| 1 | /* Copyright 2010 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | Distributed under MIT license. |
| 4 | See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| 5 | */ |
| 6 | |
| 7 | /* Entropy encoding (Huffman) utilities. */ |
| 8 | |
| 9 | #include "./entropy_encode.h" |
| 10 | |
| 11 | #include <string.h> /* memset */ |
| 12 | |
| 13 | #include "../common/constants.h" |
| 14 | #include "../common/platform.h" |
| 15 | #include <brotli/types.h> |
| 16 | |
| 17 | #if defined(__cplusplus) || defined(c_plusplus) |
| 18 | extern "C" { |
| 19 | #endif |
| 20 | |
| 21 | BROTLI_BOOL BrotliSetDepth( |
| 22 | int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) { |
| 23 | int stack[16]; |
| 24 | int level = 0; |
| 25 | int p = p0; |
| 26 | BROTLI_DCHECK(max_depth <= 15); |
| 27 | stack[0] = -1; |
| 28 | while (BROTLI_TRUE) { |
| 29 | if (pool[p].index_left_ >= 0) { |
| 30 | level++; |
| 31 | if (level > max_depth) return BROTLI_FALSE; |
| 32 | stack[level] = pool[p].index_right_or_value_; |
| 33 | p = pool[p].index_left_; |
| 34 | continue; |
| 35 | } else { |
| 36 | depth[pool[p].index_right_or_value_] = (uint8_t)level; |
| 37 | } |
| 38 | while (level >= 0 && stack[level] == -1) level--; |
| 39 | if (level < 0) return BROTLI_TRUE; |
| 40 | p = stack[level]; |
| 41 | stack[level] = -1; |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | /* Sort the root nodes, least popular first. */ |
| 46 | static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( |
| 47 | const HuffmanTree* v0, const HuffmanTree* v1) { |
| 48 | if (v0->total_count_ != v1->total_count_) { |
| 49 | return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); |
| 50 | } |
| 51 | return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_); |
| 52 | } |
| 53 | |
| 54 | /* This function will create a Huffman tree. |
| 55 | |
| 56 | The catch here is that the tree cannot be arbitrarily deep. |
| 57 | Brotli specifies a maximum depth of 15 bits for "code trees" |
| 58 | and 7 bits for "code length code trees." |
| 59 | |
| 60 | count_limit is the value that is to be faked as the minimum value |
| 61 | and this minimum value is raised until the tree matches the |
| 62 | maximum length requirement. |
| 63 | |
| 64 | This algorithm is not of excellent performance for very long data blocks, |
| 65 | especially when population counts are longer than 2**tree_limit, but |
| 66 | we are not planning to use this with extremely long blocks. |
| 67 | |
| 68 | See http://en.wikipedia.org/wiki/Huffman_coding */ |
| 69 | void BrotliCreateHuffmanTree(const uint32_t* data, |
| 70 | const size_t length, |
| 71 | const int tree_limit, |
| 72 | HuffmanTree* tree, |
| 73 | uint8_t* depth) { |
| 74 | uint32_t count_limit; |
| 75 | HuffmanTree sentinel; |
| 76 | InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); |
| 77 | /* For block sizes below 64 kB, we never need to do a second iteration |
| 78 | of this loop. Probably all of our block sizes will be smaller than |
| 79 | that, so this loop is mostly of academic interest. If we actually |
| 80 | would need this, we would be better off with the Katajainen algorithm. */ |
| 81 | for (count_limit = 1; ; count_limit *= 2) { |
| 82 | size_t n = 0; |
| 83 | size_t i; |
| 84 | size_t j; |
| 85 | size_t k; |
| 86 | for (i = length; i != 0;) { |
| 87 | --i; |
| 88 | if (data[i]) { |
