1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * |
6 | * Copyright (C) 1997-2016, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ****************************************************************************** |
10 | * |
11 | * File CMEMORY.H |
12 | * |
13 | * Contains stdlib.h/string.h memory functions |
14 | * |
15 | * @author Bertrand A. Damiba |
16 | * |
17 | * Modification History: |
18 | * |
19 | * Date Name Description |
20 | * 6/20/98 Bertrand Created. |
21 | * 05/03/99 stephen Changed from functions to macros. |
22 | * |
23 | ****************************************************************************** |
24 | */ |
25 | |
26 | #ifndef CMEMORY_H |
27 | #define CMEMORY_H |
28 | |
29 | #include "unicode/utypes.h" |
30 | |
31 | #include <stddef.h> |
32 | #include <string.h> |
33 | #include "unicode/localpointer.h" |
34 | |
35 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
36 | #include <stdio.h> |
37 | #endif |
38 | |
39 | |
40 | #define uprv_memcpy(dst, src, size) U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size) |
41 | #define uprv_memmove(dst, src, size) U_STANDARD_CPP_NAMESPACE memmove(dst, src, size) |
42 | |
43 | /** |
44 | * \def UPRV_LENGTHOF |
45 | * Convenience macro to determine the length of a fixed array at compile-time. |
46 | * @param array A fixed length array |
47 | * @return The length of the array, in elements |
48 | * @internal |
49 | */ |
50 | #define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
51 | #define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size) |
52 | #define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size) |
53 | #define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num) |
54 | |
55 | U_CAPI void * U_EXPORT2 |
56 | uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1); |
57 | |
58 | U_CAPI void * U_EXPORT2 |
59 | uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2); |
60 | |
61 | U_CAPI void U_EXPORT2 |
62 | uprv_free(void *mem); |
63 | |
64 | U_CAPI void * U_EXPORT2 |
65 | uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2); |
66 | |
67 | /** |
68 | * Get the least significant bits of a pointer (a memory address). |
69 | * For example, with a mask of 3, the macro gets the 2 least significant bits, |
70 | * which will be 0 if the pointer is 32-bit (4-byte) aligned. |
71 | * |
72 | * uintptr_t is the most appropriate integer type to cast to. |
73 | */ |
74 | #define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask)) |
75 | |
76 | /** |
77 | * Create & return an instance of "type" in statically allocated storage. |
78 | * e.g. |
79 | * static std::mutex *myMutex = STATIC_NEW(std::mutex); |
80 | * To destroy an object created in this way, invoke the destructor explicitly, e.g. |
81 | * myMutex->~mutex(); |
82 | * DO NOT use delete. |
83 | * DO NOT use with class UMutex, which has specific support for static instances. |
84 | * |
85 | * STATIC_NEW is intended for use when |
86 | * - We want a static (or global) object. |
87 | * - We don't want it to ever be destructed, or to explicitly control destruction, |
88 | * to avoid use-after-destruction problems. |
89 | * - We want to avoid an ordinary heap allocated object, |
90 | * to avoid the possibility of memory allocation failures, and |
91 | * to avoid memory leak reports, from valgrind, for example. |
92 | * This is defined as a macro rather than a template function because each invocation |
93 | * must define distinct static storage for the object being returned. |
94 | */ |
95 | #define STATIC_NEW(type) [] () { \ |
96 | alignas(type) static char storage[sizeof(type)]; \ |
97 | return new(storage) type();} () |
98 | |
99 | /** |
100 | * Heap clean up function, called from u_cleanup() |
101 | * Clears any user heap functions from u_setMemoryFunctions() |
102 | * Does NOT deallocate any remaining allocated memory. |
103 | */ |
104 | U_CFUNC UBool |
105 | cmemory_cleanup(void); |
106 | |
107 | /** |
108 | * A function called by <TT>uhash_remove</TT>, |
109 | * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete |
110 | * an existing key or value. |
111 | * @param obj A key or value stored in a hashtable |
112 | * @see uprv_deleteUObject |
113 | */ |
114 | typedef void U_CALLCONV UObjectDeleter(void* obj); |
115 | |
116 | /** |
117 | * Deleter for UObject instances. |
118 | * Works for all subclasses of UObject because it has a virtual destructor. |
119 | */ |
120 | U_CAPI void U_EXPORT2 |
121 | uprv_deleteUObject(void *obj); |
