| 1 | // Copyright 2016 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | // This file implements the TimeZoneIf interface using the "zoneinfo" |
| 16 | // data provided by the IANA Time Zone Database (i.e., the only real game |
| 17 | // in town). |
| 18 | // |
| 19 | // TimeZoneInfo represents the history of UTC-offset changes within a time |
| 20 | // zone. Most changes are due to daylight-saving rules, but occasionally |
| 21 | // shifts are made to the time-zone's base offset. The database only attempts |
| 22 | // to be definitive for times since 1970, so be wary of local-time conversions |
| 23 | // before that. Also, rule and zone-boundary changes are made at the whim |
| 24 | // of governments, so the conversion of future times needs to be taken with |
| 25 | // a grain of salt. |
| 26 | // |
| 27 | // For more information see tzfile(5), http://www.iana.org/time-zones, or |
| 28 | // http://en.wikipedia.org/wiki/Zoneinfo. |
| 29 | // |
| 30 | // Note that we assume the proleptic Gregorian calendar and 60-second |
| 31 | // minutes throughout. |
| 32 | |
| 33 | #include "time_zone_info.h" |
| 34 | |
| 35 | #include <algorithm> |
| 36 | #include <cassert> |
| 37 | #include <chrono> |
| 38 | #include <cstdint> |
| 39 | #include <cstdio> |
| 40 | #include <cstdlib> |
| 41 | #include <cstring> |
| 42 | #include <functional> |
| 43 | #include <iostream> |
| 44 | #include <memory> |
| 45 | #include <sstream> |
| 46 | #include <string> |
| 47 | |
| 48 | #include "cctz/civil_time.h" |
| 49 | #include "time_zone_fixed.h" |
| 50 | #include "time_zone_posix.h" |
| 51 | |
| 52 | namespace cctz { |
| 53 | |
| 54 | namespace { |
| 55 | |
| 56 | inline bool IsLeap(cctz::year_t year) { |
| 57 | return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0); |
| 58 | } |
| 59 | |
| 60 | // The number of days in non-leap and leap years respectively. |
| 61 | const std::int_least32_t kDaysPerYear[2] = {365, 366}; |
| 62 | |
| 63 | // The day offsets of the beginning of each (1-based) month in non-leap and |
| 64 | // leap years respectively (e.g., 335 days before December in a leap year). |
| 65 | const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = { |
| 66 | {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, |
| 67 | {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}, |
| 68 | }; |
| 69 | |
| 70 | // We reject leap-second encoded zoneinfo and so assume 60-second minutes. |
| 71 | const std::int_least32_t kSecsPerDay = 24 * 60 * 60; |
| 72 | |
| 73 | // 400-year chunks always have 146097 days (20871 weeks). |
| 74 | const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay; |
| 75 | |
| 76 | // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay. |
| 77 | const std::int_least32_t kSecsPerYear[2] = { |
| 78 | 365 * kSecsPerDay, |
| 79 | 366 * kSecsPerDay, |
| 80 | }; |
| 81 | |
| 82 | // Single-byte, unsigned numeric values are encoded directly. |
| 83 | inline std::uint_fast8_t Decode8(const char* cp) { |
| 84 | return static_cast<std::uint_fast8_t>(*cp) & 0xff; |
| 85 | } |
| 86 | |
| 87 | // Multi-byte, numeric values are encoded using a MSB first, |
| 88 | // twos-complement representation. These helpers decode, from |
| 89 | // the given address, 4-byte and 8-byte values respectively. |
| 90 | // Note: If int_fastXX_t == intXX_t and this machine is not |
| 91 | // twos complement, then there will be at least one input value |
| 92 | // we cannot represent. |
| 93 | std::int_fast32_t Decode32(const char* cp) { |
| 94 | std::uint_fast32_t v = 0; |
| 95 | for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++); |
| 96 | const std::int_fast32_t s32max = 0x7fffffff; |
| 97 | const auto s32maxU = static_cast<std::uint_fast32_t>(s32max); |
| 98 | if (v <= s32maxU) return static_cast<std::int_fast32_t>(v); |
| 99 | return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1; |
| 100 | } |
| 101 | |
| 102 | std::int_fast64_t Decode64(const char* cp) { |
| 103 | std::uint_fast64_t v = 0; |
| 104 | for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++); |
| 105 | const std::int_fast64_t s64max = 0x7fffffffffffffff; |
| 106 | const auto s64maxU = static_cast<std::uint_fast64_t>(s64max); |
| 107 | if (v <= s64maxU) return static_cast<std::int_fast64_t>(v); |
| 108 | return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1; |
| 109 | } |
| 110 | |
| 111 | // Generate a year-relative offset for a PosixTransition. |
| 112 | std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday, |
| 113 | const PosixTransition& pt) { |
| 114 | std::int_fast64_t days = 0; |
| 115 | switch (pt.date.fmt) { |
| 116 | case PosixTransition::J: { |
| 117 | days = pt.date.j.day; |
| 118 | if (!leap_year || days < kMonthOffsets[1][3]) days -= 1; |
| 119 | break; |
| 120 | } |
| 121 | case PosixTransition::N: { |
| 122 | days = pt.date.n.day; |
| 123 | break; |
| 124 | } |
