1 | // Copyright 2016 Google Inc. All Rights Reserved. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | // This file implements the TimeZoneIf interface using the "zoneinfo" |
16 | // data provided by the IANA Time Zone Database (i.e., the only real game |
17 | // in town). |
18 | // |
19 | // TimeZoneInfo represents the history of UTC-offset changes within a time |
20 | // zone. Most changes are due to daylight-saving rules, but occasionally |
21 | // shifts are made to the time-zone's base offset. The database only attempts |
22 | // to be definitive for times since 1970, so be wary of local-time conversions |
23 | // before that. Also, rule and zone-boundary changes are made at the whim |
24 | // of governments, so the conversion of future times needs to be taken with |
25 | // a grain of salt. |
26 | // |
27 | // For more information see tzfile(5), http://www.iana.org/time-zones, or |
28 | // http://en.wikipedia.org/wiki/Zoneinfo. |
29 | // |
30 | // Note that we assume the proleptic Gregorian calendar and 60-second |
31 | // minutes throughout. |
32 | |
33 | #include "time_zone_info.h" |
34 | |
35 | #include <algorithm> |
36 | #include <cassert> |
37 | #include <chrono> |
38 | #include <cstdint> |
39 | #include <cstdio> |
40 | #include <cstdlib> |
41 | #include <cstring> |
42 | #include <functional> |
43 | #include <iostream> |
44 | #include <memory> |
45 | #include <sstream> |
46 | #include <string> |
47 | |
48 | #include "cctz/civil_time.h" |
49 | #include "time_zone_fixed.h" |
50 | #include "time_zone_posix.h" |
51 | |
52 | namespace cctz { |
53 | |
54 | namespace { |
55 | |
56 | inline bool IsLeap(cctz::year_t year) { |
57 | return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0); |
58 | } |
59 | |
60 | // The number of days in non-leap and leap years respectively. |
61 | const std::int_least32_t kDaysPerYear[2] = {365, 366}; |
62 | |
63 | // The day offsets of the beginning of each (1-based) month in non-leap and |
64 | // leap years respectively (e.g., 335 days before December in a leap year). |
65 | const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = { |
66 | {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, |
67 | {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}, |
68 | }; |
69 | |
70 | // We reject leap-second encoded zoneinfo and so assume 60-second minutes. |
71 | const std::int_least32_t kSecsPerDay = 24 * 60 * 60; |
72 | |
73 | // 400-year chunks always have 146097 days (20871 weeks). |
74 | const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay; |
75 | |
76 | // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay. |
77 | const std::int_least32_t kSecsPerYear[2] = { |
78 | 365 * kSecsPerDay, |
79 | 366 * kSecsPerDay, |
80 | }; |
81 | |
82 | // Single-byte, unsigned numeric values are encoded directly. |
83 | inline std::uint_fast8_t Decode8(const char* cp) { |
84 | return static_cast<std::uint_fast8_t>(*cp) & 0xff; |
85 | } |
86 | |
87 | // Multi-byte, numeric values are encoded using a MSB first, |
88 | // twos-complement representation. These helpers decode, from |
89 | // the given address, 4-byte and 8-byte values respectively. |
90 | // Note: If int_fastXX_t == intXX_t and this machine is not |
91 | // twos complement, then there will be at least one input value |
92 | // we cannot represent. |
93 | std::int_fast32_t Decode32(const char* cp) { |
94 | std::uint_fast32_t v = 0; |
95 | for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++); |
96 | const std::int_fast32_t s32max = 0x7fffffff; |
97 | const auto s32maxU = static_cast<std::uint_fast32_t>(s32max); |
98 | if (v <= s32maxU) return static_cast<std::int_fast32_t>(v); |
99 | return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1; |
100 | } |
101 | |
102 | std::int_fast64_t Decode64(const char* cp) { |
103 | std::uint_fast64_t v = 0; |
104 | for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++); |
105 | const std::int_fast64_t s64max = 0x7fffffffffffffff; |
106 | const auto s64maxU = static_cast<std::uint_fast64_t>(s64max); |
107 | if (v <= s64maxU) return static_cast<std::int_fast64_t>(v); |
108 | return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1; |
109 | } |
110 | |
111 | // Generate a year-relative offset for a PosixTransition. |
112 | std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday, |
113 | const PosixTransition& pt) { |
114 | std::int_fast64_t days = 0; |
115 | switch (pt.date.fmt) { |
116 | case PosixTransition::J: { |
117 | days = pt.date.j.day; |
118 | if (!leap_year || days < kMonthOffsets[1][3]) days -= 1; |
119 | break; |
120 | } |
121 | case PosixTransition::N: { |
122 | days = pt.date.n.day; |
