1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /************************************************************************ |
4 | * Copyright (C) 1996-2012, International Business Machines Corporation |
5 | * and others. All Rights Reserved. |
6 | ************************************************************************ |
7 | * 2003-nov-07 srl Port from Java |
8 | */ |
9 | |
10 | #include "astro.h" |
11 | |
12 | #if !UCONFIG_NO_FORMATTING |
13 | |
14 | #include "unicode/calendar.h" |
15 | #include <math.h> |
16 | #include <float.h> |
17 | #include "unicode/putil.h" |
18 | #include "uhash.h" |
19 | #include "umutex.h" |
20 | #include "ucln_in.h" |
21 | #include "putilimp.h" |
22 | #include <stdio.h> // for toString() |
23 | |
24 | #if defined (PI) |
25 | #undef PI |
26 | #endif |
27 | |
28 | #ifdef U_DEBUG_ASTRO |
29 | # include "uresimp.h" // for debugging |
30 | |
31 | static void debug_astro_loc(const char *f, int32_t l) |
32 | { |
33 | fprintf(stderr, "%s:%d: " , f, l); |
34 | } |
35 | |
36 | static void debug_astro_msg(const char *pat, ...) |
37 | { |
38 | va_list ap; |
39 | va_start(ap, pat); |
40 | vfprintf(stderr, pat, ap); |
41 | fflush(stderr); |
42 | } |
43 | #include "unicode/datefmt.h" |
44 | #include "unicode/ustring.h" |
45 | static const char * debug_astro_date(UDate d) { |
46 | static char gStrBuf[1024]; |
47 | static DateFormat *df = NULL; |
48 | if(df == NULL) { |
49 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); |
50 | df->adoptTimeZone(TimeZone::getGMT()->clone()); |
51 | } |
52 | UnicodeString str; |
53 | df->format(d,str); |
54 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); |
55 | return gStrBuf; |
56 | } |
57 | |
58 | // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); |
59 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} |
60 | #else |
61 | #define U_DEBUG_ASTRO_MSG(x) |
62 | #endif |
63 | |
64 | static inline UBool isINVALID(double d) { |
65 | return(uprv_isNaN(d)); |
66 | } |
67 | |
68 | static icu::UMutex ccLock; |
69 | |
70 | U_CDECL_BEGIN |
71 | static UBool calendar_astro_cleanup(void) { |
72 | return TRUE; |
73 | } |
74 | U_CDECL_END |
75 | |
76 | U_NAMESPACE_BEGIN |
77 | |
78 | /** |
79 | * The number of standard hours in one sidereal day. |
80 | * Approximately 24.93. |
81 | * @internal |
82 | * @deprecated ICU 2.4. This class may be removed or modified. |
83 | */ |
84 | #define SIDEREAL_DAY (23.93446960027) |
85 | |
86 | /** |
87 | * The number of sidereal hours in one mean solar day. |
88 | * Approximately 24.07. |
89 | * @internal |
90 | * @deprecated ICU 2.4. This class may be removed or modified. |
91 | */ |
92 | #define SOLAR_DAY (24.065709816) |
93 | |
94 | /** |
95 | * The average number of solar days from one new moon to the next. This is the time |
96 | * it takes for the moon to return the same ecliptic longitude as the sun. |
97 | * It is longer than the sidereal month because the sun's longitude increases |
98 | * during the year due to the revolution of the earth around the sun. |
99 | * Approximately 29.53. |
100 | * |
101 | * @see #SIDEREAL_MONTH |
102 | * @internal |
103 | * @deprecated ICU 2.4. This class may be removed or modified. |
104 | */ |
105 | const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; |
106 | |
107 | /** |
108 | * The average number of days it takes |
109 | * for the moon to return to the same ecliptic longitude relative to the |
110 | * stellar background. This is referred to as the sidereal month. |
111 | * It is shorter than the synodic month due to |
112 | * the revolution of the earth around the sun. |
113 | * Approximately 27.32. |
114 | * |
115 | * @see #SYNODIC_MONTH |
116 | * @internal |
117 | * @deprecated ICU 2.4. This class may be removed or modified. |
118 | */ |
119 | #define SIDEREAL_MONTH 27.32166 |
120 | |
121 | /** |
122 | * The average number number of days between successive vernal equinoxes. |
123 | * Due to the precession of the earth's |
124 | * axis, this is not precisely the same as the sidereal year. |
125 | * Approximately 365.24 |
126 | * |
127 | * @see #SIDEREAL_YEAR |
128 | * @internal |
129 | * @deprecated ICU 2.4. This class may be removed or modified. |
130 | */ |
131 | #define TROPICAL_YEAR 365.242191 |
132 | |
133 | /** |
134 | * The average number of days it takes |
135 | * for the sun to return to the same position against the fixed stellar |
136 | * background. This is the duration of one orbit of the earth about the sun |
137 | * as it would appear to an outside observer. |
138 | * Due to the precession of the earth's |
139 | * axis, this is not precisely the same as the tropical year. |
140 | * Approximately 365.25. |
141 | * |
142 | * @see #TROPICAL_YEAR |
143 | * @internal |
144 | * @deprecated ICU 2.4. This class may be removed or modified. |
145 | */ |
146 | #define SIDEREAL_YEAR 365.25636 |
147 | |
148 | //------------------------------------------------------------------------- |
149 | // Time-related constants |
150 | //------------------------------------------------------------------------- |
151 | |
152 | /** |
153 | * The number of milliseconds in one second. |
154 | * @internal |
155 | * @deprecated ICU 2.4. This class may be removed or modified. |
156 | */ |
157 | #define SECOND_MS U_MILLIS_PER_SECOND |
158 | |
159 | /** |
160 | * The number of milliseconds in one minute. |
161 | * @internal |
162 | * @deprecated ICU 2.4. This class may be removed or modified. |
163 | */ |
164 | #define MINUTE_MS U_MILLIS_PER_MINUTE |
165 | |
166 | /** |
167 | * The number of milliseconds in one hour. |
168 | * @internal |
169 | * @deprecated ICU 2.4. This class may be removed or modified. |
170 | */ |
171 | #define HOUR_MS U_MILLIS_PER_HOUR |
172 | |
173 | /** |
174 | * The number of milliseconds in one day. |
175 | * @internal |
176 | * @deprecated ICU 2.4. This class may be removed or modified. |
177 | */ |
178 | #define DAY_MS U_MILLIS_PER_DAY |
179 | |
180 | /** |
181 | * The start of the julian day numbering scheme used by astronomers, which |
182 | * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds |
183 | * since 1/1/1970 AD (Gregorian), a negative number. |
184 | * Note that julian day numbers and |
185 | * the Julian calendar are <em>not</em> the same thing. Also note that |
186 | * julian days start at <em>noon</em>, not midnight. |
187 | * @internal |
188 | * @deprecated ICU 2.4. This class may be removed or modified. |
189 | */ |
190 | #define JULIAN_EPOCH_MS -210866760000000.0 |
191 | |
192 | |
193 | /** |
194 | * Milliseconds value for 0.0 January 2000 AD. |
195 | */ |
196 | #define EPOCH_2000_MS 946598400000.0 |
197 | |
198 | //------------------------------------------------------------------------- |
199 | // Assorted private data used for conversions |
200 | //------------------------------------------------------------------------- |
201 | |
202 | // My own copies of these so compilers are more likely to optimize them away |
203 | const double CalendarAstronomer::PI = 3.14159265358979323846; |
204 | |
205 | #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) |
206 | #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours |
207 | #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians |
208 | #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees |
209 | |
210 | /*** |
211 | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. |
212 | * The modulus operator. |
213 | */ |
214 | inline static double normalize(double value, double range) { |
215 | return value - range * ClockMath::floorDivide(value, range); |
216 | } |
217 | |
218 | /** |
