| 1 | /*************************************************************************** |
| 2 | * _ _ ____ _ |
| 3 | * Project ___| | | | _ \| | |
| 4 | * / __| | | | |_) | | |
| 5 | * | (__| |_| | _ <| |___ |
| 6 | * \___|\___/|_| \_\_____| |
| 7 | * |
| 8 | * Copyright (C) 1998 - 2019, Daniel Stenberg, <daniel@haxx.se>, et al. |
| 9 | * |
| 10 | * This software is licensed as described in the file COPYING, which |
| 11 | * you should have received as part of this distribution. The terms |
| 12 | * are also available at https://curl.haxx.se/docs/copyright.html. |
| 13 | * |
| 14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
| 15 | * copies of the Software, and permit persons to whom the Software is |
| 16 | * furnished to do so, under the terms of the COPYING file. |
| 17 | * |
| 18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| 19 | * KIND, either express or implied. |
| 20 | * |
| 21 | ***************************************************************************/ |
| 22 | |
| 23 | /* |
| 24 | * Source file for all NSS-specific code for the TLS/SSL layer. No code |
| 25 | * but vtls.c should ever call or use these functions. |
| 26 | */ |
| 27 | |
| 28 | #include "curl_setup.h" |
| 29 | |
| 30 | #ifdef USE_NSS |
| 31 | |
| 32 | #include "urldata.h" |
| 33 | #include "sendf.h" |
| 34 | #include "formdata.h" /* for the boundary function */ |
| 35 | #include "url.h" /* for the ssl config check function */ |
| 36 | #include "connect.h" |
| 37 | #include "strcase.h" |
| 38 | #include "select.h" |
| 39 | #include "vtls.h" |
| 40 | #include "llist.h" |
| 41 | #include "multiif.h" |
| 42 | #include "curl_printf.h" |
| 43 | #include "nssg.h" |
| 44 | #include <nspr.h> |
| 45 | #include <nss.h> |
| 46 | #include <ssl.h> |
| 47 | #include <sslerr.h> |
| 48 | #include <secerr.h> |
| 49 | #include <secmod.h> |
| 50 | #include <sslproto.h> |
| 51 | #include <prtypes.h> |
| 52 | #include <pk11pub.h> |
| 53 | #include <prio.h> |
| 54 | #include <secitem.h> |
| 55 | #include <secport.h> |
| 56 | #include <certdb.h> |
| 57 | #include <base64.h> |
| 58 | #include <cert.h> |
| 59 | #include <prerror.h> |
| 60 | #include <keyhi.h> /* for SECKEY_DestroyPublicKey() */ |
| 61 | #include <private/pprio.h> /* for PR_ImportTCPSocket */ |
| 62 | |
| 63 | #define NSSVERNUM ((NSS_VMAJOR<<16)|(NSS_VMINOR<<8)|NSS_VPATCH) |
| 64 | |
| 65 | #if NSSVERNUM >= 0x030f00 /* 3.15.0 */ |
| 66 | #include <ocsp.h> |
| 67 | #endif |
| 68 | |
| 69 | #include "strcase.h" |
| 70 | #include "warnless.h" |
| 71 | #include "x509asn1.h" |
| 72 | |
| 73 | /* The last #include files should be: */ |
| 74 | #include "curl_memory.h" |
| 75 | #include "memdebug.h" |
| 76 | |
| 77 | #define SSL_DIR "/etc/pki/nssdb" |
| 78 | |
| 79 | /* enough to fit the string "PEM Token #[0|1]" */ |
| 80 | #define SLOTSIZE 13 |
| 81 | |
| 82 | struct ssl_backend_data { |
| 83 | PRFileDesc *handle; |
| 84 | char *client_nickname; |
| 85 | struct Curl_easy *data; |
| 86 | struct curl_llist obj_list; |
| 87 | PK11GenericObject *obj_clicert; |
| 88 | }; |
| 89 | |
| 90 | #define BACKEND connssl->backend |
| 91 | |
| 92 | static PRLock *nss_initlock = NULL; |
| 93 | static PRLock *nss_crllock = NULL; |
| 94 | static PRLock *nss_findslot_lock = NULL; |
| 95 | static PRLock *nss_trustload_lock = NULL; |
| 96 | static struct curl_llist nss_crl_list; |
| 97 | static NSSInitContext *nss_context = NULL; |
| 98 | static volatile int initialized = 0; |
| 99 | |
| 100 | /* type used to wrap pointers as list nodes */ |
| 101 | struct ptr_list_wrap { |
| 102 | void *ptr; |
| 103 | struct curl_llist_element node; |
| 104 | }; |
| 105 | |
| 106 | typedef struct { |
| 107 | const char *name; |
| 108 | int num; |
| 109 | } cipher_s; |
| 110 | |
| 111 | #define PK11_SETATTRS(_attr, _idx, _type, _val, _len) do { \ |
| 112 | CK_ATTRIBUTE *ptr = (_attr) + ((_idx)++); \ |
| 113 | ptr->type = (_type); \ |
| 114 | ptr->pValue = (_val); \ |
| 115 | ptr->ulValueLen = (_len); \ |
| 116 | } while(0) |
| 117 | |
| 118 | #define CERT_NewTempCertificate __CERT_NewTempCertificate |
| 119 | |
| 120 | #define NUM_OF_CIPHERS sizeof(cipherlist)/sizeof(cipherlist[0]) |
| 121 | static const cipher_s cipherlist[] = { |
| 122 | /* SSL2 cipher suites */ |
| 123 | {"rc4" , SSL_EN_RC4_128_WITH_MD5}, |
| 124 | {"rc4-md5" , SSL_EN_RC4_128_WITH_MD5}, |
| 125 | {"rc4export" , SSL_EN_RC4_128_EXPORT40_WITH_MD5}, |
| 126 | {"rc2" , SSL_EN_RC2_128_CBC_WITH_MD5}, |
| 127 | {"rc2export" , SSL_EN_RC2_128_CBC_EXPORT40_WITH_MD5}, |
| 128 | {"des" , SSL_EN_DES_64_CBC_WITH_MD5}, |
| 129 | {"desede3" , SSL_EN_DES_192_EDE3_CBC_WITH_MD5}, |
| 130 | /* SSL3/TLS cipher suites */ |
| 131 | {"rsa_rc4_128_md5" , SSL_RSA_WITH_RC4_128_MD5}, |
| 132 | {"rsa_rc4_128_sha" , SSL_RSA_WITH_RC4_128_SHA}, |
| 133 | {"rsa_3des_sha" , SSL_RSA_WITH_3DES_EDE_CBC_SHA}, |
| 134 | {"rsa_des_sha" , SSL_RSA_WITH_DES_CBC_SHA}, |
| 135 | {"rsa_rc4_40_md5" , SSL_RSA_EXPORT_WITH_RC4_40_MD5}, |
| 136 | {"rsa_rc2_40_md5" , SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5}, |
| 137 | {"rsa_null_md5" , SSL_RSA_WITH_NULL_MD5}, |
| 138 | {"rsa_null_sha" , SSL_RSA_WITH_NULL_SHA}, |
| 139 | {"fips_3des_sha" , SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA}, |
| 140 | {"fips_des_sha" , SSL_RSA_FIPS_WITH_DES_CBC_SHA}, |
| 141 | {"fortezza" , SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA}, |
| 142 | {"fortezza_rc4_128_sha" , SSL_FORTEZZA_DMS_WITH_RC4_128_SHA}, |
| 143 | {"fortezza_null" , SSL_FORTEZZA_DMS_WITH_NULL_SHA}, |
| 144 | /* TLS 1.0: Exportable 56-bit Cipher Suites. */ |
| 145 | {"rsa_des_56_sha" , TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA}, |
| 146 | {"rsa_rc4_56_sha" , TLS_RSA_EXPORT1024_WITH_RC4_56_SHA}, |
| 147 | /* AES ciphers. */ |
| 148 | {"dhe_dss_aes_128_cbc_sha" , TLS_DHE_DSS_WITH_AES_128_CBC_SHA}, |
| 149 | {"dhe_dss_aes_256_cbc_sha" , TLS_DHE_DSS_WITH_AES_256_CBC_SHA}, |
| 150 | {"dhe_rsa_aes_128_cbc_sha" , TLS_DHE_RSA_WITH_AES_128_CBC_SHA}, |
| 151 | {"dhe_rsa_aes_256_cbc_sha" , TLS_DHE_RSA_WITH_AES_256_CBC_SHA}, |
| 152 | {"rsa_aes_128_sha" , TLS_RSA_WITH_AES_128_CBC_SHA}, |
| 153 | {"rsa_aes_256_sha" , TLS_RSA_WITH_AES_256_CBC_SHA}, |
| 154 | /* ECC ciphers. */ |
| 155 | {"ecdh_ecdsa_null_sha" , TLS_ECDH_ECDSA_WITH_NULL_SHA}, |
| 156 | {"ecdh_ecdsa_rc4_128_sha" , TLS_ECDH_ECDSA_WITH_RC4_128_SHA}, |
| 157 | {"ecdh_ecdsa_3des_sha" , TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA}, |
| 158 | {"ecdh_ecdsa_aes_128_sha" , TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA}, |
| 159 | {"ecdh_ecdsa_aes_256_sha" , TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA}, |
| 160 | {"ecdhe_ecdsa_null_sha" , TLS_ECDHE_ECDSA_WITH_NULL_SHA}, |
| 161 | {"ecdhe_ecdsa_rc4_128_sha" , TLS_ECDHE_ECDSA_WITH_RC4_128_SHA}, |
| 162 | {"ecdhe_ecdsa_3des_sha" , TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA}, |
| 163 | {"ecdhe_ecdsa_aes_128_sha" , TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA}, |
| 164 | {"ecdhe_ecdsa_aes_256_sha" , TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA}, |
| 165 | {"ecdh_rsa_null_sha" , TLS_ECDH_RSA_WITH_NULL_SHA}, |
| 166 | {"ecdh_rsa_128_sha" , TLS_ECDH_RSA_WITH_RC4_128_SHA}, |
| 167 | {"ecdh_rsa_3des_sha" , TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA}, |
| 168 | {"ecdh_rsa_aes_128_sha" , TLS_ECDH_RSA_WITH_AES_128_CBC_SHA}, |
| 169 | {"ecdh_rsa_aes_256_sha" , TLS_ECDH_RSA_WITH_AES_256_CBC_SHA}, |
| 170 | {"ecdhe_rsa_null" , TLS_ECDHE_RSA_WITH_NULL_SHA}, |
| 171 | {"ecdhe_rsa_rc4_128_sha" , TLS_ECDHE_RSA_WITH_RC4_128_SHA}, |
| 172 | {"ecdhe_rsa_3des_sha" , TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA}, |
| 173 | {"ecdhe_rsa_aes_128_sha" , TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA}, |
| 174 | {"ecdhe_rsa_aes_256_sha" , TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA}, |
| 175 | {"ecdh_anon_null_sha" , TLS_ECDH_anon_WITH_NULL_SHA}, |
| 176 | {"ecdh_anon_rc4_128sha" , TLS_ECDH_anon_WITH_RC4_128_SHA}, |
| 177 | {"ecdh_anon_3des_sha" , TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA}, |
| 178 | {"ecdh_anon_aes_128_sha" , TLS_ECDH_anon_WITH_AES_128_CBC_SHA}, |
| 179 | {"ecdh_anon_aes_256_sha" , TLS_ECDH_anon_WITH_AES_256_CBC_SHA}, |
| 180 | #ifdef TLS_RSA_WITH_NULL_SHA256 |
| 181 | /* new HMAC-SHA256 cipher suites specified in RFC */ |
| 182 | {"rsa_null_sha_256" , TLS_RSA_WITH_NULL_SHA256}, |
| 183 | {"rsa_aes_128_cbc_sha_256" , TLS_RSA_WITH_AES_128_CBC_SHA256}, |
| 184 | {"rsa_aes_256_cbc_sha_256" , TLS_RSA_WITH_AES_256_CBC_SHA256}, |
| 185 | {"dhe_rsa_aes_128_cbc_sha_256" , TLS_DHE_RSA_WITH_AES_128_CBC_SHA256}, |
| 186 | {"dhe_rsa_aes_256_cbc_sha_256" , TLS_DHE_RSA_WITH_AES_256_CBC_SHA256}, |
| 187 | {"ecdhe_ecdsa_aes_128_cbc_sha_256" , TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256}, |
| 188 | {"ecdhe_rsa_aes_128_cbc_sha_256" , TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256}, |
| 189 | #endif |
| 190 | #ifdef TLS_RSA_WITH_AES_128_GCM_SHA256 |
| 191 | /* AES GCM cipher suites in RFC 5288 and RFC 5289 */ |
| 192 | {"rsa_aes_128_gcm_sha_256" , TLS_RSA_WITH_AES_128_GCM_SHA256}, |
| 193 | {"dhe_rsa_aes_128_gcm_sha_256" , TLS_DHE_RSA_WITH_AES_128_GCM_SHA256}, |
| 194 | {"dhe_dss_aes_128_gcm_sha_256" , TLS_DHE_DSS_WITH_AES_128_GCM_SHA256}, |
| 195 | {"ecdhe_ecdsa_aes_128_gcm_sha_256" , TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256}, |
| 196 | {"ecdh_ecdsa_aes_128_gcm_sha_256" , TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256}, |
| 197 | {"ecdhe_rsa_aes_128_gcm_sha_256" , TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256}, |
| 198 | {"ecdh_rsa_aes_128_gcm_sha_256" , TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256}, |
| 199 | #endif |
| 200 | #ifdef TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 |
| 201 | /* cipher suites using SHA384 */ |
| 202 | {"rsa_aes_256_gcm_sha_384" , TLS_RSA_WITH_AES_256_GCM_SHA384}, |
| 203 | {"dhe_rsa_aes_256_gcm_sha_384" , TLS_DHE_RSA_WITH_AES_256_GCM_SHA384}, |
| 204 | {"dhe_dss_aes_256_gcm_sha_384" , TLS_DHE_DSS_WITH_AES_256_GCM_SHA384}, |
| 205 | {"ecdhe_ecdsa_aes_256_sha_384" , TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384}, |
| 206 | {"ecdhe_rsa_aes_256_sha_384" , TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384}, |
| 207 | {"ecdhe_ecdsa_aes_256_gcm_sha_384" , TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384}, |
| 208 | {"ecdhe_rsa_aes_256_gcm_sha_384" , TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384}, |
| 209 | #endif |
| 210 | #ifdef TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 |
| 211 | /* chacha20-poly1305 cipher suites */ |
| 212 | {"ecdhe_rsa_chacha20_poly1305_sha_256" , |
| 213 | TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256}, |
| 214 | {"ecdhe_ecdsa_chacha20_poly1305_sha_256" , |
| 215 | TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256}, |
| 216 | {"dhe_rsa_chacha20_poly1305_sha_256" , |
| 217 | TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256}, |
| 218 | #endif |
| 219 | #ifdef TLS_AES_256_GCM_SHA384 |
| 220 | {"aes_128_gcm_sha_256" , TLS_AES_128_GCM_SHA256}, |
| 221 | {"aes_256_gcm_sha_384" , TLS_AES_256_GCM_SHA384}, |
| 222 | {"chacha20_poly1305_sha_256" , TLS_CHACHA20_POLY1305_SHA256}, |
| 223 | #endif |
| 224 | }; |
| 225 | |
| 226 | #if defined(WIN32) |
| 227 | static const char *pem_library = "nsspem.dll" ; |
| 228 | static const char *trust_library = "nssckbi.dll" ; |
| 229 | #elif defined(__APPLE__) |
| 230 | static const char *pem_library = "libnsspem.dylib" ; |
