| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Region analysis. |
| 31 | * |
| 32 | * Definition: a \a region is a subset of vertices in a graph such that: |
| 33 | * - the edges entering the region are a cutset of the graph |
| 34 | * - for every in-edge (u, v) to the region there exist edges (u, w) for all |
| 35 | * w in {w : w in region and w has an in-edge} |
| 36 | * - the regions in a graph partition the graph |
| 37 | * |
| 38 | * Note: |
| 39 | * - we partition a graph into the maximal number of regions |
| 40 | * - similar properties for exit edges should hold as a consequence |
| 41 | * - graph == sequence of regions |
| 42 | * - a region is considered to have an epsilon vertex to allow jumps |
| 43 | * - vertices which only lead to back edges need to be floated up in the topo |
| 44 | * order |
| 45 | * |
| 46 | * Algorithm overview: |
| 47 | * -# topo-order over the DAG skeleton; |
| 48 | * -# incrementally add vertices to the current region until the boundary edges |
| 49 | * form a valid cut-set; |
| 50 | * -# for each back-edge, if the source and target are in different regions, |
| 51 | * merge the regions (and all intervening regions) into a common region. |
| 52 | */ |
| 53 | #include "ng_region.h" |
| 54 | |
| 55 | #include "ng_holder.h" |
| 56 | #include "ng_util.h" |
| 57 | #include "ue2common.h" |
| 58 | #include "util/container.h" |
| 59 | #include "util/flat_containers.h" |
| 60 | #include "util/graph_range.h" |
| 61 | #include "util/graph_small_color_map.h" |
| 62 | |
| 63 | #include <set> |
| 64 | #include <utility> |
| 65 | #include <vector> |
| 66 | |
| 67 | #include <boost/graph/filtered_graph.hpp> |
| 68 | #include <boost/graph/topological_sort.hpp> |
| 69 | |
| 70 | using namespace std; |
| 71 | |
| 72 | namespace ue2 { |
| 73 | |
| 74 | using BackEdgeSet = unordered_set<NFAEdge>; |
| 75 | using AcyclicGraph = |
| 76 | boost::filtered_graph<NGHolder, bad_edge_filter<BackEdgeSet>>; |
| 77 | |
| 78 | namespace { |
| 79 | struct exit_info { |
| 80 | explicit exit_info(NFAVertex v) : exit(v) {} |
| 81 | |
| 82 | NFAVertex exit; |
| 83 | flat_set<NFAVertex> open; |
| 84 | }; |
| 85 | } |
| 86 | |
| 87 | static |
| 88 | void checkAndAddExitCandidate(const AcyclicGraph &g, |
| 89 | const unordered_set<NFAVertex> &r, NFAVertex v, |
| 90 | vector<exit_info> &exits) { |
| 91 | exit_info v_exit(v); |
| 92 | auto &open = v_exit.open; |
| 93 | |
| 94 | /* find the set of vertices reachable from v which are not in r */ |
| 95 | for (auto w : adjacent_vertices_range(v, g)) { |
| 96 | if (!contains(r, w)) { |
| 97 | open.insert(w); |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | if (!open.empty()) { |
| 102 | DEBUG_PRINTF("exit %zu\n" , g[v].index); |
| 103 | exits.push_back(move(v_exit)); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | static |
| 108 | void findExits(const AcyclicGraph &g, const unordered_set<NFAVertex> &r, |
| 109 | vector<exit_info> &exits) { |
| 110 | exits.clear(); |
| 111 | for (auto v : r) { |
| 112 | checkAndAddExitCandidate(g, r, v, exits); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | static |