123 | break; |
124 | } |
125 | case PosixTransition::M: { |
126 | const bool last_week = (pt.date.m.week == 5); |
127 | days = kMonthOffsets[leap_year][pt.date.m.month + last_week]; |
128 | const std::int_fast64_t weekday = (jan1_weekday + days) % 7; |
129 | if (last_week) { |
130 | days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1; |
131 | } else { |
132 | days += (pt.date.m.weekday + 7 - weekday) % 7; |
133 | days += (pt.date.m.week - 1) * 7; |
134 | } |
135 | break; |
136 | } |
137 | } |
138 | return (days * kSecsPerDay) + pt.time.offset; |
139 | } |
140 | |
141 | inline time_zone::civil_lookup MakeUnique(const time_point<sys_seconds>& tp) { |
142 | time_zone::civil_lookup cl; |
143 | cl.kind = time_zone::civil_lookup::UNIQUE; |
144 | cl.pre = cl.trans = cl.post = tp; |
145 | return cl; |
146 | } |
147 | |
148 | inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) { |
149 | return MakeUnique(FromUnixSeconds(unix_time)); |
150 | } |
151 | |
152 | inline time_zone::civil_lookup MakeSkipped(const Transition& tr, |
153 | const civil_second& cs) { |
154 | time_zone::civil_lookup cl; |
155 | cl.kind = time_zone::civil_lookup::SKIPPED; |
156 | cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec)); |
157 | cl.trans = FromUnixSeconds(tr.unix_time); |
158 | cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs)); |
159 | return cl; |
160 | } |
161 | |
162 | inline time_zone::civil_lookup MakeRepeated(const Transition& tr, |
163 | const civil_second& cs) { |
164 | time_zone::civil_lookup cl; |
165 | cl.kind = time_zone::civil_lookup::REPEATED; |
166 | cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs)); |
167 | cl.trans = FromUnixSeconds(tr.unix_time); |
168 | cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec)); |
169 | return cl; |
170 | } |
171 | |
172 | inline civil_second YearShift(const civil_second& cs, cctz::year_t shift) { |
173 | return civil_second(cs.year() + shift, cs.month(), cs.day(), |
174 | cs.hour(), cs.minute(), cs.second()); |
175 | } |
176 | |
177 | } // namespace |
178 | |
179 | // What (no leap-seconds) UTC+seconds zoneinfo would look like. |
180 | bool TimeZoneInfo::ResetToBuiltinUTC(const sys_seconds& offset) { |
181 | transition_types_.resize(1); |
182 | TransitionType& tt(transition_types_.back()); |
183 | tt.utc_offset = static_cast<std::int_least32_t>(offset.count()); |
184 | tt.is_dst = false; |
185 | tt.abbr_index = 0; |
186 | |
187 | // We temporarily add some redundant, contemporary (2012 through 2021) |
188 | // transitions for performance reasons. See TimeZoneInfo::LocalTime(). |
189 | // TODO: Fix the performance issue and remove the extra transitions. |
190 | transitions_.clear(); |
191 | transitions_.reserve(12); |
192 | for (const std::int_fast64_t unix_time : { |
193 | -(1LL << 59), // BIG_BANG |
194 | 1325376000LL, // 2012-01-01T00:00:00+00:00 |
195 | 1356998400LL, // 2013-01-01T00:00:00+00:00 |
196 | 1388534400LL, // 2014-01-01T00:00:00+00:00 |
197 | 1420070400LL, // 2015-01-01T00:00:00+00:00 |
198 | 1451606400LL, // 2016-01-01T00:00:00+00:00 |
199 | 1483228800LL, // 2017-01-01T00:00:00+00:00 |
200 | 1514764800LL, // 2018-01-01T00:00:00+00:00 |
201 | 1546300800LL, // 2019-01-01T00:00:00+00:00 |
202 | 1577836800LL, // 2020-01-01T00:00:00+00:00 |
203 | 1609459200LL, // 2021-01-01T00:00:00+00:00 |
204 | 2147483647LL, // 2^31 - 1 |
205 | }) { |
206 | Transition& tr(*transitions_.emplace(transitions_.end())); |
207 | tr.unix_time = unix_time; |
208 | tr.type_index = 0; |
209 | tr.civil_sec = LocalTime(tr.unix_time, tt).cs; |
210 | tr.prev_civil_sec = tr.civil_sec - 1; |
211 | } |
212 | |
213 | default_transition_type_ = 0; |
214 | abbreviations_ = FixedOffsetToAbbr(offset); |
215 | abbreviations_.append(1, '\0'); // add NUL |
216 | future_spec_.clear(); // never needed for a fixed-offset zone |
217 | extended_ = false; |
218 | |
219 | tt.civil_max = LocalTime(sys_seconds::max().count(), tt).cs; |
220 | tt.civil_min = LocalTime(sys_seconds::min().count(), tt).cs; |
221 | |
222 | transitions_.shrink_to_fit(); |
223 | return true; |
224 | } |
225 | |
226 | // Builds the in-memory header using the raw bytes from the file. |
227 | bool TimeZoneInfo::Header::(const tzhead& tzh) { |
228 | std::int_fast32_t v; |
229 | if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false; |
230 | timecnt = static_cast<std::size_t>(v); |
231 | if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false; |
232 | typecnt = static_cast<std::size_t>(v); |
233 | if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false; |
234 | charcnt = static_cast<std::size_t>(v); |
235 | if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false; |