| 231 | static const char *trust_library = "libnssckbi.dylib" ; |
| 232 | #else |
| 233 | static const char *pem_library = "libnsspem.so" ; |
| 234 | static const char *trust_library = "libnssckbi.so" ; |
| 235 | #endif |
| 236 | |
| 237 | static SECMODModule *pem_module = NULL; |
| 238 | static SECMODModule *trust_module = NULL; |
| 239 | |
| 240 | /* NSPR I/O layer we use to detect blocking direction during SSL handshake */ |
| 241 | static PRDescIdentity nspr_io_identity = PR_INVALID_IO_LAYER; |
| 242 | static PRIOMethods nspr_io_methods; |
| 243 | |
| 244 | static const char *nss_error_to_name(PRErrorCode code) |
| 245 | { |
| 246 | const char *name = PR_ErrorToName(code); |
| 247 | if(name) |
| 248 | return name; |
| 249 | |
| 250 | return "unknown error" ; |
| 251 | } |
| 252 | |
| 253 | static void nss_print_error_message(struct Curl_easy *data, PRUint32 err) |
| 254 | { |
| 255 | failf(data, "%s" , PR_ErrorToString(err, PR_LANGUAGE_I_DEFAULT)); |
| 256 | } |
| 257 | |
| 258 | static char *nss_sslver_to_name(PRUint16 nssver) |
| 259 | { |
| 260 | switch(nssver) { |
| 261 | case SSL_LIBRARY_VERSION_2: |
| 262 | return strdup("SSLv2" ); |
| 263 | case SSL_LIBRARY_VERSION_3_0: |
| 264 | return strdup("SSLv3" ); |
| 265 | case SSL_LIBRARY_VERSION_TLS_1_0: |
| 266 | return strdup("TLSv1.0" ); |
| 267 | #ifdef SSL_LIBRARY_VERSION_TLS_1_1 |
| 268 | case SSL_LIBRARY_VERSION_TLS_1_1: |
| 269 | return strdup("TLSv1.1" ); |
| 270 | #endif |
| 271 | #ifdef SSL_LIBRARY_VERSION_TLS_1_2 |
| 272 | case SSL_LIBRARY_VERSION_TLS_1_2: |
| 273 | return strdup("TLSv1.2" ); |
| 274 | #endif |
| 275 | #ifdef SSL_LIBRARY_VERSION_TLS_1_3 |
| 276 | case SSL_LIBRARY_VERSION_TLS_1_3: |
| 277 | return strdup("TLSv1.3" ); |
| 278 | #endif |
| 279 | default: |
| 280 | return curl_maprintf("0x%04x" , nssver); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | static SECStatus set_ciphers(struct Curl_easy *data, PRFileDesc * model, |
| 285 | char *cipher_list) |
| 286 | { |
| 287 | unsigned int i; |
| 288 | PRBool cipher_state[NUM_OF_CIPHERS]; |
| 289 | PRBool found; |
| 290 | char *cipher; |
| 291 | |
| 292 | /* use accessors to avoid dynamic linking issues after an update of NSS */ |
| 293 | const PRUint16 num_implemented_ciphers = SSL_GetNumImplementedCiphers(); |
| 294 | const PRUint16 *implemented_ciphers = SSL_GetImplementedCiphers(); |
| 295 | if(!implemented_ciphers) |
| 296 | return SECFailure; |
| 297 | |
| 298 | /* First disable all ciphers. This uses a different max value in case |
| 299 | * NSS adds more ciphers later we don't want them available by |
| 300 | * accident |
| 301 | */ |
| 302 | for(i = 0; i < num_implemented_ciphers; i++) { |
| 303 | SSL_CipherPrefSet(model, implemented_ciphers[i], PR_FALSE); |
| 304 | } |
| 305 | |
| 306 | /* Set every entry in our list to false */ |
| 307 | for(i = 0; i < NUM_OF_CIPHERS; i++) { |
| 308 | cipher_state[i] = PR_FALSE; |
| 309 | } |
| 310 | |
| 311 | cipher = cipher_list; |
| 312 | |
| 313 | while(cipher_list && (cipher_list[0])) { |
| 314 | while((*cipher) && (ISSPACE(*cipher))) |
| 315 | ++cipher; |
| 316 | |
| 317 | cipher_list = strchr(cipher, ','); |
| 318 | if(cipher_list) { |
| 319 | *cipher_list++ = '\0'; |
| 320 | } |
| 321 | |
| 322 | found = PR_FALSE; |
| 323 | |
| 324 | for(i = 0; i<NUM_OF_CIPHERS; i++) { |
| 325 | if(strcasecompare(cipher, cipherlist[i].name)) { |
| 326 | cipher_state[i] = PR_TRUE; |
| 327 | found = PR_TRUE; |
| 328 | break; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | if(found == PR_FALSE) { |
| 333 | failf(data, "Unknown cipher in list: %s" , cipher); |
| 334 | return SECFailure; |
| 335 | } |
| 336 | |
| 337 | if(cipher_list) { |
| 338 | cipher = cipher_list; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | /* Finally actually enable the selected ciphers */ |
| 343 | for(i = 0; i<NUM_OF_CIPHERS; i++) { |
| 344 | if(!cipher_state[i]) |
| 345 | continue; |
| 346 | |
| 347 | if(SSL_CipherPrefSet(model, cipherlist[i].num, PR_TRUE) != SECSuccess) { |
| 348 | failf(data, "cipher-suite not supported by NSS: %s" , cipherlist[i].name); |
| 349 | return SECFailure; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return SECSuccess; |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * Return true if at least one cipher-suite is enabled. Used to determine |
| 358 | * if we need to call NSS_SetDomesticPolicy() to enable the default ciphers. |
| 359 | */ |
| 360 | static bool any_cipher_enabled(void) |
| 361 | { |
| 362 | unsigned int i; |
| 363 | |
| 364 | for(i = 0; i<NUM_OF_CIPHERS; i++) { |
| 365 | PRInt32 policy = 0; |
| 366 | SSL_CipherPolicyGet(cipherlist[i].num, &policy); |
| 367 | if(policy) |
| 368 | return TRUE; |
| 369 | } |
| 370 | |
| 371 | return FALSE; |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * Determine whether the nickname passed in is a filename that needs to |
| 376 | * be loaded as a PEM or a regular NSS nickname. |
| 377 | * |
| 378 | * returns 1 for a file |
| 379 | * returns 0 for not a file (NSS nickname) |
| 380 | */ |
| 381 | static int is_file(const char *filename) |
| 382 | { |
| 383 | struct_stat st; |
| 384 | |
| 385 | if(filename == NULL) |
| 386 | return 0; |
| 387 | |
| 388 | if(stat(filename, &st) == 0) |
| 389 | if(S_ISREG(st.st_mode) || S_ISFIFO(st.st_mode) || S_ISCHR(st.st_mode)) |
| 390 | return 1; |
| 391 | |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | /* Check if the given string is filename or nickname of a certificate. If the |
| 396 | * given string is recognized as filename, return NULL. If the given string is |
| 397 | * recognized as nickname, return a duplicated string. The returned string |
| 398 | * should be later deallocated using free(). If the OOM failure occurs, we |
| 399 | * return NULL, too. |
| 400 | */ |
| 401 | static char *dup_nickname(struct Curl_easy *data, const char *str) |
| 402 | { |
| 403 | const char *n; |
| 404 | |
| 405 | if(!is_file(str)) |
| 406 | /* no such file exists, use the string as nickname */ |
| 407 | return strdup(str); |
| 408 | |
| 409 | /* search the first slash; we require at least one slash in a file name */ |
| 410 | n = strchr(str, '/'); |
| 411 | if(!n) { |
| 412 | infof(data, "warning: certificate file name \"%s\" handled as nickname; " |
| 413 | "please use \"./%s\" to force file name\n" , str, str); |
| 414 | return strdup(str); |
| 415 | } |
| 416 | |
| 417 | /* we'll use the PEM reader to read the certificate from file */ |
| 418 | return NULL; |
| 419 | } |
| 420 | |
| 421 | /* Lock/unlock wrapper for PK11_FindSlotByName() to work around race condition |
| 422 | * in nssSlot_IsTokenPresent() causing spurious SEC_ERROR_NO_TOKEN. For more |
| 423 | * details, go to <https://bugzilla.mozilla.org/1297397>. |
| 424 | */ |
| 425 | static PK11SlotInfo* nss_find_slot_by_name(const char *slot_name) |
| 426 | { |
| 427 | PK11SlotInfo *slot; |
| 428 | PR_Lock(nss_findslot_lock); |
| 429 | slot = PK11_FindSlotByName(slot_name); |
| 430 | PR_Unlock(nss_findslot_lock); |
| 431 | return slot; |
| 432 | } |
| 433 | |
| 434 | /* wrap 'ptr' as list node and tail-insert into 'list' */ |
| 435 | static CURLcode insert_wrapped_ptr(struct curl_llist *list, void *ptr) |
| 436 | { |
| 437 | struct ptr_list_wrap *wrap = malloc(sizeof(*wrap)); |
| 438 | if(!wrap) |
| 439 | return CURLE_OUT_OF_MEMORY; |
| 440 | |
| 441 | wrap->ptr = ptr; |
| 442 | Curl_llist_insert_next(list, list->tail, wrap, &wrap->node); |
| 443 | return CURLE_OK; |
| 444 | } |
| 445 | |
| 446 | /* Call PK11_CreateGenericObject() with the given obj_class and filename. If |
| 447 | * the call succeeds, append the object handle to the list of objects so that |
| 448 | * the object can be destroyed in Curl_nss_close(). */ |
| 449 | static CURLcode nss_create_object(struct ssl_connect_data *connssl, |
| 450 | CK_OBJECT_CLASS obj_class, |
| 451 | const char *filename, bool cacert) |
| 452 | { |
| 453 | PK11SlotInfo *slot; |
| 454 | PK11GenericObject *obj; |
| 455 | CK_BBOOL cktrue = CK_TRUE; |
| 456 | CK_BBOOL ckfalse = CK_FALSE; |
| 457 | CK_ATTRIBUTE attrs[/* max count of attributes */ 4]; |
| 458 | int attr_cnt = 0; |
| 459 | CURLcode result = (cacert) |
| 460 | ? CURLE_SSL_CACERT_BADFILE |
| 461 | : CURLE_SSL_CERTPROBLEM; |
| 462 | |
| 463 | const int slot_id = (cacert) ? 0 : 1; |
| 464 | char *slot_name = aprintf("PEM Token #%d" , slot_id); |
| 465 | if(!slot_name) |
| 466 | return CURLE_OUT_OF_MEMORY; |
| 467 | |
| 468 | slot = nss_find_slot_by_name(slot_name); |
| 469 | free(slot_name); |
| 470 | if(!slot) |
| 471 | return result; |
| 472 | |
| 473 | PK11_SETATTRS(attrs, attr_cnt, CKA_CLASS, &obj_class, sizeof(obj_class)); |
| 474 | PK11_SETATTRS(attrs, attr_cnt, CKA_TOKEN, &cktrue, sizeof(CK_BBOOL)); |
| 475 | PK11_SETATTRS(attrs, attr_cnt, CKA_LABEL, (unsigned char *)filename, |
| 476 | (CK_ULONG)strlen(filename) + 1); |
| 477 | |
| 478 | if(CKO_CERTIFICATE == obj_class) { |
| 479 | CK_BBOOL *pval = (cacert) ? (&cktrue) : (&ckfalse); |
| 480 | PK11_SETATTRS(attrs, attr_cnt, CKA_TRUST, pval, sizeof(*pval)); |
| 481 | } |
| 482 | |
| 483 | /* PK11_CreateManagedGenericObject() was introduced in NSS 3.34 because |
| 484 | * PK11_DestroyGenericObject() does not release resources allocated by |
| 485 | * PK11_CreateGenericObject() early enough. */ |
| 486 | obj = |
| 487 | #ifdef HAVE_PK11_CREATEMANAGEDGENERICOBJECT |
| 488 | PK11_CreateManagedGenericObject |
| 489 | #else |
| 490 | PK11_CreateGenericObject |
| 491 | #endif |
| 492 | (slot, attrs, attr_cnt, PR_FALSE); |
| 493 | |
| 494 | PK11_FreeSlot(slot); |
| 495 | if(!obj) |
| 496 | return result; |
| 497 | |
| 498 | if(insert_wrapped_ptr(&BACKEND->obj_list, obj) != CURLE_OK) { |
| 499 | PK11_DestroyGenericObject(obj); |
| 500 | return CURLE_OUT_OF_MEMORY; |
| 501 | } |
| 502 | |
| 503 | if(!cacert && CKO_CERTIFICATE == obj_class) |
| 504 | /* store reference to a client certificate */ |
| 505 | BACKEND->obj_clicert = obj; |
| 506 | |
| 507 | return CURLE_OK; |
| 508 | } |
| 509 | |
| 510 | /* Destroy the NSS object whose handle is given by ptr. This function is |
| 511 | * a callback of Curl_llist_alloc() used by Curl_llist_destroy() to destroy |
| 512 | * NSS objects in Curl_nss_close() */ |
| 513 | static void nss_destroy_object(void *user, void *ptr) |
| 514 | { |
| 515 | struct ptr_list_wrap *wrap = (struct ptr_list_wrap *) ptr; |
| 516 | PK11GenericObject *obj = (PK11GenericObject *) wrap->ptr; |
| 517 | (void) user; |
| 518 | PK11_DestroyGenericObject(obj); |
| 519 | free(wrap); |
| 520 | } |
| 521 | |
| 522 | /* same as nss_destroy_object() but for CRL items */ |
| 523 | static void nss_destroy_crl_item(void *user, void *ptr) |
| 524 | { |
| 525 | struct ptr_list_wrap *wrap = (struct ptr_list_wrap *) ptr; |
| 526 | SECItem *crl_der = (SECItem *) wrap->ptr; |
| 527 | (void) user; |
| 528 | SECITEM_FreeItem(crl_der, PR_TRUE); |
| 529 | free(wrap); |
| 530 | } |
| 531 | |
| 532 | static CURLcode nss_load_cert(struct ssl_connect_data *ssl, |
| 533 | const char *filename, PRBool cacert) |
| 534 | { |
| 535 | CURLcode result = (cacert) |
| 536 | ? CURLE_SSL_CACERT_BADFILE |
| 537 | : CURLE_SSL_CERTPROBLEM; |
| 538 | |
| 539 | /* libnsspem.so leaks memory if the requested file does not exist. For more |
| 540 | * details, go to <https://bugzilla.redhat.com/734760>. */ |
| 541 | if(is_file(filename)) |
| 542 | result = nss_create_object(ssl, CKO_CERTIFICATE, filename, cacert); |
| 543 | |
| 544 | if(!result && !cacert) { |
| 545 | /* we have successfully loaded a client certificate */ |
