| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * |
| 6 | * Copyright (C) 1997-2016, International Business Machines |
| 7 | * Corporation and others. All Rights Reserved. |
| 8 | * |
| 9 | ****************************************************************************** |
| 10 | * |
| 11 | * File CMEMORY.H |
| 12 | * |
| 13 | * Contains stdlib.h/string.h memory functions |
| 14 | * |
| 15 | * @author Bertrand A. Damiba |
| 16 | * |
| 17 | * Modification History: |
| 18 | * |
| 19 | * Date Name Description |
| 20 | * 6/20/98 Bertrand Created. |
| 21 | * 05/03/99 stephen Changed from functions to macros. |
| 22 | * |
| 23 | ****************************************************************************** |
| 24 | */ |
| 25 | |
| 26 | #ifndef CMEMORY_H |
| 27 | #define CMEMORY_H |
| 28 | |
| 29 | #include "unicode/utypes.h" |
| 30 | |
| 31 | #include <stddef.h> |
| 32 | #include <string.h> |
| 33 | #include "unicode/localpointer.h" |
| 34 | |
| 35 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 36 | #include <stdio.h> |
| 37 | #endif |
| 38 | |
| 39 | |
| 40 | #define uprv_memcpy(dst, src, size) U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size) |
| 41 | #define uprv_memmove(dst, src, size) U_STANDARD_CPP_NAMESPACE memmove(dst, src, size) |
| 42 | |
| 43 | /** |
| 44 | * \def UPRV_LENGTHOF |
| 45 | * Convenience macro to determine the length of a fixed array at compile-time. |
| 46 | * @param array A fixed length array |
| 47 | * @return The length of the array, in elements |
| 48 | * @internal |
| 49 | */ |
| 50 | #define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
| 51 | #define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size) |
| 52 | #define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size) |
| 53 | #define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num) |
| 54 | |
| 55 | U_CAPI void * U_EXPORT2 |
| 56 | uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1); |
| 57 | |
| 58 | U_CAPI void * U_EXPORT2 |
| 59 | uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2); |
| 60 | |
| 61 | U_CAPI void U_EXPORT2 |
| 62 | uprv_free(void *mem); |
| 63 | |
| 64 | U_CAPI void * U_EXPORT2 |
| 65 | uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2); |
| 66 | |
| 67 | /** |
| 68 | * Get the least significant bits of a pointer (a memory address). |
| 69 | * For example, with a mask of 3, the macro gets the 2 least significant bits, |
| 70 | * which will be 0 if the pointer is 32-bit (4-byte) aligned. |
| 71 | * |
| 72 | * uintptr_t is the most appropriate integer type to cast to. |
| 73 | */ |
| 74 | #define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask)) |
| 75 | |
| 76 | /** |
| 77 | * Create & return an instance of "type" in statically allocated storage. |
| 78 | * e.g. |
| 79 | * static std::mutex *myMutex = STATIC_NEW(std::mutex); |
| 80 | * To destroy an object created in this way, invoke the destructor explicitly, e.g. |
| 81 | * myMutex->~mutex(); |
| 82 | * DO NOT use delete. |
| 83 | * DO NOT use with class UMutex, which has specific support for static instances. |
| 84 | * |
| 85 | * STATIC_NEW is intended for use when |
| 86 | * - We want a static (or global) object. |
| 87 | * - We don't want it to ever be destructed, or to explicitly control destruction, |
| 88 | * to avoid use-after-destruction problems. |
| 89 | * - We want to avoid an ordinary heap allocated object, |
| 90 | * to avoid the possibility of memory allocation failures, and |
| 91 | * to avoid memory leak reports, from valgrind, for example. |
| 92 | * This is defined as a macro rather than a template function because each invocation |
| 93 | * must define distinct static storage for the object being returned. |
| 94 | */ |
| 95 | #define STATIC_NEW(type) [] () { \ |
| 96 | alignas(type) static char storage[sizeof(type)]; \ |
| 97 | return new(storage) type();} () |
| 98 | |
| 99 | /** |
| 100 | * Heap clean up function, called from u_cleanup() |
| 101 | * Clears any user heap functions from u_setMemoryFunctions() |
| 102 | * Does NOT deallocate any remaining allocated memory. |