122 | |
123 | #ifdef __cplusplus |
124 | |
125 | #include <utility> |
126 | #include "unicode/uobject.h" |
127 | |
128 | U_NAMESPACE_BEGIN |
129 | |
130 | /** |
131 | * "Smart pointer" class, deletes memory via uprv_free(). |
132 | * For most methods see the LocalPointerBase base class. |
133 | * Adds operator[] for array item access. |
134 | * |
135 | * @see LocalPointerBase |
136 | */ |
137 | template<typename T> |
138 | class LocalMemory : public LocalPointerBase<T> { |
139 | public: |
140 | using LocalPointerBase<T>::operator*; |
141 | using LocalPointerBase<T>::operator->; |
142 | /** |
143 | * Constructor takes ownership. |
144 | * @param p simple pointer to an array of T items that is adopted |
145 | */ |
146 | explicit LocalMemory(T *p=NULL) : LocalPointerBase<T>(p) {} |
147 | /** |
148 | * Move constructor, leaves src with isNull(). |
149 | * @param src source smart pointer |
150 | */ |
151 | LocalMemory(LocalMemory<T> &&src) U_NOEXCEPT : LocalPointerBase<T>(src.ptr) { |
152 | src.ptr=NULL; |
153 | } |
154 | /** |
155 | * Destructor deletes the memory it owns. |
156 | */ |
157 | ~LocalMemory() { |
158 | uprv_free(LocalPointerBase<T>::ptr); |
159 | } |
160 | /** |
161 | * Move assignment operator, leaves src with isNull(). |
162 | * The behavior is undefined if *this and src are the same object. |
163 | * @param src source smart pointer |
164 | * @return *this |
165 | */ |
166 | LocalMemory<T> &operator=(LocalMemory<T> &&src) U_NOEXCEPT { |
167 | uprv_free(LocalPointerBase<T>::ptr); |
168 | LocalPointerBase<T>::ptr=src.ptr; |
169 | src.ptr=NULL; |
170 | return *this; |
171 | } |
172 | /** |
173 | * Swap pointers. |
174 | * @param other other smart pointer |
175 | */ |
176 | void swap(LocalMemory<T> &other) U_NOEXCEPT { |
177 | T *temp=LocalPointerBase<T>::ptr; |
178 | LocalPointerBase<T>::ptr=other.ptr; |
179 | other.ptr=temp; |
180 | } |
181 | /** |
182 | * Non-member LocalMemory swap function. |
183 | * @param p1 will get p2's pointer |
184 | * @param p2 will get p1's pointer |
185 | */ |
186 | friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) U_NOEXCEPT { |
187 | p1.swap(p2); |
188 | } |
189 | /** |
190 | * Deletes the array it owns, |
191 | * and adopts (takes ownership of) the one passed in. |
192 | * @param p simple pointer to an array of T items that is adopted |
193 | */ |
194 | void adoptInstead(T *p) { |
195 | uprv_free(LocalPointerBase<T>::ptr); |
196 | LocalPointerBase<T>::ptr=p; |
197 | } |
198 | /** |
199 | * Deletes the array it owns, allocates a new one and reset its bytes to 0. |
200 | * Returns the new array pointer. |
201 | * If the allocation fails, then the current array is unchanged and |
202 | * this method returns NULL. |
203 | * @param newCapacity must be >0 |
204 | * @return the allocated array pointer, or NULL if the allocation failed |
205 | */ |
206 | inline T *allocateInsteadAndReset(int32_t newCapacity=1); |
207 | /** |
208 | * Deletes the array it owns and allocates a new one, copying length T items. |
209 | * Returns the new array pointer. |
210 | * If the allocation fails, then the current array is unchanged and |
211 | * this method returns NULL. |
212 | * @param newCapacity must be >0 |
213 | * @param length number of T items to be copied from the old array to the new one; |
214 | * must be no more than the capacity of the old array, |
215 | * which the caller must track because the LocalMemory does not track it |
216 | * @return the allocated array pointer, or NULL if the allocation failed |
217 | */ |
218 | inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0); |
219 | /** |
220 | * Array item access (writable). |
221 | * No index bounds check. |
222 | * @param i array index |
223 | * @return reference to the array item |
224 | */ |
225 | T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; } |
226 | }; |
227 | |
228 | template<typename T> |
229 | inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) { |
230 | if(newCapacity>0) { |
231 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
232 | if(p!=NULL) { |
233 | uprv_memset(p, 0, newCapacity*sizeof(T)); |
234 | uprv_free(LocalPointerBase<T>::ptr); |
235 | LocalPointerBase<T>::ptr=p; |
236 | } |
237 | return p; |
238 | } else { |
239 | return NULL; |
240 | } |
241 | } |
242 | |
243 | |
244 | template<typename T> |
245 | inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) { |
246 | if(newCapacity>0) { |
247 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
248 | if(p!=NULL) { |
