| 1 | // © 2018 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | // |
| 4 | // From the double-conversion library. Original license: |
| 5 | // |
| 6 | // Copyright 2010 the V8 project authors. All rights reserved. |
| 7 | // Redistribution and use in source and binary forms, with or without |
| 8 | // modification, are permitted provided that the following conditions are |
| 9 | // met: |
| 10 | // |
| 11 | // * Redistributions of source code must retain the above copyright |
| 12 | // notice, this list of conditions and the following disclaimer. |
| 13 | // * Redistributions in binary form must reproduce the above |
| 14 | // copyright notice, this list of conditions and the following |
| 15 | // disclaimer in the documentation and/or other materials provided |
| 16 | // with the distribution. |
| 17 | // * Neither the name of Google Inc. nor the names of its |
| 18 | // contributors may be used to endorse or promote products derived |
| 19 | // from this software without specific prior written permission. |
| 20 | // |
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | |
| 33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING |
| 34 | #include "unicode/utypes.h" |
| 35 | #if !UCONFIG_NO_FORMATTING |
| 36 | |
| 37 | // ICU PATCH: Do not include std::locale. |
| 38 | |
| 39 | #include <climits> |
| 40 | // #include <locale> |
| 41 | #include <cmath> |
| 42 | |
| 43 | // ICU PATCH: Customize header file paths for ICU. |
| 44 | |
| 45 | #include "double-conversion-string-to-double.h" |
| 46 | |
| 47 | #include "double-conversion-ieee.h" |
| 48 | #include "double-conversion-strtod.h" |
| 49 | #include "double-conversion-utils.h" |
| 50 | |
| 51 | // ICU PATCH: Wrap in ICU namespace |
| 52 | U_NAMESPACE_BEGIN |
| 53 | |
| 54 | namespace double_conversion { |
| 55 | |
| 56 | namespace { |
| 57 | |
| 58 | inline char ToLower(char ch) { |
| 59 | #if 0 // do not include std::locale in ICU |
| 60 | static const std::ctype<char>& cType = |
| 61 | std::use_facet<std::ctype<char> >(std::locale::classic()); |
| 62 | return cType.tolower(ch); |
| 63 | #else |
| 64 | (void)ch; |
| 65 | DOUBLE_CONVERSION_UNREACHABLE(); |
| 66 | #endif |
| 67 | } |
| 68 | |
| 69 | inline char Pass(char ch) { |
| 70 | return ch; |
| 71 | } |
| 72 | |
| 73 | template <class Iterator, class Converter> |
| 74 | static inline bool ConsumeSubStringImpl(Iterator* current, |
| 75 | Iterator end, |
| 76 | const char* substring, |
| 77 | Converter converter) { |
| 78 | DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring); |
| 79 | for (substring++; *substring != '\0'; substring++) { |
| 80 | ++*current; |
| 81 | if (*current == end || converter(**current) != *substring) { |
| 82 | return false; |
| 83 | } |
| 84 | } |
| 85 | ++*current; |
| 86 | return true; |
| 87 | } |
| 88 | |
| 89 | // Consumes the given substring from the iterator. |
| 90 | // Returns false, if the substring does not match. |
| 91 | template <class Iterator> |
| 92 | static bool ConsumeSubString(Iterator* current, |
| 93 | Iterator end, |
| 94 | const char* substring, |
| 95 | bool allow_case_insensitivity) { |
| 96 | if (allow_case_insensitivity) { |
| 97 | return ConsumeSubStringImpl(current, end, substring, ToLower); |
| 98 | } else { |
| 99 | return ConsumeSubStringImpl(current, end, substring, Pass); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | // Consumes first character of the str is equal to ch |
| 104 | inline bool ConsumeFirstCharacter(char ch, |
| 105 | const char* str, |
| 106 | bool case_insensitivity) { |
| 107 | return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0]; |
| 108 | } |
| 109 | } // namespace |
| 110 | |
| 111 | // Maximum number of significant digits in decimal representation. |
| 112 | // The longest possible double in decimal representation is |