236 | leapcnt = static_cast<std::size_t>(v); |
237 | if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false; |
238 | ttisstdcnt = static_cast<std::size_t>(v); |
239 | if ((v = Decode32(tzh.tzh_ttisgmtcnt)) < 0) return false; |
240 | ttisgmtcnt = static_cast<std::size_t>(v); |
241 | return true; |
242 | } |
243 | |
244 | // How many bytes of data are associated with this header. The result |
245 | // depends upon whether this is a section with 4-byte or 8-byte times. |
246 | std::size_t TimeZoneInfo::Header::(std::size_t time_len) const { |
247 | std::size_t len = 0; |
248 | len += (time_len + 1) * timecnt; // unix_time + type_index |
249 | len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index |
250 | len += 1 * charcnt; // abbreviations |
251 | len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC |
252 | len += 1 * ttisstdcnt; // UTC/local indicators |
253 | len += 1 * ttisgmtcnt; // standard/wall indicators |
254 | return len; |
255 | } |
256 | |
257 | // Check that the TransitionType has the expected offset/is_dst/abbreviation. |
258 | void TimeZoneInfo::CheckTransition(const std::string& name, |
259 | const TransitionType& tt, |
260 | std::int_fast32_t offset, bool is_dst, |
261 | const std::string& abbr) const { |
262 | if (tt.utc_offset != offset || tt.is_dst != is_dst || |
263 | &abbreviations_[tt.abbr_index] != abbr) { |
264 | std::clog << name << ": Transition" |
265 | << " offset=" << tt.utc_offset << "/" |
266 | << (tt.is_dst ? "DST" : "STD" ) |
267 | << "/abbr=" << &abbreviations_[tt.abbr_index] |
268 | << " does not match POSIX spec '" << future_spec_ << "'\n" ; |
269 | } |
270 | } |
271 | |
272 | // zic(8) can generate no-op transitions when a zone changes rules at an |
273 | // instant when there is actually no discontinuity. So we check whether |
274 | // two transitions have equivalent types (same offset/is_dst/abbr). |
275 | bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index, |
276 | std::uint_fast8_t tt2_index) const { |
277 | if (tt1_index == tt2_index) return true; |
278 | const TransitionType& tt1(transition_types_[tt1_index]); |
279 | const TransitionType& tt2(transition_types_[tt2_index]); |
280 | if (tt1.is_dst != tt2.is_dst) return false; |
281 | if (tt1.utc_offset != tt2.utc_offset) return false; |
282 | if (tt1.abbr_index != tt2.abbr_index) return false; |
283 | return true; |
284 | } |
285 | |
286 | // Use the POSIX-TZ-environment-variable-style string to handle times |
287 | // in years after the last transition stored in the zoneinfo data. |
288 | void TimeZoneInfo::(const std::string& name, |
289 | const Header& hdr) { |
290 | extended_ = false; |
291 | bool extending = !future_spec_.empty(); |
292 | |
293 | PosixTimeZone posix; |
294 | if (extending && !ParsePosixSpec(future_spec_, &posix)) { |
295 | std::clog << name << ": Failed to parse '" << future_spec_ << "'\n" ; |
296 | extending = false; |
297 | } |
298 | |
299 | if (extending && posix.dst_abbr.empty()) { // std only |
300 | // The future specification should match the last/default transition, |
301 | // and that means that handling the future will fall out naturally. |
302 | std::uint_fast8_t index = default_transition_type_; |
303 | if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index; |
304 | const TransitionType& tt(transition_types_[index]); |
305 | CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr); |
306 | extending = false; |
307 | } |
308 | |
309 | if (extending && hdr.timecnt < 2) { |
310 | std::clog << name << ": Too few transitions for POSIX spec\n" ; |
311 | extending = false; |
312 | } |
313 | |
314 | if (!extending) { |
315 | // Ensure that there is always a transition in the second half of the |
316 | // time line (the BIG_BANG transition is in the first half) so that the |
317 | // signed difference between a civil_second and the civil_second of its |
318 | // previous transition is always representable, without overflow. |
319 | const Transition& last(transitions_.back()); |
320 | if (last.unix_time < 0) { |
321 | const std::uint_fast8_t type_index = last.type_index; |
322 | Transition& tr(*transitions_.emplace(transitions_.end())); |
323 | tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00 |
324 | tr.type_index = type_index; |
325 | } |
326 | return; // last transition wins |
327 | } |
328 | |
329 | // Extend the transitions for an additional 400 years using the |
330 | // future specification. Years beyond those can be handled by |
331 | // mapping back to a cycle-equivalent year within that range. |
332 | // zic(8) should probably do this so that we don't have to. |
