| 1 | /* |
| 2 | * Copyright (c) 2018, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Parse and build ParsedLogical::logicalTree and combInfoMap. |
| 31 | */ |
| 32 | #include "logical_combination.h" |
| 33 | #include "parser/parse_error.h" |
| 34 | #include "util/container.h" |
| 35 | #include "hs_compile.h" |
| 36 | |
| 37 | #include <vector> |
| 38 | |
| 39 | using namespace std; |
| 40 | |
| 41 | namespace ue2 { |
| 42 | |
| 43 | u32 ParsedLogical::getLogicalKey(u32 a) { |
| 44 | auto it = toLogicalKeyMap.find(a); |
| 45 | if (it == toLogicalKeyMap.end()) { |
| 46 | // get size before assigning to avoid wacky LHS shenanigans |
| 47 | u32 size = toLogicalKeyMap.size(); |
| 48 | bool inserted; |
| 49 | tie(it, inserted) = toLogicalKeyMap.emplace(a, size); |
| 50 | assert(inserted); |
| 51 | } |
| 52 | DEBUG_PRINTF("%u -> lkey %u\n" , it->first, it->second); |
| 53 | return it->second; |
| 54 | } |
| 55 | |
| 56 | u32 ParsedLogical::getCombKey(u32 a) { |
| 57 | auto it = toCombKeyMap.find(a); |
| 58 | if (it == toCombKeyMap.end()) { |
| 59 | u32 size = toCombKeyMap.size(); |
| 60 | bool inserted; |
| 61 | tie(it, inserted) = toCombKeyMap.emplace(a, size); |
| 62 | assert(inserted); |
| 63 | } |
| 64 | DEBUG_PRINTF("%u -> ckey %u\n" , it->first, it->second); |
| 65 | return it->second; |
| 66 | } |
| 67 | |
| 68 | void ParsedLogical::addRelateCKey(u32 lkey, u32 ckey) { |
| 69 | auto it = lkey2ckeys.find(lkey); |
| 70 | if (it == lkey2ckeys.end()) { |
| 71 | bool inserted; |
| 72 | tie(it, inserted) = lkey2ckeys.emplace(lkey, set<u32>()); |
| 73 | assert(inserted); |
| 74 | } |
| 75 | it->second.insert(ckey); |
| 76 | DEBUG_PRINTF("lkey %u belongs to combination key %u\n" , |
| 77 | it->first, ckey); |
| 78 | } |
| 79 | |
| 80 | #define TRY_RENUM_OP(ckey) \ |
| 81 | do { \ |
| 82 | if (ckey & LOGICAL_OP_BIT) { \ |
| 83 | ckey = (ckey & ~LOGICAL_OP_BIT) + toLogicalKeyMap.size(); \ |
| 84 | } \ |
| 85 | } while(0) |
| 86 | |
| 87 | u32 ParsedLogical::logicalTreeAdd(u32 op, u32 left, u32 right) { |
| 88 | LogicalOp lop; |
| 89 | assert((LOGICAL_OP_BIT & (u32)logicalTree.size()) == 0); |
| 90 | lop.id = LOGICAL_OP_BIT | (u32)logicalTree.size(); |
| 91 | lop.op = op; |
| 92 | lop.lo = left; |
| 93 | lop.ro = right; |
| 94 | logicalTree.push_back(lop); |
| 95 | return lop.id; |
| 96 | } |
| 97 | |
| 98 | void ParsedLogical::combinationInfoAdd(UNUSED u32 ckey, u32 id, u32 ekey, |
| 99 | u32 lkey_start, u32 lkey_result, |
| 100 | u64a min_offset, u64a max_offset) { |
| 101 | assert(ckey == combInfoMap.size()); |
| 102 | CombInfo ci; |
| 103 | ci.id = id; |
| 104 | ci.ekey = ekey; |
| 105 | ci.start = lkey_start; |
| 106 | ci.result = lkey_result; |
| 107 | ci.min_offset = min_offset; |
| 108 | ci.max_offset = max_offset; |
| 109 | combInfoMap.push_back(ci); |
| 110 | |
| 111 | DEBUG_PRINTF("ckey %u (id %u) -> lkey %u..%u, ekey=0x%x\n" , ckey, ci.id, |