| 546 | CERTCertificate *cert; |
| 547 | char *nickname = NULL; |
| 548 | char *n = strrchr(filename, '/'); |
| 549 | if(n) |
| 550 | n++; |
| 551 | |
| 552 | /* The following undocumented magic helps to avoid a SIGSEGV on call |
| 553 | * of PK11_ReadRawAttribute() from SelectClientCert() when using an |
| 554 | * immature version of libnsspem.so. For more details, go to |
| 555 | * <https://bugzilla.redhat.com/733685>. */ |
| 556 | nickname = aprintf("PEM Token #1:%s" , n); |
| 557 | if(nickname) { |
| 558 | cert = PK11_FindCertFromNickname(nickname, NULL); |
| 559 | if(cert) |
| 560 | CERT_DestroyCertificate(cert); |
| 561 | |
| 562 | free(nickname); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | return result; |
| 567 | } |
| 568 | |
| 569 | /* add given CRL to cache if it is not already there */ |
| 570 | static CURLcode nss_cache_crl(SECItem *crl_der) |
| 571 | { |
| 572 | CERTCertDBHandle *db = CERT_GetDefaultCertDB(); |
| 573 | CERTSignedCrl *crl = SEC_FindCrlByDERCert(db, crl_der, 0); |
| 574 | if(crl) { |
| 575 | /* CRL already cached */ |
| 576 | SEC_DestroyCrl(crl); |
| 577 | SECITEM_FreeItem(crl_der, PR_TRUE); |
| 578 | return CURLE_OK; |
| 579 | } |
| 580 | |
| 581 | /* acquire lock before call of CERT_CacheCRL() and accessing nss_crl_list */ |
| 582 | PR_Lock(nss_crllock); |
| 583 | |
| 584 | if(SECSuccess != CERT_CacheCRL(db, crl_der)) { |
| 585 | /* unable to cache CRL */ |
| 586 | SECITEM_FreeItem(crl_der, PR_TRUE); |
| 587 | PR_Unlock(nss_crllock); |
| 588 | return CURLE_SSL_CRL_BADFILE; |
| 589 | } |
| 590 | |
| 591 | /* store the CRL item so that we can free it in Curl_nss_cleanup() */ |
| 592 | if(insert_wrapped_ptr(&nss_crl_list, crl_der) != CURLE_OK) { |
| 593 | if(SECSuccess == CERT_UncacheCRL(db, crl_der)) |
| 594 | SECITEM_FreeItem(crl_der, PR_TRUE); |
| 595 | PR_Unlock(nss_crllock); |
| 596 | return CURLE_OUT_OF_MEMORY; |
| 597 | } |
| 598 | |
| 599 | /* we need to clear session cache, so that the CRL could take effect */ |
| 600 | SSL_ClearSessionCache(); |
| 601 | PR_Unlock(nss_crllock); |
| 602 | return CURLE_OK; |
| 603 | } |
| 604 | |
| 605 | static CURLcode nss_load_crl(const char *crlfilename) |
| 606 | { |
| 607 | PRFileDesc *infile; |
| 608 | PRFileInfo info; |
| 609 | SECItem filedata = { 0, NULL, 0 }; |
| 610 | SECItem *crl_der = NULL; |
| 611 | char *body; |
| 612 | |
| 613 | infile = PR_Open(crlfilename, PR_RDONLY, 0); |
| 614 | if(!infile) |
| 615 | return CURLE_SSL_CRL_BADFILE; |
| 616 | |
| 617 | if(PR_SUCCESS != PR_GetOpenFileInfo(infile, &info)) |
| 618 | goto fail; |
| 619 | |
| 620 | if(!SECITEM_AllocItem(NULL, &filedata, info.size + /* zero ended */ 1)) |
| 621 | goto fail; |
| 622 | |
| 623 | if(info.size != PR_Read(infile, filedata.data, info.size)) |
| 624 | goto fail; |
| 625 | |
| 626 | crl_der = SECITEM_AllocItem(NULL, NULL, 0U); |
| 627 | if(!crl_der) |
| 628 | goto fail; |
| 629 | |
| 630 | /* place a trailing zero right after the visible data */ |
| 631 | body = (char *)filedata.data; |
| 632 | body[--filedata.len] = '\0'; |
| 633 | |
| 634 | body = strstr(body, "-----BEGIN" ); |
| 635 | if(body) { |
| 636 | /* assume ASCII */ |
| 637 | char *trailer; |
| 638 | char *begin = PORT_Strchr(body, '\n'); |
| 639 | if(!begin) |
| 640 | begin = PORT_Strchr(body, '\r'); |
| 641 | if(!begin) |
| 642 | goto fail; |
| 643 | |
| 644 | trailer = strstr(++begin, "-----END" ); |
| 645 | if(!trailer) |
| 646 | goto fail; |
| 647 | |
| 648 | /* retrieve DER from ASCII */ |
| 649 | *trailer = '\0'; |
| 650 | if(ATOB_ConvertAsciiToItem(crl_der, begin)) |
| 651 | goto fail; |
| 652 | |
| 653 | SECITEM_FreeItem(&filedata, PR_FALSE); |
| 654 | } |
| 655 | else |
| 656 | /* assume DER */ |
| 657 | *crl_der = filedata; |
| 658 | |
| 659 | PR_Close(infile); |
| 660 | return nss_cache_crl(crl_der); |
| 661 | |
| 662 | fail: |
| 663 | PR_Close(infile); |
| 664 | SECITEM_FreeItem(crl_der, PR_TRUE); |
| 665 | SECITEM_FreeItem(&filedata, PR_FALSE); |
| 666 | return CURLE_SSL_CRL_BADFILE; |
| 667 | } |
| 668 | |
| 669 | static CURLcode nss_load_key(struct connectdata *conn, int sockindex, |
| 670 | char *key_file) |
| 671 | { |
| 672 | PK11SlotInfo *slot, *tmp; |
| 673 | SECStatus status; |
| 674 | CURLcode result; |
| 675 | struct ssl_connect_data *ssl = conn->ssl; |
| 676 | struct Curl_easy *data = conn->data; |
| 677 | |
| 678 | (void)sockindex; /* unused */ |
| 679 | |
| 680 | result = nss_create_object(ssl, CKO_PRIVATE_KEY, key_file, FALSE); |
| 681 | if(result) { |
| 682 | PR_SetError(SEC_ERROR_BAD_KEY, 0); |
| 683 | return result; |
| 684 | } |
| 685 | |
| 686 | slot = nss_find_slot_by_name("PEM Token #1" ); |
| 687 | if(!slot) |
| 688 | return CURLE_SSL_CERTPROBLEM; |
| 689 | |
| 690 | /* This will force the token to be seen as re-inserted */ |
| 691 | tmp = SECMOD_WaitForAnyTokenEvent(pem_module, 0, 0); |
| 692 | if(tmp) |
| 693 | PK11_FreeSlot(tmp); |
| 694 | if(!PK11_IsPresent(slot)) { |
| 695 | PK11_FreeSlot(slot); |
| 696 | return CURLE_SSL_CERTPROBLEM; |
| 697 | } |
| 698 | |
| 699 | status = PK11_Authenticate(slot, PR_TRUE, SSL_SET_OPTION(key_passwd)); |
| 700 | PK11_FreeSlot(slot); |
| 701 | |
| 702 | return (SECSuccess == status) ? CURLE_OK : CURLE_SSL_CERTPROBLEM; |
| 703 | } |
| 704 | |
| 705 | static int display_error(struct connectdata *conn, PRInt32 err, |
| 706 | const char *filename) |
| 707 | { |
| 708 | switch(err) { |
| 709 | case SEC_ERROR_BAD_PASSWORD: |
| 710 | failf(conn->data, "Unable to load client key: Incorrect password" ); |
| 711 | return 1; |
| 712 | case SEC_ERROR_UNKNOWN_CERT: |
| 713 | failf(conn->data, "Unable to load certificate %s" , filename); |
| 714 | return 1; |
| 715 | default: |
| 716 | break; |
| 717 | } |
| 718 | return 0; /* The caller will print a generic error */ |
| 719 | } |
| 720 | |
| 721 | static CURLcode cert_stuff(struct connectdata *conn, int sockindex, |
| 722 | char *cert_file, char *key_file) |
| 723 | { |
| 724 | struct Curl_easy *data = conn->data; |
| 725 | CURLcode result; |
| 726 | |
| 727 | if(cert_file) { |
| 728 | result = nss_load_cert(&conn->ssl[sockindex], cert_file, PR_FALSE); |
| 729 | if(result) { |
| 730 | const PRErrorCode err = PR_GetError(); |
| 731 | if(!display_error(conn, err, cert_file)) { |
| 732 | const char *err_name = nss_error_to_name(err); |
| 733 | failf(data, "unable to load client cert: %d (%s)" , err, err_name); |
| 734 | } |
| 735 | |
| 736 | return result; |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | if(key_file || (is_file(cert_file))) { |
| 741 | if(key_file) |
| 742 | result = nss_load_key(conn, sockindex, key_file); |
| 743 | else |
| 744 | /* In case the cert file also has the key */ |
| 745 | result = nss_load_key(conn, sockindex, cert_file); |
| 746 | if(result) { |
| 747 | const PRErrorCode err = PR_GetError(); |
| 748 | if(!display_error(conn, err, key_file)) { |
| 749 | const char *err_name = nss_error_to_name(err); |
| 750 | failf(data, "unable to load client key: %d (%s)" , err, err_name); |
| 751 | } |
| 752 | |
| 753 | return result; |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | return CURLE_OK; |
| 758 | } |
| 759 | |
| 760 | static char *nss_get_password(PK11SlotInfo *slot, PRBool retry, void *arg) |
| 761 | { |
| 762 | (void)slot; /* unused */ |
| 763 | |
| 764 | if(retry || NULL == arg) |
| 765 | return NULL; |
| 766 | else |
| 767 | return (char *)PORT_Strdup((char *)arg); |
| 768 | } |
| 769 | |
| 770 | /* bypass the default SSL_AuthCertificate() hook in case we do not want to |
| 771 | * verify peer */ |
| 772 | static SECStatus nss_auth_cert_hook(void *arg, PRFileDesc *fd, PRBool checksig, |
| 773 | PRBool isServer) |
| 774 | { |
| 775 | struct connectdata *conn = (struct connectdata *)arg; |
| 776 | |
| 777 | #ifdef SSL_ENABLE_OCSP_STAPLING |
| 778 | if(SSL_CONN_CONFIG(verifystatus)) { |
| 779 | SECStatus cacheResult; |
| 780 | |
| 781 | const SECItemArray *csa = SSL_PeerStapledOCSPResponses(fd); |
| 782 | if(!csa) { |
| 783 | failf(conn->data, "Invalid OCSP response" ); |
| 784 | return SECFailure; |
| 785 | } |
| 786 | |
| 787 | if(csa->len == 0) { |
| 788 | failf(conn->data, "No OCSP response received" ); |
| 789 | return SECFailure; |
| 790 | } |
| 791 | |
| 792 | cacheResult = CERT_CacheOCSPResponseFromSideChannel( |
| 793 | CERT_GetDefaultCertDB(), SSL_PeerCertificate(fd), |
| 794 | PR_Now(), &csa->items[0], arg |
| 795 | ); |
| 796 | |
| 797 | if(cacheResult != SECSuccess) { |
| 798 | failf(conn->data, "Invalid OCSP response" ); |
| 799 | return cacheResult; |
| 800 | } |
| 801 | } |
| 802 | #endif |
| 803 | |
| 804 | if(!SSL_CONN_CONFIG(verifypeer)) { |
| 805 | infof(conn->data, "skipping SSL peer certificate verification\n" ); |
| 806 | return SECSuccess; |
| 807 | } |
| 808 | |
| 809 | return SSL_AuthCertificate(CERT_GetDefaultCertDB(), fd, checksig, isServer); |
| 810 | } |
| 811 | |
| 812 | /** |
| 813 | * Inform the application that the handshake is complete. |
| 814 | */ |
| 815 | static void HandshakeCallback(PRFileDesc *sock, void *arg) |
| 816 | { |
| 817 | struct connectdata *conn = (struct connectdata*) arg; |
| 818 | unsigned int buflenmax = 50; |
| 819 | unsigned char buf[50]; |
| 820 | unsigned int buflen; |
| 821 | SSLNextProtoState state; |
| 822 | |
| 823 | if(!conn->bits.tls_enable_npn && !conn->bits.tls_enable_alpn) { |
| 824 | return; |
| 825 | } |
| 826 | |
| 827 | if(SSL_GetNextProto(sock, &state, buf, &buflen, buflenmax) == SECSuccess) { |
| 828 | |
| 829 | switch(state) { |
| 830 | #if NSSVERNUM >= 0x031a00 /* 3.26.0 */ |
| 831 | /* used by NSS internally to implement 0-RTT */ |
| 832 | case SSL_NEXT_PROTO_EARLY_VALUE: |
| 833 | /* fall through! */ |
| 834 | #endif |
| 835 | case SSL_NEXT_PROTO_NO_SUPPORT: |
| 836 | case SSL_NEXT_PROTO_NO_OVERLAP: |
| 837 | infof(conn->data, "ALPN/NPN, server did not agree to a protocol\n" ); |
| 838 | return; |
| 839 | #ifdef SSL_ENABLE_ALPN |
| 840 | case SSL_NEXT_PROTO_SELECTED: |
| 841 | infof(conn->data, "ALPN, server accepted to use %.*s\n" , buflen, buf); |
| 842 | break; |
| 843 | #endif |
| 844 | case SSL_NEXT_PROTO_NEGOTIATED: |
| 845 | infof(conn->data, "NPN, server accepted to use %.*s\n" , buflen, buf); |
| 846 | break; |
| 847 | } |
| 848 | |
| 849 | #ifdef USE_NGHTTP2 |
| 850 | if(buflen == NGHTTP2_PROTO_VERSION_ID_LEN && |
| 851 | !memcmp(NGHTTP2_PROTO_VERSION_ID, buf, NGHTTP2_PROTO_VERSION_ID_LEN)) { |
| 852 | conn->negnpn = CURL_HTTP_VERSION_2; |
| 853 | } |
| 854 | else |
| 855 | #endif |
| 856 | if(buflen == ALPN_HTTP_1_1_LENGTH && |
| 857 | !memcmp(ALPN_HTTP_1_1, buf, ALPN_HTTP_1_1_LENGTH)) { |
| 858 | conn->negnpn = CURL_HTTP_VERSION_1_1; |
| 859 | } |
| 860 | Curl_multiuse_state(conn, conn->negnpn == CURL_HTTP_VERSION_2 ? |
| 861 | BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | #if NSSVERNUM >= 0x030f04 /* 3.15.4 */ |
| 866 | static SECStatus CanFalseStartCallback(PRFileDesc *sock, void *client_data, |
| 867 | PRBool *canFalseStart) |
| 868 | { |
| 869 | struct connectdata *conn = client_data; |
| 870 | struct Curl_easy *data = conn->data; |
| 871 | |
| 872 | SSLChannelInfo channelInfo; |
| 873 | SSLCipherSuiteInfo cipherInfo; |
| 874 | |
| 875 | SECStatus rv; |
| 876 | PRBool negotiatedExtension; |
| 877 | |
| 878 | *canFalseStart = PR_FALSE; |
| 879 | |
| 880 | if(SSL_GetChannelInfo(sock, &channelInfo, sizeof(channelInfo)) != SECSuccess) |
| 881 | return SECFailure; |
| 882 | |
| 883 | if(SSL_GetCipherSuiteInfo(channelInfo.cipherSuite, &cipherInfo, |