| 89 | const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit); |
| 90 | InitHuffmanTree(&tree[n++], count, -1, (int16_t)i); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | if (n == 1) { |
| 95 | depth[tree[0].index_right_or_value_] = 1; /* Only one element. */ |
| 96 | break; |
| 97 | } |
| 98 | |
| 99 | SortHuffmanTreeItems(tree, n, SortHuffmanTree); |
| 100 | |
| 101 | /* The nodes are: |
| 102 | [0, n): the sorted leaf nodes that we start with. |
| 103 | [n]: we add a sentinel here. |
| 104 | [n + 1, 2n): new parent nodes are added here, starting from |
| 105 | (n+1). These are naturally in ascending order. |
| 106 | [2n]: we add a sentinel at the end as well. |
| 107 | There will be (2n+1) elements at the end. */ |
| 108 | tree[n] = sentinel; |
| 109 | tree[n + 1] = sentinel; |
| 110 | |
| 111 | i = 0; /* Points to the next leaf node. */ |
| 112 | j = n + 1; /* Points to the next non-leaf node. */ |
| 113 | for (k = n - 1; k != 0; --k) { |
| 114 | size_t left, right; |
| 115 | if (tree[i].total_count_ <= tree[j].total_count_) { |
| 116 | left = i; |
| 117 | ++i; |
| 118 | } else { |
| 119 | left = j; |
| 120 | ++j; |
| 121 | } |
| 122 | if (tree[i].total_count_ <= tree[j].total_count_) { |
| 123 | right = i; |
| 124 | ++i; |
| 125 | } else { |
| 126 | right = j; |
| 127 | ++j; |
| 128 | } |
| 129 | |
| 130 | { |
| 131 | /* The sentinel node becomes the parent node. */ |
| 132 | size_t j_end = 2 * n - k; |
| 133 | tree[j_end].total_count_ = |
| 134 | tree[left].total_count_ + tree[right].total_count_; |
| 135 | tree[j_end].index_left_ = (int16_t)left; |
| 136 | tree[j_end].index_right_or_value_ = (int16_t)right; |
| 137 | |
| 138 | /* Add back the last sentinel node. */ |
| 139 | tree[j_end + 1] = sentinel; |
| 140 | } |
| 141 | } |
| 142 | if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) { |
| 143 | /* We need to pack the Huffman tree in tree_limit bits. If this was not |
| 144 | successful, add fake entities to the lowest values and retry. */ |
| 145 | break; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | static void Reverse(uint8_t* v, size_t start, size_t end) { |
| 151 | --end; |
| 152 | while (start < end) { |
| 153 | uint8_t tmp = v[start]; |
| 154 | v[start] = v[end]; |
| 155 | v[end] = tmp; |
| 156 | ++start; |
| 157 | --end; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | static void BrotliWriteHuffmanTreeRepetitions( |
| 162 | const uint8_t previous_value, |
| 163 | const uint8_t value, |
| 164 | size_t repetitions, |
| 165 | size_t* tree_size, |
| 166 | uint8_t* tree, |
| 167 | uint8_t* ) { |
| 168 | BROTLI_DCHECK(repetitions > 0); |
| 169 | if (previous_value != value) { |
| 170 | tree[*tree_size] = value; |
| 171 | extra_bits_data[*tree_size] = 0; |
| 172 | ++(*tree_size); |
| 173 | --repetitions; |
| 174 | } |
| 175 | if (repetitions == 7) { |
| 176 | tree[*tree_size] = value; |
| 177 | extra_bits_data[*tree_size] = 0; |
| 178 | ++(*tree_size); |
| 179 | --repetitions; |
| 180 | } |
| 181 | if (repetitions < 3) { |
| 182 | size_t i; |
| 183 | for (i = 0; i < repetitions; ++i) { |
| 184 | tree[*tree_size] = value; |
| 185 | extra_bits_data[*tree_size] = 0; |
| 186 | ++(*tree_size); |
| 187 | } |
| 188 | } else { |
| 189 | size_t start = *tree_size; |
| 190 | repetitions -= 3; |
| 191 | while (BROTLI_TRUE) { |
| 192 | tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH; |