219 | * Normalize an angle so that it's in the range 0 - 2pi. |
220 | * For positive angles this is just (angle % 2pi), but the Java |
221 | * mod operator doesn't work that way for negative numbers.... |
222 | */ |
223 | inline static double norm2PI(double angle) { |
224 | return normalize(angle, CalendarAstronomer::PI * 2.0); |
225 | } |
226 | |
227 | /** |
228 | * Normalize an angle into the range -PI - PI |
229 | */ |
230 | inline static double normPI(double angle) { |
231 | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; |
232 | } |
233 | |
234 | //------------------------------------------------------------------------- |
235 | // Constructors |
236 | //------------------------------------------------------------------------- |
237 | |
238 | /** |
239 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
240 | * the current date and time. |
241 | * @internal |
242 | * @deprecated ICU 2.4. This class may be removed or modified. |
243 | */ |
244 | CalendarAstronomer::CalendarAstronomer(): |
245 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
246 | clearCache(); |
247 | } |
248 | |
249 | /** |
250 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
251 | * the specified date and time. |
252 | * @internal |
253 | * @deprecated ICU 2.4. This class may be removed or modified. |
254 | */ |
255 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
256 | clearCache(); |
257 | } |
258 | |
259 | /** |
260 | * Construct a new <code>CalendarAstronomer</code> object with the given |
261 | * latitude and longitude. The object's time is set to the current |
262 | * date and time. |
263 | * <p> |
264 | * @param longitude The desired longitude, in <em>degrees</em> east of |
265 | * the Greenwich meridian. |
266 | * |
267 | * @param latitude The desired latitude, in <em>degrees</em>. Positive |
268 | * values signify North, negative South. |
269 | * |
270 | * @see java.util.Date#getTime() |
271 | * @internal |
272 | * @deprecated ICU 2.4. This class may be removed or modified. |
273 | */ |
274 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : |
275 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { |
276 | fLongitude = normPI(longitude * (double)DEG_RAD); |
277 | fLatitude = normPI(latitude * (double)DEG_RAD); |
278 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); |
279 | clearCache(); |
280 | } |
281 | |
282 | CalendarAstronomer::~CalendarAstronomer() |
283 | { |
284 | } |
285 | |
286 | //------------------------------------------------------------------------- |
287 | // Time and date getters and setters |
288 | //------------------------------------------------------------------------- |
289 | |
290 | /** |
291 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
292 | * astronomical calculations are performed based on this time setting. |
293 | * |
294 | * @param aTime the date and time, expressed as the number of milliseconds since |
295 | * 1/1/1970 0:00 GMT (Gregorian). |
296 | * |
297 | * @see #setDate |
298 | * @see #getTime |
299 | * @internal |
300 | * @deprecated ICU 2.4. This class may be removed or modified. |
301 | */ |
302 | void CalendarAstronomer::setTime(UDate aTime) { |
303 | fTime = aTime; |
304 | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n" , aTime, debug_astro_date(aTime+fGmtOffset))); |
305 | clearCache(); |
306 | } |
307 | |
308 | /** |
309 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
310 | * astronomical calculations are performed based on this time setting. |
311 | * |
312 | * @param jdn the desired time, expressed as a "julian day number", |
313 | * which is the number of elapsed days since |
314 | * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day |
315 | * numbers start at <em>noon</em>. To get the jdn for |
316 | * the corresponding midnight, subtract 0.5. |
317 | * |
318 | * @see #getJulianDay |
319 | * @see #JULIAN_EPOCH_MS |
320 | * @internal |
321 | * @deprecated ICU 2.4. This class may be removed or modified. |
322 | */ |
323 | void CalendarAstronomer::setJulianDay(double jdn) { |
324 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
325 | clearCache(); |
326 | julianDay = jdn; |
327 | } |
328 | |
329 | /** |
330 | * Get the current time of this <code>CalendarAstronomer</code> object, |
331 | * represented as the number of milliseconds since |
332 | * 1/1/1970 AD 0:00 GMT (Gregorian). |
333 | * |
334 | * @see #setTime |
335 | * @see #getDate |
336 | * @internal |
337 | * @deprecated ICU 2.4. This class may be removed or modified. |
338 | */ |
339 | UDate CalendarAstronomer::getTime() { |
340 | return fTime; |
341 | } |
342 | |
343 | /** |
344 | * Get the current time of this <code>CalendarAstronomer</code> object, |
345 | * expressed as a "julian day number", which is the number of elapsed |
346 | * days since 1/1/4713 BC (Julian), 12:00 GMT. |
347 | * |
348 | * @see #setJulianDay |
349 | * @see #JULIAN_EPOCH_MS |
350 | * @internal |
351 | * @deprecated ICU 2.4. This class may be removed or modified. |
352 | */ |
353 | double CalendarAstronomer::getJulianDay() { |
354 | if (isINVALID(julianDay)) { |
355 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; |
356 | } |
357 | return julianDay; |
358 | } |
359 | |
360 | /** |
361 | * Return this object's time expressed in julian centuries: |
362 | * the number of centuries after 1/1/1900 AD, 12:00 GMT |
363 | * |
364 | * @see #getJulianDay |
365 | * @internal |
366 | * @deprecated ICU 2.4. This class may be removed or modified. |
367 | */ |
368 | double CalendarAstronomer::getJulianCentury() { |
369 | if (isINVALID(julianCentury)) { |
370 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; |
371 | } |
372 | return julianCentury; |
373 | } |
374 | |
375 | /** |
376 | * Returns the current Greenwich sidereal time, measured in hours |
377 | * @internal |
378 | * @deprecated ICU 2.4. This class may be removed or modified. |
379 | */ |
380 | double CalendarAstronomer::getGreenwichSidereal() { |
381 | if (isINVALID(siderealTime)) { |
382 | // See page 86 of "Practial Astronomy with your Calculator", |
383 | // by Peter Duffet-Smith, for details on the algorithm. |
384 | |
385 | double UT = normalize(fTime/(double)HOUR_MS, 24.); |
386 | |
387 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
388 | } |
389 | return siderealTime; |
390 | } |
391 | |
392 | double CalendarAstronomer::getSiderealOffset() { |
393 | if (isINVALID(siderealT0)) { |
394 | double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; |
395 | double S = JD - 2451545.0; |
396 | double T = S / 36525.0; |
397 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); |
398 | } |
399 | return siderealT0; |
400 | } |
401 | |
402 | /** |
403 | * Returns the current local sidereal time, measured in hours |
404 | * @internal |
405 | * @deprecated ICU 2.4. This class may be removed or modified. |
406 | */ |
407 | double CalendarAstronomer::getLocalSidereal() { |
408 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); |
409 | } |
410 | |
411 | /** |
412 | * Converts local sidereal time to Universal Time. |
413 | * |
414 | * @param lst The Local Sidereal Time, in hours since sidereal midnight |
415 | * on this object's current date. |
416 | * |
417 | * @return The corresponding Universal Time, in milliseconds since |
418 | * 1 Jan 1970, GMT. |
419 | */ |
420 | double CalendarAstronomer::lstToUT(double lst) { |
421 | // Convert to local mean time |
422 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); |
423 | |
424 | // Then find local midnight on this day |
425 | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; |
426 | |
427 | //out(" lt =" + lt + " hours"); |