| 117 | void refineExits(const AcyclicGraph &g, const unordered_set<NFAVertex> &r, |
| 118 | NFAVertex new_v, vector<exit_info> &exits) { |
| 119 | /* new_v is no long an open edge */ |
| 120 | for (auto &exit : exits) { |
| 121 | exit.open.erase(new_v); |
| 122 | } |
| 123 | |
| 124 | /* no open edges: no longer an exit */ |
| 125 | exits.erase(remove_if(exits.begin(), exits.end(), |
| 126 | [&](const exit_info &exit) { return exit.open.empty(); }), |
| 127 | exits.end()); |
| 128 | |
| 129 | checkAndAddExitCandidate(g, r, new_v, exits); |
| 130 | } |
| 131 | |
| 132 | /** the set of exits from a candidate region are valid if: FIXME: document |
| 133 | */ |
| 134 | static |
| 135 | bool exitValid(UNUSED const AcyclicGraph &g, const vector<exit_info> &exits, |
| 136 | const flat_set<NFAVertex> &open_jumps) { |
| 137 | if (exits.empty() || (exits.size() < 2 && open_jumps.empty())) { |
| 138 | return true; |
| 139 | } |
| 140 | if (exits.size() == 1 && open_jumps.size() == 1) { |
| 141 | DEBUG_PRINTF("oj %zu, e %zu\n" , g[*open_jumps.begin()].index, |
| 142 | g[exits[0].exit].index); |
| 143 | if (*open_jumps.begin() == exits[0].exit) { |
| 144 | return true; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | assert(!exits.empty()); |
| 149 | const auto &enters = exits.front().open; |
| 150 | |
| 151 | if (!open_jumps.empty() && enters != open_jumps) { |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | for (auto it = begin(exits) + 1; it != end(exits); ++it) { |
| 156 | if (it->open != enters) { |
| 157 | return false; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | static |
| 165 | void setRegion(const unordered_set<NFAVertex> &r, u32 rid, |
| 166 | unordered_map<NFAVertex, u32> ®ions) { |
| 167 | for (auto v : r) { |
| 168 | regions[v] = rid; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | static |
| 173 | void buildInitialCandidate(const AcyclicGraph &g, |
| 174 | vector<NFAVertex>::const_reverse_iterator &it, |
| 175 | const vector<NFAVertex>::const_reverse_iterator &ite, |
| 176 | unordered_set<NFAVertex> &candidate, |
| 177 | /* in exits of prev region; |
| 178 | * out exits from candidate */ |
| 179 | vector<exit_info> &exits, |
| 180 | flat_set<NFAVertex> &open_jumps) { |
| 181 | if (it == ite) { |
| 182 | candidate.clear(); |
| 183 | exits.clear(); |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | if (exits.empty()) { |
| 188 | DEBUG_PRINTF("odd\n" ); |
| 189 | candidate.clear(); |
| 190 | DEBUG_PRINTF("adding %zu to initial\n" , g[*it].index); |
| 191 | candidate.insert(*it); |
| 192 | open_jumps.erase(*it); |
| 193 | checkAndAddExitCandidate(g, candidate, *it, exits); |
| 194 | ++it; |
| 195 | return; |
| 196 | } |
| 197 | |
| 198 | // Note: findExits() will clear exits, so it's safe to mutate/move its |
| 199 | // elements here. |
| 200 | auto &enters = exits.front().open; |
| 201 | candidate.clear(); |
| 202 | |
| 203 | for (; it != ite; ++it) { |
| 204 | DEBUG_PRINTF("adding %zu to initial\n" , g[*it].index); |
| 205 | candidate.insert(*it); |
| 206 | if (contains(enters, *it)) { |
| 207 | break; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | if (it != ite) { |