| 884 | sizeof(cipherInfo)) != SECSuccess) |
| 885 | return SECFailure; |
| 886 | |
| 887 | /* Prevent version downgrade attacks from TLS 1.2, and avoid False Start for |
| 888 | * TLS 1.3 and later. See https://bugzilla.mozilla.org/show_bug.cgi?id=861310 |
| 889 | */ |
| 890 | if(channelInfo.protocolVersion != SSL_LIBRARY_VERSION_TLS_1_2) |
| 891 | goto end; |
| 892 | |
| 893 | /* Only allow ECDHE key exchange algorithm. |
| 894 | * See https://bugzilla.mozilla.org/show_bug.cgi?id=952863 */ |
| 895 | if(cipherInfo.keaType != ssl_kea_ecdh) |
| 896 | goto end; |
| 897 | |
| 898 | /* Prevent downgrade attacks on the symmetric cipher. We do not allow CBC |
| 899 | * mode due to BEAST, POODLE, and other attacks on the MAC-then-Encrypt |
| 900 | * design. See https://bugzilla.mozilla.org/show_bug.cgi?id=1109766 */ |
| 901 | if(cipherInfo.symCipher != ssl_calg_aes_gcm) |
| 902 | goto end; |
| 903 | |
| 904 | /* Enforce ALPN or NPN to do False Start, as an indicator of server |
| 905 | * compatibility. */ |
| 906 | rv = SSL_HandshakeNegotiatedExtension(sock, ssl_app_layer_protocol_xtn, |
| 907 | &negotiatedExtension); |
| 908 | if(rv != SECSuccess || !negotiatedExtension) { |
| 909 | rv = SSL_HandshakeNegotiatedExtension(sock, ssl_next_proto_nego_xtn, |
| 910 | &negotiatedExtension); |
| 911 | } |
| 912 | |
| 913 | if(rv != SECSuccess || !negotiatedExtension) |
| 914 | goto end; |
| 915 | |
| 916 | *canFalseStart = PR_TRUE; |
| 917 | |
| 918 | infof(data, "Trying TLS False Start\n" ); |
| 919 | |
| 920 | end: |
| 921 | return SECSuccess; |
| 922 | } |
| 923 | #endif |
| 924 | |
| 925 | static void display_cert_info(struct Curl_easy *data, |
| 926 | CERTCertificate *cert) |
| 927 | { |
| 928 | char *subject, *issuer, *common_name; |
| 929 | PRExplodedTime printableTime; |
| 930 | char timeString[256]; |
| 931 | PRTime notBefore, notAfter; |
| 932 | |
| 933 | subject = CERT_NameToAscii(&cert->subject); |
| 934 | issuer = CERT_NameToAscii(&cert->issuer); |
| 935 | common_name = CERT_GetCommonName(&cert->subject); |
| 936 | infof(data, "\tsubject: %s\n" , subject); |
| 937 | |
| 938 | CERT_GetCertTimes(cert, ¬Before, ¬After); |
| 939 | PR_ExplodeTime(notBefore, PR_GMTParameters, &printableTime); |
| 940 | PR_FormatTime(timeString, 256, "%b %d %H:%M:%S %Y GMT" , &printableTime); |
| 941 | infof(data, "\tstart date: %s\n" , timeString); |
| 942 | PR_ExplodeTime(notAfter, PR_GMTParameters, &printableTime); |
| 943 | PR_FormatTime(timeString, 256, "%b %d %H:%M:%S %Y GMT" , &printableTime); |
| 944 | infof(data, "\texpire date: %s\n" , timeString); |
| 945 | infof(data, "\tcommon name: %s\n" , common_name); |
| 946 | infof(data, "\tissuer: %s\n" , issuer); |
| 947 | |
| 948 | PR_Free(subject); |
| 949 | PR_Free(issuer); |
| 950 | PR_Free(common_name); |
| 951 | } |
| 952 | |
| 953 | static CURLcode display_conn_info(struct connectdata *conn, PRFileDesc *sock) |
| 954 | { |
| 955 | CURLcode result = CURLE_OK; |
| 956 | SSLChannelInfo channel; |
| 957 | SSLCipherSuiteInfo suite; |
| 958 | CERTCertificate *cert; |
| 959 | CERTCertificate *cert2; |
| 960 | CERTCertificate *cert3; |
| 961 | PRTime now; |
| 962 | int i; |
| 963 | |
| 964 | if(SSL_GetChannelInfo(sock, &channel, sizeof(channel)) == |
| 965 | SECSuccess && channel.length == sizeof(channel) && |
| 966 | channel.cipherSuite) { |
| 967 | if(SSL_GetCipherSuiteInfo(channel.cipherSuite, |
| 968 | &suite, sizeof(suite)) == SECSuccess) { |
| 969 | infof(conn->data, "SSL connection using %s\n" , suite.cipherSuiteName); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | cert = SSL_PeerCertificate(sock); |
| 974 | if(cert) { |
| 975 | infof(conn->data, "Server certificate:\n" ); |
| 976 | |
| 977 | if(!conn->data->set.ssl.certinfo) { |
| 978 | display_cert_info(conn->data, cert); |
| 979 | CERT_DestroyCertificate(cert); |
| 980 | } |
| 981 | else { |
| 982 | /* Count certificates in chain. */ |
| 983 | now = PR_Now(); |
| 984 | i = 1; |
| 985 | if(!cert->isRoot) { |
| 986 | cert2 = CERT_FindCertIssuer(cert, now, certUsageSSLCA); |
| 987 | while(cert2) { |
| 988 | i++; |
| 989 | if(cert2->isRoot) { |
| 990 | CERT_DestroyCertificate(cert2); |
| 991 | break; |
| 992 | } |
| 993 | cert3 = CERT_FindCertIssuer(cert2, now, certUsageSSLCA); |
| 994 | CERT_DestroyCertificate(cert2); |
| 995 | cert2 = cert3; |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | result = Curl_ssl_init_certinfo(conn->data, i); |
| 1000 | if(!result) { |
| 1001 | for(i = 0; cert; cert = cert2) { |
| 1002 | result = Curl_extract_certinfo(conn, i++, (char *)cert->derCert.data, |
| 1003 | (char *)cert->derCert.data + |
| 1004 | cert->derCert.len); |
| 1005 | if(result) |
| 1006 | break; |
| 1007 | |
| 1008 | if(cert->isRoot) { |
| 1009 | CERT_DestroyCertificate(cert); |
| 1010 | break; |
| 1011 | } |
| 1012 | |
| 1013 | cert2 = CERT_FindCertIssuer(cert, now, certUsageSSLCA); |
| 1014 | CERT_DestroyCertificate(cert); |
| 1015 | } |
| 1016 | } |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | return result; |
| 1021 | } |
| 1022 | |
| 1023 | static SECStatus BadCertHandler(void *arg, PRFileDesc *sock) |
| 1024 | { |
| 1025 | struct connectdata *conn = (struct connectdata *)arg; |
| 1026 | struct Curl_easy *data = conn->data; |
| 1027 | PRErrorCode err = PR_GetError(); |
| 1028 | CERTCertificate *cert; |
| 1029 | |
| 1030 | /* remember the cert verification result */ |
| 1031 | if(SSL_IS_PROXY()) |
| 1032 | data->set.proxy_ssl.certverifyresult = err; |
| 1033 | else |
| 1034 | data->set.ssl.certverifyresult = err; |
| 1035 | |
| 1036 | if(err == SSL_ERROR_BAD_CERT_DOMAIN && !SSL_CONN_CONFIG(verifyhost)) |
| 1037 | /* we are asked not to verify the host name */ |
| 1038 | return SECSuccess; |
| 1039 | |
| 1040 | /* print only info about the cert, the error is printed off the callback */ |
| 1041 | cert = SSL_PeerCertificate(sock); |
| 1042 | if(cert) { |
| 1043 | infof(data, "Server certificate:\n" ); |
| 1044 | display_cert_info(data, cert); |
| 1045 | CERT_DestroyCertificate(cert); |
| 1046 | } |
| 1047 | |
| 1048 | return SECFailure; |
| 1049 | } |
| 1050 | |
| 1051 | /** |
| 1052 | * |
| 1053 | * Check that the Peer certificate's issuer certificate matches the one found |
| 1054 | * by issuer_nickname. This is not exactly the way OpenSSL and GNU TLS do the |
| 1055 | * issuer check, so we provide comments that mimic the OpenSSL |
| 1056 | * X509_check_issued function (in x509v3/v3_purp.c) |
| 1057 | */ |
| 1058 | static SECStatus check_issuer_cert(PRFileDesc *sock, |
| 1059 | char *issuer_nickname) |
| 1060 | { |
| 1061 | CERTCertificate *cert, *cert_issuer, *issuer; |
| 1062 | SECStatus res = SECSuccess; |
| 1063 | void *proto_win = NULL; |
| 1064 | |
| 1065 | cert = SSL_PeerCertificate(sock); |
| 1066 | cert_issuer = CERT_FindCertIssuer(cert, PR_Now(), certUsageObjectSigner); |
| 1067 | |
| 1068 | proto_win = SSL_RevealPinArg(sock); |
| 1069 | issuer = PK11_FindCertFromNickname(issuer_nickname, proto_win); |
| 1070 | |
| 1071 | if((!cert_issuer) || (!issuer)) |
| 1072 | res = SECFailure; |
| 1073 | else if(SECITEM_CompareItem(&cert_issuer->derCert, |
| 1074 | &issuer->derCert) != SECEqual) |
| 1075 | res = SECFailure; |
| 1076 | |
| 1077 | CERT_DestroyCertificate(cert); |
| 1078 | CERT_DestroyCertificate(issuer); |
| 1079 | CERT_DestroyCertificate(cert_issuer); |
| 1080 | return res; |
| 1081 | } |
| 1082 | |
| 1083 | static CURLcode cmp_peer_pubkey(struct ssl_connect_data *connssl, |
| 1084 | const char *pinnedpubkey) |
| 1085 | { |
| 1086 | CURLcode result = CURLE_SSL_PINNEDPUBKEYNOTMATCH; |
| 1087 | struct Curl_easy *data = BACKEND->data; |
| 1088 | CERTCertificate *cert; |
| 1089 | |
| 1090 | if(!pinnedpubkey) |
| 1091 | /* no pinned public key specified */ |
| 1092 | return CURLE_OK; |
| 1093 | |
| 1094 | /* get peer certificate */ |
| 1095 | cert = SSL_PeerCertificate(BACKEND->handle); |
| 1096 | if(cert) { |
| 1097 | /* extract public key from peer certificate */ |
| 1098 | SECKEYPublicKey *pubkey = CERT_ExtractPublicKey(cert); |
| 1099 | if(pubkey) { |
| 1100 | /* encode the public key as DER */ |
| 1101 | SECItem *cert_der = PK11_DEREncodePublicKey(pubkey); |
| 1102 | if(cert_der) { |
| 1103 | /* compare the public key with the pinned public key */ |
| 1104 | result = Curl_pin_peer_pubkey(data, pinnedpubkey, cert_der->data, |
| 1105 | cert_der->len); |
| 1106 | SECITEM_FreeItem(cert_der, PR_TRUE); |
| 1107 | } |
| 1108 | SECKEY_DestroyPublicKey(pubkey); |
| 1109 | } |
| 1110 | CERT_DestroyCertificate(cert); |
| 1111 | } |
| 1112 | |
| 1113 | /* report the resulting status */ |
| 1114 | switch(result) { |
| 1115 | case CURLE_OK: |
| 1116 | infof(data, "pinned public key verified successfully!\n" ); |
| 1117 | break; |
| 1118 | case CURLE_SSL_PINNEDPUBKEYNOTMATCH: |
| 1119 | failf(data, "failed to verify pinned public key" ); |
| 1120 | break; |
| 1121 | default: |
| 1122 | /* OOM, etc. */ |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | return result; |
| 1127 | } |
| 1128 | |
| 1129 | /** |
| 1130 | * |
| 1131 | * Callback to pick the SSL client certificate. |
| 1132 | */ |
| 1133 | static SECStatus SelectClientCert(void *arg, PRFileDesc *sock, |
| 1134 | struct CERTDistNamesStr *caNames, |
| 1135 | struct CERTCertificateStr **pRetCert, |
| 1136 | struct SECKEYPrivateKeyStr **pRetKey) |
| 1137 | { |
| 1138 | struct ssl_connect_data *connssl = (struct ssl_connect_data *)arg; |
| 1139 | struct Curl_easy *data = BACKEND->data; |
| 1140 | const char *nickname = BACKEND->client_nickname; |
| 1141 | static const char pem_slotname[] = "PEM Token #1" ; |
| 1142 | |
| 1143 | if(BACKEND->obj_clicert) { |
| 1144 | /* use the cert/key provided by PEM reader */ |
| 1145 | SECItem cert_der = { 0, NULL, 0 }; |
| 1146 | void *proto_win = SSL_RevealPinArg(sock); |
| 1147 | struct CERTCertificateStr *cert; |
| 1148 | struct SECKEYPrivateKeyStr *key; |
| 1149 | |
| 1150 | PK11SlotInfo *slot = nss_find_slot_by_name(pem_slotname); |
| 1151 | if(NULL == slot) { |
| 1152 | failf(data, "NSS: PK11 slot not found: %s" , pem_slotname); |
| 1153 | return SECFailure; |
| 1154 | } |
| 1155 | |
| 1156 | if(PK11_ReadRawAttribute(PK11_TypeGeneric, BACKEND->obj_clicert, CKA_VALUE, |
| 1157 | &cert_der) != SECSuccess) { |
| 1158 | failf(data, "NSS: CKA_VALUE not found in PK11 generic object" ); |
| 1159 | PK11_FreeSlot(slot); |
| 1160 | return SECFailure; |
| 1161 | } |
| 1162 | |
| 1163 | cert = PK11_FindCertFromDERCertItem(slot, &cert_der, proto_win); |
| 1164 | SECITEM_FreeItem(&cert_der, PR_FALSE); |
| 1165 | if(NULL == cert) { |
| 1166 | failf(data, "NSS: client certificate from file not found" ); |
| 1167 | PK11_FreeSlot(slot); |
| 1168 | return SECFailure; |
| 1169 | } |
| 1170 | |
| 1171 | key = PK11_FindPrivateKeyFromCert(slot, cert, NULL); |
| 1172 | PK11_FreeSlot(slot); |
| 1173 | if(NULL == key) { |
| 1174 | failf(data, "NSS: private key from file not found" ); |
| 1175 | CERT_DestroyCertificate(cert); |
| 1176 | return SECFailure; |
| 1177 | } |
| 1178 | |
| 1179 | infof(data, "NSS: client certificate from file\n" ); |
| 1180 | display_cert_info(data, cert); |
| 1181 | |
| 1182 | *pRetCert = cert; |
| 1183 | *pRetKey = key; |
| 1184 | return SECSuccess; |
| 1185 | } |
| 1186 | |
| 1187 | /* use the default NSS hook */ |
| 1188 | if(SECSuccess != NSS_GetClientAuthData((void *)nickname, sock, caNames, |
| 1189 | pRetCert, pRetKey) |
| 1190 | || NULL == *pRetCert) { |
| 1191 | |
| 1192 | if(NULL == nickname) |
| 1193 | failf(data, "NSS: client certificate not found (nickname not " |
