1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* ------------------------------------------------------------------ */ |
4 | /* decNumber package local type, tuning, and macro definitions */ |
5 | /* ------------------------------------------------------------------ */ |
6 | /* Copyright (c) IBM Corporation, 2000-2016. All rights reserved. */ |
7 | /* */ |
8 | /* This software is made available under the terms of the */ |
9 | /* ICU License -- ICU 1.8.1 and later. */ |
10 | /* */ |
11 | /* The description and User's Guide ("The decNumber C Library") for */ |
12 | /* this software is called decNumber.pdf. This document is */ |
13 | /* available, together with arithmetic and format specifications, */ |
14 | /* testcases, and Web links, on the General Decimal Arithmetic page. */ |
15 | /* */ |
16 | /* Please send comments, suggestions, and corrections to the author: */ |
17 | /* mfc@uk.ibm.com */ |
18 | /* Mike Cowlishaw, IBM Fellow */ |
19 | /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ |
20 | /* ------------------------------------------------------------------ */ |
21 | /* This header file is included by all modules in the decNumber */ |
22 | /* library, and contains local type definitions, tuning parameters, */ |
23 | /* etc. It should not need to be used by application programs. */ |
24 | /* decNumber.h or one of decDouble (etc.) must be included first. */ |
25 | /* ------------------------------------------------------------------ */ |
26 | |
27 | #if !defined(DECNUMBERLOC) |
28 | #define DECNUMBERLOC |
29 | #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ |
30 | #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ |
31 | |
32 | #include <stdlib.h> /* for abs */ |
33 | #include <string.h> /* for memset, strcpy */ |
34 | #include "decContext.h" |
35 | |
36 | /* Conditional code flag -- set this to match hardware platform */ |
37 | #if !defined(DECLITEND) |
38 | #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ |
39 | #endif |
40 | |
41 | /* Conditional code flag -- set this to 1 for best performance */ |
42 | #if !defined(DECUSE64) |
43 | #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ |
44 | #endif |
45 | |
46 | /* Conditional check flags -- set these to 0 for best performance */ |
47 | #if !defined(DECCHECK) |
48 | #define DECCHECK 0 /* 1 to enable robust checking */ |
49 | #endif |
50 | #if !defined(DECALLOC) |
51 | #define DECALLOC 0 /* 1 to enable memory accounting */ |
52 | #endif |
53 | #if !defined(DECTRACE) |
54 | #define DECTRACE 0 /* 1 to trace certain internals, etc. */ |
55 | #endif |
56 | |
57 | /* Tuning parameter for decNumber (arbitrary precision) module */ |
58 | #if !defined(DECBUFFER) |
59 | #define DECBUFFER 36 /* Size basis for local buffers. This */ |
60 | /* should be a common maximum precision */ |
61 | /* rounded up to a multiple of 4; must */ |
62 | /* be zero or positive. */ |
63 | #endif |
64 | |
65 | /* ---------------------------------------------------------------- */ |
66 | /* Definitions for all modules (general-purpose) */ |
67 | /* ---------------------------------------------------------------- */ |
68 | |
69 | /* Local names for common types -- for safety, decNumber modules do */ |
70 | /* not use int or long directly. */ |
71 | #define Flag uint8_t |
72 | #define Byte int8_t |
73 | #define uByte uint8_t |
74 | #define Short int16_t |
75 | #define uShort uint16_t |
76 | #define Int int32_t |
77 | #define uInt uint32_t |
78 | #define Unit decNumberUnit |
79 | #if DECUSE64 |
80 | #define Long int64_t |
81 | #define uLong uint64_t |
82 | #endif |
83 | |
84 | /* Development-use definitions */ |
85 | typedef long int LI; /* for printf arguments only */ |
86 | #define DECNOINT 0 /* 1 to check no internal use of 'int' */ |
87 | /* or stdint types */ |
88 | #if DECNOINT |
89 | /* if these interfere with your C includes, do not set DECNOINT */ |
90 | #define int ? /* enable to ensure that plain C 'int' */ |
91 | #define long ?? /* .. or 'long' types are not used */ |
92 | #endif |
93 | |
94 | /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ |
95 | /* (that is, sets w to be the high-order word of the 64-bit result; */ |