249 | if(length>0) { |
250 | if(length>newCapacity) { |
251 | length=newCapacity; |
252 | } |
253 | uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T)); |
254 | } |
255 | uprv_free(LocalPointerBase<T>::ptr); |
256 | LocalPointerBase<T>::ptr=p; |
257 | } |
258 | return p; |
259 | } else { |
260 | return NULL; |
261 | } |
262 | } |
263 | |
264 | /** |
265 | * Simple array/buffer management class using uprv_malloc() and uprv_free(). |
266 | * Provides an internal array with fixed capacity. Can alias another array |
267 | * or allocate one. |
268 | * |
269 | * The array address is properly aligned for type T. It might not be properly |
270 | * aligned for types larger than T (or larger than the largest subtype of T). |
271 | * |
272 | * Unlike LocalMemory and LocalArray, this class never adopts |
273 | * (takes ownership of) another array. |
274 | * |
275 | * WARNING: MaybeStackArray only works with primitive (plain-old data) types. |
276 | * It does NOT know how to call a destructor! If you work with classes with |
277 | * destructors, consider LocalArray in localpointer.h or MemoryPool. |
278 | */ |
279 | template<typename T, int32_t stackCapacity> |
280 | class MaybeStackArray { |
281 | public: |
282 | // No heap allocation. Use only on the stack. |
283 | static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete; |
284 | static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete; |
285 | #if U_HAVE_PLACEMENT_NEW |
286 | static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete; |
287 | #endif |
288 | |
289 | /** |
290 | * Default constructor initializes with internal T[stackCapacity] buffer. |
291 | */ |
292 | MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(FALSE) {} |
293 | /** |
294 | * Automatically allocates the heap array if the argument is larger than the stack capacity. |
295 | * Intended for use when an approximate capacity is known at compile time but the true |
296 | * capacity is not known until runtime. |
297 | */ |
298 | MaybeStackArray(int32_t newCapacity) : MaybeStackArray() { |
299 | if (capacity < newCapacity) { resize(newCapacity); } |
300 | } |
301 | /** |
302 | * Destructor deletes the array (if owned). |
303 | */ |
304 | ~MaybeStackArray() { releaseArray(); } |
305 | /** |
306 | * Move constructor: transfers ownership or copies the stack array. |
307 | */ |
308 | MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT; |
309 | /** |
310 | * Move assignment: transfers ownership or copies the stack array. |
311 | */ |
312 | MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT; |
313 | /** |
314 | * Returns the array capacity (number of T items). |
315 | * @return array capacity |
316 | */ |
317 | int32_t getCapacity() const { return capacity; } |
318 | /** |
319 | * Access without ownership change. |
320 | * @return the array pointer |
321 | */ |
322 | T *getAlias() const { return ptr; } |
323 | /** |
324 | * Returns the array limit. Simple convenience method. |
325 | * @return getAlias()+getCapacity() |
326 | */ |
327 | T *getArrayLimit() const { return getAlias()+capacity; } |
328 | // No "operator T *() const" because that can make |
329 | // expressions like mbs[index] ambiguous for some compilers. |
330 | /** |
331 | * Array item access (const). |
332 | * No index bounds check. |
333 | * @param i array index |
334 | * @return reference to the array item |
335 | */ |
336 | const T &operator[](ptrdiff_t i) const { return ptr[i]; } |
337 | /** |
338 | * Array item access (writable). |
339 | * No index bounds check. |
340 | * @param i array index |
341 | * @return reference to the array item |
342 | */ |
343 | T &operator[](ptrdiff_t i) { return ptr[i]; } |
344 | /** |
345 | * Deletes the array (if owned) and aliases another one, no transfer of ownership. |
346 | * If the arguments are illegal, then the current array is unchanged. |
347 | * @param otherArray must not be NULL |
348 | * @param otherCapacity must be >0 |
349 | */ |
350 | void aliasInstead(T *otherArray, int32_t otherCapacity) { |
351 | if(otherArray!=NULL && otherCapacity>0) { |
352 | releaseArray(); |
353 | ptr=otherArray; |
354 | capacity=otherCapacity; |
355 | needToRelease=FALSE; |
356 | } |
357 | } |
358 | /** |
359 | * Deletes the array (if owned) and allocates a new one, copying length T items. |
360 | * Returns the new array pointer. |
361 | * If the allocation fails, then the current array is unchanged and |
362 | * this method returns NULL. |
