| 1 | // © 2018 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | // |
| 4 | // From the double-conversion library. Original license: |
| 5 | // |
| 6 | // Copyright 2010 the V8 project authors. All rights reserved. |
| 7 | // Redistribution and use in source and binary forms, with or without |
| 8 | // modification, are permitted provided that the following conditions are |
| 9 | // met: |
| 10 | // |
| 11 | // * Redistributions of source code must retain the above copyright |
| 12 | // notice, this list of conditions and the following disclaimer. |
| 13 | // * Redistributions in binary form must reproduce the above |
| 14 | // copyright notice, this list of conditions and the following |
| 15 | // disclaimer in the documentation and/or other materials provided |
| 16 | // with the distribution. |
| 17 | // * Neither the name of Google Inc. nor the names of its |
| 18 | // contributors may be used to endorse or promote products derived |
| 19 | // from this software without specific prior written permission. |
| 20 | // |
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | |
| 33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING |
| 34 | #include "unicode/utypes.h" |
| 35 | #if !UCONFIG_NO_FORMATTING |
| 36 | |
| 37 | #include <cmath> |
| 38 | |
| 39 | // ICU PATCH: Customize header file paths for ICU. |
| 40 | |
| 41 | #include "double-conversion-bignum-dtoa.h" |
| 42 | |
| 43 | #include "double-conversion-bignum.h" |
| 44 | #include "double-conversion-ieee.h" |
| 45 | |
| 46 | // ICU PATCH: Wrap in ICU namespace |
| 47 | U_NAMESPACE_BEGIN |
| 48 | |
| 49 | namespace double_conversion { |
| 50 | |
| 51 | static int NormalizedExponent(uint64_t significand, int exponent) { |
| 52 | DOUBLE_CONVERSION_ASSERT(significand != 0); |
| 53 | while ((significand & Double::kHiddenBit) == 0) { |
| 54 | significand = significand << 1; |
| 55 | exponent = exponent - 1; |
| 56 | } |
| 57 | return exponent; |
| 58 | } |
| 59 | |
| 60 | |
| 61 | // Forward declarations: |
| 62 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k. |
| 63 | static int EstimatePower(int exponent); |
| 64 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
| 65 | // and denominator. |
| 66 | static void InitialScaledStartValues(uint64_t significand, |
| 67 | int exponent, |
| 68 | bool lower_boundary_is_closer, |
| 69 | int estimated_power, |
| 70 | bool need_boundary_deltas, |
| 71 | Bignum* numerator, |
| 72 | Bignum* denominator, |
| 73 | Bignum* delta_minus, |
| 74 | Bignum* delta_plus); |
| 75 | // Multiplies numerator/denominator so that its values lies in the range 1-10. |
| 76 | // Returns decimal_point s.t. |
| 77 | // v = numerator'/denominator' * 10^(decimal_point-1) |
| 78 | // where numerator' and denominator' are the values of numerator and |
| 79 | // denominator after the call to this function. |
| 80 | static void FixupMultiply10(int estimated_power, bool is_even, |
| 81 | int* decimal_point, |
| 82 | Bignum* numerator, Bignum* denominator, |
| 83 | Bignum* delta_minus, Bignum* delta_plus); |
| 84 | // Generates digits from the left to the right and stops when the generated |
| 85 | // digits yield the shortest decimal representation of v. |
| 86 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
| 87 | Bignum* delta_minus, Bignum* delta_plus, |
| 88 | bool is_even, |
| 89 | Vector<char> buffer, int* length); |
| 90 | // Generates 'requested_digits' after the decimal point. |
| 91 | static void BignumToFixed(int requested_digits, int* decimal_point, |
| 92 | Bignum* numerator, Bignum* denominator, |
| 93 | Vector<char> buffer, int* length); |
| 94 | // Generates 'count' digits of numerator/denominator. |
| 95 | // Once 'count' digits have been produced rounds the result depending on the |
| 96 | // remainder (remainders of exactly .5 round upwards). Might update the |
| 97 | // decimal_point when rounding up (for example for 0.9999). |
| 98 | static void GenerateCountedDigits(int count, int* decimal_point, |
| 99 | Bignum* numerator, Bignum* denominator, |
| 100 | Vector<char> buffer, int* length); |
| 101 | |
| 102 | |
| 103 | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
| 104 | Vector<char> buffer, int* length, int* decimal_point) { |
| 105 | DOUBLE_CONVERSION_ASSERT(v > 0); |