96 | /* the low-order word is simply u*v.) */ |
97 | /* This version is derived from Knuth via Hacker's Delight; */ |
98 | /* it seems to optimize better than some others tried */ |
99 | #define LONGMUL32HI(w, u, v) { \ |
100 | uInt u0, u1, v0, v1, w0, w1, w2, t; \ |
101 | u0=u & 0xffff; u1=u>>16; \ |
102 | v0=v & 0xffff; v1=v>>16; \ |
103 | w0=u0*v0; \ |
104 | t=u1*v0 + (w0>>16); \ |
105 | w1=t & 0xffff; w2=t>>16; \ |
106 | w1=u0*v1 + w1; \ |
107 | (w)=u1*v1 + w2 + (w1>>16);} |
108 | |
109 | /* ROUNDUP -- round an integer up to a multiple of n */ |
110 | #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) |
111 | #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ |
112 | |
113 | /* ROUNDDOWN -- round an integer down to a multiple of n */ |
114 | #define ROUNDDOWN(i, n) (((i)/n)*n) |
115 | #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ |
116 | |
117 | /* References to multi-byte sequences under different sizes; these */ |
118 | /* require locally declared variables, but do not violate strict */ |
119 | /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ |
120 | /* Variables needed are uswork, uiwork, etc. [so do not use at same */ |
121 | /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ |
122 | |
123 | /* Return a uInt, etc., from bytes starting at a char* or uByte* */ |
124 | #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) |
125 | #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) |
126 | |
127 | /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ |
128 | /* Returns i, evaluated, for convenience; has to use uiwork because */ |
129 | /* i may be an expression. */ |
130 | #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) |
131 | #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) |
132 | |
133 | /* X10 and X100 -- multiply integer i by 10 or 100 */ |
134 | /* [shifts are usually faster than multiply; could be conditional] */ |
135 | #define X10(i) (((i)<<1)+((i)<<3)) |
136 | #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) |
137 | |
138 | /* MAXI and MINI -- general max & min (not in ANSI) for integers */ |
139 | #define MAXI(x,y) ((x)<(y)?(y):(x)) |
140 | #define MINI(x,y) ((x)>(y)?(y):(x)) |
141 | |
142 | /* Useful constants */ |
143 | #define BILLION 1000000000 /* 10**9 */ |
144 | /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ |
145 | #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') |
146 | |
147 | |
148 | /* ---------------------------------------------------------------- */ |
149 | /* Definitions for arbitary-precision modules (only valid after */ |
150 | /* decNumber.h has been included) */ |
151 | /* ---------------------------------------------------------------- */ |
152 | |
153 | /* Limits and constants */ |
154 | #define DECNUMMAXP 999999999 /* maximum precision code can handle */ |
155 | #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ |
156 | #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ |
157 | #if (DECNUMMAXP != DEC_MAX_DIGITS) |
158 | #error Maximum digits mismatch |
159 | #endif |
160 | #if (DECNUMMAXE != DEC_MAX_EMAX) |
161 | #error Maximum exponent mismatch |
162 | #endif |
163 | #if (DECNUMMINE != DEC_MIN_EMIN) |
164 | #error Minimum exponent mismatch |
165 | #endif |
166 | |
167 | /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ |
168 | /* digits, and D2UTABLE -- the initializer for the D2U table */ |
169 | #ifndef DECDPUN |
170 | // no-op |
171 | #elif DECDPUN==1 |
172 | #define DECDPUNMAX 9 |
173 | #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ |
174 | 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ |
175 | 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ |
176 | 48,49} |
177 | #elif DECDPUN==2 |
178 | #define DECDPUNMAX 99 |
179 | #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ |
180 | 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ |
181 | 18,19,19,20,20,21,21,22,22,23,23,24,24,25} |
182 | #elif DECDPUN==3 |
183 | #define DECDPUNMAX 999 |
184 | #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ |
185 | 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ |
186 | 13,14,14,14,15,15,15,16,16,16,17} |