| 193 | extra_bits_data[*tree_size] = repetitions & 0x3; |
| 194 | ++(*tree_size); |
| 195 | repetitions >>= 2; |
| 196 | if (repetitions == 0) { |
| 197 | break; |
| 198 | } |
| 199 | --repetitions; |
| 200 | } |
| 201 | Reverse(tree, start, *tree_size); |
| 202 | Reverse(extra_bits_data, start, *tree_size); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | static void BrotliWriteHuffmanTreeRepetitionsZeros( |
| 207 | size_t repetitions, |
| 208 | size_t* tree_size, |
| 209 | uint8_t* tree, |
| 210 | uint8_t* ) { |
| 211 | if (repetitions == 11) { |
| 212 | tree[*tree_size] = 0; |
| 213 | extra_bits_data[*tree_size] = 0; |
| 214 | ++(*tree_size); |
| 215 | --repetitions; |
| 216 | } |
| 217 | if (repetitions < 3) { |
| 218 | size_t i; |
| 219 | for (i = 0; i < repetitions; ++i) { |
| 220 | tree[*tree_size] = 0; |
| 221 | extra_bits_data[*tree_size] = 0; |
| 222 | ++(*tree_size); |
| 223 | } |
| 224 | } else { |
| 225 | size_t start = *tree_size; |
| 226 | repetitions -= 3; |
| 227 | while (BROTLI_TRUE) { |
| 228 | tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH; |
| 229 | extra_bits_data[*tree_size] = repetitions & 0x7; |
| 230 | ++(*tree_size); |
| 231 | repetitions >>= 3; |
| 232 | if (repetitions == 0) { |
| 233 | break; |
| 234 | } |
| 235 | --repetitions; |
| 236 | } |
| 237 | Reverse(tree, start, *tree_size); |
| 238 | Reverse(extra_bits_data, start, *tree_size); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts, |
| 243 | uint8_t* good_for_rle) { |
| 244 | size_t nonzero_count = 0; |
| 245 | size_t stride; |
| 246 | size_t limit; |
| 247 | size_t sum; |
| 248 | const size_t streak_limit = 1240; |
| 249 | /* Let's make the Huffman code more compatible with RLE encoding. */ |
| 250 | size_t i; |
| 251 | for (i = 0; i < length; i++) { |
| 252 | if (counts[i]) { |
| 253 | ++nonzero_count; |
| 254 | } |
| 255 | } |
| 256 | if (nonzero_count < 16) { |
| 257 | return; |
| 258 | } |
| 259 | while (length != 0 && counts[length - 1] == 0) { |
| 260 | --length; |
| 261 | } |
| 262 | if (length == 0) { |
| 263 | return; /* All zeros. */ |
| 264 | } |
| 265 | /* Now counts[0..length - 1] does not have trailing zeros. */ |
| 266 | { |
| 267 | size_t nonzeros = 0; |
| 268 | uint32_t smallest_nonzero = 1 << 30; |
| 269 | for (i = 0; i < length; ++i) { |
| 270 | if (counts[i] != 0) { |
| 271 | ++nonzeros; |
| 272 | if (smallest_nonzero > counts[i]) { |
| 273 | smallest_nonzero = counts[i]; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | if (nonzeros < 5) { |
| 278 | /* Small histogram will model it well. */ |
| 279 | return; |
| 280 | } |
| 281 | if (smallest_nonzero < 4) { |
| 282 | size_t zeros = length - nonzeros; |
| 283 | if (zeros < 6) { |
| 284 | for (i = 1; i < length - 1; ++i) { |
| 285 | if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { |
| 286 | counts[i] = 1; |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | if (nonzeros < 28) { |
| 292 | return; |
| 293 | } |
| 294 | } |
| 295 | /* 2) Let's mark all population counts that already can be encoded |
| 296 | with an RLE code. */ |
| 297 | memset(good_for_rle, 0, length); |
| 298 | { |
| 299 | /* Let's not spoil any of the existing good RLE codes. |
| 300 | Mark any seq of 0's that is longer as 5 as a good_for_rle. |
| 301 | Mark any seq of non-0's that is longer as 7 as a good_for_rle. */ |