| 212 | enters.erase(*it); |
| 213 | open_jumps = move(enters); |
| 214 | DEBUG_PRINTF("oj size = %zu\n" , open_jumps.size()); |
| 215 | ++it; |
| 216 | } else { |
| 217 | open_jumps.clear(); |
| 218 | } |
| 219 | |
| 220 | findExits(g, candidate, exits); |
| 221 | } |
| 222 | |
| 223 | static |
| 224 | void findDagLeaders(const NGHolder &h, const AcyclicGraph &g, |
| 225 | const vector<NFAVertex> &topo, |
| 226 | unordered_map<NFAVertex, u32> ®ions) { |
| 227 | assert(!topo.empty()); |
| 228 | u32 curr_id = 0; |
| 229 | auto t_it = topo.rbegin(); |
| 230 | unordered_set<NFAVertex> candidate; |
| 231 | flat_set<NFAVertex> open_jumps; |
| 232 | DEBUG_PRINTF("adding %zu to current\n" , g[*t_it].index); |
| 233 | assert(t_it != topo.rend()); |
| 234 | candidate.insert(*t_it++); |
| 235 | DEBUG_PRINTF("adding %zu to current\n" , g[*t_it].index); |
| 236 | assert(t_it != topo.rend()); |
| 237 | candidate.insert(*t_it++); |
| 238 | |
| 239 | vector<exit_info> exits; |
| 240 | findExits(g, candidate, exits); |
| 241 | |
| 242 | while (t_it != topo.rend()) { |
| 243 | assert(!candidate.empty()); |
| 244 | |
| 245 | if (exitValid(g, exits, open_jumps)) { |
| 246 | if (contains(candidate, h.accept) && !open_jumps.empty()) { |
| 247 | /* we have tried to make an optional region containing accept as |
| 248 | * we have an open jump to eod. This candidate region needs to |
| 249 | * be put in with the previous region. */ |
| 250 | curr_id--; |
| 251 | DEBUG_PRINTF("merging in with region %u\n" , curr_id); |
| 252 | } else { |
| 253 | DEBUG_PRINTF("setting region %u\n" , curr_id); |
| 254 | } |
| 255 | setRegion(candidate, curr_id++, regions); |
| 256 | buildInitialCandidate(g, t_it, topo.rend(), candidate, exits, |
| 257 | open_jumps); |
| 258 | } else { |
| 259 | NFAVertex curr = *t_it; |
| 260 | DEBUG_PRINTF("adding %zu to current\n" , g[curr].index); |
| 261 | candidate.insert(curr); |
| 262 | open_jumps.erase(curr); |
| 263 | refineExits(g, candidate, *t_it, exits); |
| 264 | DEBUG_PRINTF(" open jumps %zu exits %zu\n" , open_jumps.size(), |
| 265 | exits.size()); |
| 266 | ++t_it; |
| 267 | } |
| 268 | } |
| 269 | /* assert exits valid */ |
| 270 | setRegion(candidate, curr_id, regions); |
| 271 | } |
| 272 | |
| 273 | static |
| 274 | void mergeUnderBackEdges(const NGHolder &g, const vector<NFAVertex> &topo, |
| 275 | const BackEdgeSet &backEdges, |
| 276 | unordered_map<NFAVertex, u32> ®ions) { |
| 277 | for (const auto &e : backEdges) { |
| 278 | NFAVertex u = source(e, g); |
| 279 | NFAVertex v = target(e, g); |
| 280 | |
| 281 | u32 ru = regions[u]; |
| 282 | u32 rv = regions[v]; |
| 283 | if (ru == rv) { |
| 284 | continue; |
| 285 | } |
| 286 | |
| 287 | DEBUG_PRINTF("merging v = %zu(%u), u = %zu(%u)\n" , g[v].index, rv, |
| 288 | g[u].index, ru); |
| 289 | assert(rv < ru); |
| 290 | |
| 291 | for (auto t : topo) { |
| 292 | u32 r = regions[t]; |
| 293 | if (r <= ru && r > rv) { |
| 294 | regions[t] = rv; |
| 295 | } else if (r > ru) { |
| 296 | regions[t] = rv + r - ru; |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | static |
| 303 | void reorderSpecials(const NGHolder &w, const AcyclicGraph &acyclic_g, |