| 103 | */ |
| 104 | U_CFUNC UBool |
| 105 | cmemory_cleanup(void); |
| 106 | |
| 107 | /** |
| 108 | * A function called by <TT>uhash_remove</TT>, |
| 109 | * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete |
| 110 | * an existing key or value. |
| 111 | * @param obj A key or value stored in a hashtable |
| 112 | * @see uprv_deleteUObject |
| 113 | */ |
| 114 | typedef void U_CALLCONV UObjectDeleter(void* obj); |
| 115 | |
| 116 | /** |
| 117 | * Deleter for UObject instances. |
| 118 | * Works for all subclasses of UObject because it has a virtual destructor. |
| 119 | */ |
| 120 | U_CAPI void U_EXPORT2 |
| 121 | uprv_deleteUObject(void *obj); |
| 122 | |
| 123 | #ifdef __cplusplus |
| 124 | |
| 125 | #include <utility> |
| 126 | #include "unicode/uobject.h" |
| 127 | |
| 128 | U_NAMESPACE_BEGIN |
| 129 | |
| 130 | /** |
| 131 | * "Smart pointer" class, deletes memory via uprv_free(). |
| 132 | * For most methods see the LocalPointerBase base class. |
| 133 | * Adds operator[] for array item access. |
| 134 | * |
| 135 | * @see LocalPointerBase |
| 136 | */ |
| 137 | template<typename T> |
| 138 | class LocalMemory : public LocalPointerBase<T> { |
| 139 | public: |
| 140 | using LocalPointerBase<T>::operator*; |
| 141 | using LocalPointerBase<T>::operator->; |
| 142 | /** |
| 143 | * Constructor takes ownership. |
| 144 | * @param p simple pointer to an array of T items that is adopted |
| 145 | */ |
| 146 | explicit LocalMemory(T *p=NULL) : LocalPointerBase<T>(p) {} |
| 147 | /** |
| 148 | * Move constructor, leaves src with isNull(). |
| 149 | * @param src source smart pointer |
| 150 | */ |
| 151 | LocalMemory(LocalMemory<T> &&src) U_NOEXCEPT : LocalPointerBase<T>(src.ptr) { |
| 152 | src.ptr=NULL; |
| 153 | } |
| 154 | /** |
| 155 | * Destructor deletes the memory it owns. |
| 156 | */ |
| 157 | ~LocalMemory() { |
| 158 | uprv_free(LocalPointerBase<T>::ptr); |
| 159 | } |
| 160 | /** |
| 161 | * Move assignment operator, leaves src with isNull(). |
| 162 | * The behavior is undefined if *this and src are the same object. |
| 163 | * @param src source smart pointer |
| 164 | * @return *this |
| 165 | */ |
| 166 | LocalMemory<T> &operator=(LocalMemory<T> &&src) U_NOEXCEPT { |
| 167 | uprv_free(LocalPointerBase<T>::ptr); |
| 168 | LocalPointerBase<T>::ptr=src.ptr; |
| 169 | src.ptr=NULL; |
| 170 | return *this; |
| 171 | } |
| 172 | /** |
| 173 | * Swap pointers. |
| 174 | * @param other other smart pointer |
| 175 | */ |
| 176 | void swap(LocalMemory<T> &other) U_NOEXCEPT { |
| 177 | T *temp=LocalPointerBase<T>::ptr; |
| 178 | LocalPointerBase<T>::ptr=other.ptr; |
| 179 | other.ptr=temp; |
| 180 | } |
| 181 | /** |
| 182 | * Non-member LocalMemory swap function. |
| 183 | * @param p1 will get p2's pointer |
| 184 | * @param p2 will get p1's pointer |
| 185 | */ |
| 186 | friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) U_NOEXCEPT { |
| 187 | p1.swap(p2); |
| 188 | } |
| 189 | /** |
| 190 | * Deletes the array it owns, |
| 191 | * and adopts (takes ownership of) the one passed in. |
| 192 | * @param p simple pointer to an array of T items that is adopted |
| 193 | */ |
| 194 | void adoptInstead(T *p) { |
| 195 | uprv_free(LocalPointerBase<T>::ptr); |
| 196 | LocalPointerBase<T>::ptr=p; |
| 197 | } |
| 198 | /** |
| 199 | * Deletes the array it owns, allocates a new one and reset its bytes to 0. |
| 200 | * Returns the new array pointer. |
| 201 | * If the allocation fails, then the current array is unchanged and |
| 202 | * this method returns NULL. |
| 203 | * @param newCapacity must be >0 |
| 204 | * @return the allocated array pointer, or NULL if the allocation failed |
| 205 | */ |
| 206 | inline T *allocateInsteadAndReset(int32_t newCapacity=1); |
| 207 | /** |
| 208 | * Deletes the array it owns and allocates a new one, copying length T items. |
| 209 | * Returns the new array pointer. |
| 210 | * If the allocation fails, then the current array is unchanged and |
| 211 | * this method returns NULL. |
| 212 | * @param newCapacity must be >0 |