| 106 | DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial()); |
| 107 | uint64_t significand; |
| 108 | int exponent; |
| 109 | bool lower_boundary_is_closer; |
| 110 | if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { |
| 111 | float f = static_cast<float>(v); |
| 112 | DOUBLE_CONVERSION_ASSERT(f == v); |
| 113 | significand = Single(f).Significand(); |
| 114 | exponent = Single(f).Exponent(); |
| 115 | lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); |
| 116 | } else { |
| 117 | significand = Double(v).Significand(); |
| 118 | exponent = Double(v).Exponent(); |
| 119 | lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); |
| 120 | } |
| 121 | bool need_boundary_deltas = |
| 122 | (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); |
| 123 | |
| 124 | bool is_even = (significand & 1) == 0; |
| 125 | int normalized_exponent = NormalizedExponent(significand, exponent); |
| 126 | // estimated_power might be too low by 1. |
| 127 | int estimated_power = EstimatePower(normalized_exponent); |
| 128 | |
| 129 | // Shortcut for Fixed. |
| 130 | // The requested digits correspond to the digits after the point. If the |
| 131 | // number is much too small, then there is no need in trying to get any |
| 132 | // digits. |
| 133 | if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { |
| 134 | buffer[0] = '\0'; |
| 135 | *length = 0; |
| 136 | // Set decimal-point to -requested_digits. This is what Gay does. |
| 137 | // Note that it should not have any effect anyways since the string is |
| 138 | // empty. |
| 139 | *decimal_point = -requested_digits; |
| 140 | return; |
| 141 | } |
| 142 | |
| 143 | Bignum numerator; |
| 144 | Bignum denominator; |
| 145 | Bignum delta_minus; |
| 146 | Bignum delta_plus; |
| 147 | // Make sure the bignum can grow large enough. The smallest double equals |
| 148 | // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
| 149 | // The maximum double is 1.7976931348623157e308 which needs fewer than |
| 150 | // 308*4 binary digits. |
| 151 | DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4); |
| 152 | InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, |
| 153 | estimated_power, need_boundary_deltas, |
| 154 | &numerator, &denominator, |
| 155 | &delta_minus, &delta_plus); |
| 156 | // We now have v = (numerator / denominator) * 10^estimated_power. |
| 157 | FixupMultiply10(estimated_power, is_even, decimal_point, |
| 158 | &numerator, &denominator, |
| 159 | &delta_minus, &delta_plus); |
| 160 | // We now have v = (numerator / denominator) * 10^(decimal_point-1), and |
| 161 | // 1 <= (numerator + delta_plus) / denominator < 10 |
| 162 | switch (mode) { |
| 163 | case BIGNUM_DTOA_SHORTEST: |
| 164 | case BIGNUM_DTOA_SHORTEST_SINGLE: |
| 165 | GenerateShortestDigits(&numerator, &denominator, |
| 166 | &delta_minus, &delta_plus, |
| 167 | is_even, buffer, length); |
| 168 | break; |
| 169 | case BIGNUM_DTOA_FIXED: |
| 170 | BignumToFixed(requested_digits, decimal_point, |
| 171 | &numerator, &denominator, |
| 172 | buffer, length); |
| 173 | break; |
| 174 | case BIGNUM_DTOA_PRECISION: |
| 175 | GenerateCountedDigits(requested_digits, decimal_point, |
| 176 | &numerator, &denominator, |
| 177 | buffer, length); |
| 178 | break; |
| 179 | default: |
| 180 | DOUBLE_CONVERSION_UNREACHABLE(); |
| 181 | } |
| 182 | buffer[*length] = '\0'; |
| 183 | } |
| 184 | |
| 185 | |
| 186 | // The procedure starts generating digits from the left to the right and stops |
| 187 | // when the generated digits yield the shortest decimal representation of v. A |
| 188 | // decimal representation of v is a number lying closer to v than to any other |
| 189 | // double, so it converts to v when read. |
| 190 | // |
| 191 | // This is true if d, the decimal representation, is between m- and m+, the |
| 192 | // upper and lower boundaries. d must be strictly between them if !is_even. |
| 193 | // m- := (numerator - delta_minus) / denominator |
| 194 | // m+ := (numerator + delta_plus) / denominator |
| 195 | // |
| 196 | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. |
| 197 | // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit |
| 198 | // will be produced. This should be the standard precondition. |