| 113 | // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
| 114 | // (768 digits). If we parse a number whose first digits are equal to a |
| 115 | // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
| 116 | // must be rounded to the bigger one unless the tail consists of zeros, so |
| 117 | // we don't need to preserve all the digits. |
| 118 | const int kMaxSignificantDigits = 772; |
| 119 | |
| 120 | |
| 121 | static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 }; |
| 122 | static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7); |
| 123 | |
| 124 | |
| 125 | static const uc16 kWhitespaceTable16[] = { |
| 126 | 160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195, |
| 127 | 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279 |
| 128 | }; |
| 129 | static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16); |
| 130 | |
| 131 | |
| 132 | static bool isWhitespace(int x) { |
| 133 | if (x < 128) { |
| 134 | for (int i = 0; i < kWhitespaceTable7Length; i++) { |
| 135 | if (kWhitespaceTable7[i] == x) return true; |
| 136 | } |
| 137 | } else { |
| 138 | for (int i = 0; i < kWhitespaceTable16Length; i++) { |
| 139 | if (kWhitespaceTable16[i] == x) return true; |
| 140 | } |
| 141 | } |
| 142 | return false; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | // Returns true if a nonspace found and false if the end has reached. |
| 147 | template <class Iterator> |
| 148 | static inline bool AdvanceToNonspace(Iterator* current, Iterator end) { |
| 149 | while (*current != end) { |
| 150 | if (!isWhitespace(**current)) return true; |
| 151 | ++*current; |
| 152 | } |
| 153 | return false; |
| 154 | } |
| 155 | |
| 156 | |
| 157 | static bool isDigit(int x, int radix) { |
| 158 | return (x >= '0' && x <= '9' && x < '0' + radix) |
| 159 | || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) |
| 160 | || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); |
| 161 | } |
| 162 | |
| 163 | |
| 164 | static double SignedZero(bool sign) { |
| 165 | return sign ? -0.0 : 0.0; |
| 166 | } |
| 167 | |
| 168 | |
| 169 | // Returns true if 'c' is a decimal digit that is valid for the given radix. |
| 170 | // |
| 171 | // The function is small and could be inlined, but VS2012 emitted a warning |
| 172 | // because it constant-propagated the radix and concluded that the last |
| 173 | // condition was always true. By moving it into a separate function the |
| 174 | // compiler wouldn't warn anymore. |
| 175 | #ifdef _MSC_VER |
| 176 | #pragma optimize("",off) |
| 177 | static bool IsDecimalDigitForRadix(int c, int radix) { |
| 178 | return '0' <= c && c <= '9' && (c - '0') < radix; |
| 179 | } |
| 180 | #pragma optimize("",on) |
| 181 | #else |
| 182 | static bool inline IsDecimalDigitForRadix(int c, int radix) { |
| 183 | return '0' <= c && c <= '9' && (c - '0') < radix; |
| 184 | } |
| 185 | #endif |
| 186 | // Returns true if 'c' is a character digit that is valid for the given radix. |
| 187 | // The 'a_character' should be 'a' or 'A'. |
| 188 | // |
| 189 | // The function is small and could be inlined, but VS2012 emitted a warning |
| 190 | // because it constant-propagated the radix and concluded that the first |
| 191 | // condition was always false. By moving it into a separate function the |
| 192 | // compiler wouldn't warn anymore. |
| 193 | static bool IsCharacterDigitForRadix(int c, int radix, char a_character) { |
| 194 | return radix > 10 && c >= a_character && c < a_character + radix - 10; |
| 195 | } |
| 196 | |
| 197 | // Returns true, when the iterator is equal to end. |
| 198 | template<class Iterator> |
| 199 | static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) { |
| 200 | if (separator == StringToDoubleConverter::kNoSeparator) { |
| 201 | ++(*it); |
| 202 | return *it == end; |