| 302 | uint32_t symbol = counts[0]; |
| 303 | size_t step = 0; |
| 304 | for (i = 0; i <= length; ++i) { |
| 305 | if (i == length || counts[i] != symbol) { |
| 306 | if ((symbol == 0 && step >= 5) || |
| 307 | (symbol != 0 && step >= 7)) { |
| 308 | size_t k; |
| 309 | for (k = 0; k < step; ++k) { |
| 310 | good_for_rle[i - k - 1] = 1; |
| 311 | } |
| 312 | } |
| 313 | step = 1; |
| 314 | if (i != length) { |
| 315 | symbol = counts[i]; |
| 316 | } |
| 317 | } else { |
| 318 | ++step; |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | /* 3) Let's replace those population counts that lead to more RLE codes. |
| 323 | Math here is in 24.8 fixed point representation. */ |
| 324 | stride = 0; |
| 325 | limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; |
| 326 | sum = 0; |
| 327 | for (i = 0; i <= length; ++i) { |
| 328 | if (i == length || good_for_rle[i] || |
| 329 | (i != 0 && good_for_rle[i - 1]) || |
| 330 | (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) { |
| 331 | if (stride >= 4 || (stride >= 3 && sum == 0)) { |
| 332 | size_t k; |
| 333 | /* The stride must end, collapse what we have, if we have enough (4). */ |
| 334 | size_t count = (sum + stride / 2) / stride; |
| 335 | if (count == 0) { |
| 336 | count = 1; |
| 337 | } |
| 338 | if (sum == 0) { |
| 339 | /* Don't make an all zeros stride to be upgraded to ones. */ |
| 340 | count = 0; |
| 341 | } |
| 342 | for (k = 0; k < stride; ++k) { |
| 343 | /* We don't want to change value at counts[i], |
| 344 | that is already belonging to the next stride. Thus - 1. */ |
| 345 | counts[i - k - 1] = (uint32_t)count; |
| 346 | } |
| 347 | } |
| 348 | stride = 0; |
| 349 | sum = 0; |
| 350 | if (i < length - 2) { |
| 351 | /* All interesting strides have a count of at least 4, */ |
| 352 | /* at least when non-zeros. */ |
| 353 | limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; |
| 354 | } else if (i < length) { |
| 355 | limit = 256 * counts[i]; |
| 356 | } else { |
| 357 | limit = 0; |
| 358 | } |
| 359 | } |
| 360 | ++stride; |
| 361 | if (i != length) { |
| 362 | sum += counts[i]; |
| 363 | if (stride >= 4) { |
| 364 | limit = (256 * sum + stride / 2) / stride; |
| 365 | } |
| 366 | if (stride == 4) { |
| 367 | limit += 120; |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | static void DecideOverRleUse(const uint8_t* depth, const size_t length, |
| 374 | BROTLI_BOOL* use_rle_for_non_zero, |
| 375 | BROTLI_BOOL* use_rle_for_zero) { |
| 376 | size_t total_reps_zero = 0; |
| 377 | size_t total_reps_non_zero = 0; |
| 378 | size_t count_reps_zero = 1; |
| 379 | size_t count_reps_non_zero = 1; |
| 380 | size_t i; |
| 381 | for (i = 0; i < length;) { |
| 382 | const uint8_t value = depth[i]; |
| 383 | size_t reps = 1; |
| 384 | size_t k; |
| 385 | for (k = i + 1; k < length && depth[k] == value; ++k) { |
| 386 | ++reps; |
| 387 | } |
| 388 | if (reps >= 3 && value == 0) { |
| 389 | total_reps_zero += reps; |
| 390 | ++count_reps_zero; |
| 391 | } |
| 392 | if (reps >= 4 && value != 0) { |
| 393 | total_reps_non_zero += reps; |
| 394 | ++count_reps_non_zero; |
| 395 | } |
| 396 | i += reps; |
| 397 | } |
| 398 | *use_rle_for_non_zero = |
| 399 | TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2); |
| 400 | *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2); |
| 401 | } |
| 402 | |
| 403 | void BrotliWriteHuffmanTree(const uint8_t* depth, |