| 125 | case PosixTransition::M: { |
| 126 | const bool last_week = (pt.date.m.week == 5); |
| 127 | days = kMonthOffsets[leap_year][pt.date.m.month + last_week]; |
| 128 | const std::int_fast64_t weekday = (jan1_weekday + days) % 7; |
| 129 | if (last_week) { |
| 130 | days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1; |
| 131 | } else { |
| 132 | days += (pt.date.m.weekday + 7 - weekday) % 7; |
| 133 | days += (pt.date.m.week - 1) * 7; |
| 134 | } |
| 135 | break; |
| 136 | } |
| 137 | } |
| 138 | return (days * kSecsPerDay) + pt.time.offset; |
| 139 | } |
| 140 | |
| 141 | inline time_zone::civil_lookup MakeUnique(const time_point<sys_seconds>& tp) { |
| 142 | time_zone::civil_lookup cl; |
| 143 | cl.kind = time_zone::civil_lookup::UNIQUE; |
| 144 | cl.pre = cl.trans = cl.post = tp; |
| 145 | return cl; |
| 146 | } |
| 147 | |
| 148 | inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) { |
| 149 | return MakeUnique(FromUnixSeconds(unix_time)); |
| 150 | } |
| 151 | |
| 152 | inline time_zone::civil_lookup MakeSkipped(const Transition& tr, |
| 153 | const civil_second& cs) { |
| 154 | time_zone::civil_lookup cl; |
| 155 | cl.kind = time_zone::civil_lookup::SKIPPED; |
| 156 | cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec)); |
| 157 | cl.trans = FromUnixSeconds(tr.unix_time); |
| 158 | cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs)); |
| 159 | return cl; |
| 160 | } |
| 161 | |
| 162 | inline time_zone::civil_lookup MakeRepeated(const Transition& tr, |
| 163 | const civil_second& cs) { |
| 164 | time_zone::civil_lookup cl; |
| 165 | cl.kind = time_zone::civil_lookup::REPEATED; |
| 166 | cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs)); |
| 167 | cl.trans = FromUnixSeconds(tr.unix_time); |
| 168 | cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec)); |
| 169 | return cl; |
| 170 | } |
| 171 | |
| 172 | inline civil_second YearShift(const civil_second& cs, cctz::year_t shift) { |
| 173 | return civil_second(cs.year() + shift, cs.month(), cs.day(), |
| 174 | cs.hour(), cs.minute(), cs.second()); |
| 175 | } |
| 176 | |
| 177 | } // namespace |
| 178 | |
| 179 | // What (no leap-seconds) UTC+seconds zoneinfo would look like. |
| 180 | bool TimeZoneInfo::ResetToBuiltinUTC(const sys_seconds& offset) { |
| 181 | transition_types_.resize(1); |
| 182 | TransitionType& tt(transition_types_.back()); |
| 183 | tt.utc_offset = static_cast<std::int_least32_t>(offset.count()); |
| 184 | tt.is_dst = false; |
| 185 | tt.abbr_index = 0; |
| 186 | |
| 187 | // We temporarily add some redundant, contemporary (2012 through 2021) |
| 188 | // transitions for performance reasons. See TimeZoneInfo::LocalTime(). |
| 189 | // TODO: Fix the performance issue and remove the extra transitions. |
| 190 | transitions_.clear(); |
| 191 | transitions_.reserve(12); |
| 192 | for (const std::int_fast64_t unix_time : { |
| 193 | -(1LL << 59), // BIG_BANG |
| 194 | 1325376000LL, // 2012-01-01T00:00:00+00:00 |
| 195 | 1356998400LL, // 2013-01-01T00:00:00+00:00 |
| 196 | 1388534400LL, // 2014-01-01T00:00:00+00:00 |
| 197 | 1420070400LL, // 2015-01-01T00:00:00+00:00 |
| 198 | 1451606400LL, // 2016-01-01T00:00:00+00:00 |
| 199 | 1483228800LL, // 2017-01-01T00:00:00+00:00 |
| 200 | 1514764800LL, // 2018-01-01T00:00:00+00:00 |
| 201 | 1546300800LL, // 2019-01-01T00:00:00+00:00 |
| 202 | 1577836800LL, // 2020-01-01T00:00:00+00:00 |
| 203 | 1609459200LL, // 2021-01-01T00:00:00+00:00 |
| 204 | 2147483647LL, // 2^31 - 1 |
| 205 | }) { |
| 206 | Transition& tr(*transitions_.emplace(transitions_.end())); |
| 207 | tr.unix_time = unix_time; |
| 208 | tr.type_index = 0; |
| 209 | tr.civil_sec = LocalTime(tr.unix_time, tt).cs; |
| 210 | tr.prev_civil_sec = tr.civil_sec - 1; |
| 211 | } |
| 212 | |
| 213 | default_transition_type_ = 0; |
| 214 | abbreviations_ = FixedOffsetToAbbr(offset); |
| 215 | abbreviations_.append(1, '\0'); // add NUL |
| 216 | future_spec_.clear(); // never needed for a fixed-offset zone |
| 217 | extended_ = false; |
| 218 | |
| 219 | tt.civil_max = LocalTime(sys_seconds::max().count(), tt).cs; |
| 220 | tt.civil_min = LocalTime(sys_seconds::min().count(), tt).cs; |
| 221 | |
| 222 | transitions_.shrink_to_fit(); |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | // Builds the in-memory header using the raw bytes from the file. |
| 227 | bool TimeZoneInfo::Header::(const tzhead& tzh) { |
| 228 | std::int_fast32_t v; |
| 229 | if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false; |
| 230 | timecnt = static_cast<std::size_t>(v); |
| 231 | if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false; |
| 232 | typecnt = static_cast<std::size_t>(v); |
| 233 | if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false; |
| 234 | charcnt = static_cast<std::size_t>(v); |
| 235 | if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false; |