187 | #elif DECDPUN==4 |
188 | #define DECDPUNMAX 9999 |
189 | #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ |
190 | 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ |
191 | 11,11,11,12,12,12,12,13} |
192 | #elif DECDPUN==5 |
193 | #define DECDPUNMAX 99999 |
194 | #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ |
195 | 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ |
196 | 9,9,10,10,10,10} |
197 | #elif DECDPUN==6 |
198 | #define DECDPUNMAX 999999 |
199 | #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ |
200 | 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ |
201 | 8,8,8,8,8,9} |
202 | #elif DECDPUN==7 |
203 | #define DECDPUNMAX 9999999 |
204 | #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ |
205 | 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ |
206 | 7,7,7,7,7,7} |
207 | #elif DECDPUN==8 |
208 | #define DECDPUNMAX 99999999 |
209 | #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ |
210 | 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ |
211 | 6,6,6,6,6,7} |
212 | #elif DECDPUN==9 |
213 | #define DECDPUNMAX 999999999 |
214 | #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ |
215 | 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ |
216 | 5,5,6,6,6,6} |
217 | #else |
218 | #error DECDPUN must be in the range 1-9 |
219 | #endif |
220 | |
221 | /* ----- Shared data (in decNumber.c) ----- */ |
222 | /* Public lookup table used by the D2U macro (see below) */ |
223 | #define DECMAXD2U 49 |
224 | /*extern const uByte d2utable[DECMAXD2U+1];*/ |
225 | |
226 | /* ----- Macros ----- */ |
227 | /* ISZERO -- return true if decNumber dn is a zero */ |
228 | /* [performance-critical in some situations] */ |
229 | #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ |
230 | |
231 | /* D2U -- return the number of Units needed to hold d digits */ |
232 | /* (runtime version, with table lookaside for small d) */ |
233 | #if defined(DECDPUN) && DECDPUN==8 |
234 | #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) |
235 | #elif defined(DECDPUN) && DECDPUN==4 |
236 | #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) |
237 | #else |
238 | #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) |
239 | #endif |
240 | /* SD2U -- static D2U macro (for compile-time calculation) */ |
241 | #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) |
242 | |
243 | /* MSUDIGITS -- returns digits in msu, from digits, calculated */ |
244 | /* using D2U */ |
245 | #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) |
246 | |
247 | /* D2N -- return the number of decNumber structs that would be */ |
248 | /* needed to contain that number of digits (and the initial */ |
249 | /* decNumber struct) safely. Note that one Unit is included in the */ |
250 | /* initial structure. Used for allocating space that is aligned on */ |
251 | /* a decNumber struct boundary. */ |
252 | #define D2N(d) \ |
253 | ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) |
254 | |
255 | /* TODIGIT -- macro to remove the leading digit from the unsigned */ |
256 | /* integer u at column cut (counting from the right, LSD=0) and */ |
257 | /* place it as an ASCII character into the character pointed to by */ |
258 | /* c. Note that cut must be <= 9, and the maximum value for u is */ |
259 | /* 2,000,000,000 (as is needed for negative exponents of */ |
260 | /* subnormals). The unsigned integer pow is used as a temporary */ |
261 | /* variable. */ |
262 | #define TODIGIT(u, cut, c, pow) UPRV_BLOCK_MACRO_BEGIN { \ |
263 | *(c)='0'; \ |
264 | pow=DECPOWERS[cut]*2; \ |
265 | if ((u)>pow) { \ |
266 | pow*=4; \ |
267 | if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ |
268 | pow/=2; \ |
269 | if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ |
270 | pow/=2; \ |
271 | } \ |
272 | if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ |
273 | pow/=2; \ |
274 | if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ |
275 | } UPRV_BLOCK_MACRO_END |
276 | |
277 | /* ---------------------------------------------------------------- */ |
278 | /* Definitions for fixed-precision modules (only valid after */ |