| 112 | ci.start, ci.result, ci.ekey); |
| 113 | } |
| 114 | |
| 115 | void ParsedLogical::validateSubIDs(const unsigned *ids, |
| 116 | const char *const *expressions, |
| 117 | const unsigned *flags, |
| 118 | unsigned elements) { |
| 119 | for (const auto &it : toLogicalKeyMap) { |
| 120 | bool unknown = true; |
| 121 | u32 i = 0; |
| 122 | for (i = 0; i < elements; i++) { |
| 123 | if ((ids ? ids[i] : 0) == it.first) { |
| 124 | unknown = false; |
| 125 | break; |
| 126 | } |
| 127 | } |
| 128 | if (unknown) { |
| 129 | throw CompileError("Unknown sub-expression id." ); |
| 130 | } |
| 131 | if (contains(toCombKeyMap, it.first)) { |
| 132 | throw CompileError("Have combination of combination." ); |
| 133 | } |
| 134 | if (flags && (flags[i] & HS_FLAG_SOM_LEFTMOST)) { |
| 135 | throw CompileError("Have SOM flag in sub-expression." ); |
| 136 | } |
| 137 | if (flags && (flags[i] & HS_FLAG_PREFILTER)) { |
| 138 | throw CompileError("Have PREFILTER flag in sub-expression." ); |
| 139 | } |
| 140 | hs_compile_error_t *compile_err = NULL; |
| 141 | hs_expr_info_t *info = NULL; |
| 142 | hs_error_t err = hs_expression_info(expressions[i], flags[i], &info, |
| 143 | &compile_err); |
| 144 | if (err != HS_SUCCESS) { |
| 145 | hs_free_compile_error(compile_err); |
| 146 | throw CompileError("Run hs_expression_info() failed." ); |
| 147 | } |
| 148 | if (!info) { |
| 149 | throw CompileError("Get hs_expr_info_t failed." ); |
| 150 | } else { |
| 151 | if (info->unordered_matches) { |
| 152 | throw CompileError("Have unordered match in sub-expressions." ); |
| 153 | } |
| 154 | free(info); |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | void ParsedLogical::logicalKeyRenumber() { |
| 160 | // renumber operation lkey in op vector |
| 161 | for (auto &op : logicalTree) { |
| 162 | TRY_RENUM_OP(op.id); |
| 163 | TRY_RENUM_OP(op.lo); |
| 164 | TRY_RENUM_OP(op.ro); |
| 165 | } |
| 166 | // renumber operation lkey in info map |
| 167 | for (auto &ci : combInfoMap) { |
| 168 | TRY_RENUM_OP(ci.start); |
| 169 | TRY_RENUM_OP(ci.result); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | struct LogicalOperator { |
| 174 | LogicalOperator(u32 op_in, u32 paren_in) |
| 175 | : op(op_in), paren(paren_in) {} |
| 176 | u32 op; |
| 177 | u32 paren; |
| 178 | }; |
| 179 | |
| 180 | static |
| 181 | u32 toOperator(char c) { |
| 182 | u32 op = UNKNOWN_OP; |
| 183 | switch (c) { |
| 184 | case '!' : |
| 185 | op = LOGICAL_OP_NOT; |
| 186 | break; |
| 187 | case '&' : |
| 188 | op = LOGICAL_OP_AND; |
| 189 | break; |
| 190 | case '|' : |
| 191 | op = LOGICAL_OP_OR; |
| 192 | break; |
| 193 | default: |
| 194 | break; |
| 195 | }; |
| 196 | return op; |
| 197 | } |
| 198 | |
| 199 | static |
| 200 | bool cmpOperator(const LogicalOperator &op1, const LogicalOperator &op2) { |
| 201 | if (op1.paren < op2.paren) { |
| 202 | return false; |
| 203 | } |
| 204 | if (op1.paren > op2.paren) { |