333 | // TODO: Reduce the extension by the number of compatible |
334 | // transitions already in place. |
335 | transitions_.reserve(hdr.timecnt + 400 * 2 + 1); |
336 | transitions_.resize(hdr.timecnt + 400 * 2); |
337 | extended_ = true; |
338 | |
339 | // The future specification should match the last two transitions, |
340 | // and those transitions should have different is_dst flags. |
341 | const Transition* tr0 = &transitions_[hdr.timecnt - 1]; |
342 | const Transition* tr1 = &transitions_[hdr.timecnt - 2]; |
343 | const TransitionType* tt0 = &transition_types_[tr0->type_index]; |
344 | const TransitionType* tt1 = &transition_types_[tr1->type_index]; |
345 | const TransitionType& spring(tt0->is_dst ? *tt0 : *tt1); |
346 | const TransitionType& autumn(tt0->is_dst ? *tt1 : *tt0); |
347 | CheckTransition(name, spring, posix.dst_offset, true, posix.dst_abbr); |
348 | CheckTransition(name, autumn, posix.std_offset, false, posix.std_abbr); |
349 | |
350 | // Add the transitions to tr1 and back to tr0 for each extra year. |
351 | last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year(); |
352 | bool leap_year = IsLeap(last_year_); |
353 | const civil_day jan1(last_year_, 1, 1); |
354 | std::int_fast64_t jan1_time = civil_second(jan1) - civil_second(); |
355 | int jan1_weekday = (static_cast<int>(get_weekday(jan1)) + 1) % 7; |
356 | Transition* tr = &transitions_[hdr.timecnt]; // next trans to fill |
357 | if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) { |
358 | // Add a single extra transition to align to a calendar year. |
359 | transitions_.resize(transitions_.size() + 1); |
360 | assert(tr == &transitions_[hdr.timecnt]); // no reallocation |
361 | const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); |
362 | std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); |
363 | tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; |
364 | tr++->type_index = tr1->type_index; |
365 | tr0 = &transitions_[hdr.timecnt]; |
366 | tr1 = &transitions_[hdr.timecnt - 1]; |
367 | tt0 = &transition_types_[tr0->type_index]; |
368 | tt1 = &transition_types_[tr1->type_index]; |
369 | } |
370 | const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); |
371 | const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end); |
372 | for (const cctz::year_t limit = last_year_ + 400; last_year_ < limit;) { |
373 | last_year_ += 1; // an additional year of generated transitions |
374 | jan1_time += kSecsPerYear[leap_year]; |
375 | jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7; |
376 | leap_year = !leap_year && IsLeap(last_year_); |
377 | std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); |
378 | tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; |
379 | tr++->type_index = tr1->type_index; |
380 | std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0); |
381 | tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset; |
382 | tr++->type_index = tr0->type_index; |
383 | } |
384 | assert(tr == &transitions_[0] + transitions_.size()); |
385 | } |
386 | |
387 | bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) { |
388 | // Read and validate the header. |
389 | tzhead tzh; |
390 | if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) |
391 | return false; |
392 | if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) |
393 | return false; |
394 | Header hdr; |
395 | if (!hdr.Build(tzh)) |
396 | return false; |
397 | std::size_t time_len = 4; |
398 | if (tzh.tzh_version[0] != '\0') { |
399 | // Skip the 4-byte data. |
400 | if (zip->Skip(hdr.DataLength(time_len)) != 0) |
401 | return false; |
402 | // Read and validate the header for the 8-byte data. |
403 | if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) |
404 | return false; |
405 | if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) |
406 | return false; |
407 | if (tzh.tzh_version[0] == '\0') |
408 | return false; |
409 | if (!hdr.Build(tzh)) |
410 | return false; |
411 | time_len = 8; |
412 | } |
413 | if (hdr.typecnt == 0) |
414 | return false; |
415 | if (hdr.leapcnt != 0) { |
416 | // This code assumes 60-second minutes so we do not want |
417 | // the leap-second encoded zoneinfo. We could reverse the |
418 | // compensation, but the "right" encoding is rarely used |
419 | // so currently we simply reject such data. |
420 | return false; |
421 | } |
422 | if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) |
423 | return false; |
424 | if (hdr.ttisgmtcnt != 0 && hdr.ttisgmtcnt != hdr.typecnt) |
425 | return false; |
426 | |
427 | // Read the data into a local buffer. |
428 | std::size_t len = hdr.DataLength(time_len); |
429 | std::vector<char> tbuf(len); |