279 | /* decSingle.h, decDouble.h, or decQuad.h has been included) */ |
280 | /* ---------------------------------------------------------------- */ |
281 | |
282 | /* bcdnum -- a structure describing a format-independent finite */ |
283 | /* number, whose coefficient is a string of bcd8 uBytes */ |
284 | typedef struct { |
285 | uByte *msd; /* -> most significant digit */ |
286 | uByte *lsd; /* -> least ditto */ |
287 | uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ |
288 | Int exponent; /* Unadjusted signed exponent (q), or */ |
289 | /* DECFLOAT_NaN etc. for a special */ |
290 | } bcdnum; |
291 | |
292 | /* Test if exponent or bcdnum exponent must be a special, etc. */ |
293 | #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) |
294 | #define EXPISINF(exp) (exp==DECFLOAT_Inf) |
295 | #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) |
296 | #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) |
297 | |
298 | /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ |
299 | /* (array) notation (the 0 word or byte contains the sign bit), */ |
300 | /* automatically adjusting for endianness; similarly address a word */ |
301 | /* in the next-wider format (decFloatWider, or dfw) */ |
302 | #define DECWORDS (DECBYTES/4) |
303 | #define DECWWORDS (DECWBYTES/4) |
304 | #if DECLITEND |
305 | #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) |
306 | #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) |
307 | #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) |
308 | #else |
309 | #define DFBYTE(df, off) ((df)->bytes[off]) |
310 | #define DFWORD(df, off) ((df)->words[off]) |
311 | #define DFWWORD(dfw, off) ((dfw)->words[off]) |
312 | #endif |
313 | |
314 | /* Tests for sign or specials, directly on DECFLOATs */ |
315 | #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) |
316 | #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) |
317 | #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) |
318 | #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) |
319 | #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) |
320 | #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) |
321 | |
322 | /* Shared lookup tables */ |
323 | extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ |
324 | extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ |
325 | |
326 | /* Private generic (utility) routine */ |
327 | #if DECCHECK || DECTRACE |
328 | extern void decShowNum(const bcdnum *, const char *); |
329 | #endif |
330 | |
331 | /* Format-dependent macros and constants */ |
332 | #if defined(DECPMAX) |
333 | |
334 | /* Useful constants */ |
335 | #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ |
336 | /* Top words for a zero */ |
337 | #define SINGLEZERO 0x22500000 |
338 | #define DOUBLEZERO 0x22380000 |
339 | #define QUADZERO 0x22080000 |
340 | /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ |
341 | |
342 | /* Format-dependent common tests: */ |
343 | /* DFISZERO -- test for (any) zero */ |
344 | /* DFISCCZERO -- test for coefficient continuation being zero */ |
345 | /* DFISCC01 -- test for coefficient contains only 0s and 1s */ |
346 | /* DFISINT -- test for finite and exponent q=0 */ |
347 | /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ |
348 | /* MSD=0 or 1 */ |
349 | /* ZEROWORD is also defined here. */ |
350 | /* In DFISZERO the first test checks the least-significant word */ |
351 | /* (most likely to be non-zero); the penultimate tests MSD and */ |
352 | /* DPDs in the signword, and the final test excludes specials and */ |
353 | /* MSD>7. DFISINT similarly has to allow for the two forms of */ |
354 | /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ |
355 | /* code. */ |
356 | #if DECPMAX==7 |
357 | #define ZEROWORD SINGLEZERO |
358 | /* [test macros not needed except for Zero] */ |
359 | #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ |
360 | && (DFWORD(df, 0)&0x60000000)!=0x60000000) |
361 | #elif DECPMAX==16 |
362 | #define ZEROWORD DOUBLEZERO |
363 | #define DFISZERO(df) ((DFWORD(df, 1)==0 \ |
364 | && (DFWORD(df, 0)&0x1c03ffff)==0 \ |
365 | && (DFWORD(df, 0)&0x60000000)!=0x60000000)) |