| 304 | vector<NFAVertex> &topoOrder) { |
| 305 | // Start is last element of reverse topo ordering. |
| 306 | auto it = find(topoOrder.begin(), topoOrder.end(), w.start); |
| 307 | if (it != topoOrder.end() - 1) { |
| 308 | DEBUG_PRINTF("repositioning start\n" ); |
| 309 | assert(it != topoOrder.end()); |
| 310 | topoOrder.erase(it); |
| 311 | topoOrder.insert(topoOrder.end(), w.start); |
| 312 | } |
| 313 | |
| 314 | // StartDs is second-to-last element of reverse topo ordering. |
| 315 | it = find(topoOrder.begin(), topoOrder.end(), w.startDs); |
| 316 | if (it != topoOrder.end() - 2) { |
| 317 | DEBUG_PRINTF("repositioning start ds\n" ); |
| 318 | assert(it != topoOrder.end()); |
| 319 | topoOrder.erase(it); |
| 320 | topoOrder.insert(topoOrder.end() - 1, w.startDs); |
| 321 | } |
| 322 | |
| 323 | // AcceptEOD is first element of reverse topo ordering. |
| 324 | it = find(topoOrder.begin(), topoOrder.end(), w.acceptEod); |
| 325 | if (it != topoOrder.begin()) { |
| 326 | DEBUG_PRINTF("repositioning accept\n" ); |
| 327 | assert(it != topoOrder.end()); |
| 328 | topoOrder.erase(it); |
| 329 | topoOrder.insert(topoOrder.begin(), w.acceptEod); |
| 330 | } |
| 331 | |
| 332 | // Accept is second element of reverse topo ordering, if it's connected. |
| 333 | it = find(topoOrder.begin(), topoOrder.end(), w.accept); |
| 334 | if (it != topoOrder.begin() + 1) { |
| 335 | DEBUG_PRINTF("repositioning accept\n" ); |
| 336 | assert(it != topoOrder.end()); |
| 337 | topoOrder.erase(it); |
| 338 | if (in_degree(w.accept, acyclic_g) != 0) { |
| 339 | topoOrder.insert(topoOrder.begin() + 1, w.accept); |
| 340 | } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | static |
| 345 | void liftSinks(const AcyclicGraph &acyclic_g, vector<NFAVertex> &topoOrder) { |
| 346 | unordered_set<NFAVertex> sinks; |
| 347 | for (auto v : vertices_range(acyclic_g)) { |
| 348 | if (is_special(v, acyclic_g)) { |
| 349 | continue; |
| 350 | } |
| 351 | |
| 352 | if (isLeafNode(v, acyclic_g)) { |
| 353 | DEBUG_PRINTF("sink found %zu\n" , acyclic_g[v].index); |
| 354 | sinks.insert(NFAVertex(v)); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | if (sinks.empty()) { |
| 359 | DEBUG_PRINTF("no sinks found\n" ); |
| 360 | return; |
| 361 | } |
| 362 | |
| 363 | bool changed; |
| 364 | do { |
| 365 | DEBUG_PRINTF("look\n" ); |
| 366 | changed = false; |
| 367 | for (auto v : vertices_range(acyclic_g)) { |
| 368 | if (is_special(v, acyclic_g) || contains(sinks, NFAVertex(v))) { |
| 369 | continue; |
| 370 | } |
| 371 | |
| 372 | for (auto w : adjacent_vertices_range(v, acyclic_g)) { |
| 373 | if (!contains(sinks, NFAVertex(w))) { |
| 374 | goto next; |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | DEBUG_PRINTF("sink found %zu\n" , acyclic_g[v].index); |
| 379 | sinks.insert(NFAVertex(v)); |
| 380 | changed = true; |
| 381 | next:; |
| 382 | } |
| 383 | } while (changed); |
| 384 | |
| 385 | for (auto ri = topoOrder.rbegin() + 1; ri != topoOrder.rend(); ++ri) { |
| 386 | if (!contains(sinks, *ri)) { |
| 387 | continue; |
| 388 | } |
| 389 | NFAVertex s = *ri; |
| 390 | DEBUG_PRINTF("handling sink %zu\n" , acyclic_g[s].index); |