| 236 | leapcnt = static_cast<std::size_t>(v); |
| 237 | if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false; |
| 238 | ttisstdcnt = static_cast<std::size_t>(v); |
| 239 | if ((v = Decode32(tzh.tzh_ttisgmtcnt)) < 0) return false; |
| 240 | ttisgmtcnt = static_cast<std::size_t>(v); |
| 241 | return true; |
| 242 | } |
| 243 | |
| 244 | // How many bytes of data are associated with this header. The result |
| 245 | // depends upon whether this is a section with 4-byte or 8-byte times. |
| 246 | std::size_t TimeZoneInfo::Header::(std::size_t time_len) const { |
| 247 | std::size_t len = 0; |
| 248 | len += (time_len + 1) * timecnt; // unix_time + type_index |
| 249 | len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index |
| 250 | len += 1 * charcnt; // abbreviations |
| 251 | len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC |
| 252 | len += 1 * ttisstdcnt; // UTC/local indicators |
| 253 | len += 1 * ttisgmtcnt; // standard/wall indicators |
| 254 | return len; |
| 255 | } |
| 256 | |
| 257 | // Check that the TransitionType has the expected offset/is_dst/abbreviation. |
| 258 | void TimeZoneInfo::CheckTransition(const std::string& name, |
| 259 | const TransitionType& tt, |
| 260 | std::int_fast32_t offset, bool is_dst, |
| 261 | const std::string& abbr) const { |
| 262 | if (tt.utc_offset != offset || tt.is_dst != is_dst || |
| 263 | &abbreviations_[tt.abbr_index] != abbr) { |
| 264 | std::clog << name << ": Transition" |
| 265 | << " offset=" << tt.utc_offset << "/" |
| 266 | << (tt.is_dst ? "DST" : "STD" ) |
| 267 | << "/abbr=" << &abbreviations_[tt.abbr_index] |
| 268 | << " does not match POSIX spec '" << future_spec_ << "'\n" ; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | // zic(8) can generate no-op transitions when a zone changes rules at an |
| 273 | // instant when there is actually no discontinuity. So we check whether |
| 274 | // two transitions have equivalent types (same offset/is_dst/abbr). |
| 275 | bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index, |
| 276 | std::uint_fast8_t tt2_index) const { |
| 277 | if (tt1_index == tt2_index) return true; |
| 278 | const TransitionType& tt1(transition_types_[tt1_index]); |
| 279 | const TransitionType& tt2(transition_types_[tt2_index]); |
| 280 | if (tt1.is_dst != tt2.is_dst) return false; |
| 281 | if (tt1.utc_offset != tt2.utc_offset) return false; |
| 282 | if (tt1.abbr_index != tt2.abbr_index) return false; |
| 283 | return true; |
| 284 | } |
| 285 | |
| 286 | // Use the POSIX-TZ-environment-variable-style string to handle times |
| 287 | // in years after the last transition stored in the zoneinfo data. |
| 288 | void TimeZoneInfo::(const std::string& name, |
| 289 | const Header& hdr) { |
| 290 | extended_ = false; |
| 291 | bool extending = !future_spec_.empty(); |
| 292 | |
| 293 | PosixTimeZone posix; |
| 294 | if (extending && !ParsePosixSpec(future_spec_, &posix)) { |
| 295 | std::clog << name << ": Failed to parse '" << future_spec_ << "'\n" ; |
| 296 | extending = false; |
| 297 | } |
| 298 | |
| 299 | if (extending && posix.dst_abbr.empty()) { // std only |
| 300 | // The future specification should match the last/default transition, |
| 301 | // and that means that handling the future will fall out naturally. |
| 302 | std::uint_fast8_t index = default_transition_type_; |
| 303 | if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index; |
| 304 | const TransitionType& tt(transition_types_[index]); |
| 305 | CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr); |
| 306 | extending = false; |
| 307 | } |
| 308 | |
| 309 | if (extending && hdr.timecnt < 2) { |
| 310 | std::clog << name << ": Too few transitions for POSIX spec\n" ; |
| 311 | extending = false; |
| 312 | } |
| 313 | |
| 314 | if (!extending) { |
| 315 | // Ensure that there is always a transition in the second half of the |
| 316 | // time line (the BIG_BANG transition is in the first half) so that the |
| 317 | // signed difference between a civil_second and the civil_second of its |
| 318 | // previous transition is always representable, without overflow. |
| 319 | const Transition& last(transitions_.back()); |
| 320 | if (last.unix_time < 0) { |
| 321 | const std::uint_fast8_t type_index = last.type_index; |
| 322 | Transition& tr(*transitions_.emplace(transitions_.end())); |
| 323 | tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00 |
| 324 | tr.type_index = type_index; |
| 325 | } |
| 326 | return; // last transition wins |
| 327 | } |
| 328 | |
| 329 | // Extend the transitions for an additional 400 years using the |
| 330 | // future specification. Years beyond those can be handled by |
| 331 | // mapping back to a cycle-equivalent year within that range. |
| 332 | // zic(8) should probably do this so that we don't have to. |
| 333 | // TODO: Reduce the extension by the number of compatible |