366 | #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ |
367 | ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) |
368 | #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) |
369 | #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ |
370 | && (DFWORD(df, 0)&0x0003ffff)==0) |
371 | #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ |
372 | && (DFWORD(df, 1)&~0x49124491)==0) |
373 | #elif DECPMAX==34 |
374 | #define ZEROWORD QUADZERO |
375 | #define DFISZERO(df) ((DFWORD(df, 3)==0 \ |
376 | && DFWORD(df, 2)==0 \ |
377 | && DFWORD(df, 1)==0 \ |
378 | && (DFWORD(df, 0)&0x1c003fff)==0 \ |
379 | && (DFWORD(df, 0)&0x60000000)!=0x60000000)) |
380 | #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ |
381 | ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) |
382 | #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) |
383 | #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ |
384 | && DFWORD(df, 2)==0 \ |
385 | && DFWORD(df, 1)==0 \ |
386 | && (DFWORD(df, 0)&0x00003fff)==0) |
387 | |
388 | #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ |
389 | && (DFWORD(df, 1)&~0x44912449)==0 \ |
390 | && (DFWORD(df, 2)&~0x12449124)==0 \ |
391 | && (DFWORD(df, 3)&~0x49124491)==0) |
392 | #endif |
393 | |
394 | /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ |
395 | /* are a canonical declet [higher or lower bits are ignored]. */ |
396 | /* declet is at offset 0 (from the right) in a uInt: */ |
397 | #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) |
398 | /* declet is at offset k (a multiple of 2) in a uInt: */ |
399 | #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ |
400 | || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) |
401 | /* declet is at offset k (a multiple of 2) in a pair of uInts: */ |
402 | /* [the top 2 bits will always be in the more-significant uInt] */ |
403 | #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ |
404 | || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ |
405 | || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) |
406 | |
407 | /* Macro to test whether a full-length (length DECPMAX) BCD8 */ |
408 | /* coefficient, starting at uByte u, is all zeros */ |
409 | /* Test just the LSWord first, then the remainder as a sequence */ |
410 | /* of tests in order to avoid same-level use of UBTOUI */ |
411 | #if DECPMAX==7 |
412 | #define ISCOEFFZERO(u) ( \ |
413 | UBTOUI((u)+DECPMAX-4)==0 \ |
414 | && UBTOUS((u)+DECPMAX-6)==0 \ |
415 | && *(u)==0) |
416 | #elif DECPMAX==16 |
417 | #define ISCOEFFZERO(u) ( \ |
418 | UBTOUI((u)+DECPMAX-4)==0 \ |
419 | && UBTOUI((u)+DECPMAX-8)==0 \ |
420 | && UBTOUI((u)+DECPMAX-12)==0 \ |
421 | && UBTOUI(u)==0) |
422 | #elif DECPMAX==34 |
423 | #define ISCOEFFZERO(u) ( \ |
424 | UBTOUI((u)+DECPMAX-4)==0 \ |
425 | && UBTOUI((u)+DECPMAX-8)==0 \ |
426 | && UBTOUI((u)+DECPMAX-12)==0 \ |
427 | && UBTOUI((u)+DECPMAX-16)==0 \ |
428 | && UBTOUI((u)+DECPMAX-20)==0 \ |
429 | && UBTOUI((u)+DECPMAX-24)==0 \ |
430 | && UBTOUI((u)+DECPMAX-28)==0 \ |
431 | && UBTOUI((u)+DECPMAX-32)==0 \ |
432 | && UBTOUS(u)==0) |
433 | #endif |
434 | |
435 | /* Macros and masks for the exponent continuation field and MSD */ |
436 | /* Get the exponent continuation from a decFloat *df as an Int */ |
437 | #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) |
438 | /* Ditto, from the next-wider format */ |
439 | #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) |
440 | /* Get the biased exponent similarly */ |
441 | #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) |
442 | /* Get the unbiased exponent similarly */ |
443 | #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) |
444 | /* Get the MSD similarly (as uInt) */ |
445 | #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) |
446 | |
447 | /* Compile-time computes of the exponent continuation field masks */ |
448 | /* full exponent continuation field: */ |
449 | #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) |
450 | /* same, not including its first digit (the qNaN/sNaN selector): */ |
451 | #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) |
452 | |
453 | /* Macros to decode the coefficient in a finite decFloat *df into */ |