| 199 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
| 200 | Bignum* delta_minus, Bignum* delta_plus, |
| 201 | bool is_even, |
| 202 | Vector<char> buffer, int* length) { |
| 203 | // Small optimization: if delta_minus and delta_plus are the same just reuse |
| 204 | // one of the two bignums. |
| 205 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
| 206 | delta_plus = delta_minus; |
| 207 | } |
| 208 | *length = 0; |
| 209 | for (;;) { |
| 210 | uint16_t digit; |
| 211 | digit = numerator->DivideModuloIntBignum(*denominator); |
| 212 | DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
| 213 | // digit = numerator / denominator (integer division). |
| 214 | // numerator = numerator % denominator. |
| 215 | buffer[(*length)++] = static_cast<char>(digit + '0'); |
| 216 | |
| 217 | // Can we stop already? |
| 218 | // If the remainder of the division is less than the distance to the lower |
| 219 | // boundary we can stop. In this case we simply round down (discarding the |
| 220 | // remainder). |
| 221 | // Similarly we test if we can round up (using the upper boundary). |
| 222 | bool in_delta_room_minus; |
| 223 | bool in_delta_room_plus; |
| 224 | if (is_even) { |
| 225 | in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); |
| 226 | } else { |
| 227 | in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); |
| 228 | } |
| 229 | if (is_even) { |
| 230 | in_delta_room_plus = |
| 231 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
| 232 | } else { |
| 233 | in_delta_room_plus = |
| 234 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
| 235 | } |
| 236 | if (!in_delta_room_minus && !in_delta_room_plus) { |
| 237 | // Prepare for next iteration. |
| 238 | numerator->Times10(); |
| 239 | delta_minus->Times10(); |
| 240 | // We optimized delta_plus to be equal to delta_minus (if they share the |
| 241 | // same value). So don't multiply delta_plus if they point to the same |
| 242 | // object. |
| 243 | if (delta_minus != delta_plus) { |
| 244 | delta_plus->Times10(); |
| 245 | } |
| 246 | } else if (in_delta_room_minus && in_delta_room_plus) { |
| 247 | // Let's see if 2*numerator < denominator. |
| 248 | // If yes, then the next digit would be < 5 and we can round down. |
| 249 | int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); |
| 250 | if (compare < 0) { |
| 251 | // Remaining digits are less than .5. -> Round down (== do nothing). |
| 252 | } else if (compare > 0) { |
| 253 | // Remaining digits are more than .5 of denominator. -> Round up. |
| 254 | // Note that the last digit could not be a '9' as otherwise the whole |
| 255 | // loop would have stopped earlier. |
| 256 | // We still have an assert here in case the preconditions were not |
| 257 | // satisfied. |
| 258 | DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9'); |
| 259 | buffer[(*length) - 1]++; |
| 260 | } else { |
| 261 | // Halfway case. |
| 262 | // TODO(floitsch): need a way to solve half-way cases. |
| 263 | // For now let's round towards even (since this is what Gay seems to |
| 264 | // do). |
| 265 | |
| 266 | if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
| 267 | // Round down => Do nothing. |
| 268 | } else { |
| 269 | DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9'); |
| 270 | buffer[(*length) - 1]++; |
| 271 | } |
| 272 | } |
| 273 | return; |
| 274 | } else if (in_delta_room_minus) { |
| 275 | // Round down (== do nothing). |
| 276 | return; |
| 277 | } else { // in_delta_room_plus |
| 278 | // Round up. |
| 279 | // Note again that the last digit could not be '9' since this would have |
| 280 | // stopped the loop earlier. |
| 281 | // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not |
| 282 | // satisfied. |
| 283 | DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9'); |
| 284 | buffer[(*length) - 1]++; |
| 285 | return; |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | |
| 291 | // Let v = numerator / denominator < 10. |
| 292 | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) |
| 293 | // from left to right. Once 'count' digits have been produced we decide wether |
| 294 | // to round up or down. Remainders of exactly .5 round upwards. Numbers such |
| 295 | // as 9.999999 propagate a carry all the way, and change the |