| 334 | // transitions already in place. |
| 335 | transitions_.reserve(hdr.timecnt + 400 * 2 + 1); |
| 336 | transitions_.resize(hdr.timecnt + 400 * 2); |
| 337 | extended_ = true; |
| 338 | |
| 339 | // The future specification should match the last two transitions, |
| 340 | // and those transitions should have different is_dst flags. |
| 341 | const Transition* tr0 = &transitions_[hdr.timecnt - 1]; |
| 342 | const Transition* tr1 = &transitions_[hdr.timecnt - 2]; |
| 343 | const TransitionType* tt0 = &transition_types_[tr0->type_index]; |
| 344 | const TransitionType* tt1 = &transition_types_[tr1->type_index]; |
| 345 | const TransitionType& spring(tt0->is_dst ? *tt0 : *tt1); |
| 346 | const TransitionType& autumn(tt0->is_dst ? *tt1 : *tt0); |
| 347 | CheckTransition(name, spring, posix.dst_offset, true, posix.dst_abbr); |
| 348 | CheckTransition(name, autumn, posix.std_offset, false, posix.std_abbr); |
| 349 | |
| 350 | // Add the transitions to tr1 and back to tr0 for each extra year. |
| 351 | last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year(); |
| 352 | bool leap_year = IsLeap(last_year_); |
| 353 | const civil_day jan1(last_year_, 1, 1); |
| 354 | std::int_fast64_t jan1_time = civil_second(jan1) - civil_second(); |
| 355 | int jan1_weekday = (static_cast<int>(get_weekday(jan1)) + 1) % 7; |
| 356 | Transition* tr = &transitions_[hdr.timecnt]; // next trans to fill |
| 357 | if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) { |
| 358 | // Add a single extra transition to align to a calendar year. |
| 359 | transitions_.resize(transitions_.size() + 1); |
| 360 | assert(tr == &transitions_[hdr.timecnt]); // no reallocation |
| 361 | const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); |
| 362 | std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); |
| 363 | tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; |
| 364 | tr++->type_index = tr1->type_index; |
| 365 | tr0 = &transitions_[hdr.timecnt]; |
| 366 | tr1 = &transitions_[hdr.timecnt - 1]; |
| 367 | tt0 = &transition_types_[tr0->type_index]; |
| 368 | tt1 = &transition_types_[tr1->type_index]; |
| 369 | } |
| 370 | const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); |
| 371 | const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end); |
| 372 | for (const cctz::year_t limit = last_year_ + 400; last_year_ < limit;) { |
| 373 | last_year_ += 1; // an additional year of generated transitions |
| 374 | jan1_time += kSecsPerYear[leap_year]; |
| 375 | jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7; |
| 376 | leap_year = !leap_year && IsLeap(last_year_); |
| 377 | std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); |
| 378 | tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; |
| 379 | tr++->type_index = tr1->type_index; |
| 380 | std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0); |
| 381 | tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset; |
| 382 | tr++->type_index = tr0->type_index; |
| 383 | } |
| 384 | assert(tr == &transitions_[0] + transitions_.size()); |
| 385 | } |
| 386 | |
| 387 | bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) { |
| 388 | // Read and validate the header. |
| 389 | tzhead tzh; |
| 390 | if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) |
| 391 | return false; |
| 392 | if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) |
| 393 | return false; |
| 394 | Header hdr; |
| 395 | if (!hdr.Build(tzh)) |
| 396 | return false; |
| 397 | std::size_t time_len = 4; |
| 398 | if (tzh.tzh_version[0] != '\0') { |
| 399 | // Skip the 4-byte data. |
| 400 | if (zip->Skip(hdr.DataLength(time_len)) != 0) |
| 401 | return false; |
| 402 | // Read and validate the header for the 8-byte data. |
| 403 | if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) |
| 404 | return false; |
| 405 | if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) |
| 406 | return false; |
| 407 | if (tzh.tzh_version[0] == '\0') |
| 408 | return false; |
| 409 | if (!hdr.Build(tzh)) |
| 410 | return false; |
| 411 | time_len = 8; |
| 412 | } |
| 413 | if (hdr.typecnt == 0) |
| 414 | return false; |
| 415 | if (hdr.leapcnt != 0) { |
| 416 | // This code assumes 60-second minutes so we do not want |
| 417 | // the leap-second encoded zoneinfo. We could reverse the |
| 418 | // compensation, but the "right" encoding is rarely used |
| 419 | // so currently we simply reject such data. |
| 420 | return false; |
| 421 | } |
| 422 | if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) |
| 423 | return false; |
| 424 | if (hdr.ttisgmtcnt != 0 && hdr.ttisgmtcnt != hdr.typecnt) |
| 425 | return false; |
| 426 | |
| 427 | // Read the data into a local buffer. |
| 428 | std::size_t len = hdr.DataLength(time_len); |
| 429 | std::vector<char> tbuf(len); |
| 430 | if (zip->Read(tbuf.data(), len) != len) |