454 | /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ |
455 | |
456 | /* In-line sequence to convert least significant 10 bits of uInt */ |
457 | /* dpd to three BCD8 digits starting at uByte u. Note that an */ |
458 | /* extra byte is written to the right of the three digits because */ |
459 | /* four bytes are moved at a time for speed; the alternative */ |
460 | /* macro moves exactly three bytes (usually slower). */ |
461 | #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) |
462 | #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) |
463 | |
464 | /* Decode the declets. After extracting each one, it is decoded */ |
465 | /* to BCD8 using a table lookup (also used for variable-length */ |
466 | /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ |
467 | /* length which is not used, here). Fixed-length 4-byte moves */ |
468 | /* are fast, however, almost everywhere, and so are used except */ |
469 | /* for the final three bytes (to avoid overrun). The code below */ |
470 | /* is 36 instructions for Doubles and about 70 for Quads, even */ |
471 | /* on IA32. */ |
472 | |
473 | /* Two macros are defined for each format: */ |
474 | /* GETCOEFF extracts the coefficient of the current format */ |
475 | /* GETWCOEFF extracts the coefficient of the next-wider format. */ |
476 | /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ |
477 | |
478 | #if DECPMAX==7 |
479 | #define GETCOEFF(df, bcd) { \ |
480 | uInt sourhi=DFWORD(df, 0); \ |
481 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
482 | dpd2bcd8(bcd+1, sourhi>>10); \ |
483 | dpd2bcd83(bcd+4, sourhi);} |
484 | #define GETWCOEFF(df, bcd) { \ |
485 | uInt sourhi=DFWWORD(df, 0); \ |
486 | uInt sourlo=DFWWORD(df, 1); \ |
487 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
488 | dpd2bcd8(bcd+1, sourhi>>8); \ |
489 | dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ |
490 | dpd2bcd8(bcd+7, sourlo>>20); \ |
491 | dpd2bcd8(bcd+10, sourlo>>10); \ |
492 | dpd2bcd83(bcd+13, sourlo);} |
493 | |
494 | #elif DECPMAX==16 |
495 | #define GETCOEFF(df, bcd) { \ |
496 | uInt sourhi=DFWORD(df, 0); \ |
497 | uInt sourlo=DFWORD(df, 1); \ |
498 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
499 | dpd2bcd8(bcd+1, sourhi>>8); \ |
500 | dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ |
501 | dpd2bcd8(bcd+7, sourlo>>20); \ |
502 | dpd2bcd8(bcd+10, sourlo>>10); \ |
503 | dpd2bcd83(bcd+13, sourlo);} |
504 | #define GETWCOEFF(df, bcd) { \ |
505 | uInt sourhi=DFWWORD(df, 0); \ |
506 | uInt sourmh=DFWWORD(df, 1); \ |
507 | uInt sourml=DFWWORD(df, 2); \ |
508 | uInt sourlo=DFWWORD(df, 3); \ |
509 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
510 | dpd2bcd8(bcd+1, sourhi>>4); \ |
511 | dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ |
512 | dpd2bcd8(bcd+7, sourmh>>16); \ |
513 | dpd2bcd8(bcd+10, sourmh>>6); \ |
514 | dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ |
515 | dpd2bcd8(bcd+16, sourml>>18); \ |
516 | dpd2bcd8(bcd+19, sourml>>8); \ |
517 | dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ |
518 | dpd2bcd8(bcd+25, sourlo>>20); \ |
519 | dpd2bcd8(bcd+28, sourlo>>10); \ |
520 | dpd2bcd83(bcd+31, sourlo);} |
521 | |
522 | #elif DECPMAX==34 |
523 | #define GETCOEFF(df, bcd) { \ |
524 | uInt sourhi=DFWORD(df, 0); \ |
525 | uInt sourmh=DFWORD(df, 1); \ |
526 | uInt sourml=DFWORD(df, 2); \ |
527 | uInt sourlo=DFWORD(df, 3); \ |
528 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
529 | dpd2bcd8(bcd+1, sourhi>>4); \ |
530 | dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ |
531 | dpd2bcd8(bcd+7, sourmh>>16); \ |
532 | dpd2bcd8(bcd+10, sourmh>>6); \ |
533 | dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ |
534 | dpd2bcd8(bcd+16, sourml>>18); \ |
535 | dpd2bcd8(bcd+19, sourml>>8); \ |
536 | dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ |
537 | dpd2bcd8(bcd+25, sourlo>>20); \ |
538 | dpd2bcd8(bcd+28, sourlo>>10); \ |
539 | dpd2bcd83(bcd+31, sourlo);} |
540 | |
541 | #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ |
542 | #endif |
543 | |
544 | /* Macros to decode the coefficient in a finite decFloat *df into */ |