428 | //out(" base=" + new Date(base)); |
429 | |
430 | return base + (long)(lt * HOUR_MS); |
431 | } |
432 | |
433 | |
434 | //------------------------------------------------------------------------- |
435 | // Coordinate transformations, all based on the current time of this object |
436 | //------------------------------------------------------------------------- |
437 | |
438 | /** |
439 | * Convert from ecliptic to equatorial coordinates. |
440 | * |
441 | * @param ecliptic A point in the sky in ecliptic coordinates. |
442 | * @return The corresponding point in equatorial coordinates. |
443 | * @internal |
444 | * @deprecated ICU 2.4. This class may be removed or modified. |
445 | */ |
446 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) |
447 | { |
448 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
449 | } |
450 | |
451 | /** |
452 | * Convert from ecliptic to equatorial coordinates. |
453 | * |
454 | * @param eclipLong The ecliptic longitude |
455 | * @param eclipLat The ecliptic latitude |
456 | * |
457 | * @return The corresponding point in equatorial coordinates. |
458 | * @internal |
459 | * @deprecated ICU 2.4. This class may be removed or modified. |
460 | */ |
461 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) |
462 | { |
463 | // See page 42 of "Practial Astronomy with your Calculator", |
464 | // by Peter Duffet-Smith, for details on the algorithm. |
465 | |
466 | double obliq = eclipticObliquity(); |
467 | double sinE = ::sin(obliq); |
468 | double cosE = cos(obliq); |
469 | |
470 | double sinL = ::sin(eclipLong); |
471 | double cosL = cos(eclipLong); |
472 | |
473 | double sinB = ::sin(eclipLat); |
474 | double cosB = cos(eclipLat); |
475 | double tanB = tan(eclipLat); |
476 | |
477 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
478 | asin(sinB*cosE + cosB*sinE*sinL) ); |
479 | return result; |
480 | } |
481 | |
482 | /** |
483 | * Convert from ecliptic longitude to equatorial coordinates. |
484 | * |
485 | * @param eclipLong The ecliptic longitude |
486 | * |
487 | * @return The corresponding point in equatorial coordinates. |
488 | * @internal |
489 | * @deprecated ICU 2.4. This class may be removed or modified. |
490 | */ |
491 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) |
492 | { |
493 | return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
494 | } |
495 | |
496 | /** |
497 | * @internal |
498 | * @deprecated ICU 2.4. This class may be removed or modified. |
499 | */ |
500 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) |
501 | { |
502 | Equatorial equatorial; |
503 | eclipticToEquatorial(equatorial, eclipLong); |
504 | |
505 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle |
506 | |
507 | double sinH = ::sin(H); |
508 | double cosH = cos(H); |
509 | double sinD = ::sin(equatorial.declination); |
510 | double cosD = cos(equatorial.declination); |
511 | double sinL = ::sin(fLatitude); |
512 | double cosL = cos(fLatitude); |
513 | |
514 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
515 | double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); |
516 | |
517 | result.set(azimuth, altitude); |
518 | return result; |
519 | } |
520 | |
521 | |
522 | //------------------------------------------------------------------------- |
523 | // The Sun |
524 | //------------------------------------------------------------------------- |
525 | |
526 | // |
527 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 |
528 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) |
529 | // |
530 | #define JD_EPOCH 2447891.5 // Julian day of epoch |
531 | |
532 | #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch |
533 | #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee |
534 | #define SUN_E 0.016713 // Eccentricity of orbit |
535 | //double sunR0 1.495585e8 // Semi-major axis in KM |
536 | //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 |
537 | |
538 | // The following three methods, which compute the sun parameters |
539 | // given above for an arbitrary epoch (whatever time the object is |
540 | // set to), make only a small difference as compared to using the |
541 | // above constants. E.g., Sunset times might differ by ~12 |
542 | // seconds. Furthermore, the eta-g computation is befuddled by |
543 | // Duffet-Smith's incorrect coefficients (p.86). I've corrected |
544 | // the first-order coefficient but the others may be off too - no |
545 | // way of knowing without consulting another source. |
546 | |
547 | // /** |
548 | // * Return the sun's ecliptic longitude at perigee for the current time. |
549 | // * See Duffett-Smith, p. 86. |
550 | // * @return radians |
551 | // */ |
552 | // private double getSunOmegaG() { |
553 | // double T = getJulianCentury(); |
554 | // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; |
555 | // } |
556 | |
557 | // /** |
558 | // * Return the sun's ecliptic longitude for the current time. |
559 | // * See Duffett-Smith, p. 86. |
560 | // * @return radians |
561 | // */ |
562 | // private double getSunEtaG() { |
563 | // double T = getJulianCentury(); |
564 | // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; |
565 | // // |
566 | // // The above line is from Duffett-Smith, and yields manifestly wrong |
567 | // // results. The below constant is derived empirically to match the |
568 | // // constant he gives for the 1990 EPOCH. |
569 | // // |
570 | // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; |
571 | // } |
572 | |
573 | // /** |
574 | // * Return the sun's eccentricity of orbit for the current time. |
575 | // * See Duffett-Smith, p. 86. |
576 | // * @return double |
577 | // */ |
578 | // private double getSunE() { |
579 | // double T = getJulianCentury(); |
580 | // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; |
581 | // } |
582 | |
583 | /** |
584 | * Find the "true anomaly" (longitude) of an object from |
585 | * its mean anomaly and the eccentricity of its orbit. This uses |
586 | * an iterative solution to Kepler's equation. |
587 | * |
588 | * @param meanAnomaly The object's longitude calculated as if it were in |
589 | * a regular, circular orbit, measured in radians |
590 | * from the point of perigee. |
591 | * |
592 | * @param eccentricity The eccentricity of the orbit |
593 | * |
594 | * @return The true anomaly (longitude) measured in radians |
595 | */ |
596 | static double trueAnomaly(double meanAnomaly, double eccentricity) |
597 | { |
598 | // First, solve Kepler's equation iteratively |
599 | // Duffett-Smith, p.90 |
600 | double delta; |
601 | double E = meanAnomaly; |
602 | do { |
603 | delta = E - eccentricity * ::sin(E) - meanAnomaly; |
604 | E = E - delta / (1 - eccentricity * ::cos(E)); |
605 | } |
606 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad |
607 | |
608 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) |
609 | /(1-eccentricity) ) ); |
610 | } |
611 | |
612 | /** |
613 | * The longitude of the sun at the time specified by this object. |
614 | * The longitude is measured in radians along the ecliptic |
615 | * from the "first point of Aries," the point at which the ecliptic |
616 | * crosses the earth's equatorial plane at the vernal equinox. |
617 | * <p> |
618 | * Currently, this method uses an approximation of the two-body Kepler's |
619 | * equation for the earth and the sun. It does not take into account the |
620 | * perturbations caused by the other planets, the moon, etc. |
621 | * @internal |
622 | * @deprecated ICU 2.4. This class may be removed or modified. |
623 | */ |
624 | double CalendarAstronomer::getSunLongitude() |