| 203 | } |
| 204 | if (!isDigit(**it, base)) { |
| 205 | ++(*it); |
| 206 | return *it == end; |
| 207 | } |
| 208 | ++(*it); |
| 209 | if (*it == end) return true; |
| 210 | if (*it + 1 == end) return false; |
| 211 | if (**it == separator && isDigit(*(*it + 1), base)) { |
| 212 | ++(*it); |
| 213 | } |
| 214 | return *it == end; |
| 215 | } |
| 216 | |
| 217 | // Checks whether the string in the range start-end is a hex-float string. |
| 218 | // This function assumes that the leading '0x'/'0X' is already consumed. |
| 219 | // |
| 220 | // Hex float strings are of one of the following forms: |
| 221 | // - hex_digits+ 'p' ('+'|'-')? exponent_digits+ |
| 222 | // - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+ |
| 223 | // - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+ |
| 224 | template<class Iterator> |
| 225 | static bool IsHexFloatString(Iterator start, |
| 226 | Iterator end, |
| 227 | uc16 separator, |
| 228 | bool allow_trailing_junk) { |
| 229 | DOUBLE_CONVERSION_ASSERT(start != end); |
| 230 | |
| 231 | Iterator current = start; |
| 232 | |
| 233 | bool saw_digit = false; |
| 234 | while (isDigit(*current, 16)) { |
| 235 | saw_digit = true; |
| 236 | if (Advance(¤t, separator, 16, end)) return false; |
| 237 | } |
| 238 | if (*current == '.') { |
| 239 | if (Advance(¤t, separator, 16, end)) return false; |
| 240 | while (isDigit(*current, 16)) { |
| 241 | saw_digit = true; |
| 242 | if (Advance(¤t, separator, 16, end)) return false; |
| 243 | } |
| 244 | } |
| 245 | if (!saw_digit) return false; |
| 246 | if (*current != 'p' && *current != 'P') return false; |
| 247 | if (Advance(¤t, separator, 16, end)) return false; |
| 248 | if (*current == '+' || *current == '-') { |
| 249 | if (Advance(¤t, separator, 16, end)) return false; |
| 250 | } |
| 251 | if (!isDigit(*current, 10)) return false; |
| 252 | if (Advance(¤t, separator, 16, end)) return true; |
| 253 | while (isDigit(*current, 10)) { |
| 254 | if (Advance(¤t, separator, 16, end)) return true; |
| 255 | } |
| 256 | return allow_trailing_junk || !AdvanceToNonspace(¤t, end); |
| 257 | } |
| 258 | |
| 259 | |
| 260 | // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
| 261 | // |
| 262 | // If parse_as_hex_float is true, then the string must be a valid |
| 263 | // hex-float. |
| 264 | template <int radix_log_2, class Iterator> |
| 265 | static double RadixStringToIeee(Iterator* current, |
| 266 | Iterator end, |
| 267 | bool sign, |
| 268 | uc16 separator, |
| 269 | bool parse_as_hex_float, |
| 270 | bool allow_trailing_junk, |
| 271 | double junk_string_value, |
| 272 | bool read_as_double, |
| 273 | bool* result_is_junk) { |
| 274 | DOUBLE_CONVERSION_ASSERT(*current != end); |
| 275 | DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float || |
| 276 | IsHexFloatString(*current, end, separator, allow_trailing_junk)); |
| 277 | |
| 278 | const int kDoubleSize = Double::kSignificandSize; |
| 279 | const int kSingleSize = Single::kSignificandSize; |
| 280 | const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; |
| 281 | |
| 282 | *result_is_junk = true; |
| 283 | |
| 284 | int64_t number = 0; |
| 285 | int exponent = 0; |
| 286 | const int radix = (1 << radix_log_2); |
| 287 | // Whether we have encountered a '.' and are parsing the decimal digits. |
| 288 | // Only relevant if parse_as_hex_float is true. |
| 289 | bool post_decimal = false; |
| 290 | |
| 291 | // Skip leading 0s. |
| 292 | while (**current == '0') { |
| 293 | if (Advance(current, separator, radix, end)) { |
| 294 | *result_is_junk = false; |
| 295 | return SignedZero(sign); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | while (true) { |
| 300 | int digit; |
| 301 | if (IsDecimalDigitForRadix(**current, radix)) { |
| 302 | digit = static_cast<char>(**current) - '0'; |