| 296 | // exponent (decimal_point), when rounding upwards. |
| 297 | static void GenerateCountedDigits(int count, int* decimal_point, |
| 298 | Bignum* numerator, Bignum* denominator, |
| 299 | Vector<char> buffer, int* length) { |
| 300 | DOUBLE_CONVERSION_ASSERT(count >= 0); |
| 301 | for (int i = 0; i < count - 1; ++i) { |
| 302 | uint16_t digit; |
| 303 | digit = numerator->DivideModuloIntBignum(*denominator); |
| 304 | DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
| 305 | // digit = numerator / denominator (integer division). |
| 306 | // numerator = numerator % denominator. |
| 307 | buffer[i] = static_cast<char>(digit + '0'); |
| 308 | // Prepare for next iteration. |
| 309 | numerator->Times10(); |
| 310 | } |
| 311 | // Generate the last digit. |
| 312 | uint16_t digit; |
| 313 | digit = numerator->DivideModuloIntBignum(*denominator); |
| 314 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
| 315 | digit++; |
| 316 | } |
| 317 | DOUBLE_CONVERSION_ASSERT(digit <= 10); |
| 318 | buffer[count - 1] = static_cast<char>(digit + '0'); |
| 319 | // Correct bad digits (in case we had a sequence of '9's). Propagate the |
| 320 | // carry until we hat a non-'9' or til we reach the first digit. |
| 321 | for (int i = count - 1; i > 0; --i) { |
| 322 | if (buffer[i] != '0' + 10) break; |
| 323 | buffer[i] = '0'; |
| 324 | buffer[i - 1]++; |
| 325 | } |
| 326 | if (buffer[0] == '0' + 10) { |
| 327 | // Propagate a carry past the top place. |
| 328 | buffer[0] = '1'; |
| 329 | (*decimal_point)++; |
| 330 | } |
| 331 | *length = count; |
| 332 | } |
| 333 | |
| 334 | |
| 335 | // Generates 'requested_digits' after the decimal point. It might omit |
| 336 | // trailing '0's. If the input number is too small then no digits at all are |
| 337 | // generated (ex.: 2 fixed digits for 0.00001). |
| 338 | // |
| 339 | // Input verifies: 1 <= (numerator + delta) / denominator < 10. |
| 340 | static void BignumToFixed(int requested_digits, int* decimal_point, |
| 341 | Bignum* numerator, Bignum* denominator, |
| 342 | Vector<char> buffer, int* length) { |
| 343 | // Note that we have to look at more than just the requested_digits, since |
| 344 | // a number could be rounded up. Example: v=0.5 with requested_digits=0. |
| 345 | // Even though the power of v equals 0 we can't just stop here. |
| 346 | if (-(*decimal_point) > requested_digits) { |
| 347 | // The number is definitively too small. |
| 348 | // Ex: 0.001 with requested_digits == 1. |
| 349 | // Set decimal-point to -requested_digits. This is what Gay does. |
| 350 | // Note that it should not have any effect anyways since the string is |
| 351 | // empty. |
| 352 | *decimal_point = -requested_digits; |
| 353 | *length = 0; |
| 354 | return; |
| 355 | } else if (-(*decimal_point) == requested_digits) { |
| 356 | // We only need to verify if the number rounds down or up. |
| 357 | // Ex: 0.04 and 0.06 with requested_digits == 1. |
| 358 | DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits); |
| 359 | // Initially the fraction lies in range (1, 10]. Multiply the denominator |
| 360 | // by 10 so that we can compare more easily. |
| 361 | denominator->Times10(); |
| 362 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
| 363 | // If the fraction is >= 0.5 then we have to include the rounded |
| 364 | // digit. |
| 365 | buffer[0] = '1'; |
| 366 | *length = 1; |
| 367 | (*decimal_point)++; |
| 368 | } else { |
| 369 | // Note that we caught most of similar cases earlier. |
| 370 | *length = 0; |
| 371 | } |
| 372 | return; |
| 373 | } else { |
| 374 | // The requested digits correspond to the digits after the point. |
| 375 | // The variable 'needed_digits' includes the digits before the point. |
| 376 | int needed_digits = (*decimal_point) + requested_digits; |
| 377 | GenerateCountedDigits(needed_digits, decimal_point, |
| 378 | numerator, denominator, |
| 379 | buffer, length); |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | |
| 384 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where |
| 385 | // v = f * 2^exponent and 2^52 <= f < 2^53. |
| 386 | // v is hence a normalized double with the given exponent. The output is an |
| 387 | // approximation for the exponent of the decimal approimation .digits * 10^k. |