| 213 | * @param length number of T items to be copied from the old array to the new one; |
| 214 | * must be no more than the capacity of the old array, |
| 215 | * which the caller must track because the LocalMemory does not track it |
| 216 | * @return the allocated array pointer, or NULL if the allocation failed |
| 217 | */ |
| 218 | inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0); |
| 219 | /** |
| 220 | * Array item access (writable). |
| 221 | * No index bounds check. |
| 222 | * @param i array index |
| 223 | * @return reference to the array item |
| 224 | */ |
| 225 | T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; } |
| 226 | }; |
| 227 | |
| 228 | template<typename T> |
| 229 | inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) { |
| 230 | if(newCapacity>0) { |
| 231 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
| 232 | if(p!=NULL) { |
| 233 | uprv_memset(p, 0, newCapacity*sizeof(T)); |
| 234 | uprv_free(LocalPointerBase<T>::ptr); |
| 235 | LocalPointerBase<T>::ptr=p; |
| 236 | } |
| 237 | return p; |
| 238 | } else { |
| 239 | return NULL; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | |
| 244 | template<typename T> |
| 245 | inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) { |
| 246 | if(newCapacity>0) { |
| 247 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
| 248 | if(p!=NULL) { |
| 249 | if(length>0) { |
| 250 | if(length>newCapacity) { |
| 251 | length=newCapacity; |
| 252 | } |
| 253 | uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T)); |
| 254 | } |
| 255 | uprv_free(LocalPointerBase<T>::ptr); |
| 256 | LocalPointerBase<T>::ptr=p; |
| 257 | } |
| 258 | return p; |
| 259 | } else { |
| 260 | return NULL; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | /** |
| 265 | * Simple array/buffer management class using uprv_malloc() and uprv_free(). |
| 266 | * Provides an internal array with fixed capacity. Can alias another array |
| 267 | * or allocate one. |
| 268 | * |
| 269 | * The array address is properly aligned for type T. It might not be properly |
| 270 | * aligned for types larger than T (or larger than the largest subtype of T). |
| 271 | * |
| 272 | * Unlike LocalMemory and LocalArray, this class never adopts |
| 273 | * (takes ownership of) another array. |
| 274 | * |
| 275 | * WARNING: MaybeStackArray only works with primitive (plain-old data) types. |
| 276 | * It does NOT know how to call a destructor! If you work with classes with |
| 277 | * destructors, consider LocalArray in localpointer.h or MemoryPool. |
| 278 | */ |
| 279 | template<typename T, int32_t stackCapacity> |
| 280 | class MaybeStackArray { |
| 281 | public: |
| 282 | // No heap allocation. Use only on the stack. |
| 283 | static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete; |
| 284 | static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete; |
| 285 | #if U_HAVE_PLACEMENT_NEW |
| 286 | static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete; |
| 287 | #endif |
| 288 | |
| 289 | /** |
| 290 | * Default constructor initializes with internal T[stackCapacity] buffer. |
| 291 | */ |
| 292 | MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(FALSE) {} |
| 293 | /** |
| 294 | * Automatically allocates the heap array if the argument is larger than the stack capacity. |
| 295 | * Intended for use when an approximate capacity is known at compile time but the true |
| 296 | * capacity is not known until runtime. |
| 297 | */ |
| 298 | MaybeStackArray(int32_t newCapacity) : MaybeStackArray() { |
| 299 | if (capacity < newCapacity) { resize(newCapacity); } |
| 300 | } |
| 301 | /** |
| 302 | * Destructor deletes the array (if owned). |
| 303 | */ |
| 304 | ~MaybeStackArray() { releaseArray(); } |
| 305 | /** |
| 306 | * Move constructor: transfers ownership or copies the stack array. |
| 307 | */ |
| 308 | MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT; |
| 309 | /** |
| 310 | * Move assignment: transfers ownership or copies the stack array. |
| 311 | */ |
| 312 | MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT; |