363 | * @param newCapacity can be less than or greater than the current capacity; |
364 | * must be >0 |
365 | * @param length number of T items to be copied from the old array to the new one |
366 | * @return the allocated array pointer, or NULL if the allocation failed |
367 | */ |
368 | inline T *resize(int32_t newCapacity, int32_t length=0); |
369 | /** |
370 | * Gives up ownership of the array if owned, or else clones it, |
371 | * copying length T items; resets itself to the internal stack array. |
372 | * Returns NULL if the allocation failed. |
373 | * @param length number of T items to copy when cloning, |
374 | * and capacity of the clone when cloning |
375 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
376 | * @return the array pointer; |
377 | * caller becomes responsible for deleting the array |
378 | */ |
379 | inline T *orphanOrClone(int32_t length, int32_t &resultCapacity); |
380 | private: |
381 | T *ptr; |
382 | int32_t capacity; |
383 | UBool needToRelease; |
384 | T stackArray[stackCapacity]; |
385 | void releaseArray() { |
386 | if(needToRelease) { |
387 | uprv_free(ptr); |
388 | } |
389 | } |
390 | void resetToStackArray() { |
391 | ptr=stackArray; |
392 | capacity=stackCapacity; |
393 | needToRelease=FALSE; |
394 | } |
395 | /* No comparison operators with other MaybeStackArray's. */ |
396 | bool operator==(const MaybeStackArray & /*other*/) {return FALSE;} |
397 | bool operator!=(const MaybeStackArray & /*other*/) {return TRUE;} |
398 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
399 | MaybeStackArray(const MaybeStackArray & /*other*/) {} |
400 | void operator=(const MaybeStackArray & /*other*/) {} |
401 | }; |
402 | |
403 | template<typename T, int32_t stackCapacity> |
404 | icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray( |
405 | MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT |
406 | : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) { |
407 | if (src.ptr == src.stackArray) { |
408 | ptr = stackArray; |
409 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
410 | } else { |
411 | src.resetToStackArray(); // take ownership away from src |
412 | } |
413 | } |
414 | |
415 | template<typename T, int32_t stackCapacity> |
416 | inline MaybeStackArray <T, stackCapacity>& |
417 | MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT { |
418 | releaseArray(); // in case this instance had its own memory allocated |
419 | capacity = src.capacity; |
420 | needToRelease = src.needToRelease; |
421 | if (src.ptr == src.stackArray) { |
422 | ptr = stackArray; |
423 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
424 | } else { |
425 | ptr = src.ptr; |
426 | src.resetToStackArray(); // take ownership away from src |
427 | } |
428 | return *this; |
429 | } |
430 | |
431 | template<typename T, int32_t stackCapacity> |
432 | inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) { |
433 | if(newCapacity>0) { |
434 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
435 | ::fprintf(::stderr,"MaybeStacArray (resize) alloc %d * %lu\n" , newCapacity,sizeof(T)); |
436 | #endif |
437 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
438 | if(p!=NULL) { |
439 | if(length>0) { |
440 | if(length>capacity) { |
441 | length=capacity; |
442 | } |
443 | if(length>newCapacity) { |
444 | length=newCapacity; |
445 | } |
446 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
447 | } |
448 | releaseArray(); |
449 | ptr=p; |
450 | capacity=newCapacity; |
451 | needToRelease=TRUE; |
452 | } |
453 | return p; |
454 | } else { |
455 | return NULL; |
456 | } |
457 | } |
458 | |
459 | template<typename T, int32_t stackCapacity> |
460 | inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) { |
461 | T *p; |
462 | if(needToRelease) { |
463 | p=ptr; |
464 | } else if(length<=0) { |
465 | return NULL; |
466 | } else { |
467 | if(length>capacity) { |
468 | length=capacity; |
469 | } |
470 | p=(T *)uprv_malloc(length*sizeof(T)); |
471 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
472 | ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n" , length,sizeof(T)); |
473 | #endif |
474 | if(p==NULL) { |
475 | return NULL; |
476 | } |
477 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
478 | } |
479 | resultCapacity=length; |
480 | resetToStackArray(); |
481 | return p; |
482 | } |
483 | |
484 | /** |
485 | * Variant of MaybeStackArray that allocates a header struct and an array |
486 | * in one contiguous memory block, using uprv_malloc() and uprv_free(). |