| 404 | size_t length, |
| 405 | size_t* tree_size, |
| 406 | uint8_t* tree, |
| 407 | uint8_t* ) { |
| 408 | uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH; |
| 409 | size_t i; |
| 410 | BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE; |
| 411 | BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE; |
| 412 | |
| 413 | /* Throw away trailing zeros. */ |
| 414 | size_t new_length = length; |
| 415 | for (i = 0; i < length; ++i) { |
| 416 | if (depth[length - i - 1] == 0) { |
| 417 | --new_length; |
| 418 | } else { |
| 419 | break; |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | /* First gather statistics on if it is a good idea to do RLE. */ |
| 424 | if (length > 50) { |
| 425 | /* Find RLE coding for longer codes. |
| 426 | Shorter codes seem not to benefit from RLE. */ |
| 427 | DecideOverRleUse(depth, new_length, |
| 428 | &use_rle_for_non_zero, &use_rle_for_zero); |
| 429 | } |
| 430 | |
| 431 | /* Actual RLE coding. */ |
| 432 | for (i = 0; i < new_length;) { |
| 433 | const uint8_t value = depth[i]; |
| 434 | size_t reps = 1; |
| 435 | if ((value != 0 && use_rle_for_non_zero) || |
| 436 | (value == 0 && use_rle_for_zero)) { |
| 437 | size_t k; |
| 438 | for (k = i + 1; k < new_length && depth[k] == value; ++k) { |
| 439 | ++reps; |
| 440 | } |
| 441 | } |
| 442 | if (value == 0) { |
| 443 | BrotliWriteHuffmanTreeRepetitionsZeros( |
| 444 | reps, tree_size, tree, extra_bits_data); |
| 445 | } else { |
| 446 | BrotliWriteHuffmanTreeRepetitions(previous_value, |
| 447 | value, reps, tree_size, |
| 448 | tree, extra_bits_data); |
| 449 | previous_value = value; |
| 450 | } |
| 451 | i += reps; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) { |
| 456 | static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */ |
| 457 | 0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E, |
| 458 | 0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F |
| 459 | }; |
| 460 | size_t retval = kLut[bits & 0x0F]; |
| 461 | size_t i; |
| 462 | for (i = 4; i < num_bits; i += 4) { |
| 463 | retval <<= 4; |
| 464 | bits = (uint16_t)(bits >> 4); |
| 465 | retval |= kLut[bits & 0x0F]; |
| 466 | } |
| 467 | retval >>= ((0 - num_bits) & 0x03); |
| 468 | return (uint16_t)retval; |
| 469 | } |
| 470 | |
| 471 | /* 0..15 are values for bits */ |
| 472 | #define MAX_HUFFMAN_BITS 16 |
| 473 | |
| 474 | void BrotliConvertBitDepthsToSymbols(const uint8_t* depth, |
| 475 | size_t len, |
| 476 | uint16_t* bits) { |
| 477 | /* In Brotli, all bit depths are [1..15] |
| 478 | 0 bit depth means that the symbol does not exist. */ |
| 479 | uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 }; |
| 480 | uint16_t next_code[MAX_HUFFMAN_BITS]; |
| 481 | size_t i; |
| 482 | int code = 0; |
| 483 | for (i = 0; i < len; ++i) { |
| 484 | ++bl_count[depth[i]]; |
| 485 | } |
| 486 | bl_count[0] = 0; |
| 487 | next_code[0] = 0; |
| 488 | for (i = 1; i < MAX_HUFFMAN_BITS; ++i) { |
| 489 | code = (code + bl_count[i - 1]) << 1; |
| 490 | next_code[i] = (uint16_t)code; |
| 491 | } |
| 492 | for (i = 0; i < len; ++i) { |
| 493 | if (depth[i]) { |
| 494 | bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++); |
| 495 | } |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | #if defined(__cplusplus) || defined(c_plusplus) |
| 500 | } /* extern "C" */ |
| 501 | #endif |
| 502 | |