| 431 | return false; |
| 432 | const char* bp = tbuf.data(); |
| 433 | |
| 434 | // Decode and validate the transitions. |
| 435 | transitions_.reserve(hdr.timecnt + 2); // We might add a couple. |
| 436 | transitions_.resize(hdr.timecnt); |
| 437 | for (std::size_t i = 0; i != hdr.timecnt; ++i) { |
| 438 | transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp); |
| 439 | bp += time_len; |
| 440 | if (i != 0) { |
| 441 | // Check that the transitions are ordered by time (as zic guarantees). |
| 442 | if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i])) |
| 443 | return false; // out of order |
| 444 | } |
| 445 | } |
| 446 | bool seen_type_0 = false; |
| 447 | for (std::size_t i = 0; i != hdr.timecnt; ++i) { |
| 448 | transitions_[i].type_index = Decode8(bp++); |
| 449 | if (transitions_[i].type_index >= hdr.typecnt) |
| 450 | return false; |
| 451 | if (transitions_[i].type_index == 0) |
| 452 | seen_type_0 = true; |
| 453 | } |
| 454 | |
| 455 | // Decode and validate the transition types. |
| 456 | transition_types_.resize(hdr.typecnt); |
| 457 | for (std::size_t i = 0; i != hdr.typecnt; ++i) { |
| 458 | transition_types_[i].utc_offset = |
| 459 | static_cast<std::int_least32_t>(Decode32(bp)); |
| 460 | if (transition_types_[i].utc_offset >= kSecsPerDay || |
| 461 | transition_types_[i].utc_offset <= -kSecsPerDay) |
| 462 | return false; |
| 463 | bp += 4; |
| 464 | transition_types_[i].is_dst = (Decode8(bp++) != 0); |
| 465 | transition_types_[i].abbr_index = Decode8(bp++); |
| 466 | if (transition_types_[i].abbr_index >= hdr.charcnt) |
| 467 | return false; |
| 468 | } |
| 469 | |
| 470 | // Determine the before-first-transition type. |
| 471 | default_transition_type_ = 0; |
| 472 | if (seen_type_0 && hdr.timecnt != 0) { |
| 473 | std::uint_fast8_t index = 0; |
| 474 | if (transition_types_[0].is_dst) { |
| 475 | index = transitions_[0].type_index; |
| 476 | while (index != 0 && transition_types_[index].is_dst) |
| 477 | --index; |
| 478 | } |
| 479 | while (index != hdr.typecnt && transition_types_[index].is_dst) |
| 480 | ++index; |
| 481 | if (index != hdr.typecnt) |
| 482 | default_transition_type_ = index; |
| 483 | } |
| 484 | |
| 485 | // Copy all the abbreviations. |
| 486 | abbreviations_.assign(bp, hdr.charcnt); |
| 487 | bp += hdr.charcnt; |
| 488 | |
| 489 | // Skip the unused portions. We've already dispensed with leap-second |
| 490 | // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when |
| 491 | // interpreting a POSIX spec that does not include start/end rules, and |
| 492 | // that isn't the case here (see "zic -p"). |
| 493 | bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC |
| 494 | bp += 1 * hdr.ttisstdcnt; // UTC/local indicators |
| 495 | bp += 1 * hdr.ttisgmtcnt; // standard/wall indicators |
| 496 | assert(bp == tbuf.data() + tbuf.size()); |
| 497 | |
| 498 | future_spec_.clear(); |
| 499 | if (tzh.tzh_version[0] != '\0') { |
| 500 | // Snarf up the NL-enclosed future POSIX spec. Note |
| 501 | // that version '3' files utilize an extended format. |
| 502 | auto get_char = [](ZoneInfoSource* zip) -> int { |
| 503 | unsigned char ch; // all non-EOF results are positive |
| 504 | return (zip->Read(&ch, 1) == 1) ? ch : EOF; |
| 505 | }; |
| 506 | if (get_char(zip) != '\n') |
| 507 | return false; |
| 508 | for (int c = get_char(zip); c != '\n'; c = get_char(zip)) { |
| 509 | if (c == EOF) |
| 510 | return false; |
| 511 | future_spec_.push_back(static_cast<char>(c)); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | // We don't check for EOF so that we're forwards compatible. |
| 516 | |
| 517 | // Trim redundant transitions. zic may have added these to work around |
| 518 | // differences between the glibc and reference implementations (see |
| 519 | // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071). |
| 520 | // For us, they just get in the way when we do future_spec_ extension. |
| 521 | while (hdr.timecnt > 1) { |
| 522 | if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index, |
| 523 | transitions_[hdr.timecnt - 2].type_index)) { |
| 524 | break; |
| 525 | } |
| 526 | hdr.timecnt -= 1; |
| 527 | } |
| 528 | transitions_.resize(hdr.timecnt); |
| 529 | |
| 530 | // Ensure that there is always a transition in the first half of the |
| 531 | // time line (the second half is handled in ExtendTransitions()) so that |
| 532 | // the signed difference between a civil_second and the civil_second of |
| 533 | // its previous transition is always representable, without overflow. |
| 534 | // A contemporary zic will usually have already done this for us. |
| 535 | if (transitions_.empty() || transitions_.front().unix_time >= 0) { |
| 536 | Transition& tr(*transitions_.emplace(transitions_.begin())); |
| 537 | tr.unix_time = -(1LL << 59); // see tz/zic.c "BIG_BANG" |
| 538 | tr.type_index = default_transition_type_; |
