clusters, (num_clusters / 2) * num_clusters); |
| 296 | BROTLI_ENSURE_CAPACITY( |
| 297 | m, HistogramPair, pairs, pairs_capacity, max_num_pairs + 1); |
| 298 | if (BROTLI_IS_OOM(m)) return; |
| 299 | |
| 300 | /* Collapse similar histograms. */ |
| 301 | num_clusters = FN(BrotliHistogramCombine)(out, cluster_size, |
| 302 | histogram_symbols, clusters, |
| 303 | pairs, num_clusters, in_size, |
| 304 | max_histograms, max_num_pairs); |
| 305 | } |
| 306 | BROTLI_FREE(m, pairs); |
| 307 | BROTLI_FREE(m, cluster_size); |
| 308 | /* Find the optimal map from original histograms to the final ones. */ |
| 309 | FN(BrotliHistogramRemap)(in, in_size, clusters, num_clusters, |
| 310 | out, histogram_symbols); |
| 311 | BROTLI_FREE(m, clusters); |
| 312 | /* Convert the context map to a canonical form. */ |
| 313 | *out_size = FN(BrotliHistogramReindex)(m, out, histogram_symbols, in_size); |
| 314 | if (BROTLI_IS_OOM(m)) return; |
| 315 | }) |
| 316 | |
| 317 | #undef HistogramType |
| 318 | |