625 | { |
626 | // See page 86 of "Practial Astronomy with your Calculator", |
627 | // by Peter Duffet-Smith, for details on the algorithm. |
628 | |
629 | if (isINVALID(sunLongitude)) { |
630 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); |
631 | } |
632 | return sunLongitude; |
633 | } |
634 | |
635 | /** |
636 | * TODO Make this public when the entire class is package-private. |
637 | */ |
638 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) |
639 | { |
640 | // See page 86 of "Practial Astronomy with your Calculator", |
641 | // by Peter Duffet-Smith, for details on the algorithm. |
642 | |
643 | double day = jDay - JD_EPOCH; // Days since epoch |
644 | |
645 | // Find the angular distance the sun in a fictitious |
646 | // circular orbit has travelled since the epoch. |
647 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); |
648 | |
649 | // The epoch wasn't at the sun's perigee; find the angular distance |
650 | // since perigee, which is called the "mean anomaly" |
651 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); |
652 | |
653 | // Now find the "true anomaly", e.g. the real solar longitude |
654 | // by solving Kepler's equation for an elliptical orbit |
655 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different |
656 | // equations; omega_g is to be correct. |
657 | longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); |
658 | } |
659 | |
660 | /** |
661 | * The position of the sun at this object's current date and time, |
662 | * in equatorial coordinates. |
663 | * @internal |
664 | * @deprecated ICU 2.4. This class may be removed or modified. |
665 | */ |
666 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { |
667 | return eclipticToEquatorial(result, getSunLongitude(), 0); |
668 | } |
669 | |
670 | |
671 | /** |
672 | * Constant representing the vernal equinox. |
673 | * For use with {@link #getSunTime getSunTime}. |
674 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. |
675 | * @internal |
676 | * @deprecated ICU 2.4. This class may be removed or modified. |
677 | */ |
678 | /*double CalendarAstronomer::VERNAL_EQUINOX() { |
679 | return 0; |
680 | }*/ |
681 | |
682 | /** |
683 | * Constant representing the summer solstice. |
684 | * For use with {@link #getSunTime getSunTime}. |
685 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. |
686 | * @internal |
687 | * @deprecated ICU 2.4. This class may be removed or modified. |
688 | */ |
689 | double CalendarAstronomer::SUMMER_SOLSTICE() { |
690 | return (CalendarAstronomer::PI/2); |
691 | } |
692 | |
693 | /** |
694 | * Constant representing the autumnal equinox. |
695 | * For use with {@link #getSunTime getSunTime}. |
696 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. |
697 | * @internal |
698 | * @deprecated ICU 2.4. This class may be removed or modified. |
699 | */ |
700 | /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
701 | return (CalendarAstronomer::PI); |
702 | }*/ |
703 | |
704 | /** |
705 | * Constant representing the winter solstice. |
706 | * For use with {@link #getSunTime getSunTime}. |
707 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. |
708 | * @internal |
709 | * @deprecated ICU 2.4. This class may be removed or modified. |
710 | */ |
711 | double CalendarAstronomer::WINTER_SOLSTICE() { |
712 | return ((CalendarAstronomer::PI*3)/2); |
713 | } |
714 | |
715 | CalendarAstronomer::AngleFunc::~AngleFunc() {} |
716 | |
717 | /** |
718 | * Find the next time at which the sun's ecliptic longitude will have |
719 | * the desired value. |
720 | * @internal |
721 | * @deprecated ICU 2.4. This class may be removed or modified. |
722 | */ |
723 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
724 | public: |
725 | virtual ~SunTimeAngleFunc(); |
726 | virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } |
727 | }; |
728 | |
729 | SunTimeAngleFunc::~SunTimeAngleFunc() {} |
730 | |
731 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
732 | { |
733 | SunTimeAngleFunc func; |
734 | return timeOfAngle( func, |
735 | desired, |
736 | TROPICAL_YEAR, |
737 | MINUTE_MS, |
738 | next); |
739 | } |
740 | |
741 | CalendarAstronomer::CoordFunc::~CoordFunc() {} |
742 | |
743 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
744 | public: |
745 | virtual ~RiseSetCoordFunc(); |
746 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); } |
747 | }; |
748 | |
749 | RiseSetCoordFunc::~RiseSetCoordFunc() {} |
750 | |
751 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
752 | { |
753 | UDate t0 = fTime; |
754 | |
755 | // Make a rough guess: 6am or 6pm local time on the current day |
756 | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); |
757 | |
758 | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n" , noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); |
759 | setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); |
760 | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n" , ((rise ? -6. : 6.) * HOUR_MS))); |
761 | |
762 | RiseSetCoordFunc func; |
763 | double t = riseOrSet(func, |
764 | rise, |
765 | .533 * DEG_RAD, // Angular Diameter |
766 | 34. /60.0 * DEG_RAD, // Refraction correction |
767 | MINUTE_MS / 12.); // Desired accuracy |
768 | |
769 | setTime(t0); |
770 | return t; |
771 | } |
772 | |
773 | // Commented out - currently unused. ICU 2.6, Alan |
774 | // //------------------------------------------------------------------------- |
775 | // // Alternate Sun Rise/Set |
776 | // // See Duffett-Smith p.93 |
777 | // //------------------------------------------------------------------------- |
778 | // |
779 | // // This yields worse results (as compared to USNO data) than getSunRiseSet(). |
780 | // /** |
781 | // * TODO Make this when the entire class is package-private. |
782 | // */ |
783 | // /*public*/ long getSunRiseSet2(boolean rise) { |
784 | // // 1. Calculate coordinates of the sun's center for midnight |
785 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
786 | // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; |
787 | // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); |
788 | // |
789 | // // 2. Add ... to lambda to get position 24 hours later |
790 | // double lambda2 = lambda1 + 0.985647*DEG_RAD; |
791 | // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); |
792 | // |
793 | // // 3. Calculate LSTs of rising and setting for these two positions |
794 | // double tanL = ::tan(fLatitude); |
795 | // double H = ::acos(-tanL * ::tan(pos1.declination)); |
796 | // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; |
797 | // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; |
798 | // H = ::acos(-tanL * ::tan(pos2.declination)); |
799 | // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
800 | // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
801 | // if (lst1r > 24) lst1r -= 24; |
802 | // if (lst1s > 24) lst1s -= 24; |
803 | // if (lst2r > 24) lst2r -= 24; |
804 | // if (lst2s > 24) lst2s -= 24; |
805 | // |
806 | // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. |
807 | // double gst1r = lstToGst(lst1r); |
808 | // double gst1s = lstToGst(lst1s); |
809 | // double gst2r = lstToGst(lst2r); |
810 | // double gst2s = lstToGst(lst2s); |
811 | // if (gst1r > gst2r) gst2r += 24; |
812 | // if (gst1s > gst2s) gst2s += 24; |
813 | // |
814 | // // 5. Calculate GST at 0h UT of this date |
815 | // double t00 = utToGst(0); |
816 | // |
817 | // // 6. Calculate GST at 0h on the observer's longitude |
818 | // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. |