| 205 | return true; |
| 206 | } |
| 207 | assert(op1.paren == op2.paren); |
| 208 | if (op1.op > op2.op) { |
| 209 | return false; |
| 210 | } |
| 211 | if (op1.op < op2.op) { |
| 212 | return true; |
| 213 | } |
| 214 | return true; |
| 215 | } |
| 216 | |
| 217 | static |
| 218 | u32 fetchSubID(const char *logical, u32 &digit, u32 end) { |
| 219 | if (digit == (u32)-1) { // no digit parsing in progress |
| 220 | return (u32)-1; |
| 221 | } |
| 222 | assert(end > digit); |
| 223 | if (end - digit > 9) { |
| 224 | throw LocatedParseError("Expression id too large" ); |
| 225 | } |
| 226 | u32 mult = 1; |
| 227 | u32 sum = 0; |
| 228 | for (u32 j = end - 1; (j >= digit) && (j != (u32)-1) ; j--) { |
| 229 | assert(isdigit(logical[j])); |
| 230 | sum += (logical[j] - '0') * mult; |
| 231 | mult *= 10; |
| 232 | } |
| 233 | digit = (u32)-1; |
| 234 | return sum; |
| 235 | } |
| 236 | |
| 237 | static |
| 238 | void popOperator(vector<LogicalOperator> &op_stack, vector<u32> &subid_stack, |
| 239 | ParsedLogical &pl) { |
| 240 | if (subid_stack.empty()) { |
| 241 | throw LocatedParseError("Not enough operand" ); |
| 242 | } |
| 243 | u32 right = subid_stack.back(); |
| 244 | subid_stack.pop_back(); |
| 245 | u32 left = 0; |
| 246 | if (op_stack.back().op != LOGICAL_OP_NOT) { |
| 247 | if (subid_stack.empty()) { |
| 248 | throw LocatedParseError("Not enough operand" ); |
| 249 | } |
| 250 | left = subid_stack.back(); |
| 251 | subid_stack.pop_back(); |
| 252 | } |
| 253 | subid_stack.push_back(pl.logicalTreeAdd(op_stack.back().op, left, right)); |
| 254 | op_stack.pop_back(); |
| 255 | } |
| 256 | |
| 257 | static |
| 258 | char getValue(const vector<char> &lv, u32 ckey) { |
| 259 | if (ckey & LOGICAL_OP_BIT) { |
| 260 | return lv[ckey & ~LOGICAL_OP_BIT]; |
| 261 | } else { |
| 262 | return 0; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | static |
| 267 | bool hasMatchFromPurelyNegative(const vector<LogicalOp> &tree, |
| 268 | u32 start, u32 result) { |
| 269 | vector<char> lv(tree.size()); |
| 270 | assert(start <= result); |
| 271 | for (u32 i = start; i <= result; i++) { |
| 272 | assert(i & LOGICAL_OP_BIT); |
| 273 | const LogicalOp &op = tree[i & ~LOGICAL_OP_BIT]; |
| 274 | assert(i == op.id); |
| 275 | switch (op.op) { |
| 276 | case LOGICAL_OP_NOT: |
| 277 | lv[op.id & ~LOGICAL_OP_BIT] = !getValue(lv, op.ro); |
| 278 | break; |
| 279 | case LOGICAL_OP_AND: |
| 280 | lv[op.id & ~LOGICAL_OP_BIT] = getValue(lv, op.lo) & |
| 281 | getValue(lv, op.ro); |
| 282 | break; |
| 283 | case LOGICAL_OP_OR: |
| 284 | lv[op.id & ~LOGICAL_OP_BIT] = getValue(lv, op.lo) | |
| 285 | getValue(lv, op.ro); |
| 286 | break; |
| 287 | default: |
| 288 | assert(0); |
| 289 | break; |
| 290 | } |
| 291 | } |
| 292 | return lv[result & ~LOGICAL_OP_BIT]; |
| 293 | } |
| 294 | |
| 295 | void ParsedLogical::parseLogicalCombination(unsigned id, const char *logical, |