| 1194 | "specified)" ); |
| 1195 | else |
| 1196 | failf(data, "NSS: client certificate not found: %s" , nickname); |
| 1197 | |
| 1198 | return SECFailure; |
| 1199 | } |
| 1200 | |
| 1201 | /* get certificate nickname if any */ |
| 1202 | nickname = (*pRetCert)->nickname; |
| 1203 | if(NULL == nickname) |
| 1204 | nickname = "[unknown]" ; |
| 1205 | |
| 1206 | if(!strncmp(nickname, pem_slotname, sizeof(pem_slotname) - 1U)) { |
| 1207 | failf(data, "NSS: refusing previously loaded certificate from file: %s" , |
| 1208 | nickname); |
| 1209 | return SECFailure; |
| 1210 | } |
| 1211 | |
| 1212 | if(NULL == *pRetKey) { |
| 1213 | failf(data, "NSS: private key not found for certificate: %s" , nickname); |
| 1214 | return SECFailure; |
| 1215 | } |
| 1216 | |
| 1217 | infof(data, "NSS: using client certificate: %s\n" , nickname); |
| 1218 | display_cert_info(data, *pRetCert); |
| 1219 | return SECSuccess; |
| 1220 | } |
| 1221 | |
| 1222 | /* update blocking direction in case of PR_WOULD_BLOCK_ERROR */ |
| 1223 | static void nss_update_connecting_state(ssl_connect_state state, void *secret) |
| 1224 | { |
| 1225 | struct ssl_connect_data *connssl = (struct ssl_connect_data *)secret; |
| 1226 | if(PR_GetError() != PR_WOULD_BLOCK_ERROR) |
| 1227 | /* an unrelated error is passing by */ |
| 1228 | return; |
| 1229 | |
| 1230 | switch(connssl->connecting_state) { |
| 1231 | case ssl_connect_2: |
| 1232 | case ssl_connect_2_reading: |
| 1233 | case ssl_connect_2_writing: |
| 1234 | break; |
| 1235 | default: |
| 1236 | /* we are not called from an SSL handshake */ |
| 1237 | return; |
| 1238 | } |
| 1239 | |
| 1240 | /* update the state accordingly */ |
| 1241 | connssl->connecting_state = state; |
| 1242 | } |
| 1243 | |
| 1244 | /* recv() wrapper we use to detect blocking direction during SSL handshake */ |
| 1245 | static PRInt32 nspr_io_recv(PRFileDesc *fd, void *buf, PRInt32 amount, |
| 1246 | PRIntn flags, PRIntervalTime timeout) |
| 1247 | { |
| 1248 | const PRRecvFN recv_fn = fd->lower->methods->recv; |
| 1249 | const PRInt32 rv = recv_fn(fd->lower, buf, amount, flags, timeout); |
| 1250 | if(rv < 0) |
| 1251 | /* check for PR_WOULD_BLOCK_ERROR and update blocking direction */ |
| 1252 | nss_update_connecting_state(ssl_connect_2_reading, fd->secret); |
| 1253 | return rv; |
| 1254 | } |
| 1255 | |
| 1256 | /* send() wrapper we use to detect blocking direction during SSL handshake */ |
| 1257 | static PRInt32 nspr_io_send(PRFileDesc *fd, const void *buf, PRInt32 amount, |
| 1258 | PRIntn flags, PRIntervalTime timeout) |
| 1259 | { |
| 1260 | const PRSendFN send_fn = fd->lower->methods->send; |
| 1261 | const PRInt32 rv = send_fn(fd->lower, buf, amount, flags, timeout); |
| 1262 | if(rv < 0) |
| 1263 | /* check for PR_WOULD_BLOCK_ERROR and update blocking direction */ |
| 1264 | nss_update_connecting_state(ssl_connect_2_writing, fd->secret); |
| 1265 | return rv; |
| 1266 | } |
| 1267 | |
| 1268 | /* close() wrapper to avoid assertion failure due to fd->secret != NULL */ |
| 1269 | static PRStatus nspr_io_close(PRFileDesc *fd) |
| 1270 | { |
| 1271 | const PRCloseFN close_fn = PR_GetDefaultIOMethods()->close; |
| 1272 | fd->secret = NULL; |
| 1273 | return close_fn(fd); |
| 1274 | } |
| 1275 | |
| 1276 | /* load a PKCS #11 module */ |
| 1277 | static CURLcode nss_load_module(SECMODModule **pmod, const char *library, |
| 1278 | const char *name) |
| 1279 | { |
| 1280 | char *config_string; |
| 1281 | SECMODModule *module = *pmod; |
| 1282 | if(module) |
| 1283 | /* already loaded */ |
| 1284 | return CURLE_OK; |
| 1285 | |
| 1286 | config_string = aprintf("library=%s name=%s" , library, name); |
| 1287 | if(!config_string) |
| 1288 | return CURLE_OUT_OF_MEMORY; |
| 1289 | |
| 1290 | module = SECMOD_LoadUserModule(config_string, NULL, PR_FALSE); |
| 1291 | free(config_string); |
| 1292 | |
| 1293 | if(module && module->loaded) { |
| 1294 | /* loaded successfully */ |
| 1295 | *pmod = module; |
| 1296 | return CURLE_OK; |
| 1297 | } |
| 1298 | |
| 1299 | if(module) |
| 1300 | SECMOD_DestroyModule(module); |
| 1301 | return CURLE_FAILED_INIT; |
| 1302 | } |
| 1303 | |
| 1304 | /* unload a PKCS #11 module */ |
| 1305 | static void nss_unload_module(SECMODModule **pmod) |
| 1306 | { |
| 1307 | SECMODModule *module = *pmod; |
| 1308 | if(!module) |
| 1309 | /* not loaded */ |
| 1310 | return; |
| 1311 | |
| 1312 | if(SECMOD_UnloadUserModule(module) != SECSuccess) |
| 1313 | /* unload failed */ |
| 1314 | return; |
| 1315 | |
| 1316 | SECMOD_DestroyModule(module); |
| 1317 | *pmod = NULL; |
| 1318 | } |
| 1319 | |
| 1320 | /* data might be NULL */ |
| 1321 | static CURLcode nss_init_core(struct Curl_easy *data, const char *cert_dir) |
| 1322 | { |
| 1323 | NSSInitParameters initparams; |
| 1324 | PRErrorCode err; |
| 1325 | const char *err_name; |
| 1326 | |
| 1327 | if(nss_context != NULL) |
| 1328 | return CURLE_OK; |
| 1329 | |
| 1330 | memset((void *) &initparams, '\0', sizeof(initparams)); |
| 1331 | initparams.length = sizeof(initparams); |
| 1332 | |
| 1333 | if(cert_dir) { |
| 1334 | char *certpath = aprintf("sql:%s" , cert_dir); |
| 1335 | if(!certpath) |
| 1336 | return CURLE_OUT_OF_MEMORY; |
| 1337 | |
| 1338 | infof(data, "Initializing NSS with certpath: %s\n" , certpath); |
| 1339 | nss_context = NSS_InitContext(certpath, "" , "" , "" , &initparams, |
| 1340 | NSS_INIT_READONLY | NSS_INIT_PK11RELOAD); |
| 1341 | free(certpath); |
| 1342 | |
| 1343 | if(nss_context != NULL) |
| 1344 | return CURLE_OK; |
| 1345 | |
| 1346 | err = PR_GetError(); |
| 1347 | err_name = nss_error_to_name(err); |
| 1348 | infof(data, "Unable to initialize NSS database: %d (%s)\n" , err, err_name); |
| 1349 | } |
| 1350 | |
| 1351 | infof(data, "Initializing NSS with certpath: none\n" ); |
| 1352 | nss_context = NSS_InitContext("" , "" , "" , "" , &initparams, NSS_INIT_READONLY |
| 1353 | | NSS_INIT_NOCERTDB | NSS_INIT_NOMODDB | NSS_INIT_FORCEOPEN |
| 1354 | | NSS_INIT_NOROOTINIT | NSS_INIT_OPTIMIZESPACE | NSS_INIT_PK11RELOAD); |
| 1355 | if(nss_context != NULL) |
| 1356 | return CURLE_OK; |
| 1357 | |
| 1358 | err = PR_GetError(); |
| 1359 | err_name = nss_error_to_name(err); |
| 1360 | failf(data, "Unable to initialize NSS: %d (%s)" , err, err_name); |
| 1361 | return CURLE_SSL_CACERT_BADFILE; |
| 1362 | } |
| 1363 | |
| 1364 | /* data might be NULL */ |
| 1365 | static CURLcode nss_init(struct Curl_easy *data) |
| 1366 | { |
| 1367 | char *cert_dir; |
| 1368 | struct_stat st; |
| 1369 | CURLcode result; |
| 1370 | |
| 1371 | if(initialized) |
| 1372 | return CURLE_OK; |
| 1373 | |
| 1374 | /* list of all CRL items we need to destroy in Curl_nss_cleanup() */ |
| 1375 | Curl_llist_init(&nss_crl_list, nss_destroy_crl_item); |
| 1376 | |
| 1377 | /* First we check if $SSL_DIR points to a valid dir */ |
| 1378 | cert_dir = getenv("SSL_DIR" ); |
| 1379 | if(cert_dir) { |
| 1380 | if((stat(cert_dir, &st) != 0) || |
| 1381 | (!S_ISDIR(st.st_mode))) { |
| 1382 | cert_dir = NULL; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | /* Now we check if the default location is a valid dir */ |
| 1387 | if(!cert_dir) { |
| 1388 | if((stat(SSL_DIR, &st) == 0) && |
| 1389 | (S_ISDIR(st.st_mode))) { |
| 1390 | cert_dir = (char *)SSL_DIR; |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | if(nspr_io_identity == PR_INVALID_IO_LAYER) { |
| 1395 | /* allocate an identity for our own NSPR I/O layer */ |
| 1396 | nspr_io_identity = PR_GetUniqueIdentity("libcurl" ); |
| 1397 | if(nspr_io_identity == PR_INVALID_IO_LAYER) |
| 1398 | return CURLE_OUT_OF_MEMORY; |
| 1399 | |
| 1400 | /* the default methods just call down to the lower I/O layer */ |
| 1401 | memcpy(&nspr_io_methods, PR_GetDefaultIOMethods(), |
| 1402 | sizeof(nspr_io_methods)); |
| 1403 | |
| 1404 | /* override certain methods in the table by our wrappers */ |
| 1405 | nspr_io_methods.recv = nspr_io_recv; |
| 1406 | nspr_io_methods.send = nspr_io_send; |
| 1407 | nspr_io_methods.close = nspr_io_close; |
| 1408 | } |
| 1409 | |
| 1410 | result = nss_init_core(data, cert_dir); |
| 1411 | if(result) |
| 1412 | return result; |
| 1413 | |
| 1414 | if(!any_cipher_enabled()) |
| 1415 | NSS_SetDomesticPolicy(); |
| 1416 | |
| 1417 | initialized = 1; |
| 1418 | |
| 1419 | return CURLE_OK; |
| 1420 | } |
| 1421 | |
| 1422 | /** |
| 1423 | * Global SSL init |
| 1424 | * |
| 1425 | * @retval 0 error initializing SSL |
| 1426 | * @retval 1 SSL initialized successfully |
| 1427 | */ |
| 1428 | static int Curl_nss_init(void) |
| 1429 | { |
| 1430 | /* curl_global_init() is not thread-safe so this test is ok */ |
| 1431 | if(nss_initlock == NULL) { |
| 1432 | PR_Init(PR_USER_THREAD, PR_PRIORITY_NORMAL, 0); |
| 1433 | nss_initlock = PR_NewLock(); |
| 1434 | nss_crllock = PR_NewLock(); |
| 1435 | nss_findslot_lock = PR_NewLock(); |
| 1436 | nss_trustload_lock = PR_NewLock(); |
| 1437 | } |
| 1438 | |
| 1439 | /* We will actually initialize NSS later */ |
| 1440 | |
| 1441 | return 1; |
| 1442 | } |
| 1443 | |
| 1444 | /* data might be NULL */ |
| 1445 | CURLcode Curl_nss_force_init(struct Curl_easy *data) |
| 1446 | { |
| 1447 | CURLcode result; |
| 1448 | if(!nss_initlock) { |
| 1449 | if(data) |
| 1450 | failf(data, "unable to initialize NSS, curl_global_init() should have " |
| 1451 | "been called with CURL_GLOBAL_SSL or CURL_GLOBAL_ALL" ); |
| 1452 | return CURLE_FAILED_INIT; |
| 1453 | } |
| 1454 | |
| 1455 | PR_Lock(nss_initlock); |
| 1456 | result = nss_init(data); |
| 1457 | PR_Unlock(nss_initlock); |
| 1458 | |
| 1459 | return result; |
| 1460 | } |
| 1461 | |
| 1462 | /* Global cleanup */ |
| 1463 | static void Curl_nss_cleanup(void) |
| 1464 | { |
| 1465 | /* This function isn't required to be threadsafe and this is only done |
| 1466 | * as a safety feature. |
| 1467 | */ |
| 1468 | PR_Lock(nss_initlock); |
| 1469 | if(initialized) { |
| 1470 | /* Free references to client certificates held in the SSL session cache. |
| 1471 | * Omitting this hampers destruction of the security module owning |
| 1472 | * the certificates. */ |
| 1473 | SSL_ClearSessionCache(); |
| 1474 | |
| 1475 | nss_unload_module(&pem_module); |
| 1476 | nss_unload_module(&trust_module); |
| 1477 | NSS_ShutdownContext(nss_context); |
| 1478 | nss_context = NULL; |
| 1479 | } |
| 1480 | |
| 1481 | /* destroy all CRL items */ |
| 1482 | Curl_llist_destroy(&nss_crl_list, NULL); |
| 1483 | |
| 1484 | PR_Unlock(nss_initlock); |
| 1485 | |
| 1486 | PR_DestroyLock(nss_initlock); |
| 1487 | PR_DestroyLock(nss_crllock); |
| 1488 | PR_DestroyLock(nss_findslot_lock); |
| 1489 | PR_DestroyLock(nss_trustload_lock); |
| 1490 | nss_initlock = NULL; |
| 1491 | |
| 1492 | initialized = 0; |
| 1493 | } |
| 1494 | |
| 1495 | /* |
| 1496 | * This function uses SSL_peek to determine connection status. |
| 1497 | * |
| 1498 | * Return codes: |
| 1499 | * 1 means the connection is still in place |
| 1500 | * 0 means the connection has been closed |
| 1501 | * -1 means the connection status is unknown |
| 1502 | */ |
| 1503 | static int Curl_nss_check_cxn(struct connectdata *conn) |
| 1504 | { |
| 1505 | struct ssl_connect_data *connssl = &conn->ssl[FIRSTSOCKET]; |
| 1506 | int rc; |
| 1507 | char buf; |
| 1508 | |
| 1509 | rc = |
| 1510 | PR_Recv(BACKEND->handle, (void *)&buf, 1, PR_MSG_PEEK, |
| 1511 | PR_SecondsToInterval(1)); |
| 1512 | if(rc > 0) |
| 1513 | return 1; /* connection still in place */ |
| 1514 | |
| 1515 | if(rc == 0) |
| 1516 | return 0; /* connection has been closed */ |