819 | // double t00p = t00 - offset*1.002737909; |
820 | // if (t00p < 0) t00p += 24; // do NOT normalize |
821 | // |
822 | // // 7. Adjust |
823 | // if (gst1r < t00p) { |
824 | // gst1r += 24; |
825 | // gst2r += 24; |
826 | // } |
827 | // if (gst1s < t00p) { |
828 | // gst1s += 24; |
829 | // gst2s += 24; |
830 | // } |
831 | // |
832 | // // 8. |
833 | // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); |
834 | // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); |
835 | // |
836 | // // 9. Correct for parallax, refraction, and sun's diameter |
837 | // double dec = (pos1.declination + pos2.declination) / 2; |
838 | // double psi = ::acos(sin(fLatitude) / cos(dec)); |
839 | // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter |
840 | // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; |
841 | // double delta_t = 240 * y / cos(dec) / 3600; // hours |
842 | // |
843 | // // 10. Add correction to GSTs, subtract from GSTr |
844 | // gstr -= delta_t; |
845 | // gsts += delta_t; |
846 | // |
847 | // // 11. Convert GST to UT and then to local civil time |
848 | // double ut = gstToUt(rise ? gstr : gsts); |
849 | // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); |
850 | // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day |
851 | // return midnight + (long) (ut * 3600000); |
852 | // } |
853 | |
854 | // Commented out - currently unused. ICU 2.6, Alan |
855 | // /** |
856 | // * Convert local sidereal time to Greenwich sidereal time. |
857 | // * Section 15. Duffett-Smith p.21 |
858 | // * @param lst in hours (0..24) |
859 | // * @return GST in hours (0..24) |
860 | // */ |
861 | // double lstToGst(double lst) { |
862 | // double delta = fLongitude * 24 / CalendarAstronomer_PI2; |
863 | // return normalize(lst - delta, 24); |
864 | // } |
865 | |
866 | // Commented out - currently unused. ICU 2.6, Alan |
867 | // /** |
868 | // * Convert UT to GST on this date. |
869 | // * Section 12. Duffett-Smith p.17 |
870 | // * @param ut in hours |
871 | // * @return GST in hours |
872 | // */ |
873 | // double utToGst(double ut) { |
874 | // return normalize(getT0() + ut*1.002737909, 24); |
875 | // } |
876 | |
877 | // Commented out - currently unused. ICU 2.6, Alan |
878 | // /** |
879 | // * Convert GST to UT on this date. |
880 | // * Section 13. Duffett-Smith p.18 |
881 | // * @param gst in hours |
882 | // * @return UT in hours |
883 | // */ |
884 | // double gstToUt(double gst) { |
885 | // return normalize(gst - getT0(), 24) * 0.9972695663; |
886 | // } |
887 | |
888 | // Commented out - currently unused. ICU 2.6, Alan |
889 | // double getT0() { |
890 | // // Common computation for UT <=> GST |
891 | // |
892 | // // Find JD for 0h UT |
893 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
894 | // |
895 | // double s = jd - 2451545.0; |
896 | // double t = s / 36525.0; |
897 | // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; |
898 | // return t0; |
899 | // } |
900 | |
901 | // Commented out - currently unused. ICU 2.6, Alan |
902 | // //------------------------------------------------------------------------- |
903 | // // Alternate Sun Rise/Set |
904 | // // See sci.astro FAQ |
905 | // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html |
906 | // //------------------------------------------------------------------------- |
907 | // |
908 | // // Note: This method appears to produce inferior accuracy as |
909 | // // compared to getSunRiseSet(). |
910 | // |
911 | // /** |
912 | // * TODO Make this when the entire class is package-private. |
913 | // */ |
914 | // /*public*/ long getSunRiseSet3(boolean rise) { |
915 | // |
916 | // // Compute day number for 0.0 Jan 2000 epoch |
917 | // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; |
918 | // |
919 | // // Now compute the Local Sidereal Time, LST: |
920 | // // |
921 | // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ |
922 | // fLongitude*RAD_DEG; |
923 | // // |
924 | // // (east long. positive). Note that LST is here expressed in degrees, |
925 | // // where 15 degrees corresponds to one hour. Since LST really is an angle, |
926 | // // it's convenient to use one unit---degrees---throughout. |
927 | // |
928 | // // COMPUTING THE SUN'S POSITION |
929 | // // ---------------------------- |
930 | // // |
931 | // // To be able to compute the Sun's rise/set times, you need to be able to |
932 | // // compute the Sun's position at any time. First compute the "day |
933 | // // number" d as outlined above, for the desired moment. Next compute: |
934 | // // |
935 | // double oblecl = 23.4393 - 3.563E-7 * d; |
936 | // // |
937 | // double w = 282.9404 + 4.70935E-5 * d; |
938 | // double M = 356.0470 + 0.9856002585 * d; |
939 | // double e = 0.016709 - 1.151E-9 * d; |
940 | // // |
941 | // // This is the obliquity of the ecliptic, plus some of the elements of |
942 | // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = |
943 | // // argument of perihelion, M = mean anomaly, e = eccentricity. |
944 | // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly |
945 | // // true, this is still an accurate approximation). Next compute E, the |
946 | // // eccentric anomaly: |
947 | // // |
948 | // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); |
949 | // // |
950 | // // where E and M are in degrees. This is it---no further iterations are |
951 | // // needed because we know e has a sufficiently small value. Next compute |
952 | // // the true anomaly, v, and the distance, r: |
953 | // // |
954 | // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; |
955 | // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); |
956 | // // |
957 | // // and |
958 | // // |
959 | // // r = sqrt( A*A + B*B ) |
960 | // double v = ::atan2( B, A )*RAD_DEG; |
961 | // // |
962 | // // The Sun's true longitude, slon, can now be computed: |
963 | // // |
964 | // double slon = v + w; |
965 | // // |
966 | // // Since the Sun is always at the ecliptic (or at least very very close to |
967 | // // it), we can use simplified formulae to convert slon (the Sun's ecliptic |
968 | // // longitude) to sRA and sDec (the Sun's RA and Dec): |
969 | // // |
970 | // // ::sin(slon) * cos(oblecl) |
971 | // // tan(sRA) = ------------------------- |
972 | // // cos(slon) |
973 | // // |
974 | // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) |
975 | // // |
976 | // // As was the case when computing az, the Azimuth, if possible use an |
977 | // // atan2() function to compute sRA. |
978 | // |
979 | // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; |
980 | // |
981 | // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); |
982 | // double sDec = ::asin(sin_sDec)*RAD_DEG; |
983 | // |
984 | // // COMPUTING RISE AND SET TIMES |
985 | // // ---------------------------- |
986 | // // |
987 | // // To compute when an object rises or sets, you must compute when it |
988 | // // passes the meridian and the HA of rise/set. Then the rise time is |
989 | // // the meridian time minus HA for rise/set, and the set time is the |
990 | // // meridian time plus the HA for rise/set. |
991 | // // |
992 | // // To find the meridian time, compute the Local Sidereal Time at 0h local |
993 | // // time (or 0h UT if you prefer to work in UT) as outlined above---name |
994 | // // that quantity LST0. The Meridian Time, MT, will now be: |
995 | // // |
996 | // // MT = RA - LST0 |
997 | // double MT = normalize(sRA - LST, 360); |
998 | // // |
999 | // // where "RA" is the object's Right Ascension (in degrees!). If negative, |