430 | if (zip->Read(tbuf.data(), len) != len) |
431 | return false; |
432 | const char* bp = tbuf.data(); |
433 | |
434 | // Decode and validate the transitions. |
435 | transitions_.reserve(hdr.timecnt + 2); // We might add a couple. |
436 | transitions_.resize(hdr.timecnt); |
437 | for (std::size_t i = 0; i != hdr.timecnt; ++i) { |
438 | transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp); |
439 | bp += time_len; |
440 | if (i != 0) { |
441 | // Check that the transitions are ordered by time (as zic guarantees). |
442 | if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i])) |
443 | return false; // out of order |
444 | } |
445 | } |
446 | bool seen_type_0 = false; |
447 | for (std::size_t i = 0; i != hdr.timecnt; ++i) { |
448 | transitions_[i].type_index = Decode8(bp++); |
449 | if (transitions_[i].type_index >= hdr.typecnt) |
450 | return false; |
451 | if (transitions_[i].type_index == 0) |
452 | seen_type_0 = true; |
453 | } |
454 | |
455 | // Decode and validate the transition types. |
456 | transition_types_.resize(hdr.typecnt); |
457 | for (std::size_t i = 0; i != hdr.typecnt; ++i) { |
458 | transition_types_[i].utc_offset = |
459 | static_cast<std::int_least32_t>(Decode32(bp)); |
460 | if (transition_types_[i].utc_offset >= kSecsPerDay || |
461 | transition_types_[i].utc_offset <= -kSecsPerDay) |
462 | return false; |
463 | bp += 4; |
464 | transition_types_[i].is_dst = (Decode8(bp++) != 0); |
465 | transition_types_[i].abbr_index = Decode8(bp++); |
466 | if (transition_types_[i].abbr_index >= hdr.charcnt) |
467 | return false; |
468 | } |
469 | |
470 | // Determine the before-first-transition type. |
471 | default_transition_type_ = 0; |
472 | if (seen_type_0 && hdr.timecnt != 0) { |
473 | std::uint_fast8_t index = 0; |
474 | if (transition_types_[0].is_dst) { |
475 | index = transitions_[0].type_index; |
476 | while (index != 0 && transition_types_[index].is_dst) |
477 | --index; |
478 | } |
479 | while (index != hdr.typecnt && transition_types_[index].is_dst) |
480 | ++index; |
481 | if (index != hdr.typecnt) |
482 | default_transition_type_ = index; |
483 | } |
484 | |
485 | // Copy all the abbreviations. |
486 | abbreviations_.assign(bp, hdr.charcnt); |
487 | bp += hdr.charcnt; |
488 | |
489 | // Skip the unused portions. We've already dispensed with leap-second |
490 | // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when |
491 | // interpreting a POSIX spec that does not include start/end rules, and |
492 | // that isn't the case here (see "zic -p"). |
493 | bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC |
494 | bp += 1 * hdr.ttisstdcnt; // UTC/local indicators |
495 | bp += 1 * hdr.ttisgmtcnt; // standard/wall indicators |
496 | assert(bp == tbuf.data() + tbuf.size()); |
497 | |
498 | future_spec_.clear(); |
499 | if (tzh.tzh_version[0] != '\0') { |
500 | // Snarf up the NL-enclosed future POSIX spec. Note |
501 | // that version '3' files utilize an extended format. |
502 | auto get_char = [](ZoneInfoSource* zip) -> int { |
503 | unsigned char ch; // all non-EOF results are positive |
504 | return (zip->Read(&ch, 1) == 1) ? ch : EOF; |
505 | }; |
506 | if (get_char(zip) != '\n') |
507 | return false; |
508 | for (int c = get_char(zip); c != '\n'; c = get_char(zip)) { |
509 | if (c == EOF) |
510 | return false; |
511 | future_spec_.push_back(static_cast<char>(c)); |
512 | } |
513 | } |
514 | |
515 | // We don't check for EOF so that we're forwards compatible. |
516 | |
517 | // Trim redundant transitions. zic may have added these to work around |
518 | // differences between the glibc and reference implementations (see |
519 | // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071). |
520 | // For us, they just get in the way when we do future_spec_ extension. |
521 | while (hdr.timecnt > 1) { |
522 | if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index, |
523 | transitions_[hdr.timecnt - 2].type_index)) { |
524 | break; |
525 | } |
526 | hdr.timecnt -= 1; |
527 | } |
528 | transitions_.resize(hdr.timecnt); |
529 | |
530 | // Ensure that there is always a transition in the first half of the |
531 | // time line (the second half is handled in ExtendTransitions()) so that |
532 | // the signed difference between a civil_second and the civil_second of |
533 | // its previous transition is always representable, without overflow. |
534 | // A contemporary zic will usually have already done this for us. |
535 | if (transitions_.empty() || transitions_.front().unix_time >= 0) { |
536 | Transition& tr(*transitions_.emplace(transitions_.begin())); |
537 | tr.unix_time = -(1LL << 59); // see tz/zic.c "BIG_BANG" |