| 539 | hdr.timecnt += 1; |
| 540 | } |
| 541 | |
| 542 | // Extend the transitions using the future specification. |
| 543 | ExtendTransitions(name, hdr); |
| 544 | |
| 545 | // Compute the local civil time for each transition and the preceding |
| 546 | // second. These will be used for reverse conversions in MakeTime(). |
| 547 | const TransitionType* ttp = &transition_types_[default_transition_type_]; |
| 548 | for (std::size_t i = 0; i != transitions_.size(); ++i) { |
| 549 | Transition& tr(transitions_[i]); |
| 550 | tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1; |
| 551 | ttp = &transition_types_[tr.type_index]; |
| 552 | tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs; |
| 553 | if (i != 0) { |
| 554 | // Check that the transitions are ordered by civil time. Essentially |
| 555 | // this means that an offset change cannot cross another such change. |
| 556 | // No one does this in practice, and we depend on it in MakeTime(). |
| 557 | if (!Transition::ByCivilTime()(transitions_[i - 1], tr)) |
| 558 | return false; // out of order |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | // Compute the maximum/minimum civil times that can be converted to a |
| 563 | // time_point<sys_seconds> for each of the zone's transition types. |
| 564 | for (auto& tt : transition_types_) { |
| 565 | tt.civil_max = LocalTime(sys_seconds::max().count(), tt).cs; |
| 566 | tt.civil_min = LocalTime(sys_seconds::min().count(), tt).cs; |
| 567 | } |
| 568 | |
| 569 | transitions_.shrink_to_fit(); |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | namespace { |
| 574 | |
| 575 | // A stdio(3)-backed implementation of ZoneInfoSource. |
| 576 | class FileZoneInfoSource : public ZoneInfoSource { |
| 577 | public: |
| 578 | static std::unique_ptr<ZoneInfoSource> Open(const std::string& name); |
| 579 | |
| 580 | std::size_t Read(void* ptr, std::size_t size) override { |
| 581 | return fread(ptr, 1, size, fp_); |
| 582 | } |
| 583 | int Skip(std::size_t offset) override { |
| 584 | return fseek(fp_, static_cast<long>(offset), SEEK_CUR); |
| 585 | } |
| 586 | |
| 587 | private: |
| 588 | explicit FileZoneInfoSource(FILE* fp) : fp_(fp) {} |
| 589 | ~FileZoneInfoSource() { fclose(fp_); } |
| 590 | |
| 591 | FILE* const fp_; |
| 592 | }; |
| 593 | |
| 594 | std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open( |
| 595 | const std::string& name) { |
| 596 | // Use of the "file:" prefix is intended for testing purposes only. |
| 597 | if (name.compare(0, 5, "file:" ) == 0) return Open(name.substr(5)); |
| 598 | |
| 599 | // Map the time-zone name to a path name. |
| 600 | std::string path; |
| 601 | if (name.empty() || name[0] != '/') { |
| 602 | const char* tzdir = "/usr/share/zoneinfo" ; |
| 603 | char* tzdir_env = nullptr; |
| 604 | #if defined(_MSC_VER) |
| 605 | _dupenv_s(&tzdir_env, nullptr, "TZDIR" ); |
| 606 | #else |
| 607 | tzdir_env = std::getenv("TZDIR" ); |
| 608 | #endif |
| 609 | if (tzdir_env && *tzdir_env) tzdir = tzdir_env; |
| 610 | path += tzdir; |
| 611 | path += '/'; |
| 612 | #if defined(_MSC_VER) |
| 613 | free(tzdir_env); |
| 614 | #endif |
| 615 | } |
| 616 | path += name; |
| 617 | |
| 618 | // Open the zoneinfo file. |
| 619 | #if defined(_MSC_VER) |
| 620 | FILE* fp; |
| 621 | if (fopen_s(&fp, path.c_str(), "rb" ) != 0) fp = nullptr; |
| 622 | #else |
| 623 | FILE* fp = fopen(path.c_str(), "rb" ); |
| 624 | #endif |
| 625 | if (fp == nullptr) return nullptr; |
| 626 | return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp)); |
| 627 | } |
| 628 | |
| 629 | } // namespace |
| 630 | |
| 631 | bool TimeZoneInfo::Load(const std::string& name) { |
| 632 | // We can ensure that the loading of UTC or any other fixed-offset |
| 633 | // zone never fails because the simple, fixed-offset state can be |
| 634 | // internally generated. Note that this depends on our choice to not |
| 635 | // accept leap-second encoded ("right") zoneinfo. |
| 636 | auto offset = sys_seconds::zero(); |
| 637 | if (FixedOffsetFromName(name, &offset)) { |
| 638 | return ResetToBuiltinUTC(offset); |
| 639 | } |
| 640 | |
| 641 | // Find and use a ZoneInfoSource to load the named zone. |
| 642 | auto zip = cctz_extension::zone_info_source_factory( |
| 643 | name, [](const std::string& name) { |
| 644 | return FileZoneInfoSource::Open(name); // fallback factory |
| 645 | }); |
| 646 | return zip != nullptr && Load(name, zip.get()); |
| 647 | } |
| 648 | |
| 649 | // BreakTime() translation for a particular transition type. |
| 650 | time_zone::absolute_lookup TimeZoneInfo::LocalTime( |
| 651 | std::int_fast64_t unix_time, const TransitionType& tt) const { |
| 652 | // A civil time in "+offset" looks like (time+offset) in UTC. |
| 653 | // Note: We perform two additions in the civil_second domain to |
| 654 | // sidestep the chance of overflow in (unix_time + tt.utc_offset). |