| 1517 | |
| 1518 | return -1; /* connection status unknown */ |
| 1519 | } |
| 1520 | |
| 1521 | static void nss_close(struct ssl_connect_data *connssl) |
| 1522 | { |
| 1523 | /* before the cleanup, check whether we are using a client certificate */ |
| 1524 | const bool client_cert = (BACKEND->client_nickname != NULL) |
| 1525 | || (BACKEND->obj_clicert != NULL); |
| 1526 | |
| 1527 | free(BACKEND->client_nickname); |
| 1528 | BACKEND->client_nickname = NULL; |
| 1529 | |
| 1530 | /* destroy all NSS objects in order to avoid failure of NSS shutdown */ |
| 1531 | Curl_llist_destroy(&BACKEND->obj_list, NULL); |
| 1532 | BACKEND->obj_clicert = NULL; |
| 1533 | |
| 1534 | if(BACKEND->handle) { |
| 1535 | if(client_cert) |
| 1536 | /* A server might require different authentication based on the |
| 1537 | * particular path being requested by the client. To support this |
| 1538 | * scenario, we must ensure that a connection will never reuse the |
| 1539 | * authentication data from a previous connection. */ |
| 1540 | SSL_InvalidateSession(BACKEND->handle); |
| 1541 | |
| 1542 | PR_Close(BACKEND->handle); |
| 1543 | BACKEND->handle = NULL; |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | /* |
| 1548 | * This function is called when an SSL connection is closed. |
| 1549 | */ |
| 1550 | static void Curl_nss_close(struct connectdata *conn, int sockindex) |
| 1551 | { |
| 1552 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 1553 | struct ssl_connect_data *connssl_proxy = &conn->proxy_ssl[sockindex]; |
| 1554 | |
| 1555 | if(BACKEND->handle || connssl_proxy->backend->handle) { |
| 1556 | /* NSS closes the socket we previously handed to it, so we must mark it |
| 1557 | as closed to avoid double close */ |
| 1558 | fake_sclose(conn->sock[sockindex]); |
| 1559 | conn->sock[sockindex] = CURL_SOCKET_BAD; |
| 1560 | } |
| 1561 | |
| 1562 | if(BACKEND->handle) |
| 1563 | /* nss_close(connssl) will transitively close also |
| 1564 | connssl_proxy->backend->handle if both are used. Clear it to avoid |
| 1565 | a double close leading to crash. */ |
| 1566 | connssl_proxy->backend->handle = NULL; |
| 1567 | |
| 1568 | nss_close(connssl); |
| 1569 | nss_close(connssl_proxy); |
| 1570 | } |
| 1571 | |
| 1572 | /* return true if NSS can provide error code (and possibly msg) for the |
| 1573 | error */ |
| 1574 | static bool is_nss_error(CURLcode err) |
| 1575 | { |
| 1576 | switch(err) { |
| 1577 | case CURLE_PEER_FAILED_VERIFICATION: |
| 1578 | case CURLE_SSL_CERTPROBLEM: |
| 1579 | case CURLE_SSL_CONNECT_ERROR: |
| 1580 | case CURLE_SSL_ISSUER_ERROR: |
| 1581 | return true; |
| 1582 | |
| 1583 | default: |
| 1584 | return false; |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | /* return true if the given error code is related to a client certificate */ |
| 1589 | static bool is_cc_error(PRInt32 err) |
| 1590 | { |
| 1591 | switch(err) { |
| 1592 | case SSL_ERROR_BAD_CERT_ALERT: |
| 1593 | case SSL_ERROR_EXPIRED_CERT_ALERT: |
| 1594 | case SSL_ERROR_REVOKED_CERT_ALERT: |
| 1595 | return true; |
| 1596 | |
| 1597 | default: |
| 1598 | return false; |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | static Curl_recv nss_recv; |
| 1603 | static Curl_send nss_send; |
| 1604 | |
| 1605 | static CURLcode nss_load_ca_certificates(struct connectdata *conn, |
| 1606 | int sockindex) |
| 1607 | { |
| 1608 | struct Curl_easy *data = conn->data; |
| 1609 | const char *cafile = SSL_CONN_CONFIG(CAfile); |
| 1610 | const char *capath = SSL_CONN_CONFIG(CApath); |
| 1611 | bool use_trust_module; |
| 1612 | CURLcode result = CURLE_OK; |
| 1613 | |
| 1614 | /* treat empty string as unset */ |
| 1615 | if(cafile && !cafile[0]) |
| 1616 | cafile = NULL; |
| 1617 | if(capath && !capath[0]) |
| 1618 | capath = NULL; |
| 1619 | |
| 1620 | infof(data, " CAfile: %s\n CApath: %s\n" , |
| 1621 | cafile ? cafile : "none" , |
| 1622 | capath ? capath : "none" ); |
| 1623 | |
| 1624 | /* load libnssckbi.so if no other trust roots were specified */ |
| 1625 | use_trust_module = !cafile && !capath; |
| 1626 | |
| 1627 | PR_Lock(nss_trustload_lock); |
| 1628 | if(use_trust_module && !trust_module) { |
| 1629 | /* libnssckbi.so needed but not yet loaded --> load it! */ |
| 1630 | result = nss_load_module(&trust_module, trust_library, "trust" ); |
| 1631 | infof(data, "%s %s\n" , (result) ? "failed to load" : "loaded" , |
| 1632 | trust_library); |
| 1633 | if(result == CURLE_FAILED_INIT) |
| 1634 | /* If libnssckbi.so is not available (or fails to load), one can still |
| 1635 | use CA certificates stored in NSS database. Ignore the failure. */ |
| 1636 | result = CURLE_OK; |
| 1637 | } |
| 1638 | else if(!use_trust_module && trust_module) { |
| 1639 | /* libnssckbi.so not needed but already loaded --> unload it! */ |
| 1640 | infof(data, "unloading %s\n" , trust_library); |
| 1641 | nss_unload_module(&trust_module); |
| 1642 | } |
| 1643 | PR_Unlock(nss_trustload_lock); |
| 1644 | |
| 1645 | if(cafile) |
| 1646 | result = nss_load_cert(&conn->ssl[sockindex], cafile, PR_TRUE); |
| 1647 | |
| 1648 | if(result) |
| 1649 | return result; |
| 1650 | |
| 1651 | if(capath) { |
| 1652 | struct_stat st; |
| 1653 | if(stat(capath, &st) == -1) |
| 1654 | return CURLE_SSL_CACERT_BADFILE; |
| 1655 | |
| 1656 | if(S_ISDIR(st.st_mode)) { |
| 1657 | PRDirEntry *entry; |
| 1658 | PRDir *dir = PR_OpenDir(capath); |
| 1659 | if(!dir) |
| 1660 | return CURLE_SSL_CACERT_BADFILE; |
| 1661 | |
| 1662 | while((entry = PR_ReadDir(dir, PR_SKIP_BOTH | PR_SKIP_HIDDEN))) { |
| 1663 | char *fullpath = aprintf("%s/%s" , capath, entry->name); |
| 1664 | if(!fullpath) { |
| 1665 | PR_CloseDir(dir); |
| 1666 | return CURLE_OUT_OF_MEMORY; |
| 1667 | } |
| 1668 | |
| 1669 | if(CURLE_OK != nss_load_cert(&conn->ssl[sockindex], fullpath, PR_TRUE)) |
| 1670 | /* This is purposefully tolerant of errors so non-PEM files can |
| 1671 | * be in the same directory */ |
| 1672 | infof(data, "failed to load '%s' from CURLOPT_CAPATH\n" , fullpath); |
| 1673 | |
| 1674 | free(fullpath); |
| 1675 | } |
| 1676 | |
| 1677 | PR_CloseDir(dir); |
| 1678 | } |
| 1679 | else |
| 1680 | infof(data, "warning: CURLOPT_CAPATH not a directory (%s)\n" , capath); |
| 1681 | } |
| 1682 | |
| 1683 | return CURLE_OK; |
| 1684 | } |
| 1685 | |
| 1686 | static CURLcode nss_sslver_from_curl(PRUint16 *nssver, long version) |
| 1687 | { |
| 1688 | switch(version) { |
| 1689 | case CURL_SSLVERSION_SSLv2: |
| 1690 | *nssver = SSL_LIBRARY_VERSION_2; |
| 1691 | return CURLE_OK; |
| 1692 | |
| 1693 | case CURL_SSLVERSION_SSLv3: |
| 1694 | *nssver = SSL_LIBRARY_VERSION_3_0; |
| 1695 | return CURLE_OK; |
| 1696 | |
| 1697 | case CURL_SSLVERSION_TLSv1_0: |
| 1698 | *nssver = SSL_LIBRARY_VERSION_TLS_1_0; |
| 1699 | return CURLE_OK; |
| 1700 | |
| 1701 | case CURL_SSLVERSION_TLSv1_1: |
| 1702 | #ifdef SSL_LIBRARY_VERSION_TLS_1_1 |
| 1703 | *nssver = SSL_LIBRARY_VERSION_TLS_1_1; |
| 1704 | return CURLE_OK; |
| 1705 | #else |
| 1706 | return CURLE_SSL_CONNECT_ERROR; |
| 1707 | #endif |
| 1708 | |
| 1709 | case CURL_SSLVERSION_TLSv1_2: |
| 1710 | #ifdef SSL_LIBRARY_VERSION_TLS_1_2 |
| 1711 | *nssver = SSL_LIBRARY_VERSION_TLS_1_2; |
| 1712 | return CURLE_OK; |
| 1713 | #else |
| 1714 | return CURLE_SSL_CONNECT_ERROR; |
| 1715 | #endif |
| 1716 | |
| 1717 | case CURL_SSLVERSION_TLSv1_3: |
| 1718 | #ifdef SSL_LIBRARY_VERSION_TLS_1_3 |
| 1719 | *nssver = SSL_LIBRARY_VERSION_TLS_1_3; |
| 1720 | return CURLE_OK; |
| 1721 | #else |
| 1722 | return CURLE_SSL_CONNECT_ERROR; |
| 1723 | #endif |
| 1724 | |
| 1725 | default: |
| 1726 | return CURLE_SSL_CONNECT_ERROR; |
| 1727 | } |
| 1728 | } |
| 1729 | |
| 1730 | static CURLcode nss_init_sslver(SSLVersionRange *sslver, |
| 1731 | struct Curl_easy *data, |
| 1732 | struct connectdata *conn) |
| 1733 | { |
| 1734 | CURLcode result; |
| 1735 | const long min = SSL_CONN_CONFIG(version); |
| 1736 | const long max = SSL_CONN_CONFIG(version_max); |
| 1737 | SSLVersionRange vrange; |
| 1738 | |
| 1739 | switch(min) { |
| 1740 | case CURL_SSLVERSION_TLSv1: |
| 1741 | case CURL_SSLVERSION_DEFAULT: |
| 1742 | /* Bump our minimum TLS version if NSS has stricter requirements. */ |
| 1743 | if(SSL_VersionRangeGetDefault(ssl_variant_stream, &vrange) != SECSuccess) |
| 1744 | return CURLE_SSL_CONNECT_ERROR; |
| 1745 | if(sslver->min < vrange.min) |
| 1746 | sslver->min = vrange.min; |
| 1747 | break; |
| 1748 | default: |
| 1749 | result = nss_sslver_from_curl(&sslver->min, min); |
| 1750 | if(result) { |
| 1751 | failf(data, "unsupported min version passed via CURLOPT_SSLVERSION" ); |
| 1752 | return result; |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | switch(max) { |
| 1757 | case CURL_SSLVERSION_MAX_NONE: |
| 1758 | case CURL_SSLVERSION_MAX_DEFAULT: |
| 1759 | break; |
| 1760 | default: |
| 1761 | result = nss_sslver_from_curl(&sslver->max, max >> 16); |
| 1762 | if(result) { |
| 1763 | failf(data, "unsupported max version passed via CURLOPT_SSLVERSION" ); |
| 1764 | return result; |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | return CURLE_OK; |
| 1769 | } |
| 1770 | |
| 1771 | static CURLcode nss_fail_connect(struct ssl_connect_data *connssl, |
| 1772 | struct Curl_easy *data, |
| 1773 | CURLcode curlerr) |
| 1774 | { |
| 1775 | PRErrorCode err = 0; |
| 1776 | |
| 1777 | if(is_nss_error(curlerr)) { |
| 1778 | /* read NSPR error code */ |
| 1779 | err = PR_GetError(); |
| 1780 | if(is_cc_error(err)) |
| 1781 | curlerr = CURLE_SSL_CERTPROBLEM; |
| 1782 | |
| 1783 | /* print the error number and error string */ |
| 1784 | infof(data, "NSS error %d (%s)\n" , err, nss_error_to_name(err)); |
| 1785 | |
| 1786 | /* print a human-readable message describing the error if available */ |
| 1787 | nss_print_error_message(data, err); |
| 1788 | } |
| 1789 | |
| 1790 | /* cleanup on connection failure */ |
| 1791 | Curl_llist_destroy(&BACKEND->obj_list, NULL); |
| 1792 | |
| 1793 | return curlerr; |
| 1794 | } |
| 1795 | |
| 1796 | /* Switch the SSL socket into blocking or non-blocking mode. */ |
| 1797 | static CURLcode nss_set_blocking(struct ssl_connect_data *connssl, |
| 1798 | struct Curl_easy *data, |
| 1799 | bool blocking) |
| 1800 | { |
| 1801 | static PRSocketOptionData sock_opt; |
| 1802 | sock_opt.option = PR_SockOpt_Nonblocking; |
| 1803 | sock_opt.value.non_blocking = !blocking; |
| 1804 | |
| 1805 | if(PR_SetSocketOption(BACKEND->handle, &sock_opt) != PR_SUCCESS) |
| 1806 | return nss_fail_connect(connssl, data, CURLE_SSL_CONNECT_ERROR); |
| 1807 | |
| 1808 | return CURLE_OK; |
| 1809 | } |
| 1810 | |
| 1811 | static CURLcode nss_setup_connect(struct connectdata *conn, int sockindex) |
| 1812 | { |
| 1813 | PRFileDesc *model = NULL; |
| 1814 | PRFileDesc *nspr_io = NULL; |
| 1815 | PRFileDesc *nspr_io_stub = NULL; |
| 1816 | PRBool ssl_no_cache; |
| 1817 | PRBool ssl_cbc_random_iv; |
| 1818 | struct Curl_easy *data = conn->data; |
| 1819 | curl_socket_t sockfd = conn->sock[sockindex]; |
| 1820 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 1821 | CURLcode result; |
| 1822 | bool second_layer = FALSE; |
| 1823 | SSLVersionRange sslver_supported; |
| 1824 | |
| 1825 | SSLVersionRange sslver = { |
| 1826 | SSL_LIBRARY_VERSION_TLS_1_0, /* min */ |
| 1827 | #ifdef SSL_LIBRARY_VERSION_TLS_1_3 |
| 1828 | SSL_LIBRARY_VERSION_TLS_1_3 /* max */ |
| 1829 | #elif defined SSL_LIBRARY_VERSION_TLS_1_2 |
| 1830 | SSL_LIBRARY_VERSION_TLS_1_2 |
| 1831 | #elif defined SSL_LIBRARY_VERSION_TLS_1_1 |