538 | tr.type_index = default_transition_type_; |
539 | hdr.timecnt += 1; |
540 | } |
541 | |
542 | // Extend the transitions using the future specification. |
543 | ExtendTransitions(name, hdr); |
544 | |
545 | // Compute the local civil time for each transition and the preceding |
546 | // second. These will be used for reverse conversions in MakeTime(). |
547 | const TransitionType* ttp = &transition_types_[default_transition_type_]; |
548 | for (std::size_t i = 0; i != transitions_.size(); ++i) { |
549 | Transition& tr(transitions_[i]); |
550 | tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1; |
551 | ttp = &transition_types_[tr.type_index]; |
552 | tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs; |
553 | if (i != 0) { |
554 | // Check that the transitions are ordered by civil time. Essentially |
555 | // this means that an offset change cannot cross another such change. |
556 | // No one does this in practice, and we depend on it in MakeTime(). |
557 | if (!Transition::ByCivilTime()(transitions_[i - 1], tr)) |
558 | return false; // out of order |
559 | } |
560 | } |
561 | |
562 | // Compute the maximum/minimum civil times that can be converted to a |
563 | // time_point<sys_seconds> for each of the zone's transition types. |
564 | for (auto& tt : transition_types_) { |
565 | tt.civil_max = LocalTime(sys_seconds::max().count(), tt).cs; |
566 | tt.civil_min = LocalTime(sys_seconds::min().count(), tt).cs; |
567 | } |
568 | |
569 | transitions_.shrink_to_fit(); |
570 | return true; |
571 | } |
572 | |
573 | namespace { |
574 | |
575 | // A stdio(3)-backed implementation of ZoneInfoSource. |
576 | class FileZoneInfoSource : public ZoneInfoSource { |
577 | public: |
578 | static std::unique_ptr<ZoneInfoSource> Open(const std::string& name); |
579 | |
580 | std::size_t Read(void* ptr, std::size_t size) override { |
581 | return fread(ptr, 1, size, fp_); |
582 | } |
583 | int Skip(std::size_t offset) override { |
584 | return fseek(fp_, static_cast<long>(offset), SEEK_CUR); |
585 | } |
586 | |
587 | private: |
588 | explicit FileZoneInfoSource(FILE* fp) : fp_(fp) {} |
589 | ~FileZoneInfoSource() { fclose(fp_); } |
590 | |
591 | FILE* const fp_; |
592 | }; |
593 | |
594 | std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open( |
595 | const std::string& name) { |
596 | // Use of the "file:" prefix is intended for testing purposes only. |
597 | if (name.compare(0, 5, "file:" ) == 0) return Open(name.substr(5)); |
598 | |
599 | // Map the time-zone name to a path name. |
600 | std::string path; |
601 | if (name.empty() || name[0] != '/') { |
602 | const char* tzdir = "/usr/share/zoneinfo" ; |
603 | char* tzdir_env = nullptr; |
604 | #if defined(_MSC_VER) |
605 | _dupenv_s(&tzdir_env, nullptr, "TZDIR" ); |
606 | #else |
607 | tzdir_env = std::getenv("TZDIR" ); |
608 | #endif |
609 | if (tzdir_env && *tzdir_env) tzdir = tzdir_env; |
610 | path += tzdir; |
611 | path += '/'; |
612 | #if defined(_MSC_VER) |
613 | free(tzdir_env); |
614 | #endif |
615 | } |
616 | path += name; |
617 | |
618 | // Open the zoneinfo file. |
619 | #if defined(_MSC_VER) |
620 | FILE* fp; |
621 | if (fopen_s(&fp, path.c_str(), "rb" ) != 0) fp = nullptr; |
622 | #else |
623 | FILE* fp = fopen(path.c_str(), "rb" ); |
624 | #endif |
625 | if (fp == nullptr) return nullptr; |
626 | return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp)); |
627 | } |
628 | |
629 | } // namespace |
630 | |
631 | bool TimeZoneInfo::Load(const std::string& name) { |
632 | // We can ensure that the loading of UTC or any other fixed-offset |
633 | // zone never fails because the simple, fixed-offset state can be |
634 | // internally generated. Note that this depends on our choice to not |
635 | // accept leap-second encoded ("right") zoneinfo. |
636 | auto offset = sys_seconds::zero(); |
637 | if (FixedOffsetFromName(name, &offset)) { |
638 | return ResetToBuiltinUTC(offset); |
639 | } |
640 | |
641 | // Find and use a ZoneInfoSource to load the named zone. |
642 | auto zip = cctz_extension::zone_info_source_factory( |
643 | name, [](const std::string& name) { |
644 | return FileZoneInfoSource::Open(name); // fallback factory |
645 | }); |
646 | return zip != nullptr && Load(name, zip.get()); |
647 | } |
648 | |
649 | // BreakTime() translation for a particular transition type. |
650 | time_zone::absolute_lookup TimeZoneInfo::LocalTime( |
651 | std::int_fast64_t unix_time, const TransitionType& tt) const { |
652 | // A civil time in "+offset" looks like (time+offset) in UTC. |
653 | // Note: We perform two additions in the civil_second domain to |
654 | // sidestep the chance of overflow in (unix_time + tt.utc_offset). |