| 388 | // |
| 389 | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. |
| 390 | // Note: this property holds for v's upper boundary m+ too. |
| 391 | // 10^k <= m+ < 10^k+1. |
| 392 | // (see explanation below). |
| 393 | // |
| 394 | // Examples: |
| 395 | // EstimatePower(0) => 16 |
| 396 | // EstimatePower(-52) => 0 |
| 397 | // |
| 398 | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. |
| 399 | static int EstimatePower(int exponent) { |
| 400 | // This function estimates log10 of v where v = f*2^e (with e == exponent). |
| 401 | // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). |
| 402 | // Note that f is bounded by its container size. Let p = 53 (the double's |
| 403 | // significand size). Then 2^(p-1) <= f < 2^p. |
| 404 | // |
| 405 | // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close |
| 406 | // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). |
| 407 | // The computed number undershoots by less than 0.631 (when we compute log3 |
| 408 | // and not log10). |
| 409 | // |
| 410 | // Optimization: since we only need an approximated result this computation |
| 411 | // can be performed on 64 bit integers. On x86/x64 architecture the speedup is |
| 412 | // not really measurable, though. |
| 413 | // |
| 414 | // Since we want to avoid overshooting we decrement by 1e10 so that |
| 415 | // floating-point imprecisions don't affect us. |
| 416 | // |
| 417 | // Explanation for v's boundary m+: the computation takes advantage of |
| 418 | // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement |
| 419 | // (even for denormals where the delta can be much more important). |
| 420 | |
| 421 | const double k1Log10 = 0.30102999566398114; // 1/lg(10) |
| 422 | |
| 423 | // For doubles len(f) == 53 (don't forget the hidden bit). |
| 424 | const int kSignificandSize = Double::kSignificandSize; |
| 425 | double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); |
| 426 | return static_cast<int>(estimate); |
| 427 | } |
| 428 | |
| 429 | |
| 430 | // See comments for InitialScaledStartValues. |
| 431 | static void InitialScaledStartValuesPositiveExponent( |
| 432 | uint64_t significand, int exponent, |
| 433 | int estimated_power, bool need_boundary_deltas, |
| 434 | Bignum* numerator, Bignum* denominator, |
| 435 | Bignum* delta_minus, Bignum* delta_plus) { |
| 436 | // A positive exponent implies a positive power. |
| 437 | DOUBLE_CONVERSION_ASSERT(estimated_power >= 0); |
| 438 | // Since the estimated_power is positive we simply multiply the denominator |
| 439 | // by 10^estimated_power. |
| 440 | |
| 441 | // numerator = v. |
| 442 | numerator->AssignUInt64(significand); |
| 443 | numerator->ShiftLeft(exponent); |
| 444 | // denominator = 10^estimated_power. |
| 445 | denominator->AssignPowerUInt16(10, estimated_power); |
| 446 | |
| 447 | if (need_boundary_deltas) { |
| 448 | // Introduce a common denominator so that the deltas to the boundaries are |
| 449 | // integers. |
| 450 | denominator->ShiftLeft(1); |
| 451 | numerator->ShiftLeft(1); |
| 452 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
| 453 | // denominator (of 2) delta_plus equals 2^e. |
| 454 | delta_plus->AssignUInt16(1); |
| 455 | delta_plus->ShiftLeft(exponent); |
| 456 | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
| 457 | delta_minus->AssignUInt16(1); |
| 458 | delta_minus->ShiftLeft(exponent); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | |
| 463 | // See comments for InitialScaledStartValues |
| 464 | static void InitialScaledStartValuesNegativeExponentPositivePower( |
| 465 | uint64_t significand, int exponent, |
| 466 | int estimated_power, bool need_boundary_deltas, |
| 467 | Bignum* numerator, Bignum* denominator, |
| 468 | Bignum* delta_minus, Bignum* delta_plus) { |
| 469 | // v = f * 2^e with e < 0, and with estimated_power >= 0. |
| 470 | // This means that e is close to 0 (have a look at how estimated_power is |
| 471 | // computed). |
| 472 | |
| 473 | // numerator = significand |
| 474 | // since v = significand * 2^exponent this is equivalent to |
| 475 | // numerator = v * / 2^-exponent |
| 476 | numerator->AssignUInt64(significand); |
| 477 | // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) |
| 478 | denominator->AssignPowerUInt16(10, estimated_power); |