1000 | // // add 360 deg to MT. If the object is the Sun, leave the time as it is, |
1001 | // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from |
1002 | // // sidereal to solar time. Now, compute HA for rise/set, name that |
1003 | // // quantity HA0: |
1004 | // // |
1005 | // // ::sin(h0) - ::sin(lat) * ::sin(Dec) |
1006 | // // cos(HA0) = --------------------------------- |
1007 | // // cos(lat) * cos(Dec) |
1008 | // // |
1009 | // // where h0 is the altitude selected to represent rise/set. For a purely |
1010 | // // mathematical horizon, set h0 = 0 and simplify to: |
1011 | // // |
1012 | // // cos(HA0) = - tan(lat) * tan(Dec) |
1013 | // // |
1014 | // // If you want to account for refraction on the atmosphere, set h0 = -35/60 |
1015 | // // degrees (-35 arc minutes), and if you want to compute the rise/set times |
1016 | // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). |
1017 | // // |
1018 | // double h0 = -50/60 * DEG_RAD; |
1019 | // |
1020 | // double HA0 = ::acos( |
1021 | // (sin(h0) - ::sin(fLatitude) * sin_sDec) / |
1022 | // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; |
1023 | // |
1024 | // // When HA0 has been computed, leave it as it is for the Sun but multiply |
1025 | // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to |
1026 | // // solar time. Finally compute: |
1027 | // // |
1028 | // // Rise time = MT - HA0 |
1029 | // // Set time = MT + HA0 |
1030 | // // |
1031 | // // convert the times from degrees to hours by dividing by 15. |
1032 | // // |
1033 | // // If you'd like to check that your calculations are accurate or just |
1034 | // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, |
1035 | // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. |
1036 | // |
1037 | // double result = MT + (rise ? -HA0 : HA0); // in degrees |
1038 | // |
1039 | // // Find UT midnight on this day |
1040 | // long midnight = DAY_MS * (time / DAY_MS); |
1041 | // |
1042 | // return midnight + (long) (result * 3600000 / 15); |
1043 | // } |
1044 | |
1045 | //------------------------------------------------------------------------- |
1046 | // The Moon |
1047 | //------------------------------------------------------------------------- |
1048 | |
1049 | #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch |
1050 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee |
1051 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node |
1052 | #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit |
1053 | #define moonE ( 0.054900 ) // Eccentricity of orbit |
1054 | |
1055 | // These aren't used right now |
1056 | #define moonA ( 3.84401e5 ) // semi-major axis (km) |
1057 | #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A |
1058 | #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A |
1059 | |
1060 | /** |
1061 | * The position of the moon at the time set on this |
1062 | * object, in equatorial coordinates. |
1063 | * @internal |
1064 | * @deprecated ICU 2.4. This class may be removed or modified. |
1065 | */ |
1066 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() |
1067 | { |
1068 | // |
1069 | // See page 142 of "Practial Astronomy with your Calculator", |
1070 | // by Peter Duffet-Smith, for details on the algorithm. |
1071 | // |
1072 | if (moonPositionSet == FALSE) { |
1073 | // Calculate the solar longitude. Has the side effect of |
1074 | // filling in "meanAnomalySun" as well. |
1075 | getSunLongitude(); |
1076 | |
1077 | // |
1078 | // Find the # of days since the epoch of our orbital parameters. |
1079 | // TODO: Convert the time of day portion into ephemeris time |
1080 | // |
1081 | double day = getJulianDay() - JD_EPOCH; // Days since epoch |
1082 | |
1083 | // Calculate the mean longitude and anomaly of the moon, based on |
1084 | // a circular orbit. Similar to the corresponding solar calculation. |
1085 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); |
1086 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); |
1087 | |
1088 | // |
1089 | // Calculate the following corrections: |
1090 | // Evection: the sun's gravity affects the moon's eccentricity |
1091 | // Annual Eqn: variation in the effect due to earth-sun distance |
1092 | // A3: correction factor (for ???) |
1093 | // |
1094 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) |
1095 | - meanAnomalyMoon); |
1096 | double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); |
1097 | double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); |
1098 | |
1099 | meanAnomalyMoon += evection - annual - a3; |
1100 | |
1101 | // |
1102 | // More correction factors: |
1103 | // center equation of the center correction |
1104 | // a4 yet another error correction (???) |
1105 | // |
1106 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? |
1107 | // |
1108 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); |
1109 | double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); |
1110 | |
1111 | // Now find the moon's corrected longitude |
1112 | moonLongitude = meanLongitude + evection + center - annual + a4; |
1113 | |
1114 | // |
1115 | // And finally, find the variation, caused by the fact that the sun's |
1116 | // gravitational pull on the moon varies depending on which side of |
1117 | // the earth the moon is on |
1118 | // |
1119 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); |
1120 | |
1121 | moonLongitude += variation; |
1122 | |
1123 | // |
1124 | // What we've calculated so far is the moon's longitude in the plane |
1125 | // of its own orbit. Now map to the ecliptic to get the latitude |
1126 | // and longitude. First we need to find the longitude of the ascending |
1127 | // node, the position on the ecliptic where it is crossed by the moon's |
1128 | // orbit as it crosses from the southern to the northern hemisphere. |
1129 | // |
1130 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); |
1131 | |
1132 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); |
1133 | |
1134 | double y = ::sin(moonLongitude - nodeLongitude); |
1135 | double x = cos(moonLongitude - nodeLongitude); |
1136 | |
1137 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; |
1138 | double moonEclipLat = ::asin(y * ::sin(moonI)); |
1139 | |
1140 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); |
1141 | moonPositionSet = TRUE; |
1142 | } |
1143 | return moonPosition; |
1144 | } |
1145 | |
1146 | /** |
1147 | * The "age" of the moon at the time specified in this object. |
1148 | * This is really the angle between the |
1149 | * current ecliptic longitudes of the sun and the moon, |
1150 | * measured in radians. |
1151 | * |
1152 | * @see #getMoonPhase |
1153 | * @internal |
1154 | * @deprecated ICU 2.4. This class may be removed or modified. |
1155 | */ |
1156 | double CalendarAstronomer::getMoonAge() { |
1157 | // See page 147 of "Practial Astronomy with your Calculator", |
1158 | // by Peter Duffet-Smith, for details on the algorithm. |
1159 | // |
1160 | // Force the moon's position to be calculated. We're going to use |
1161 | // some the intermediate results cached during that calculation. |
1162 | // |
1163 | getMoonPosition(); |
1164 | |
1165 | return norm2PI(moonEclipLong - sunLongitude); |
1166 | } |
1167 | |
1168 | /** |
1169 | * Calculate the phase of the moon at the time set in this object. |
1170 | * The returned phase is a <code>double</code> in the range |
1171 | * <code>0 <= phase < 1</code>, interpreted as follows: |
1172 | * <ul> |
1173 | * <li>0.00: New moon |
1174 | * <li>0.25: First quarter |
1175 | * <li>0.50: Full moon |
1176 | * <li>0.75: Last quarter |
1177 | * </ul> |
1178 | * |