655 | return {(civil_second() + unix_time) + tt.utc_offset, |
656 | tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; |
657 | } |
658 | |
659 | // BreakTime() translation for a particular transition. |
660 | time_zone::absolute_lookup TimeZoneInfo::LocalTime( |
661 | std::int_fast64_t unix_time, const Transition& tr) const { |
662 | const TransitionType& tt = transition_types_[tr.type_index]; |
663 | // Note: (unix_time - tr.unix_time) will never overflow as we |
664 | // have ensured that there is always a "nearby" transition. |
665 | return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize. |
666 | tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; |
667 | } |
668 | |
669 | // MakeTime() translation with a conversion-preserving +N * 400-year shift. |
670 | time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs, |
671 | cctz::year_t c4_shift) const { |
672 | assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_); |
673 | time_zone::civil_lookup cl = MakeTime(cs); |
674 | if (c4_shift > sys_seconds::max().count() / kSecsPer400Years) { |
675 | cl.pre = cl.trans = cl.post = time_point<sys_seconds>::max(); |
676 | } else { |
677 | const auto offset = sys_seconds(c4_shift * kSecsPer400Years); |
678 | const auto limit = time_point<sys_seconds>::max() - offset; |
679 | for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) { |
680 | if (*tp > limit) { |
681 | *tp = time_point<sys_seconds>::max(); |
682 | } else { |
683 | *tp += offset; |
684 | } |
685 | } |
686 | } |
687 | return cl; |
688 | } |
689 | |
690 | time_zone::absolute_lookup TimeZoneInfo::BreakTime( |
691 | const time_point<sys_seconds>& tp) const { |
692 | std::int_fast64_t unix_time = ToUnixSeconds(tp); |
693 | const std::size_t timecnt = transitions_.size(); |
694 | assert(timecnt != 0); // We always add a transition. |
695 | |
696 | if (unix_time < transitions_[0].unix_time) { |
697 | return LocalTime(unix_time, transition_types_[default_transition_type_]); |
698 | } |
699 | if (unix_time >= transitions_[timecnt - 1].unix_time) { |
700 | // After the last transition. If we extended the transitions using |
701 | // future_spec_, shift back to a supported year using the 400-year |
702 | // cycle of calendaric equivalence and then compensate accordingly. |
703 | if (extended_) { |
704 | const std::int_fast64_t diff = |
705 | unix_time - transitions_[timecnt - 1].unix_time; |
706 | const cctz::year_t shift = diff / kSecsPer400Years + 1; |
707 | const auto d = sys_seconds(shift * kSecsPer400Years); |
708 | time_zone::absolute_lookup al = BreakTime(tp - d); |
709 | al.cs = YearShift(al.cs, shift * 400); |
710 | return al; |
711 | } |
712 | return LocalTime(unix_time, transitions_[timecnt - 1]); |
713 | } |
714 | |
715 | const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed); |
716 | if (0 < hint && hint < timecnt) { |
717 | if (transitions_[hint - 1].unix_time <= unix_time) { |
718 | if (unix_time < transitions_[hint].unix_time) { |
719 | return LocalTime(unix_time, transitions_[hint - 1]); |
720 | } |
721 | } |
722 | } |
723 | |
724 | const Transition target = {unix_time, 0, civil_second(), civil_second()}; |
725 | const Transition* begin = &transitions_[0]; |
726 | const Transition* tr = std::upper_bound(begin, begin + timecnt, target, |
727 | Transition::ByUnixTime()); |
728 | local_time_hint_.store(static_cast<std::size_t>(tr - begin), |
729 | std::memory_order_relaxed); |
730 | return LocalTime(unix_time, *--tr); |
731 | } |
732 | |
733 | time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const { |
734 | const std::size_t timecnt = transitions_.size(); |
735 | assert(timecnt != 0); // We always add a transition. |
736 | |
737 | // Find the first transition after our target civil time. |
738 | const Transition* tr = nullptr; |
739 | const Transition* begin = &transitions_[0]; |
740 | const Transition* end = begin + timecnt; |
741 | if (cs < begin->civil_sec) { |
742 | tr = begin; |
743 | } else if (cs >= transitions_[timecnt - 1].civil_sec) { |
744 | tr = end; |
745 | } else { |
746 | const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed); |
747 | if (0 < hint && hint < timecnt) { |
748 | if (transitions_[hint - 1].civil_sec <= cs) { |
749 | if (cs < transitions_[hint].civil_sec) { |
750 | tr = begin + hint; |
751 | } |
752 | } |
753 | } |
754 | if (tr == nullptr) { |
755 | const Transition target = {0, 0, cs, civil_second()}; |
756 | tr = std::upper_bound(begin, end, target, Transition::ByCivilTime()); |
757 | time_local_hint_.store(static_cast<std::size_t>(tr - begin), |
758 | std::memory_order_relaxed); |
759 | } |