487 | * Provides internal memory with fixed array capacity. Can alias another memory |
488 | * block or allocate one. |
489 | * The stackCapacity is the number of T items in the internal memory, |
490 | * not counting the H header. |
491 | * Unlike LocalMemory and LocalArray, this class never adopts |
492 | * (takes ownership of) another memory block. |
493 | */ |
494 | template<typename H, typename T, int32_t stackCapacity> |
495 | class MaybeStackHeaderAndArray { |
496 | public: |
497 | // No heap allocation. Use only on the stack. |
498 | static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete; |
499 | static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete; |
500 | #if U_HAVE_PLACEMENT_NEW |
501 | static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete; |
502 | #endif |
503 | |
504 | /** |
505 | * Default constructor initializes with internal H+T[stackCapacity] buffer. |
506 | */ |
507 | MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(FALSE) {} |
508 | /** |
509 | * Destructor deletes the memory (if owned). |
510 | */ |
511 | ~MaybeStackHeaderAndArray() { releaseMemory(); } |
512 | /** |
513 | * Returns the array capacity (number of T items). |
514 | * @return array capacity |
515 | */ |
516 | int32_t getCapacity() const { return capacity; } |
517 | /** |
518 | * Access without ownership change. |
519 | * @return the header pointer |
520 | */ |
521 | H *getAlias() const { return ptr; } |
522 | /** |
523 | * Returns the array start. |
524 | * @return array start, same address as getAlias()+1 |
525 | */ |
526 | T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); } |
527 | /** |
528 | * Returns the array limit. |
529 | * @return array limit |
530 | */ |
531 | T *getArrayLimit() const { return getArrayStart()+capacity; } |
532 | /** |
533 | * Access without ownership change. Same as getAlias(). |
534 | * A class instance can be used directly in expressions that take a T *. |
535 | * @return the header pointer |
536 | */ |
537 | operator H *() const { return ptr; } |
538 | /** |
539 | * Array item access (writable). |
540 | * No index bounds check. |
541 | * @param i array index |
542 | * @return reference to the array item |
543 | */ |
544 | T &operator[](ptrdiff_t i) { return getArrayStart()[i]; } |
545 | /** |
546 | * Deletes the memory block (if owned) and aliases another one, no transfer of ownership. |
547 | * If the arguments are illegal, then the current memory is unchanged. |
548 | * @param otherArray must not be NULL |
549 | * @param otherCapacity must be >0 |
550 | */ |
551 | void aliasInstead(H *otherMemory, int32_t otherCapacity) { |
552 | if(otherMemory!=NULL && otherCapacity>0) { |
553 | releaseMemory(); |
554 | ptr=otherMemory; |
555 | capacity=otherCapacity; |
556 | needToRelease=FALSE; |
557 | } |
558 | } |
559 | /** |
560 | * Deletes the memory block (if owned) and allocates a new one, |
561 | * copying the header and length T array items. |
562 | * Returns the new header pointer. |
563 | * If the allocation fails, then the current memory is unchanged and |
564 | * this method returns NULL. |
565 | * @param newCapacity can be less than or greater than the current capacity; |
566 | * must be >0 |
567 | * @param length number of T items to be copied from the old array to the new one |
568 | * @return the allocated pointer, or NULL if the allocation failed |
569 | */ |
570 | inline H *resize(int32_t newCapacity, int32_t length=0); |
571 | /** |
572 | * Gives up ownership of the memory if owned, or else clones it, |
573 | * copying the header and length T array items; resets itself to the internal memory. |
574 | * Returns NULL if the allocation failed. |
575 | * @param length number of T items to copy when cloning, |
576 | * and array capacity of the clone when cloning |
577 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
578 | * @return the header pointer; |
579 | * caller becomes responsible for deleting the array |
580 | */ |
581 | inline H *orphanOrClone(int32_t length, int32_t &resultCapacity); |
582 | private: |
583 | H *ptr; |
584 | int32_t capacity; |
585 | UBool needToRelease; |
586 | // stackHeader must precede stackArray immediately. |
587 | H stackHeader; |
588 | T stackArray[stackCapacity]; |
589 | void releaseMemory() { |
590 | if(needToRelease) { |
591 | uprv_free(ptr); |
592 | } |
593 | } |
594 | /* No comparison operators with other MaybeStackHeaderAndArray's. */ |
595 | bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return FALSE;} |