1179 | * @see #getMoonAge |
1180 | * @internal |
1181 | * @deprecated ICU 2.4. This class may be removed or modified. |
1182 | */ |
1183 | double CalendarAstronomer::getMoonPhase() { |
1184 | // See page 147 of "Practial Astronomy with your Calculator", |
1185 | // by Peter Duffet-Smith, for details on the algorithm. |
1186 | return 0.5 * (1 - cos(getMoonAge())); |
1187 | } |
1188 | |
1189 | /** |
1190 | * Constant representing a new moon. |
1191 | * For use with {@link #getMoonTime getMoonTime} |
1192 | * @internal |
1193 | * @deprecated ICU 2.4. This class may be removed or modified. |
1194 | */ |
1195 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
1196 | return CalendarAstronomer::MoonAge(0); |
1197 | } |
1198 | |
1199 | /** |
1200 | * Constant representing the moon's first quarter. |
1201 | * For use with {@link #getMoonTime getMoonTime} |
1202 | * @internal |
1203 | * @deprecated ICU 2.4. This class may be removed or modified. |
1204 | */ |
1205 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
1206 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
1207 | }*/ |
1208 | |
1209 | /** |
1210 | * Constant representing a full moon. |
1211 | * For use with {@link #getMoonTime getMoonTime} |
1212 | * @internal |
1213 | * @deprecated ICU 2.4. This class may be removed or modified. |
1214 | */ |
1215 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { |
1216 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
1217 | } |
1218 | /** |
1219 | * Constant representing the moon's last quarter. |
1220 | * For use with {@link #getMoonTime getMoonTime} |
1221 | * @internal |
1222 | * @deprecated ICU 2.4. This class may be removed or modified. |
1223 | */ |
1224 | |
1225 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
1226 | public: |
1227 | virtual ~MoonTimeAngleFunc(); |
1228 | virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } |
1229 | }; |
1230 | |
1231 | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} |
1232 | |
1233 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
1234 | return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
1235 | }*/ |
1236 | |
1237 | /** |
1238 | * Find the next or previous time at which the Moon's ecliptic |
1239 | * longitude will have the desired value. |
1240 | * <p> |
1241 | * @param desired The desired longitude. |
1242 | * @param next <tt>true</tt> if the next occurrance of the phase |
1243 | * is desired, <tt>false</tt> for the previous occurrance. |
1244 | * @internal |
1245 | * @deprecated ICU 2.4. This class may be removed or modified. |
1246 | */ |
1247 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) |
1248 | { |
1249 | MoonTimeAngleFunc func; |
1250 | return timeOfAngle( func, |
1251 | desired, |
1252 | SYNODIC_MONTH, |
1253 | MINUTE_MS, |
1254 | next); |
1255 | } |
1256 | |
1257 | /** |
1258 | * Find the next or previous time at which the moon will be in the |
1259 | * desired phase. |
1260 | * <p> |
1261 | * @param desired The desired phase of the moon. |
1262 | * @param next <tt>true</tt> if the next occurrance of the phase |
1263 | * is desired, <tt>false</tt> for the previous occurrance. |
1264 | * @internal |
1265 | * @deprecated ICU 2.4. This class may be removed or modified. |
1266 | */ |
1267 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { |
1268 | return getMoonTime(desired.value, next); |
1269 | } |
1270 | |
1271 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
1272 | public: |
1273 | virtual ~MoonRiseSetCoordFunc(); |
1274 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } |
1275 | }; |
1276 | |
1277 | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} |
1278 | |
1279 | /** |
1280 | * Returns the time (GMT) of sunrise or sunset on the local date to which |
1281 | * this calendar is currently set. |
1282 | * @internal |
1283 | * @deprecated ICU 2.4. This class may be removed or modified. |
1284 | */ |
1285 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) |
1286 | { |
1287 | MoonRiseSetCoordFunc func; |
1288 | return riseOrSet(func, |
1289 | rise, |
1290 | .533 * DEG_RAD, // Angular Diameter |
1291 | 34 /60.0 * DEG_RAD, // Refraction correction |
1292 | MINUTE_MS); // Desired accuracy |
1293 | } |
1294 | |
1295 | //------------------------------------------------------------------------- |
1296 | // Interpolation methods for finding the time at which a given event occurs |
1297 | //------------------------------------------------------------------------- |
1298 | |
1299 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, |
1300 | double periodDays, double epsilon, UBool next) |
1301 | { |
1302 | // Find the value of the function at the current time |
1303 | double lastAngle = func.eval(*this); |
1304 | |
1305 | // Find out how far we are from the desired angle |
1306 | double deltaAngle = norm2PI(desired - lastAngle) ; |
1307 | |
1308 | // Using the average period, estimate the next (or previous) time at |
1309 | // which the desired angle occurs. |
1310 | double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; |
1311 | |
1312 | double lastDeltaT = deltaT; // Liu |
1313 | UDate startTime = fTime; // Liu |
1314 | |
1315 | setTime(fTime + uprv_ceil(deltaT)); |
1316 | |
1317 | // Now iterate until we get the error below epsilon. Throughout |
1318 | // this loop we use normPI to get values in the range -Pi to Pi, |
1319 | // since we're using them as correction factors rather than absolute angles. |
1320 | do { |
1321 | // Evaluate the function at the time we've estimated |
1322 | double angle = func.eval(*this); |
1323 | |
1324 | // Find the # of milliseconds per radian at this point on the curve |
1325 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); |
1326 | |
1327 | // Correct the time estimate based on how far off the angle is |
1328 | deltaT = normPI(desired - angle) * factor; |
1329 | |
1330 | // HACK: |
1331 | // |
1332 | // If abs(deltaT) begins to diverge we need to quit this loop. |
1333 | // This only appears to happen when attempting to locate, for |
1334 | // example, a new moon on the day of the new moon. E.g.: |
1335 | // |
1336 | // This result is correct: |
1337 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= |
1338 | // Sun Jul 22 10:57:41 CST 1990 |
1339 | // |
1340 | // But attempting to make the same call a day earlier causes deltaT |
1341 | // to diverge: |
1342 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> |
1343 | // 1.3649828540224032E9 |
1344 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= |
1345 | // Sun Jul 08 13:56:15 CST 1990 |
1346 | // |
1347 | // As a temporary solution, we catch this specific condition and |
1348 | // adjust our start time by one eighth period days (either forward |
1349 | // or backward) and try again. |
1350 | // Liu 11/9/00 |
1351 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { |
1352 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); |
1353 | setTime(startTime + (next ? delta : -delta)); |
1354 | return timeOfAngle(func, desired, periodDays, epsilon, next); |
1355 | } |
1356 | |
1357 | lastDeltaT = deltaT; |
1358 | lastAngle = angle; |
1359 | |
1360 | setTime(fTime + uprv_ceil(deltaT)); |
1361 | } |
1362 | while (uprv_fabs(deltaT) > epsilon); |
1363 | |
1364 | return fTime; |
1365 | } |
1366 | |
1367 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, |
1368 | double diameter, double refraction, |
1369 | double epsilon) |
1370 | { |
1371 | Equatorial pos; |
1372 | double tanL = ::tan(fLatitude); |
1373 | double deltaT = 0; |
1374 | int32_t count = 0; |
1375 | |
1376 | // |
1377 | // Calculate the object's position at the current time, then use that |