760 | } |
761 | |
762 | if (tr == begin) { |
763 | if (tr->prev_civil_sec >= cs) { |
764 | // Before first transition, so use the default offset. |
765 | const TransitionType& tt(transition_types_[default_transition_type_]); |
766 | if (cs < tt.civil_min) return MakeUnique(time_point<sys_seconds>::min()); |
767 | return MakeUnique(cs - (civil_second() + tt.utc_offset)); |
768 | } |
769 | // tr->prev_civil_sec < cs < tr->civil_sec |
770 | return MakeSkipped(*tr, cs); |
771 | } |
772 | |
773 | if (tr == end) { |
774 | if (cs > (--tr)->prev_civil_sec) { |
775 | // After the last transition. If we extended the transitions using |
776 | // future_spec_, shift back to a supported year using the 400-year |
777 | // cycle of calendaric equivalence and then compensate accordingly. |
778 | if (extended_ && cs.year() > last_year_) { |
779 | const cctz::year_t shift = (cs.year() - last_year_ - 1) / 400 + 1; |
780 | return TimeLocal(YearShift(cs, shift * -400), shift); |
781 | } |
782 | const TransitionType& tt(transition_types_[tr->type_index]); |
783 | if (cs > tt.civil_max) return MakeUnique(time_point<sys_seconds>::max()); |
784 | return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); |
785 | } |
786 | // tr->civil_sec <= cs <= tr->prev_civil_sec |
787 | return MakeRepeated(*tr, cs); |
788 | } |
789 | |
790 | if (tr->prev_civil_sec < cs) { |
791 | // tr->prev_civil_sec < cs < tr->civil_sec |
792 | return MakeSkipped(*tr, cs); |
793 | } |
794 | |
795 | if (cs <= (--tr)->prev_civil_sec) { |
796 | // tr->civil_sec <= cs <= tr->prev_civil_sec |
797 | return MakeRepeated(*tr, cs); |
798 | } |
799 | |
800 | // In between transitions. |
801 | return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); |
802 | } |
803 | |
804 | std::string TimeZoneInfo::Description() const { |
805 | std::ostringstream oss; |
806 | // TODO: It would nice if the zoneinfo data included the zone name. |
807 | // TODO: It would nice if the zoneinfo data included the tzdb version. |
808 | oss << "#trans=" << transitions_.size(); |
809 | oss << " #types=" << transition_types_.size(); |
810 | oss << " spec='" << future_spec_ << "'" ; |
811 | return oss.str(); |
812 | } |
813 | |
814 | bool TimeZoneInfo::NextTransition(time_point<sys_seconds>* tp) const { |
815 | if (transitions_.empty()) return false; |
816 | const Transition* begin = &transitions_[0]; |
817 | const Transition* end = begin + transitions_.size(); |
818 | if (begin->unix_time <= -(1LL << 59)) { |
819 | // Do not report the BIG_BANG found in recent zoneinfo data as it is |
820 | // really a sentinel, not a transition. See third_party/tz/zic.c. |
821 | ++begin; |
822 | } |
823 | std::int_fast64_t unix_time = ToUnixSeconds(*tp); |
824 | const Transition target = { unix_time }; |
825 | const Transition* tr = std::upper_bound(begin, end, target, |
826 | Transition::ByUnixTime()); |
827 | if (tr != begin) { // skip no-op transitions |
828 | for (; tr != end; ++tr) { |
829 | if (!EquivTransitions(tr[-1].type_index, tr[0].type_index)) break; |
830 | } |
831 | } |
832 | // When tr == end we return false, ignoring future_spec_. |
833 | if (tr == end) return false; |
834 | *tp = FromUnixSeconds(tr->unix_time); |
835 | return true; |
836 | } |
837 | |
838 | bool TimeZoneInfo::PrevTransition(time_point<sys_seconds>* tp) const { |
839 | if (transitions_.empty()) return false; |
840 | const Transition* begin = &transitions_[0]; |
841 | const Transition* end = begin + transitions_.size(); |
842 | if (begin->unix_time <= -(1LL << 59)) { |
843 | // Do not report the BIG_BANG found in recent zoneinfo data as it is |
844 | // really a sentinel, not a transition. See third_party/tz/zic.c. |
845 | ++begin; |
846 | } |
847 | std::int_fast64_t unix_time = ToUnixSeconds(*tp); |
848 | if (FromUnixSeconds(unix_time) != *tp) { |
849 | if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) { |
850 | if (end == begin) return false; // Ignore future_spec_. |
851 | *tp = FromUnixSeconds((--end)->unix_time); |
852 | return true; |
853 | } |
854 | unix_time += 1; // ceils |
855 | } |
856 | const Transition target = { unix_time }; |
857 | const Transition* tr = std::lower_bound(begin, end, target, |
858 | Transition::ByUnixTime()); |
859 | if (tr != begin) { // skip no-op transitions |
860 | for (; tr - 1 != begin; --tr) { |
861 | if (!EquivTransitions(tr[-2].type_index, tr[-1].type_index)) break; |
862 | } |
863 | } |
864 | // When tr == end we return the "last" transition, ignoring future_spec_. |
865 | if (tr == begin) return false; |
866 | *tp = FromUnixSeconds((--tr)->unix_time); |
867 | return true; |
868 | } |
869 | |
870 | } // namespace cctz |
871 | |