| 1832 | SSL_LIBRARY_VERSION_TLS_1_1 |
| 1833 | #else |
| 1834 | SSL_LIBRARY_VERSION_TLS_1_0 |
| 1835 | #endif |
| 1836 | }; |
| 1837 | |
| 1838 | BACKEND->data = data; |
| 1839 | |
| 1840 | /* list of all NSS objects we need to destroy in Curl_nss_close() */ |
| 1841 | Curl_llist_init(&BACKEND->obj_list, nss_destroy_object); |
| 1842 | |
| 1843 | PR_Lock(nss_initlock); |
| 1844 | result = nss_init(conn->data); |
| 1845 | if(result) { |
| 1846 | PR_Unlock(nss_initlock); |
| 1847 | goto error; |
| 1848 | } |
| 1849 | |
| 1850 | PK11_SetPasswordFunc(nss_get_password); |
| 1851 | |
| 1852 | result = nss_load_module(&pem_module, pem_library, "PEM" ); |
| 1853 | PR_Unlock(nss_initlock); |
| 1854 | if(result == CURLE_FAILED_INIT) |
| 1855 | infof(data, "WARNING: failed to load NSS PEM library %s. Using " |
| 1856 | "OpenSSL PEM certificates will not work.\n" , pem_library); |
| 1857 | else if(result) |
| 1858 | goto error; |
| 1859 | |
| 1860 | result = CURLE_SSL_CONNECT_ERROR; |
| 1861 | |
| 1862 | model = PR_NewTCPSocket(); |
| 1863 | if(!model) |
| 1864 | goto error; |
| 1865 | model = SSL_ImportFD(NULL, model); |
| 1866 | |
| 1867 | if(SSL_OptionSet(model, SSL_SECURITY, PR_TRUE) != SECSuccess) |
| 1868 | goto error; |
| 1869 | if(SSL_OptionSet(model, SSL_HANDSHAKE_AS_SERVER, PR_FALSE) != SECSuccess) |
| 1870 | goto error; |
| 1871 | if(SSL_OptionSet(model, SSL_HANDSHAKE_AS_CLIENT, PR_TRUE) != SECSuccess) |
| 1872 | goto error; |
| 1873 | |
| 1874 | /* do not use SSL cache if disabled or we are not going to verify peer */ |
| 1875 | ssl_no_cache = (SSL_SET_OPTION(primary.sessionid) |
| 1876 | && SSL_CONN_CONFIG(verifypeer)) ? PR_FALSE : PR_TRUE; |
| 1877 | if(SSL_OptionSet(model, SSL_NO_CACHE, ssl_no_cache) != SECSuccess) |
| 1878 | goto error; |
| 1879 | |
| 1880 | /* enable/disable the requested SSL version(s) */ |
| 1881 | if(nss_init_sslver(&sslver, data, conn) != CURLE_OK) |
| 1882 | goto error; |
| 1883 | if(SSL_VersionRangeGetSupported(ssl_variant_stream, |
| 1884 | &sslver_supported) != SECSuccess) |
| 1885 | goto error; |
| 1886 | if(sslver_supported.max < sslver.max && sslver_supported.max >= sslver.min) { |
| 1887 | char *sslver_req_str, *sslver_supp_str; |
| 1888 | sslver_req_str = nss_sslver_to_name(sslver.max); |
| 1889 | sslver_supp_str = nss_sslver_to_name(sslver_supported.max); |
| 1890 | if(sslver_req_str && sslver_supp_str) |
| 1891 | infof(data, "Falling back from %s to max supported SSL version (%s)\n" , |
| 1892 | sslver_req_str, sslver_supp_str); |
| 1893 | free(sslver_req_str); |
| 1894 | free(sslver_supp_str); |
| 1895 | sslver.max = sslver_supported.max; |
| 1896 | } |
| 1897 | if(SSL_VersionRangeSet(model, &sslver) != SECSuccess) |
| 1898 | goto error; |
| 1899 | |
| 1900 | ssl_cbc_random_iv = !SSL_SET_OPTION(enable_beast); |
| 1901 | #ifdef SSL_CBC_RANDOM_IV |
| 1902 | /* unless the user explicitly asks to allow the protocol vulnerability, we |
| 1903 | use the work-around */ |
| 1904 | if(SSL_OptionSet(model, SSL_CBC_RANDOM_IV, ssl_cbc_random_iv) != SECSuccess) |
| 1905 | infof(data, "warning: failed to set SSL_CBC_RANDOM_IV = %d\n" , |
| 1906 | ssl_cbc_random_iv); |
| 1907 | #else |
| 1908 | if(ssl_cbc_random_iv) |
| 1909 | infof(data, "warning: support for SSL_CBC_RANDOM_IV not compiled in\n" ); |
| 1910 | #endif |
| 1911 | |
| 1912 | if(SSL_CONN_CONFIG(cipher_list)) { |
| 1913 | if(set_ciphers(data, model, SSL_CONN_CONFIG(cipher_list)) != SECSuccess) { |
| 1914 | result = CURLE_SSL_CIPHER; |
| 1915 | goto error; |
| 1916 | } |
| 1917 | } |
| 1918 | |
| 1919 | if(!SSL_CONN_CONFIG(verifypeer) && SSL_CONN_CONFIG(verifyhost)) |
| 1920 | infof(data, "warning: ignoring value of ssl.verifyhost\n" ); |
| 1921 | |
| 1922 | /* bypass the default SSL_AuthCertificate() hook in case we do not want to |
| 1923 | * verify peer */ |
| 1924 | if(SSL_AuthCertificateHook(model, nss_auth_cert_hook, conn) != SECSuccess) |
| 1925 | goto error; |
| 1926 | |
| 1927 | /* not checked yet */ |
| 1928 | if(SSL_IS_PROXY()) |
| 1929 | data->set.proxy_ssl.certverifyresult = 0; |
| 1930 | else |
| 1931 | data->set.ssl.certverifyresult = 0; |
| 1932 | |
| 1933 | if(SSL_BadCertHook(model, BadCertHandler, conn) != SECSuccess) |
| 1934 | goto error; |
| 1935 | |
| 1936 | if(SSL_HandshakeCallback(model, HandshakeCallback, conn) != SECSuccess) |
| 1937 | goto error; |
| 1938 | |
| 1939 | { |
| 1940 | const CURLcode rv = nss_load_ca_certificates(conn, sockindex); |
| 1941 | if((rv == CURLE_SSL_CACERT_BADFILE) && !SSL_CONN_CONFIG(verifypeer)) |
| 1942 | /* not a fatal error because we are not going to verify the peer */ |
| 1943 | infof(data, "warning: CA certificates failed to load\n" ); |
| 1944 | else if(rv) { |
| 1945 | result = rv; |
| 1946 | goto error; |
| 1947 | } |
| 1948 | } |
| 1949 | |
| 1950 | if(SSL_SET_OPTION(CRLfile)) { |
| 1951 | const CURLcode rv = nss_load_crl(SSL_SET_OPTION(CRLfile)); |
| 1952 | if(rv) { |
| 1953 | result = rv; |
| 1954 | goto error; |
| 1955 | } |
| 1956 | infof(data, " CRLfile: %s\n" , SSL_SET_OPTION(CRLfile)); |
| 1957 | } |
| 1958 | |
| 1959 | if(SSL_SET_OPTION(cert)) { |
| 1960 | char *nickname = dup_nickname(data, SSL_SET_OPTION(cert)); |
| 1961 | if(nickname) { |
| 1962 | /* we are not going to use libnsspem.so to read the client cert */ |
| 1963 | BACKEND->obj_clicert = NULL; |
| 1964 | } |
| 1965 | else { |
| 1966 | CURLcode rv = cert_stuff(conn, sockindex, SSL_SET_OPTION(cert), |
| 1967 | SSL_SET_OPTION(key)); |
| 1968 | if(rv) { |
| 1969 | /* failf() is already done in cert_stuff() */ |
| 1970 | result = rv; |
| 1971 | goto error; |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | /* store the nickname for SelectClientCert() called during handshake */ |
| 1976 | BACKEND->client_nickname = nickname; |
| 1977 | } |
| 1978 | else |
| 1979 | BACKEND->client_nickname = NULL; |
| 1980 | |
| 1981 | if(SSL_GetClientAuthDataHook(model, SelectClientCert, |
| 1982 | (void *)connssl) != SECSuccess) { |
| 1983 | result = CURLE_SSL_CERTPROBLEM; |
| 1984 | goto error; |
| 1985 | } |
| 1986 | |
| 1987 | if(conn->proxy_ssl[sockindex].use) { |
| 1988 | DEBUGASSERT(ssl_connection_complete == conn->proxy_ssl[sockindex].state); |
| 1989 | DEBUGASSERT(conn->proxy_ssl[sockindex].backend->handle != NULL); |
| 1990 | nspr_io = conn->proxy_ssl[sockindex].backend->handle; |
| 1991 | second_layer = TRUE; |
| 1992 | } |
| 1993 | else { |
| 1994 | /* wrap OS file descriptor by NSPR's file descriptor abstraction */ |
| 1995 | nspr_io = PR_ImportTCPSocket(sockfd); |
| 1996 | if(!nspr_io) |
| 1997 | goto error; |
| 1998 | } |
| 1999 | |
| 2000 | /* create our own NSPR I/O layer */ |
| 2001 | nspr_io_stub = PR_CreateIOLayerStub(nspr_io_identity, &nspr_io_methods); |
| 2002 | if(!nspr_io_stub) { |
| 2003 | if(!second_layer) |
| 2004 | PR_Close(nspr_io); |
| 2005 | goto error; |
| 2006 | } |
| 2007 | |
| 2008 | /* make the per-connection data accessible from NSPR I/O callbacks */ |
| 2009 | nspr_io_stub->secret = (void *)connssl; |
| 2010 | |
| 2011 | /* push our new layer to the NSPR I/O stack */ |
| 2012 | if(PR_PushIOLayer(nspr_io, PR_TOP_IO_LAYER, nspr_io_stub) != PR_SUCCESS) { |
| 2013 | if(!second_layer) |
| 2014 | PR_Close(nspr_io); |
| 2015 | PR_Close(nspr_io_stub); |
| 2016 | goto error; |
| 2017 | } |
| 2018 | |
| 2019 | /* import our model socket onto the current I/O stack */ |
| 2020 | BACKEND->handle = SSL_ImportFD(model, nspr_io); |
| 2021 | if(!BACKEND->handle) { |
| 2022 | if(!second_layer) |
| 2023 | PR_Close(nspr_io); |
| 2024 | goto error; |
| 2025 | } |
| 2026 | |
| 2027 | PR_Close(model); /* We don't need this any more */ |
| 2028 | model = NULL; |
| 2029 | |
| 2030 | /* This is the password associated with the cert that we're using */ |
| 2031 | if(SSL_SET_OPTION(key_passwd)) { |
| 2032 | SSL_SetPKCS11PinArg(BACKEND->handle, SSL_SET_OPTION(key_passwd)); |
| 2033 | } |
| 2034 | |
| 2035 | #ifdef SSL_ENABLE_OCSP_STAPLING |
| 2036 | if(SSL_CONN_CONFIG(verifystatus)) { |
| 2037 | if(SSL_OptionSet(BACKEND->handle, SSL_ENABLE_OCSP_STAPLING, PR_TRUE) |
| 2038 | != SECSuccess) |
| 2039 | goto error; |
| 2040 | } |
| 2041 | #endif |
| 2042 | |
| 2043 | #ifdef SSL_ENABLE_NPN |
| 2044 | if(SSL_OptionSet(BACKEND->handle, SSL_ENABLE_NPN, conn->bits.tls_enable_npn |
| 2045 | ? PR_TRUE : PR_FALSE) != SECSuccess) |
| 2046 | goto error; |
| 2047 | #endif |
| 2048 | |
| 2049 | #ifdef SSL_ENABLE_ALPN |
| 2050 | if(SSL_OptionSet(BACKEND->handle, SSL_ENABLE_ALPN, conn->bits.tls_enable_alpn |
| 2051 | ? PR_TRUE : PR_FALSE) != SECSuccess) |
| 2052 | goto error; |
| 2053 | #endif |
| 2054 | |
| 2055 | #if NSSVERNUM >= 0x030f04 /* 3.15.4 */ |
| 2056 | if(data->set.ssl.falsestart) { |
| 2057 | if(SSL_OptionSet(BACKEND->handle, SSL_ENABLE_FALSE_START, PR_TRUE) |
| 2058 | != SECSuccess) |
| 2059 | goto error; |
| 2060 | |
| 2061 | if(SSL_SetCanFalseStartCallback(BACKEND->handle, CanFalseStartCallback, |
| 2062 | conn) != SECSuccess) |
| 2063 | goto error; |
| 2064 | } |
| 2065 | #endif |
| 2066 | |
| 2067 | #if defined(SSL_ENABLE_NPN) || defined(SSL_ENABLE_ALPN) |
| 2068 | if(conn->bits.tls_enable_npn || conn->bits.tls_enable_alpn) { |
| 2069 | int cur = 0; |
| 2070 | unsigned char protocols[128]; |
| 2071 | |
| 2072 | #ifdef USE_NGHTTP2 |
| 2073 | if(data->set.httpversion >= CURL_HTTP_VERSION_2 && |
| 2074 | (!SSL_IS_PROXY() || !conn->bits.tunnel_proxy)) { |
| 2075 | protocols[cur++] = NGHTTP2_PROTO_VERSION_ID_LEN; |
| 2076 | memcpy(&protocols[cur], NGHTTP2_PROTO_VERSION_ID, |
| 2077 | NGHTTP2_PROTO_VERSION_ID_LEN); |
| 2078 | cur += NGHTTP2_PROTO_VERSION_ID_LEN; |
| 2079 | } |
| 2080 | #endif |
| 2081 | protocols[cur++] = ALPN_HTTP_1_1_LENGTH; |
| 2082 | memcpy(&protocols[cur], ALPN_HTTP_1_1, ALPN_HTTP_1_1_LENGTH); |
| 2083 | cur += ALPN_HTTP_1_1_LENGTH; |
| 2084 | |
| 2085 | if(SSL_SetNextProtoNego(BACKEND->handle, protocols, cur) != SECSuccess) |
| 2086 | goto error; |
| 2087 | } |
| 2088 | #endif |
| 2089 | |
| 2090 | |
| 2091 | /* Force handshake on next I/O */ |
| 2092 | if(SSL_ResetHandshake(BACKEND->handle, /* asServer */ PR_FALSE) |
| 2093 | != SECSuccess) |
| 2094 | goto error; |
| 2095 | |
| 2096 | /* propagate hostname to the TLS layer */ |
| 2097 | if(SSL_SetURL(BACKEND->handle, SSL_IS_PROXY() ? conn->http_proxy.host.name : |
| 2098 | conn->host.name) != SECSuccess) |
| 2099 | goto error; |
| 2100 | |
| 2101 | /* prevent NSS from re-using the session for a different hostname */ |
| 2102 | if(SSL_SetSockPeerID(BACKEND->handle, SSL_IS_PROXY() ? |
| 2103 | conn->http_proxy.host.name : conn->host.name) |
| 2104 | != SECSuccess) |
| 2105 | goto error; |
| 2106 | |
| 2107 | return CURLE_OK; |
| 2108 | |
| 2109 | error: |
| 2110 | if(model) |
| 2111 | PR_Close(model); |
| 2112 | |
| 2113 | return nss_fail_connect(connssl, data, result); |
| 2114 | } |
| 2115 | |
| 2116 | static CURLcode nss_do_connect(struct connectdata *conn, int sockindex) |
| 2117 | { |
| 2118 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 2119 | struct Curl_easy *data = conn->data; |
| 2120 | CURLcode result = CURLE_SSL_CONNECT_ERROR; |
| 2121 | PRUint32 timeout; |
| 2122 | long * const certverifyresult = SSL_IS_PROXY() ? |
| 2123 | &data->set.proxy_ssl.certverifyresult : &data->set.ssl.certverifyresult; |
| 2124 | const char * const pinnedpubkey = SSL_IS_PROXY() ? |
| 2125 | data->set.str[STRING_SSL_PINNEDPUBLICKEY_PROXY] : |
| 2126 | data->set.str[STRING_SSL_PINNEDPUBLICKEY_ORIG]; |
| 2127 | |
| 2128 | |
| 2129 | /* check timeout situation */ |