596 | bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return TRUE;} |
597 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
598 | MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {} |
599 | void operator=(const MaybeStackHeaderAndArray & /*other*/) {} |
600 | }; |
601 | |
602 | template<typename H, typename T, int32_t stackCapacity> |
603 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity, |
604 | int32_t length) { |
605 | if(newCapacity>=0) { |
606 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
607 | ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n" , sizeof(H),newCapacity,sizeof(T)); |
608 | #endif |
609 | H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T)); |
610 | if(p!=NULL) { |
611 | if(length<0) { |
612 | length=0; |
613 | } else if(length>0) { |
614 | if(length>capacity) { |
615 | length=capacity; |
616 | } |
617 | if(length>newCapacity) { |
618 | length=newCapacity; |
619 | } |
620 | } |
621 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
622 | releaseMemory(); |
623 | ptr=p; |
624 | capacity=newCapacity; |
625 | needToRelease=TRUE; |
626 | } |
627 | return p; |
628 | } else { |
629 | return NULL; |
630 | } |
631 | } |
632 | |
633 | template<typename H, typename T, int32_t stackCapacity> |
634 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length, |
635 | int32_t &resultCapacity) { |
636 | H *p; |
637 | if(needToRelease) { |
638 | p=ptr; |
639 | } else { |
640 | if(length<0) { |
641 | length=0; |
642 | } else if(length>capacity) { |
643 | length=capacity; |
644 | } |
645 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
646 | ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n" , sizeof(H),length,sizeof(T)); |
647 | #endif |
648 | p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T)); |
649 | if(p==NULL) { |
650 | return NULL; |
651 | } |
652 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
653 | } |
654 | resultCapacity=length; |
655 | ptr=&stackHeader; |
656 | capacity=stackCapacity; |
657 | needToRelease=FALSE; |
658 | return p; |
659 | } |
660 | |
661 | /** |
662 | * A simple memory management class that creates new heap allocated objects (of |
663 | * any class that has a public constructor), keeps track of them and eventually |
664 | * deletes them all in its own destructor. |
665 | * |
666 | * A typical use-case would be code like this: |
667 | * |
668 | * MemoryPool<MyType> pool; |
669 | * |
670 | * MyType* o1 = pool.create(); |
671 | * if (o1 != nullptr) { |
672 | * foo(o1); |
673 | * } |
674 | * |
675 | * MyType* o2 = pool.create(1, 2, 3); |
676 | * if (o2 != nullptr) { |
677 | * bar(o2); |
678 | * } |
679 | * |
680 | * // MemoryPool will take care of deleting the MyType objects. |
681 | * |
682 | * It doesn't do anything more than that, and is intentionally kept minimalist. |
683 | */ |
684 | template<typename T, int32_t stackCapacity = 8> |
685 | class MemoryPool : public UMemory { |
686 | public: |
687 | MemoryPool() : count(0), pool() {} |
688 | |
689 | ~MemoryPool() { |
690 | for (int32_t i = 0; i < count; ++i) { |
691 | delete pool[i]; |
692 | } |
693 | } |
694 | |
695 | MemoryPool(const MemoryPool&) = delete; |
696 | MemoryPool& operator=(const MemoryPool&) = delete; |
697 | |
698 | MemoryPool(MemoryPool&& other) U_NOEXCEPT : count(other.count), |
699 | pool(std::move(other.pool)) { |
700 | other.count = 0; |
701 | } |
702 | |
703 | MemoryPool& operator=(MemoryPool&& other) U_NOEXCEPT { |
704 | count = other.count; |
705 | pool = std::move(other.pool); |
706 | other.count = 0; |
707 | return *this; |
708 | } |
709 | |
710 | /** |
711 | * Creates a new object of typename T, by forwarding any and all arguments |
712 | * to the typename T constructor. |
713 | * |
714 | * @param args Arguments to be forwarded to the typename T constructor. |
715 | * @return A pointer to the newly created object, or nullptr on error. |
716 | */ |
717 | template<typename... Args> |
718 | T* create(Args&&... args) { |
719 | int32_t capacity = pool.getCapacity(); |
720 | if (count == capacity && |
721 | pool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity, |
722 | capacity) == nullptr) { |
723 | return nullptr; |
724 | } |
725 | return pool[count++] = new T(std::forward<Args>(args)...); |
726 | } |
727 | |
728 | private: |
729 | int32_t count; |
730 | MaybeStackArray<T*, stackCapacity> pool; |
731 | }; |
732 | |
733 | U_NAMESPACE_END |
734 | |
735 | #endif /* __cplusplus */ |
736 | #endif /* CMEMORY_H */ |
737 | |