| 655 | return {(civil_second() + unix_time) + tt.utc_offset, |
| 656 | tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; |
| 657 | } |
| 658 | |
| 659 | // BreakTime() translation for a particular transition. |
| 660 | time_zone::absolute_lookup TimeZoneInfo::LocalTime( |
| 661 | std::int_fast64_t unix_time, const Transition& tr) const { |
| 662 | const TransitionType& tt = transition_types_[tr.type_index]; |
| 663 | // Note: (unix_time - tr.unix_time) will never overflow as we |
| 664 | // have ensured that there is always a "nearby" transition. |
| 665 | return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize. |
| 666 | tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; |
| 667 | } |
| 668 | |
| 669 | // MakeTime() translation with a conversion-preserving +N * 400-year shift. |
| 670 | time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs, |
| 671 | cctz::year_t c4_shift) const { |
| 672 | assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_); |
| 673 | time_zone::civil_lookup cl = MakeTime(cs); |
| 674 | if (c4_shift > sys_seconds::max().count() / kSecsPer400Years) { |
| 675 | cl.pre = cl.trans = cl.post = time_point<sys_seconds>::max(); |
| 676 | } else { |
| 677 | const auto offset = sys_seconds(c4_shift * kSecsPer400Years); |
| 678 | const auto limit = time_point<sys_seconds>::max() - offset; |
| 679 | for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) { |
| 680 | if (*tp > limit) { |
| 681 | *tp = time_point<sys_seconds>::max(); |
| 682 | } else { |
| 683 | *tp += offset; |
| 684 | } |
| 685 | } |
| 686 | } |
| 687 | return cl; |
| 688 | } |
| 689 | |
| 690 | time_zone::absolute_lookup TimeZoneInfo::BreakTime( |
| 691 | const time_point<sys_seconds>& tp) const { |
| 692 | std::int_fast64_t unix_time = ToUnixSeconds(tp); |
| 693 | const std::size_t timecnt = transitions_.size(); |
| 694 | assert(timecnt != 0); // We always add a transition. |
| 695 | |
| 696 | if (unix_time < transitions_[0].unix_time) { |
| 697 | return LocalTime(unix_time, transition_types_[default_transition_type_]); |
| 698 | } |
| 699 | if (unix_time >= transitions_[timecnt - 1].unix_time) { |
| 700 | // After the last transition. If we extended the transitions using |
| 701 | // future_spec_, shift back to a supported year using the 400-year |
| 702 | // cycle of calendaric equivalence and then compensate accordingly. |
| 703 | if (extended_) { |
| 704 | const std::int_fast64_t diff = |
| 705 | unix_time - transitions_[timecnt - 1].unix_time; |
| 706 | const cctz::year_t shift = diff / kSecsPer400Years + 1; |
| 707 | const auto d = sys_seconds(shift * kSecsPer400Years); |
| 708 | time_zone::absolute_lookup al = BreakTime(tp - d); |
| 709 | al.cs = YearShift(al.cs, shift * 400); |
| 710 | return al; |
| 711 | } |
| 712 | return LocalTime(unix_time, transitions_[timecnt - 1]); |
| 713 | } |
| 714 | |
| 715 | const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed); |
| 716 | if (0 < hint && hint < timecnt) { |
| 717 | if (transitions_[hint - 1].unix_time <= unix_time) { |
| 718 | if (unix_time < transitions_[hint].unix_time) { |
| 719 | return LocalTime(unix_time, transitions_[hint - 1]); |
| 720 | } |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | const Transition target = {unix_time, 0, civil_second(), civil_second()}; |
| 725 | const Transition* begin = &transitions_[0]; |
| 726 | const Transition* tr = std::upper_bound(begin, begin + timecnt, target, |
| 727 | Transition::ByUnixTime()); |
| 728 | local_time_hint_.store(static_cast<std::size_t>(tr - begin), |
| 729 | std::memory_order_relaxed); |
| 730 | return LocalTime(unix_time, *--tr); |
| 731 | } |
| 732 | |
| 733 | time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const { |
| 734 | const std::size_t timecnt = transitions_.size(); |
| 735 | assert(timecnt != 0); // We always add a transition. |
| 736 | |
| 737 | // Find the first transition after our target civil time. |
| 738 | const Transition* tr = nullptr; |
| 739 | const Transition* begin = &transitions_[0]; |
| 740 | const Transition* end = begin + timecnt; |
| 741 | if (cs < begin->civil_sec) { |
| 742 | tr = begin; |
| 743 | } else if (cs >= transitions_[timecnt - 1].civil_sec) { |
| 744 | tr = end; |
| 745 | } else { |
| 746 | const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed); |
| 747 | if (0 < hint && hint < timecnt) { |
| 748 | if (transitions_[hint - 1].civil_sec <= cs) { |
| 749 | if (cs < transitions_[hint].civil_sec) { |
| 750 | tr = begin + hint; |
| 751 | } |
| 752 | } |
| 753 | } |
| 754 | if (tr == nullptr) { |
| 755 | const Transition target = {0, 0, cs, civil_second()}; |
| 756 | tr = std::upper_bound(begin, end, target, Transition::ByCivilTime()); |
| 757 | time_local_hint_.store(static_cast<std::size_t>(tr - begin), |
| 758 | std::memory_order_relaxed); |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | if (tr == begin) { |