| 2130 | const timediff_t time_left = Curl_timeleft(data, NULL, TRUE); |
| 2131 | if(time_left < 0) { |
| 2132 | failf(data, "timed out before SSL handshake" ); |
| 2133 | result = CURLE_OPERATION_TIMEDOUT; |
| 2134 | goto error; |
| 2135 | } |
| 2136 | |
| 2137 | /* Force the handshake now */ |
| 2138 | timeout = PR_MillisecondsToInterval((PRUint32) time_left); |
| 2139 | if(SSL_ForceHandshakeWithTimeout(BACKEND->handle, timeout) != SECSuccess) { |
| 2140 | if(PR_GetError() == PR_WOULD_BLOCK_ERROR) |
| 2141 | /* blocking direction is updated by nss_update_connecting_state() */ |
| 2142 | return CURLE_AGAIN; |
| 2143 | else if(*certverifyresult == SSL_ERROR_BAD_CERT_DOMAIN) |
| 2144 | result = CURLE_PEER_FAILED_VERIFICATION; |
| 2145 | else if(*certverifyresult != 0) |
| 2146 | result = CURLE_PEER_FAILED_VERIFICATION; |
| 2147 | goto error; |
| 2148 | } |
| 2149 | |
| 2150 | result = display_conn_info(conn, BACKEND->handle); |
| 2151 | if(result) |
| 2152 | goto error; |
| 2153 | |
| 2154 | if(SSL_SET_OPTION(issuercert)) { |
| 2155 | SECStatus ret = SECFailure; |
| 2156 | char *nickname = dup_nickname(data, SSL_SET_OPTION(issuercert)); |
| 2157 | if(nickname) { |
| 2158 | /* we support only nicknames in case of issuercert for now */ |
| 2159 | ret = check_issuer_cert(BACKEND->handle, nickname); |
| 2160 | free(nickname); |
| 2161 | } |
| 2162 | |
| 2163 | if(SECFailure == ret) { |
| 2164 | infof(data, "SSL certificate issuer check failed\n" ); |
| 2165 | result = CURLE_SSL_ISSUER_ERROR; |
| 2166 | goto error; |
| 2167 | } |
| 2168 | else { |
| 2169 | infof(data, "SSL certificate issuer check ok\n" ); |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | result = cmp_peer_pubkey(connssl, pinnedpubkey); |
| 2174 | if(result) |
| 2175 | /* status already printed */ |
| 2176 | goto error; |
| 2177 | |
| 2178 | return CURLE_OK; |
| 2179 | |
| 2180 | error: |
| 2181 | return nss_fail_connect(connssl, data, result); |
| 2182 | } |
| 2183 | |
| 2184 | static CURLcode nss_connect_common(struct connectdata *conn, int sockindex, |
| 2185 | bool *done) |
| 2186 | { |
| 2187 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 2188 | struct Curl_easy *data = conn->data; |
| 2189 | const bool blocking = (done == NULL); |
| 2190 | CURLcode result; |
| 2191 | |
| 2192 | if(connssl->state == ssl_connection_complete) { |
| 2193 | if(!blocking) |
| 2194 | *done = TRUE; |
| 2195 | return CURLE_OK; |
| 2196 | } |
| 2197 | |
| 2198 | if(connssl->connecting_state == ssl_connect_1) { |
| 2199 | result = nss_setup_connect(conn, sockindex); |
| 2200 | if(result) |
| 2201 | /* we do not expect CURLE_AGAIN from nss_setup_connect() */ |
| 2202 | return result; |
| 2203 | |
| 2204 | connssl->connecting_state = ssl_connect_2; |
| 2205 | } |
| 2206 | |
| 2207 | /* enable/disable blocking mode before handshake */ |
| 2208 | result = nss_set_blocking(connssl, data, blocking); |
| 2209 | if(result) |
| 2210 | return result; |
| 2211 | |
| 2212 | result = nss_do_connect(conn, sockindex); |
| 2213 | switch(result) { |
| 2214 | case CURLE_OK: |
| 2215 | break; |
| 2216 | case CURLE_AGAIN: |
| 2217 | if(!blocking) |
| 2218 | /* CURLE_AGAIN in non-blocking mode is not an error */ |
| 2219 | return CURLE_OK; |
| 2220 | /* FALLTHROUGH */ |
| 2221 | default: |
| 2222 | return result; |
| 2223 | } |
| 2224 | |
| 2225 | if(blocking) { |
| 2226 | /* in blocking mode, set NSS non-blocking mode _after_ SSL handshake */ |
| 2227 | result = nss_set_blocking(connssl, data, /* blocking */ FALSE); |
| 2228 | if(result) |
| 2229 | return result; |
| 2230 | } |
| 2231 | else |
| 2232 | /* signal completed SSL handshake */ |
| 2233 | *done = TRUE; |
| 2234 | |
| 2235 | connssl->state = ssl_connection_complete; |
| 2236 | conn->recv[sockindex] = nss_recv; |
| 2237 | conn->send[sockindex] = nss_send; |
| 2238 | |
| 2239 | /* ssl_connect_done is never used outside, go back to the initial state */ |
| 2240 | connssl->connecting_state = ssl_connect_1; |
| 2241 | |
| 2242 | return CURLE_OK; |
| 2243 | } |
| 2244 | |
| 2245 | static CURLcode Curl_nss_connect(struct connectdata *conn, int sockindex) |
| 2246 | { |
| 2247 | return nss_connect_common(conn, sockindex, /* blocking */ NULL); |
| 2248 | } |
| 2249 | |
| 2250 | static CURLcode Curl_nss_connect_nonblocking(struct connectdata *conn, |
| 2251 | int sockindex, bool *done) |
| 2252 | { |
| 2253 | return nss_connect_common(conn, sockindex, done); |
| 2254 | } |
| 2255 | |
| 2256 | static ssize_t nss_send(struct connectdata *conn, /* connection data */ |
| 2257 | int sockindex, /* socketindex */ |
| 2258 | const void *mem, /* send this data */ |
| 2259 | size_t len, /* amount to write */ |
| 2260 | CURLcode *curlcode) |
| 2261 | { |
| 2262 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 2263 | ssize_t rc; |
| 2264 | |
| 2265 | /* The SelectClientCert() hook uses this for infof() and failf() but the |
| 2266 | handle stored in nss_setup_connect() could have already been freed. */ |
| 2267 | BACKEND->data = conn->data; |
| 2268 | |
| 2269 | rc = PR_Send(BACKEND->handle, mem, (int)len, 0, PR_INTERVAL_NO_WAIT); |
| 2270 | if(rc < 0) { |
| 2271 | PRInt32 err = PR_GetError(); |
| 2272 | if(err == PR_WOULD_BLOCK_ERROR) |
| 2273 | *curlcode = CURLE_AGAIN; |
| 2274 | else { |
| 2275 | /* print the error number and error string */ |
| 2276 | const char *err_name = nss_error_to_name(err); |
| 2277 | infof(conn->data, "SSL write: error %d (%s)\n" , err, err_name); |
| 2278 | |
| 2279 | /* print a human-readable message describing the error if available */ |
| 2280 | nss_print_error_message(conn->data, err); |
| 2281 | |
| 2282 | *curlcode = (is_cc_error(err)) |
| 2283 | ? CURLE_SSL_CERTPROBLEM |
| 2284 | : CURLE_SEND_ERROR; |
| 2285 | } |
| 2286 | |
| 2287 | return -1; |
| 2288 | } |
| 2289 | |
| 2290 | return rc; /* number of bytes */ |
| 2291 | } |
| 2292 | |
| 2293 | static ssize_t nss_recv(struct connectdata *conn, /* connection data */ |
| 2294 | int sockindex, /* socketindex */ |
| 2295 | char *buf, /* store read data here */ |
| 2296 | size_t buffersize, /* max amount to read */ |
| 2297 | CURLcode *curlcode) |
| 2298 | { |
| 2299 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 2300 | ssize_t nread; |
| 2301 | |
| 2302 | /* The SelectClientCert() hook uses this for infof() and failf() but the |
| 2303 | handle stored in nss_setup_connect() could have already been freed. */ |
| 2304 | BACKEND->data = conn->data; |
| 2305 | |
| 2306 | nread = PR_Recv(BACKEND->handle, buf, (int)buffersize, 0, |
| 2307 | PR_INTERVAL_NO_WAIT); |
| 2308 | if(nread < 0) { |
| 2309 | /* failed SSL read */ |
| 2310 | PRInt32 err = PR_GetError(); |
| 2311 | |
| 2312 | if(err == PR_WOULD_BLOCK_ERROR) |
| 2313 | *curlcode = CURLE_AGAIN; |
| 2314 | else { |
| 2315 | /* print the error number and error string */ |
| 2316 | const char *err_name = nss_error_to_name(err); |
| 2317 | infof(conn->data, "SSL read: errno %d (%s)\n" , err, err_name); |
| 2318 | |
| 2319 | /* print a human-readable message describing the error if available */ |
| 2320 | nss_print_error_message(conn->data, err); |
| 2321 | |
| 2322 | *curlcode = (is_cc_error(err)) |
| 2323 | ? CURLE_SSL_CERTPROBLEM |
| 2324 | : CURLE_RECV_ERROR; |
| 2325 | } |
| 2326 | |
| 2327 | return -1; |
| 2328 | } |
| 2329 | |
| 2330 | return nread; |
| 2331 | } |
| 2332 | |
| 2333 | static size_t Curl_nss_version(char *buffer, size_t size) |
| 2334 | { |
| 2335 | return msnprintf(buffer, size, "NSS/%s" , NSS_VERSION); |
| 2336 | } |
| 2337 | |
| 2338 | /* data might be NULL */ |
| 2339 | static int Curl_nss_seed(struct Curl_easy *data) |
| 2340 | { |
| 2341 | /* make sure that NSS is initialized */ |
| 2342 | return !!Curl_nss_force_init(data); |
| 2343 | } |
| 2344 | |
| 2345 | /* data might be NULL */ |
| 2346 | static CURLcode Curl_nss_random(struct Curl_easy *data, |
| 2347 | unsigned char *entropy, |
| 2348 | size_t length) |
| 2349 | { |
| 2350 | Curl_nss_seed(data); /* Initiate the seed if not already done */ |
| 2351 | |
| 2352 | if(SECSuccess != PK11_GenerateRandom(entropy, curlx_uztosi(length))) |
| 2353 | /* signal a failure */ |
| 2354 | return CURLE_FAILED_INIT; |
| 2355 | |
| 2356 | return CURLE_OK; |
| 2357 | } |
| 2358 | |
| 2359 | static CURLcode Curl_nss_md5sum(unsigned char *tmp, /* input */ |
| 2360 | size_t tmplen, |
| 2361 | unsigned char *md5sum, /* output */ |
| 2362 | size_t md5len) |
| 2363 | { |
| 2364 | PK11Context *MD5pw = PK11_CreateDigestContext(SEC_OID_MD5); |
| 2365 | unsigned int MD5out; |
| 2366 | |
| 2367 | PK11_DigestOp(MD5pw, tmp, curlx_uztoui(tmplen)); |
| 2368 | PK11_DigestFinal(MD5pw, md5sum, &MD5out, curlx_uztoui(md5len)); |
| 2369 | PK11_DestroyContext(MD5pw, PR_TRUE); |
| 2370 | |
| 2371 | return CURLE_OK; |
| 2372 | } |
| 2373 | |
| 2374 | static CURLcode Curl_nss_sha256sum(const unsigned char *tmp, /* input */ |
| 2375 | size_t tmplen, |
| 2376 | unsigned char *sha256sum, /* output */ |
| 2377 | size_t sha256len) |
| 2378 | { |
| 2379 | PK11Context *SHA256pw = PK11_CreateDigestContext(SEC_OID_SHA256); |
| 2380 | unsigned int SHA256out; |
| 2381 | |
| 2382 | PK11_DigestOp(SHA256pw, tmp, curlx_uztoui(tmplen)); |
| 2383 | PK11_DigestFinal(SHA256pw, sha256sum, &SHA256out, curlx_uztoui(sha256len)); |
| 2384 | PK11_DestroyContext(SHA256pw, PR_TRUE); |
| 2385 | |
| 2386 | return CURLE_OK; |
| 2387 | } |
| 2388 | |
| 2389 | static bool Curl_nss_cert_status_request(void) |
| 2390 | { |
| 2391 | #ifdef SSL_ENABLE_OCSP_STAPLING |
| 2392 | return TRUE; |
| 2393 | #else |
| 2394 | return FALSE; |
| 2395 | #endif |
| 2396 | } |
| 2397 | |
| 2398 | static bool Curl_nss_false_start(void) |
| 2399 | { |
| 2400 | #if NSSVERNUM >= 0x030f04 /* 3.15.4 */ |
| 2401 | return TRUE; |
| 2402 | #else |
| 2403 | return FALSE; |
| 2404 | #endif |
| 2405 | } |
| 2406 | |
| 2407 | static void *Curl_nss_get_internals(struct ssl_connect_data *connssl, |
| 2408 | CURLINFO info UNUSED_PARAM) |
| 2409 | { |
| 2410 | (void)info; |
| 2411 | return BACKEND->handle; |
| 2412 | } |
| 2413 | |
| 2414 | const struct Curl_ssl Curl_ssl_nss = { |
| 2415 | { CURLSSLBACKEND_NSS, "nss" }, /* info */ |
| 2416 | |
| 2417 | SSLSUPP_CA_PATH | |
| 2418 | SSLSUPP_CERTINFO | |
| 2419 | SSLSUPP_PINNEDPUBKEY | |
| 2420 | SSLSUPP_HTTPS_PROXY, |
| 2421 | |
| 2422 | sizeof(struct ssl_backend_data), |
| 2423 | |
| 2424 | Curl_nss_init, /* init */ |
| 2425 | Curl_nss_cleanup, /* cleanup */ |
| 2426 | Curl_nss_version, /* version */ |
| 2427 | Curl_nss_check_cxn, /* check_cxn */ |
| 2428 | /* NSS has no shutdown function provided and thus always fail */ |
| 2429 | Curl_none_shutdown, /* shutdown */ |
| 2430 | Curl_none_data_pending, /* data_pending */ |
| 2431 | Curl_nss_random, /* random */ |
| 2432 | Curl_nss_cert_status_request, /* cert_status_request */ |
| 2433 | Curl_nss_connect, /* connect */ |
| 2434 | Curl_nss_connect_nonblocking, /* connect_nonblocking */ |
| 2435 | Curl_nss_get_internals, /* get_internals */ |
| 2436 | Curl_nss_close, /* close_one */ |
| 2437 | Curl_none_close_all, /* close_all */ |
| 2438 | /* NSS has its own session ID cache */ |
| 2439 | Curl_none_session_free, /* session_free */ |
| 2440 | Curl_none_set_engine, /* set_engine */ |
| 2441 | Curl_none_set_engine_default, /* set_engine_default */ |
| 2442 | Curl_none_engines_list, /* engines_list */ |
| 2443 | Curl_nss_false_start, /* false_start */ |
| 2444 | Curl_nss_md5sum, /* md5sum */ |
| 2445 | Curl_nss_sha256sum /* sha256sum */ |
| 2446 | }; |
| 2447 | |
| 2448 | #endif /* USE_NSS */ |
| 2449 | |