| 313 | /** |
| 314 | * Returns the array capacity (number of T items). |
| 315 | * @return array capacity |
| 316 | */ |
| 317 | int32_t getCapacity() const { return capacity; } |
| 318 | /** |
| 319 | * Access without ownership change. |
| 320 | * @return the array pointer |
| 321 | */ |
| 322 | T *getAlias() const { return ptr; } |
| 323 | /** |
| 324 | * Returns the array limit. Simple convenience method. |
| 325 | * @return getAlias()+getCapacity() |
| 326 | */ |
| 327 | T *getArrayLimit() const { return getAlias()+capacity; } |
| 328 | // No "operator T *() const" because that can make |
| 329 | // expressions like mbs[index] ambiguous for some compilers. |
| 330 | /** |
| 331 | * Array item access (const). |
| 332 | * No index bounds check. |
| 333 | * @param i array index |
| 334 | * @return reference to the array item |
| 335 | */ |
| 336 | const T &operator[](ptrdiff_t i) const { return ptr[i]; } |
| 337 | /** |
| 338 | * Array item access (writable). |
| 339 | * No index bounds check. |
| 340 | * @param i array index |
| 341 | * @return reference to the array item |
| 342 | */ |
| 343 | T &operator[](ptrdiff_t i) { return ptr[i]; } |
| 344 | /** |
| 345 | * Deletes the array (if owned) and aliases another one, no transfer of ownership. |
| 346 | * If the arguments are illegal, then the current array is unchanged. |
| 347 | * @param otherArray must not be NULL |
| 348 | * @param otherCapacity must be >0 |
| 349 | */ |
| 350 | void aliasInstead(T *otherArray, int32_t otherCapacity) { |
| 351 | if(otherArray!=NULL && otherCapacity>0) { |
| 352 | releaseArray(); |
| 353 | ptr=otherArray; |
| 354 | capacity=otherCapacity; |
| 355 | needToRelease=FALSE; |
| 356 | } |
| 357 | } |
| 358 | /** |
| 359 | * Deletes the array (if owned) and allocates a new one, copying length T items. |
| 360 | * Returns the new array pointer. |
| 361 | * If the allocation fails, then the current array is unchanged and |
| 362 | * this method returns NULL. |
| 363 | * @param newCapacity can be less than or greater than the current capacity; |
| 364 | * must be >0 |
| 365 | * @param length number of T items to be copied from the old array to the new one |
| 366 | * @return the allocated array pointer, or NULL if the allocation failed |
| 367 | */ |
| 368 | inline T *resize(int32_t newCapacity, int32_t length=0); |
| 369 | /** |
| 370 | * Gives up ownership of the array if owned, or else clones it, |
| 371 | * copying length T items; resets itself to the internal stack array. |
| 372 | * Returns NULL if the allocation failed. |
| 373 | * @param length number of T items to copy when cloning, |
| 374 | * and capacity of the clone when cloning |
| 375 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
| 376 | * @return the array pointer; |
| 377 | * caller becomes responsible for deleting the array |
| 378 | */ |
| 379 | inline T *orphanOrClone(int32_t length, int32_t &resultCapacity); |
| 380 | private: |
| 381 | T *ptr; |
| 382 | int32_t capacity; |
| 383 | UBool needToRelease; |
| 384 | T stackArray[stackCapacity]; |
| 385 | void releaseArray() { |
| 386 | if(needToRelease) { |
| 387 | uprv_free(ptr); |
| 388 | } |
| 389 | } |
| 390 | void resetToStackArray() { |
| 391 | ptr=stackArray; |
| 392 | capacity=stackCapacity; |
| 393 | needToRelease=FALSE; |
| 394 | } |
| 395 | /* No comparison operators with other MaybeStackArray's. */ |
| 396 | bool operator==(const MaybeStackArray & /*other*/) {return FALSE;} |
| 397 | bool operator!=(const MaybeStackArray & /*other*/) {return TRUE;} |
| 398 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
| 399 | MaybeStackArray(const MaybeStackArray & /*other*/) {} |
| 400 | void operator=(const MaybeStackArray & /*other*/) {} |
| 401 | }; |
| 402 | |
| 403 | template<typename T, int32_t stackCapacity> |
| 404 | icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray( |
| 405 | MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT |
| 406 | : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) { |
| 407 | if (src.ptr == src.stackArray) { |