| 479 | denominator->ShiftLeft(-exponent); |
| 480 | |
| 481 | if (need_boundary_deltas) { |
| 482 | // Introduce a common denominator so that the deltas to the boundaries are |
| 483 | // integers. |
| 484 | denominator->ShiftLeft(1); |
| 485 | numerator->ShiftLeft(1); |
| 486 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
| 487 | // denominator (of 2) delta_plus equals 2^e. |
| 488 | // Given that the denominator already includes v's exponent the distance |
| 489 | // to the boundaries is simply 1. |
| 490 | delta_plus->AssignUInt16(1); |
| 491 | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
| 492 | delta_minus->AssignUInt16(1); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | |
| 497 | // See comments for InitialScaledStartValues |
| 498 | static void InitialScaledStartValuesNegativeExponentNegativePower( |
| 499 | uint64_t significand, int exponent, |
| 500 | int estimated_power, bool need_boundary_deltas, |
| 501 | Bignum* numerator, Bignum* denominator, |
| 502 | Bignum* delta_minus, Bignum* delta_plus) { |
| 503 | // Instead of multiplying the denominator with 10^estimated_power we |
| 504 | // multiply all values (numerator and deltas) by 10^-estimated_power. |
| 505 | |
| 506 | // Use numerator as temporary container for power_ten. |
| 507 | Bignum* power_ten = numerator; |
| 508 | power_ten->AssignPowerUInt16(10, -estimated_power); |
| 509 | |
| 510 | if (need_boundary_deltas) { |
| 511 | // Since power_ten == numerator we must make a copy of 10^estimated_power |
| 512 | // before we complete the computation of the numerator. |
| 513 | // delta_plus = delta_minus = 10^estimated_power |
| 514 | delta_plus->AssignBignum(*power_ten); |
| 515 | delta_minus->AssignBignum(*power_ten); |
| 516 | } |
| 517 | |
| 518 | // numerator = significand * 2 * 10^-estimated_power |
| 519 | // since v = significand * 2^exponent this is equivalent to |
| 520 | // numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
| 521 | // Remember: numerator has been abused as power_ten. So no need to assign it |
| 522 | // to itself. |
| 523 | DOUBLE_CONVERSION_ASSERT(numerator == power_ten); |
| 524 | numerator->MultiplyByUInt64(significand); |
| 525 | |
| 526 | // denominator = 2 * 2^-exponent with exponent < 0. |
| 527 | denominator->AssignUInt16(1); |
| 528 | denominator->ShiftLeft(-exponent); |
| 529 | |
| 530 | if (need_boundary_deltas) { |
| 531 | // Introduce a common denominator so that the deltas to the boundaries are |
| 532 | // integers. |
| 533 | numerator->ShiftLeft(1); |
| 534 | denominator->ShiftLeft(1); |
| 535 | // With this shift the boundaries have their correct value, since |
| 536 | // delta_plus = 10^-estimated_power, and |
| 537 | // delta_minus = 10^-estimated_power. |
| 538 | // These assignments have been done earlier. |
| 539 | // The adjustments if f == 2^p-1 (lower boundary is closer) are done later. |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | |
| 544 | // Let v = significand * 2^exponent. |
| 545 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
| 546 | // and denominator. The functions GenerateShortestDigits and |
| 547 | // GenerateCountedDigits will then convert this ratio to its decimal |
| 548 | // representation d, with the required accuracy. |
| 549 | // Then d * 10^estimated_power is the representation of v. |
| 550 | // (Note: the fraction and the estimated_power might get adjusted before |
| 551 | // generating the decimal representation.) |
| 552 | // |
| 553 | // The initial start values consist of: |
| 554 | // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. |
| 555 | // - a scaled (common) denominator. |
| 556 | // optionally (used by GenerateShortestDigits to decide if it has the shortest |
| 557 | // decimal converting back to v): |
| 558 | // - v - m-: the distance to the lower boundary. |
| 559 | // - m+ - v: the distance to the upper boundary. |
| 560 | // |
| 561 | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. |
| 562 | // |
| 563 | // Let ep == estimated_power, then the returned values will satisfy: |
| 564 | // v / 10^ep = numerator / denominator. |
| 565 | // v's boundarys m- and m+: |
| 566 | // m- / 10^ep == v / 10^ep - delta_minus / denominator |