| 763 | if (tr->prev_civil_sec >= cs) { |
| 764 | // Before first transition, so use the default offset. |
| 765 | const TransitionType& tt(transition_types_[default_transition_type_]); |
| 766 | if (cs < tt.civil_min) return MakeUnique(time_point<sys_seconds>::min()); |
| 767 | return MakeUnique(cs - (civil_second() + tt.utc_offset)); |
| 768 | } |
| 769 | // tr->prev_civil_sec < cs < tr->civil_sec |
| 770 | return MakeSkipped(*tr, cs); |
| 771 | } |
| 772 | |
| 773 | if (tr == end) { |
| 774 | if (cs > (--tr)->prev_civil_sec) { |
| 775 | // After the last transition. If we extended the transitions using |
| 776 | // future_spec_, shift back to a supported year using the 400-year |
| 777 | // cycle of calendaric equivalence and then compensate accordingly. |
| 778 | if (extended_ && cs.year() > last_year_) { |
| 779 | const cctz::year_t shift = (cs.year() - last_year_ - 1) / 400 + 1; |
| 780 | return TimeLocal(YearShift(cs, shift * -400), shift); |
| 781 | } |
| 782 | const TransitionType& tt(transition_types_[tr->type_index]); |
| 783 | if (cs > tt.civil_max) return MakeUnique(time_point<sys_seconds>::max()); |
| 784 | return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); |
| 785 | } |
| 786 | // tr->civil_sec <= cs <= tr->prev_civil_sec |
| 787 | return MakeRepeated(*tr, cs); |
| 788 | } |
| 789 | |
| 790 | if (tr->prev_civil_sec < cs) { |
| 791 | // tr->prev_civil_sec < cs < tr->civil_sec |
| 792 | return MakeSkipped(*tr, cs); |
| 793 | } |
| 794 | |
| 795 | if (cs <= (--tr)->prev_civil_sec) { |
| 796 | // tr->civil_sec <= cs <= tr->prev_civil_sec |
| 797 | return MakeRepeated(*tr, cs); |
| 798 | } |
| 799 | |
| 800 | // In between transitions. |
| 801 | return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); |
| 802 | } |
| 803 | |
| 804 | std::string TimeZoneInfo::Description() const { |
| 805 | std::ostringstream oss; |
| 806 | // TODO: It would nice if the zoneinfo data included the zone name. |
| 807 | // TODO: It would nice if the zoneinfo data included the tzdb version. |
| 808 | oss << "#trans=" << transitions_.size(); |
| 809 | oss << " #types=" << transition_types_.size(); |
| 810 | oss << " spec='" << future_spec_ << "'" ; |
| 811 | return oss.str(); |
| 812 | } |
| 813 | |
| 814 | bool TimeZoneInfo::NextTransition(time_point<sys_seconds>* tp) const { |
| 815 | if (transitions_.empty()) return false; |
| 816 | const Transition* begin = &transitions_[0]; |
| 817 | const Transition* end = begin + transitions_.size(); |
| 818 | if (begin->unix_time <= -(1LL << 59)) { |
| 819 | // Do not report the BIG_BANG found in recent zoneinfo data as it is |
| 820 | // really a sentinel, not a transition. See third_party/tz/zic.c. |
| 821 | ++begin; |
| 822 | } |
| 823 | std::int_fast64_t unix_time = ToUnixSeconds(*tp); |
| 824 | const Transition target = { unix_time }; |
| 825 | const Transition* tr = std::upper_bound(begin, end, target, |
| 826 | Transition::ByUnixTime()); |
| 827 | if (tr != begin) { // skip no-op transitions |
| 828 | for (; tr != end; ++tr) { |
| 829 | if (!EquivTransitions(tr[-1].type_index, tr[0].type_index)) break; |
| 830 | } |
| 831 | } |
| 832 | // When tr == end we return false, ignoring future_spec_. |
| 833 | if (tr == end) return false; |
| 834 | *tp = FromUnixSeconds(tr->unix_time); |
| 835 | return true; |
| 836 | } |
| 837 | |
| 838 | bool TimeZoneInfo::PrevTransition(time_point<sys_seconds>* tp) const { |
| 839 | if (transitions_.empty()) return false; |
| 840 | const Transition* begin = &transitions_[0]; |
| 841 | const Transition* end = begin + transitions_.size(); |
| 842 | if (begin->unix_time <= -(1LL << 59)) { |
| 843 | // Do not report the BIG_BANG found in recent zoneinfo data as it is |
| 844 | // really a sentinel, not a transition. See third_party/tz/zic.c. |
| 845 | ++begin; |
| 846 | } |
| 847 | std::int_fast64_t unix_time = ToUnixSeconds(*tp); |
| 848 | if (FromUnixSeconds(unix_time) != *tp) { |
| 849 | if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) { |
| 850 | if (end == begin) return false; // Ignore future_spec_. |
| 851 | *tp = FromUnixSeconds((--end)->unix_time); |
| 852 | return true; |
| 853 | } |
| 854 | unix_time += 1; // ceils |
| 855 | } |
| 856 | const Transition target = { unix_time }; |
| 857 | const Transition* tr = std::lower_bound(begin, end, target, |
| 858 | Transition::ByUnixTime()); |
| 859 | if (tr != begin) { // skip no-op transitions |
| 860 | for (; tr - 1 != begin; --tr) { |
| 861 | if (!EquivTransitions(tr[-2].type_index, tr[-1].type_index)) break; |
| 862 | } |
| 863 | } |
| 864 | // When tr == end we return the "last" transition, ignoring future_spec_. |
| 865 | if (tr == begin) return false; |
| 866 | *tp = FromUnixSeconds((--tr)->unix_time); |
| 867 | return true; |
| 868 | } |
| 869 | |
| 870 | } // namespace cctz |
| 871 | |