| 296 | u32 ekey, u64a min_offset, |
| 297 | u64a max_offset) { |
| 298 | u32 ckey = getCombKey(id); |
| 299 | vector<LogicalOperator> op_stack; |
| 300 | vector<u32> subid_stack; |
| 301 | u32 lkey_start = INVALID_LKEY; // logical operation's lkey |
| 302 | u32 paren = 0; // parentheses |
| 303 | u32 digit = (u32)-1; // digit start offset, invalid offset is -1 |
| 304 | u32 subid = (u32)-1; |
| 305 | u32 i; |
| 306 | try { |
| 307 | for (i = 0; logical[i]; i++) { |
| 308 | if (isdigit(logical[i])) { |
| 309 | if (digit == (u32)-1) { // new digit start |
| 310 | digit = i; |
| 311 | } |
| 312 | } else { |
| 313 | if ((subid = fetchSubID(logical, digit, i)) != (u32)-1) { |
| 314 | subid_stack.push_back(getLogicalKey(subid)); |
| 315 | addRelateCKey(subid_stack.back(), ckey); |
| 316 | } |
| 317 | if (logical[i] == ' ') { // skip whitespace |
| 318 | continue; |
| 319 | } |
| 320 | if (logical[i] == '(') { |
| 321 | paren += 1; |
| 322 | } else if (logical[i] == ')') { |
| 323 | if (paren <= 0) { |
| 324 | throw LocatedParseError("Not enough left parentheses" ); |
| 325 | } |
| 326 | paren -= 1; |
| 327 | } else { |
| 328 | u32 prio = toOperator(logical[i]); |
| 329 | if (prio != UNKNOWN_OP) { |
| 330 | LogicalOperator op(prio, paren); |
| 331 | while (!op_stack.empty() |
| 332 | && cmpOperator(op_stack.back(), op)) { |
| 333 | popOperator(op_stack, subid_stack, *this); |
| 334 | if (lkey_start == INVALID_LKEY) { |
| 335 | lkey_start = subid_stack.back(); |
| 336 | } |
| 337 | } |
| 338 | op_stack.push_back(op); |
| 339 | } else { |
| 340 | throw LocatedParseError("Unknown character" ); |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | if (paren != 0) { |
| 346 | throw LocatedParseError("Not enough right parentheses" ); |
| 347 | } |
| 348 | if ((subid = fetchSubID(logical, digit, i)) != (u32)-1) { |
| 349 | subid_stack.push_back(getLogicalKey(subid)); |
| 350 | addRelateCKey(subid_stack.back(), ckey); |
| 351 | } |
| 352 | while (!op_stack.empty()) { |
| 353 | popOperator(op_stack, subid_stack, *this); |
| 354 | if (lkey_start == INVALID_LKEY) { |
| 355 | lkey_start = subid_stack.back(); |
| 356 | } |
| 357 | } |
| 358 | if (subid_stack.size() != 1) { |
| 359 | throw LocatedParseError("Not enough operator" ); |
| 360 | } |
| 361 | } catch (LocatedParseError &error) { |
| 362 | error.locate(i); |
| 363 | throw; |
| 364 | } |
| 365 | u32 lkey_result = subid_stack.back(); // logical operation's lkey |
| 366 | if (lkey_start == INVALID_LKEY) { |
| 367 | throw CompileError("No logical operation." ); |
| 368 | } |
| 369 | if (hasMatchFromPurelyNegative(logicalTree, lkey_start, lkey_result)) { |
| 370 | throw CompileError("Has match from purely negative sub-expressions." ); |
| 371 | } |
| 372 | combinationInfoAdd(ckey, id, ekey, lkey_start, lkey_result, |
| 373 | min_offset, max_offset); |
| 374 | } |
| 375 | |
| 376 | } // namespace ue2 |
| 377 | |