| 567 | // m+ / 10^ep == v / 10^ep + delta_plus / denominator |
| 568 | // Or in other words: |
| 569 | // m- == v - delta_minus * 10^ep / denominator; |
| 570 | // m+ == v + delta_plus * 10^ep / denominator; |
| 571 | // |
| 572 | // Since 10^(k-1) <= v < 10^k (with k == estimated_power) |
| 573 | // or 10^k <= v < 10^(k+1) |
| 574 | // we then have 0.1 <= numerator/denominator < 1 |
| 575 | // or 1 <= numerator/denominator < 10 |
| 576 | // |
| 577 | // It is then easy to kickstart the digit-generation routine. |
| 578 | // |
| 579 | // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST |
| 580 | // or BIGNUM_DTOA_SHORTEST_SINGLE. |
| 581 | |
| 582 | static void InitialScaledStartValues(uint64_t significand, |
| 583 | int exponent, |
| 584 | bool lower_boundary_is_closer, |
| 585 | int estimated_power, |
| 586 | bool need_boundary_deltas, |
| 587 | Bignum* numerator, |
| 588 | Bignum* denominator, |
| 589 | Bignum* delta_minus, |
| 590 | Bignum* delta_plus) { |
| 591 | if (exponent >= 0) { |
| 592 | InitialScaledStartValuesPositiveExponent( |
| 593 | significand, exponent, estimated_power, need_boundary_deltas, |
| 594 | numerator, denominator, delta_minus, delta_plus); |
| 595 | } else if (estimated_power >= 0) { |
| 596 | InitialScaledStartValuesNegativeExponentPositivePower( |
| 597 | significand, exponent, estimated_power, need_boundary_deltas, |
| 598 | numerator, denominator, delta_minus, delta_plus); |
| 599 | } else { |
| 600 | InitialScaledStartValuesNegativeExponentNegativePower( |
| 601 | significand, exponent, estimated_power, need_boundary_deltas, |
| 602 | numerator, denominator, delta_minus, delta_plus); |
| 603 | } |
| 604 | |
| 605 | if (need_boundary_deltas && lower_boundary_is_closer) { |
| 606 | // The lower boundary is closer at half the distance of "normal" numbers. |
| 607 | // Increase the common denominator and adapt all but the delta_minus. |
| 608 | denominator->ShiftLeft(1); // *2 |
| 609 | numerator->ShiftLeft(1); // *2 |
| 610 | delta_plus->ShiftLeft(1); // *2 |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | |
| 615 | // This routine multiplies numerator/denominator so that its values lies in the |
| 616 | // range 1-10. That is after a call to this function we have: |
| 617 | // 1 <= (numerator + delta_plus) /denominator < 10. |
| 618 | // Let numerator the input before modification and numerator' the argument |
| 619 | // after modification, then the output-parameter decimal_point is such that |
| 620 | // numerator / denominator * 10^estimated_power == |
| 621 | // numerator' / denominator' * 10^(decimal_point - 1) |
| 622 | // In some cases estimated_power was too low, and this is already the case. We |
| 623 | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == |
| 624 | // estimated_power) but do not touch the numerator or denominator. |
| 625 | // Otherwise the routine multiplies the numerator and the deltas by 10. |
| 626 | static void FixupMultiply10(int estimated_power, bool is_even, |
| 627 | int* decimal_point, |
| 628 | Bignum* numerator, Bignum* denominator, |
| 629 | Bignum* delta_minus, Bignum* delta_plus) { |
| 630 | bool in_range; |
| 631 | if (is_even) { |
| 632 | // For IEEE doubles half-way cases (in decimal system numbers ending with 5) |
| 633 | // are rounded to the closest floating-point number with even significand. |
| 634 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
| 635 | } else { |
| 636 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
| 637 | } |
| 638 | if (in_range) { |
| 639 | // Since numerator + delta_plus >= denominator we already have |
| 640 | // 1 <= numerator/denominator < 10. Simply update the estimated_power. |
| 641 | *decimal_point = estimated_power + 1; |
| 642 | } else { |
| 643 | *decimal_point = estimated_power; |
| 644 | numerator->Times10(); |
| 645 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
| 646 | delta_minus->Times10(); |
| 647 | delta_plus->AssignBignum(*delta_minus); |
| 648 | } else { |
| 649 | delta_minus->Times10(); |
| 650 | delta_plus->Times10(); |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | } // namespace double_conversion |
| 656 | |
| 657 | // ICU PATCH: Close ICU namespace |
| 658 | U_NAMESPACE_END |
| 659 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |
| 660 | |