| 408 | ptr = stackArray; |
| 409 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
| 410 | } else { |
| 411 | src.resetToStackArray(); // take ownership away from src |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | template<typename T, int32_t stackCapacity> |
| 416 | inline MaybeStackArray <T, stackCapacity>& |
| 417 | MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT { |
| 418 | releaseArray(); // in case this instance had its own memory allocated |
| 419 | capacity = src.capacity; |
| 420 | needToRelease = src.needToRelease; |
| 421 | if (src.ptr == src.stackArray) { |
| 422 | ptr = stackArray; |
| 423 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
| 424 | } else { |
| 425 | ptr = src.ptr; |
| 426 | src.resetToStackArray(); // take ownership away from src |
| 427 | } |
| 428 | return *this; |
| 429 | } |
| 430 | |
| 431 | template<typename T, int32_t stackCapacity> |
| 432 | inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) { |
| 433 | if(newCapacity>0) { |
| 434 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 435 | ::fprintf(::stderr,"MaybeStacArray (resize) alloc %d * %lu\n" , newCapacity,sizeof(T)); |
| 436 | #endif |
| 437 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
| 438 | if(p!=NULL) { |
| 439 | if(length>0) { |
| 440 | if(length>capacity) { |
| 441 | length=capacity; |
| 442 | } |
| 443 | if(length>newCapacity) { |
| 444 | length=newCapacity; |
| 445 | } |
| 446 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
| 447 | } |
| 448 | releaseArray(); |
| 449 | ptr=p; |
| 450 | capacity=newCapacity; |
| 451 | needToRelease=TRUE; |
| 452 | } |
| 453 | return p; |
| 454 | } else { |
| 455 | return NULL; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | template<typename T, int32_t stackCapacity> |
| 460 | inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) { |
| 461 | T *p; |
| 462 | if(needToRelease) { |
| 463 | p=ptr; |
| 464 | } else if(length<=0) { |
| 465 | return NULL; |
| 466 | } else { |
| 467 | if(length>capacity) { |
| 468 | length=capacity; |
| 469 | } |
| 470 | p=(T *)uprv_malloc(length*sizeof(T)); |
| 471 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 472 | ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n" , length,sizeof(T)); |
| 473 | #endif |
| 474 | if(p==NULL) { |
| 475 | return NULL; |
| 476 | } |
| 477 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
| 478 | } |
| 479 | resultCapacity=length; |
| 480 | resetToStackArray(); |
| 481 | return p; |
| 482 | } |
| 483 | |
| 484 | /** |
| 485 | * Variant of MaybeStackArray that allocates a header struct and an array |
| 486 | * in one contiguous memory block, using uprv_malloc() and uprv_free(). |
| 487 | * Provides internal memory with fixed array capacity. Can alias another memory |
| 488 | * block or allocate one. |
| 489 | * The stackCapacity is the number of T items in the internal memory, |
| 490 | * not counting the H header. |
| 491 | * Unlike LocalMemory and LocalArray, this class never adopts |
| 492 | * (takes ownership of) another memory block. |
| 493 | */ |
| 494 | template<typename H, typename T, int32_t stackCapacity> |
| 495 | class MaybeStackHeaderAndArray { |
| 496 | public: |
| 497 | // No heap allocation. Use only on the stack. |
| 498 | static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete; |
| 499 | static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete; |
| 500 | #if U_HAVE_PLACEMENT_NEW |
| 501 | static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete; |
| 502 | #endif |
| 503 | |
| 504 | /** |
| 505 | * Default constructor initializes with internal H+T[stackCapacity] buffer. |
| 506 | */ |
| 507 | MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(FALSE) {} |
| 508 | /** |
| 509 | * Destructor deletes the memory (if owned). |
| 510 | */ |
| 511 | ~MaybeStackHeaderAndArray() { releaseMemory(); } |
| 512 | /** |
| 513 | * Returns the array capacity (number of T items). |
| 514 | * @return array capacity |
| 515 | */ |
| 516 | int32_t getCapacity() const { return capacity; } |
| 517 | /** |