| 391 | unordered_set<NFAVertex> parents; |
| 392 | for (const auto &e : in_edges_range(s, acyclic_g)) { |
| 393 | parents.insert(NFAVertex(source(e, acyclic_g))); |
| 394 | } |
| 395 | |
| 396 | /* vertex has no children not reachable on a back edge, bubble the |
| 397 | * vertex up the topo order to be near its parents */ |
| 398 | vector<NFAVertex>::reverse_iterator rj = ri; |
| 399 | --rj; |
| 400 | while (rj != topoOrder.rbegin() && !contains(parents, *rj)) { |
| 401 | /* sink is in rj + 1 */ |
| 402 | assert(*(rj + 1) == s); |
| 403 | DEBUG_PRINTF("lifting\n" ); |
| 404 | using std::swap; |
| 405 | swap(*rj, *(rj + 1)); |
| 406 | --rj; |
| 407 | } |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | using ColorMap = decltype(make_small_color_map(NGHolder())); |
| 412 | |
| 413 | /** Build a reverse topo ordering (with only the specials that are in use). We |
| 414 | * also want to ensure vertices which only lead to back edges are placed near |
| 415 | * their parents. */ |
| 416 | static |
| 417 | vector<NFAVertex> buildTopoOrder(const NGHolder &w, |
| 418 | const AcyclicGraph &acyclic_g, |
| 419 | ColorMap &colours) { |
| 420 | vector<NFAVertex> topoOrder; |
| 421 | topoOrder.reserve(num_vertices(w)); |
| 422 | |
| 423 | topological_sort(acyclic_g, back_inserter(topoOrder), |
| 424 | color_map(colours)); |
| 425 | |
| 426 | reorderSpecials(w, acyclic_g, topoOrder); |
| 427 | |
| 428 | if (topoOrder.empty()) { |
| 429 | return topoOrder; |
| 430 | } |
| 431 | |
| 432 | liftSinks(acyclic_g, topoOrder); |
| 433 | |
| 434 | DEBUG_PRINTF("TOPO ORDER\n" ); |
| 435 | for (auto ri = topoOrder.rbegin(); ri != topoOrder.rend(); ++ri) { |
| 436 | DEBUG_PRINTF("[%zu]\n" , acyclic_g[*ri].index); |
| 437 | } |
| 438 | DEBUG_PRINTF("----------\n" ); |
| 439 | |
| 440 | return topoOrder; |
| 441 | } |
| 442 | |
| 443 | unordered_map<NFAVertex, u32> assignRegions(const NGHolder &g) { |
| 444 | assert(hasCorrectlyNumberedVertices(g)); |
| 445 | const u32 numVertices = num_vertices(g); |
| 446 | DEBUG_PRINTF("assigning regions for %u vertices in holder\n" , numVertices); |
| 447 | |
| 448 | auto colours = make_small_color_map(g); |
| 449 | |
| 450 | // Build an acyclic graph for this NGHolder. |
| 451 | BackEdgeSet deadEdges; |
| 452 | depth_first_search(g, |
| 453 | visitor(BackEdges<BackEdgeSet>(deadEdges)) |
| 454 | .root_vertex(g.start) |
| 455 | .color_map(colours)); |
| 456 | |
| 457 | auto af = make_bad_edge_filter(&deadEdges); |
| 458 | AcyclicGraph acyclic_g(g, af); |
| 459 | |
| 460 | // Build a (reverse) topological ordering. |
| 461 | vector<NFAVertex> topoOrder = buildTopoOrder(g, acyclic_g, colours); |
| 462 | |
| 463 | // Everybody starts in region 0. |
| 464 | unordered_map<NFAVertex, u32> regions; |
| 465 | regions.reserve(numVertices); |
| 466 | for (auto v : vertices_range(g)) { |
| 467 | regions.emplace(v, 0); |
| 468 | } |
| 469 | |
| 470 | findDagLeaders(g, acyclic_g, topoOrder, regions); |
| 471 | mergeUnderBackEdges(g, topoOrder, deadEdges, regions); |
| 472 | |
| 473 | return regions; |
| 474 | } |
| 475 | |
| 476 | } // namespace ue2 |
| 477 | |