545 | /* a base-billion uInt array, with the least-significant */ |
546 | /* 0-999999999 'digit' at offset 0. */ |
547 | |
548 | /* Decode the declets. After extracting each one, it is decoded */ |
549 | /* to binary using a table lookup. Three tables are used; one */ |
550 | /* the usual DPD to binary, the other two pre-multiplied by 1000 */ |
551 | /* and 1000000 to avoid multiplication during decode. These */ |
552 | /* tables can also be used for multiplying up the MSD as the DPD */ |
553 | /* code for 0 through 9 is the identity. */ |
554 | #define DPD2BIN0 DPD2BIN /* for prettier code */ |
555 | |
556 | #if DECPMAX==7 |
557 | #define GETCOEFFBILL(df, buf) { \ |
558 | uInt sourhi=DFWORD(df, 0); \ |
559 | (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ |
560 | +DPD2BINK[(sourhi>>10)&0x3ff] \ |
561 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
562 | |
563 | #elif DECPMAX==16 |
564 | #define GETCOEFFBILL(df, buf) { \ |
565 | uInt sourhi, sourlo; \ |
566 | sourlo=DFWORD(df, 1); \ |
567 | (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ |
568 | +DPD2BINK[(sourlo>>10)&0x3ff] \ |
569 | +DPD2BINM[(sourlo>>20)&0x3ff]; \ |
570 | sourhi=DFWORD(df, 0); \ |
571 | (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ |
572 | +DPD2BINK[(sourhi>>8)&0x3ff] \ |
573 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
574 | |
575 | #elif DECPMAX==34 |
576 | #define GETCOEFFBILL(df, buf) { \ |
577 | uInt sourhi, sourmh, sourml, sourlo; \ |
578 | sourlo=DFWORD(df, 3); \ |
579 | (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ |
580 | +DPD2BINK[(sourlo>>10)&0x3ff] \ |
581 | +DPD2BINM[(sourlo>>20)&0x3ff]; \ |
582 | sourml=DFWORD(df, 2); \ |
583 | (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ |
584 | +DPD2BINK[(sourml>>8)&0x3ff] \ |
585 | +DPD2BINM[(sourml>>18)&0x3ff]; \ |
586 | sourmh=DFWORD(df, 1); \ |
587 | (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ |
588 | +DPD2BINK[(sourmh>>6)&0x3ff] \ |
589 | +DPD2BINM[(sourmh>>16)&0x3ff]; \ |
590 | sourhi=DFWORD(df, 0); \ |
591 | (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ |
592 | +DPD2BINK[(sourhi>>4)&0x3ff] \ |
593 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
594 | |
595 | #endif |
596 | |
597 | /* Macros to decode the coefficient in a finite decFloat *df into */ |
598 | /* a base-thousand uInt array (of size DECLETS+1, to allow for */ |
599 | /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ |
600 | |
601 | /* Decode the declets. After extracting each one, it is decoded */ |
602 | /* to binary using a table lookup. */ |
603 | #if DECPMAX==7 |
604 | #define GETCOEFFTHOU(df, buf) { \ |
605 | uInt sourhi=DFWORD(df, 0); \ |
606 | (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ |
607 | (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ |
608 | (buf)[2]=DECCOMBMSD[sourhi>>26];} |
609 | |
610 | #elif DECPMAX==16 |
611 | #define GETCOEFFTHOU(df, buf) { \ |
612 | uInt sourhi, sourlo; \ |
613 | sourlo=DFWORD(df, 1); \ |
614 | (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ |
615 | (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
616 | (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
617 | sourhi=DFWORD(df, 0); \ |
618 | (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ |
619 | (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ |
620 | (buf)[5]=DECCOMBMSD[sourhi>>26];} |
621 | |
622 | #elif DECPMAX==34 |
623 | #define GETCOEFFTHOU(df, buf) { \ |
624 | uInt sourhi, sourmh, sourml, sourlo; \ |
625 | sourlo=DFWORD(df, 3); \ |
626 | (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ |
627 | (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
628 | (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
629 | sourml=DFWORD(df, 2); \ |
630 | (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ |
631 | (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ |
632 | (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ |
633 | sourmh=DFWORD(df, 1); \ |
634 | (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ |
635 | (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ |
636 | (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ |
637 | sourhi=DFWORD(df, 0); \ |