| 518 | * Access without ownership change. |
| 519 | * @return the header pointer |
| 520 | */ |
| 521 | H *getAlias() const { return ptr; } |
| 522 | /** |
| 523 | * Returns the array start. |
| 524 | * @return array start, same address as getAlias()+1 |
| 525 | */ |
| 526 | T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); } |
| 527 | /** |
| 528 | * Returns the array limit. |
| 529 | * @return array limit |
| 530 | */ |
| 531 | T *getArrayLimit() const { return getArrayStart()+capacity; } |
| 532 | /** |
| 533 | * Access without ownership change. Same as getAlias(). |
| 534 | * A class instance can be used directly in expressions that take a T *. |
| 535 | * @return the header pointer |
| 536 | */ |
| 537 | operator H *() const { return ptr; } |
| 538 | /** |
| 539 | * Array item access (writable). |
| 540 | * No index bounds check. |
| 541 | * @param i array index |
| 542 | * @return reference to the array item |
| 543 | */ |
| 544 | T &operator[](ptrdiff_t i) { return getArrayStart()[i]; } |
| 545 | /** |
| 546 | * Deletes the memory block (if owned) and aliases another one, no transfer of ownership. |
| 547 | * If the arguments are illegal, then the current memory is unchanged. |
| 548 | * @param otherArray must not be NULL |
| 549 | * @param otherCapacity must be >0 |
| 550 | */ |
| 551 | void aliasInstead(H *otherMemory, int32_t otherCapacity) { |
| 552 | if(otherMemory!=NULL && otherCapacity>0) { |
| 553 | releaseMemory(); |
| 554 | ptr=otherMemory; |
| 555 | capacity=otherCapacity; |
| 556 | needToRelease=FALSE; |
| 557 | } |
| 558 | } |
| 559 | /** |
| 560 | * Deletes the memory block (if owned) and allocates a new one, |
| 561 | * copying the header and length T array items. |
| 562 | * Returns the new header pointer. |
| 563 | * If the allocation fails, then the current memory is unchanged and |
| 564 | * this method returns NULL. |
| 565 | * @param newCapacity can be less than or greater than the current capacity; |
| 566 | * must be >0 |
| 567 | * @param length number of T items to be copied from the old array to the new one |
| 568 | * @return the allocated pointer, or NULL if the allocation failed |
| 569 | */ |
| 570 | inline H *resize(int32_t newCapacity, int32_t length=0); |
| 571 | /** |
| 572 | * Gives up ownership of the memory if owned, or else clones it, |
| 573 | * copying the header and length T array items; resets itself to the internal memory. |
| 574 | * Returns NULL if the allocation failed. |
| 575 | * @param length number of T items to copy when cloning, |
| 576 | * and array capacity of the clone when cloning |
| 577 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
| 578 | * @return the header pointer; |
| 579 | * caller becomes responsible for deleting the array |
| 580 | */ |
| 581 | inline H *orphanOrClone(int32_t length, int32_t &resultCapacity); |
| 582 | private: |
| 583 | H *ptr; |
| 584 | int32_t capacity; |
| 585 | UBool needToRelease; |
| 586 | // stackHeader must precede stackArray immediately. |
| 587 | H stackHeader; |
| 588 | T stackArray[stackCapacity]; |
| 589 | void releaseMemory() { |
| 590 | if(needToRelease) { |
| 591 | uprv_free(ptr); |
| 592 | } |
| 593 | } |
| 594 | /* No comparison operators with other MaybeStackHeaderAndArray's. */ |
| 595 | bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return FALSE;} |
| 596 | bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return TRUE;} |
| 597 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
| 598 | MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {} |
| 599 | void operator=(const MaybeStackHeaderAndArray & /*other*/) {} |
| 600 | }; |
| 601 | |
| 602 | template<typename H, typename T, int32_t stackCapacity> |
| 603 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity, |
| 604 | int32_t length) { |
| 605 | if(newCapacity>=0) { |
| 606 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 607 | ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n" , sizeof(H),newCapacity,sizeof(T)); |
| 608 | #endif |
| 609 | H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T)); |