1378 | // position to calculate the time of rising or setting. The position |
1379 | // will be different at that time, so iterate until the error is allowable. |
1380 | // |
1381 | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n" , |
1382 | rise?"T" :"F" , diameter, refraction, epsilon)); |
1383 | do { |
1384 | // See "Practical Astronomy With Your Calculator, section 33. |
1385 | func.eval(pos, *this); |
1386 | double angle = ::acos(-tanL * ::tan(pos.declination)); |
1387 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; |
1388 | |
1389 | // Convert from LST to Universal Time. |
1390 | UDate newTime = lstToUT( lst ); |
1391 | |
1392 | deltaT = newTime - fTime; |
1393 | setTime(newTime); |
1394 | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n" , |
1395 | count, deltaT, angle, lst, pos.ascension, pos.declination)); |
1396 | } |
1397 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); |
1398 | |
1399 | // Calculate the correction due to refraction and the object's angular diameter |
1400 | double cosD = ::cos(pos.declination); |
1401 | double psi = ::acos(sin(fLatitude) / cosD); |
1402 | double x = diameter / 2 + refraction; |
1403 | double y = ::asin(sin(x) / ::sin(psi)); |
1404 | long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); |
1405 | |
1406 | return fTime + (rise ? -delta : delta); |
1407 | } |
1408 | /** |
1409 | * Return the obliquity of the ecliptic (the angle between the ecliptic |
1410 | * and the earth's equator) at the current time. This varies due to |
1411 | * the precession of the earth's axis. |
1412 | * |
1413 | * @return the obliquity of the ecliptic relative to the equator, |
1414 | * measured in radians. |
1415 | */ |
1416 | double CalendarAstronomer::eclipticObliquity() { |
1417 | if (isINVALID(eclipObliquity)) { |
1418 | const double epoch = 2451545.0; // 2000 AD, January 1.5 |
1419 | |
1420 | double T = (getJulianDay() - epoch) / 36525; |
1421 | |
1422 | eclipObliquity = 23.439292 |
1423 | - 46.815/3600 * T |
1424 | - 0.0006/3600 * T*T |
1425 | + 0.00181/3600 * T*T*T; |
1426 | |
1427 | eclipObliquity *= DEG_RAD; |
1428 | } |
1429 | return eclipObliquity; |
1430 | } |
1431 | |
1432 | |
1433 | //------------------------------------------------------------------------- |
1434 | // Private data |
1435 | //------------------------------------------------------------------------- |
1436 | void CalendarAstronomer::clearCache() { |
1437 | const double INVALID = uprv_getNaN(); |
1438 | |
1439 | julianDay = INVALID; |
1440 | julianCentury = INVALID; |
1441 | sunLongitude = INVALID; |
1442 | meanAnomalySun = INVALID; |
1443 | moonLongitude = INVALID; |
1444 | moonEclipLong = INVALID; |
1445 | meanAnomalyMoon = INVALID; |
1446 | eclipObliquity = INVALID; |
1447 | siderealTime = INVALID; |
1448 | siderealT0 = INVALID; |
1449 | moonPositionSet = FALSE; |
1450 | } |
1451 | |
1452 | //private static void out(String s) { |
1453 | // System.out.println(s); |
1454 | //} |
1455 | |
1456 | //private static String deg(double rad) { |
1457 | // return Double.toString(rad * RAD_DEG); |
1458 | //} |
1459 | |
1460 | //private static String hours(long ms) { |
1461 | // return Double.toString((double)ms / HOUR_MS) + " hours"; |
1462 | //} |
1463 | |
1464 | /** |
1465 | * @internal |
1466 | * @deprecated ICU 2.4. This class may be removed or modified. |
1467 | */ |
1468 | /*UDate CalendarAstronomer::local(UDate localMillis) { |
1469 | // TODO - srl ? |
1470 | TimeZone *tz = TimeZone::createDefault(); |
1471 | int32_t rawOffset; |
1472 | int32_t dstOffset; |
1473 | UErrorCode status = U_ZERO_ERROR; |
1474 | tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); |
1475 | delete tz; |
1476 | return localMillis - rawOffset; |
1477 | }*/ |
1478 | |
1479 | // Debugging functions |
1480 | UnicodeString CalendarAstronomer::Ecliptic::toString() const |
1481 | { |
1482 | #ifdef U_DEBUG_ASTRO |
1483 | char tmp[800]; |
1484 | sprintf(tmp, "[%.5f,%.5f]" , longitude*RAD_DEG, latitude*RAD_DEG); |
1485 | return UnicodeString(tmp, "" ); |
1486 | #else |
1487 | return UnicodeString(); |
1488 | #endif |
1489 | } |
1490 | |
1491 | UnicodeString CalendarAstronomer::Equatorial::toString() const |
1492 | { |
1493 | #ifdef U_DEBUG_ASTRO |
1494 | char tmp[400]; |
1495 | sprintf(tmp, "%f,%f" , |
1496 | (ascension*RAD_DEG), (declination*RAD_DEG)); |
1497 | return UnicodeString(tmp, "" ); |
1498 | #else |
1499 | return UnicodeString(); |
1500 | #endif |
1501 | } |
1502 | |
1503 | UnicodeString CalendarAstronomer::Horizon::toString() const |
1504 | { |
1505 | #ifdef U_DEBUG_ASTRO |
1506 | char tmp[800]; |
1507 | sprintf(tmp, "[%.5f,%.5f]" , altitude*RAD_DEG, azimuth*RAD_DEG); |
1508 | return UnicodeString(tmp, "" ); |
1509 | #else |
1510 | return UnicodeString(); |
1511 | #endif |
1512 | } |
1513 | |
1514 | |
1515 | // static private String radToHms(double angle) { |
1516 | // int hrs = (int) (angle*RAD_HOUR); |
1517 | // int min = (int)((angle*RAD_HOUR - hrs) * 60); |
1518 | // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); |
1519 | |
1520 | // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; |
1521 | // } |
1522 | |
1523 | // static private String radToDms(double angle) { |
1524 | // int deg = (int) (angle*RAD_DEG); |
1525 | // int min = (int)((angle*RAD_DEG - deg) * 60); |
1526 | // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); |
1527 | |
1528 | // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; |
1529 | // } |
1530 | |
1531 | // =============== Calendar Cache ================ |
1532 | |
1533 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { |
1534 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
1535 | if(cache == NULL) { |
1536 | status = U_MEMORY_ALLOCATION_ERROR; |
1537 | } else { |
1538 | *cache = new CalendarCache(32, status); |
1539 | if(U_FAILURE(status)) { |
1540 | delete *cache; |
1541 | *cache = NULL; |
1542 | } |
1543 | } |
1544 | } |
1545 | |
1546 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { |
1547 | int32_t res; |
1548 | |
1549 | if(U_FAILURE(status)) { |
1550 | return 0; |
1551 | } |
1552 | umtx_lock(&ccLock); |
1553 | |
1554 | if(*cache == NULL) { |
1555 | createCache(cache, status); |
1556 | if(U_FAILURE(status)) { |
1557 | umtx_unlock(&ccLock); |
1558 | return 0; |
1559 | } |
1560 | } |
1561 | |
1562 | res = uhash_igeti((*cache)->fTable, key); |
1563 | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n" , (*cache)->fTable, key, res)); |
1564 | |
1565 | umtx_unlock(&ccLock); |
1566 | return res; |
1567 | } |
1568 | |
1569 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { |
1570 | if(U_FAILURE(status)) { |
1571 | return; |
1572 | } |
1573 | umtx_lock(&ccLock); |
1574 | |
1575 | if(*cache == NULL) { |
1576 | createCache(cache, status); |
1577 | if(U_FAILURE(status)) { |
1578 | umtx_unlock(&ccLock); |
1579 | return; |
1580 | } |
1581 | } |
1582 | |
1583 | uhash_iputi((*cache)->fTable, key, value, &status); |
1584 | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n" , (*cache)->fTable, key, value)); |
1585 | |
1586 | umtx_unlock(&ccLock); |
1587 | } |
1588 | |
1589 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { |
1590 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); |
1591 | U_DEBUG_ASTRO_MSG(("%p: Opening.\n" , fTable)); |
1592 | } |
1593 | |
1594 | CalendarCache::~CalendarCache() { |
1595 | if(fTable != NULL) { |
1596 | U_DEBUG_ASTRO_MSG(("%p: Closing.\n" , fTable)); |
1597 | uhash_close(fTable); |
1598 | } |
1599 | } |
1600 | |
1601 | U_NAMESPACE_END |
1602 | |
1603 | #endif // !UCONFIG_NO_FORMATTING |
1604 | |