638 | (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ |
639 | (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ |
640 | (buf)[11]=DECCOMBMSD[sourhi>>26];} |
641 | #endif |
642 | |
643 | |
644 | /* Macros to decode the coefficient in a finite decFloat *df and */ |
645 | /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ |
646 | /* After the addition then most significant 'digit' in the array */ |
647 | /* might have a value larger then 10 (with a maximum of 19). */ |
648 | #if DECPMAX==7 |
649 | #define ADDCOEFFTHOU(df, buf) { \ |
650 | uInt sourhi=DFWORD(df, 0); \ |
651 | (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ |
652 | if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
653 | (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ |
654 | if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
655 | (buf)[2]+=DECCOMBMSD[sourhi>>26];} |
656 | |
657 | #elif DECPMAX==16 |
658 | #define ADDCOEFFTHOU(df, buf) { \ |
659 | uInt sourhi, sourlo; \ |
660 | sourlo=DFWORD(df, 1); \ |
661 | (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ |
662 | if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
663 | (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
664 | if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
665 | (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
666 | if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ |
667 | sourhi=DFWORD(df, 0); \ |
668 | (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ |
669 | if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ |
670 | (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ |
671 | if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ |
672 | (buf)[5]+=DECCOMBMSD[sourhi>>26];} |
673 | |
674 | #elif DECPMAX==34 |
675 | #define ADDCOEFFTHOU(df, buf) { \ |
676 | uInt sourhi, sourmh, sourml, sourlo; \ |
677 | sourlo=DFWORD(df, 3); \ |
678 | (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ |
679 | if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
680 | (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
681 | if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
682 | (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
683 | if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ |
684 | sourml=DFWORD(df, 2); \ |
685 | (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ |
686 | if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ |
687 | (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ |
688 | if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ |
689 | (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ |
690 | if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ |
691 | sourmh=DFWORD(df, 1); \ |
692 | (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ |
693 | if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ |
694 | (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ |
695 | if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ |
696 | (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ |
697 | if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ |
698 | sourhi=DFWORD(df, 0); \ |
699 | (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ |
700 | if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ |
701 | (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ |
702 | if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ |
703 | (buf)[11]+=DECCOMBMSD[sourhi>>26];} |
704 | #endif |
705 | |
706 | |
707 | /* Set a decFloat to the maximum positive finite number (Nmax) */ |
708 | #if DECPMAX==7 |
709 | #define DFSETNMAX(df) \ |
710 | {DFWORD(df, 0)=0x77f3fcff;} |
711 | #elif DECPMAX==16 |
712 | #define DFSETNMAX(df) \ |
713 | {DFWORD(df, 0)=0x77fcff3f; \ |
714 | DFWORD(df, 1)=0xcff3fcff;} |
715 | #elif DECPMAX==34 |
716 | #define DFSETNMAX(df) \ |
717 | {DFWORD(df, 0)=0x77ffcff3; \ |
718 | DFWORD(df, 1)=0xfcff3fcf; \ |
719 | DFWORD(df, 2)=0xf3fcff3f; \ |
720 | DFWORD(df, 3)=0xcff3fcff;} |
721 | #endif |
722 | |
723 | /* [end of format-dependent macros and constants] */ |
724 | #endif |
725 | |
726 | #else |
727 | #error decNumberLocal included more than once |
728 | #endif |
729 | |