| 610 | if(p!=NULL) { |
| 611 | if(length<0) { |
| 612 | length=0; |
| 613 | } else if(length>0) { |
| 614 | if(length>capacity) { |
| 615 | length=capacity; |
| 616 | } |
| 617 | if(length>newCapacity) { |
| 618 | length=newCapacity; |
| 619 | } |
| 620 | } |
| 621 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
| 622 | releaseMemory(); |
| 623 | ptr=p; |
| 624 | capacity=newCapacity; |
| 625 | needToRelease=TRUE; |
| 626 | } |
| 627 | return p; |
| 628 | } else { |
| 629 | return NULL; |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | template<typename H, typename T, int32_t stackCapacity> |
| 634 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length, |
| 635 | int32_t &resultCapacity) { |
| 636 | H *p; |
| 637 | if(needToRelease) { |
| 638 | p=ptr; |
| 639 | } else { |
| 640 | if(length<0) { |
| 641 | length=0; |
| 642 | } else if(length>capacity) { |
| 643 | length=capacity; |
| 644 | } |
| 645 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 646 | ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n" , sizeof(H),length,sizeof(T)); |
| 647 | #endif |
| 648 | p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T)); |
| 649 | if(p==NULL) { |
| 650 | return NULL; |
| 651 | } |
| 652 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
| 653 | } |
| 654 | resultCapacity=length; |
| 655 | ptr=&stackHeader; |
| 656 | capacity=stackCapacity; |
| 657 | needToRelease=FALSE; |
| 658 | return p; |
| 659 | } |
| 660 | |
| 661 | /** |
| 662 | * A simple memory management class that creates new heap allocated objects (of |
| 663 | * any class that has a public constructor), keeps track of them and eventually |
| 664 | * deletes them all in its own destructor. |
| 665 | * |
| 666 | * A typical use-case would be code like this: |
| 667 | * |
| 668 | * MemoryPool<MyType> pool; |
| 669 | * |
| 670 | * MyType* o1 = pool.create(); |
| 671 | * if (o1 != nullptr) { |
| 672 | * foo(o1); |
| 673 | * } |
| 674 | * |
| 675 | * MyType* o2 = pool.create(1, 2, 3); |
| 676 | * if (o2 != nullptr) { |
| 677 | * bar(o2); |
| 678 | * } |
| 679 | * |
| 680 | * // MemoryPool will take care of deleting the MyType objects. |
| 681 | * |
| 682 | * It doesn't do anything more than that, and is intentionally kept minimalist. |
| 683 | */ |
| 684 | template<typename T, int32_t stackCapacity = 8> |
| 685 | class MemoryPool : public UMemory { |
| 686 | public: |
| 687 | MemoryPool() : count(0), pool() {} |
| 688 | |
| 689 | ~MemoryPool() { |
| 690 | for (int32_t i = 0; i < count; ++i) { |
| 691 | delete pool[i]; |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | MemoryPool(const MemoryPool&) = delete; |
| 696 | MemoryPool& operator=(const MemoryPool&) = delete; |
| 697 | |
| 698 | MemoryPool(MemoryPool&& other) U_NOEXCEPT : count(other.count), |
| 699 | pool(std::move(other.pool)) { |
| 700 | other.count = 0; |
| 701 | } |
| 702 | |
| 703 | MemoryPool& operator=(MemoryPool&& other) U_NOEXCEPT { |
| 704 | count = other.count; |
| 705 | pool = std::move(other.pool); |
| 706 | other.count = 0; |
| 707 | return *this; |
| 708 | } |
| 709 | |
| 710 | /** |
| 711 | * Creates a new object of typename T, by forwarding any and all arguments |
| 712 | * to the typename T constructor. |
| 713 | * |
| 714 | * @param args Arguments to be forwarded to the typename T constructor. |
| 715 | * @return A pointer to the newly created object, or nullptr on error. |
| 716 | */ |
| 717 | template<typename... Args> |
| 718 | T* create(Args&&... args) { |
| 719 | int32_t capacity = pool.getCapacity(); |
| 720 | if (count == capacity && |
| 721 | pool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity, |
| 722 | capacity) == nullptr) { |
| 723 | return nullptr; |
| 724 | } |
| 725 | return pool[count++] = new T(std::forward<Args>(args)...); |
| 726 | } |
| 727 | |
| 728 | private: |
| 729 | int32_t count; |
| 730 | MaybeStackArray<T*, stackCapacity> pool; |
| 731 | }; |
| 732 | |
| 733 | U_NAMESPACE_END |
| 734 | |
| 735 | #endif /* __cplusplus */ |
| 736 | #endif /* CMEMORY_H */ |
| 737 | |