| 303 | if (post_decimal) exponent -= radix_log_2; |
| 304 | } else if (IsCharacterDigitForRadix(**current, radix, 'a')) { |
| 305 | digit = static_cast<char>(**current) - 'a' + 10; |
| 306 | if (post_decimal) exponent -= radix_log_2; |
| 307 | } else if (IsCharacterDigitForRadix(**current, radix, 'A')) { |
| 308 | digit = static_cast<char>(**current) - 'A' + 10; |
| 309 | if (post_decimal) exponent -= radix_log_2; |
| 310 | } else if (parse_as_hex_float && **current == '.') { |
| 311 | post_decimal = true; |
| 312 | Advance(current, separator, radix, end); |
| 313 | DOUBLE_CONVERSION_ASSERT(*current != end); |
| 314 | continue; |
| 315 | } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) { |
| 316 | break; |
| 317 | } else { |
| 318 | if (allow_trailing_junk || !AdvanceToNonspace(current, end)) { |
| 319 | break; |
| 320 | } else { |
| 321 | return junk_string_value; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | number = number * radix + digit; |
| 326 | int overflow = static_cast<int>(number >> kSignificandSize); |
| 327 | if (overflow != 0) { |
| 328 | // Overflow occurred. Need to determine which direction to round the |
| 329 | // result. |
| 330 | int overflow_bits_count = 1; |
| 331 | while (overflow > 1) { |
| 332 | overflow_bits_count++; |
| 333 | overflow >>= 1; |
| 334 | } |
| 335 | |
| 336 | int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
| 337 | int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
| 338 | number >>= overflow_bits_count; |
| 339 | exponent += overflow_bits_count; |
| 340 | |
| 341 | bool zero_tail = true; |
| 342 | for (;;) { |
| 343 | if (Advance(current, separator, radix, end)) break; |
| 344 | if (parse_as_hex_float && **current == '.') { |
| 345 | // Just run over the '.'. We are just trying to see whether there is |
| 346 | // a non-zero digit somewhere. |
| 347 | Advance(current, separator, radix, end); |
| 348 | DOUBLE_CONVERSION_ASSERT(*current != end); |
| 349 | post_decimal = true; |
| 350 | } |
| 351 | if (!isDigit(**current, radix)) break; |
| 352 | zero_tail = zero_tail && **current == '0'; |
| 353 | if (!post_decimal) exponent += radix_log_2; |
| 354 | } |
| 355 | |
| 356 | if (!parse_as_hex_float && |
| 357 | !allow_trailing_junk && |
| 358 | AdvanceToNonspace(current, end)) { |
| 359 | return junk_string_value; |
| 360 | } |
| 361 | |
| 362 | int middle_value = (1 << (overflow_bits_count - 1)); |
| 363 | if (dropped_bits > middle_value) { |
| 364 | number++; // Rounding up. |
| 365 | } else if (dropped_bits == middle_value) { |
| 366 | // Rounding to even to consistency with decimals: half-way case rounds |
| 367 | // up if significant part is odd and down otherwise. |
| 368 | if ((number & 1) != 0 || !zero_tail) { |
| 369 | number++; // Rounding up. |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | // Rounding up may cause overflow. |
| 374 | if ((number & ((int64_t)1 << kSignificandSize)) != 0) { |
| 375 | exponent++; |
| 376 | number >>= 1; |
| 377 | } |
| 378 | break; |
| 379 | } |
| 380 | if (Advance(current, separator, radix, end)) break; |
| 381 | } |
| 382 | |
| 383 | DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize)); |
| 384 | DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
| 385 | |
| 386 | *result_is_junk = false; |
| 387 | |
| 388 | if (parse_as_hex_float) { |
| 389 | DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P'); |
| 390 | Advance(current, separator, radix, end); |
| 391 | DOUBLE_CONVERSION_ASSERT(*current != end); |
| 392 | bool is_negative = false; |
| 393 | if (**current == '+') { |
| 394 | Advance(current, separator, radix, end); |
| 395 | DOUBLE_CONVERSION_ASSERT(*current != end); |
| 396 | } else if (**current == '-') { |
| 397 | is_negative = true; |
| 398 | Advance(current, separator, radix, end); |
| 399 | DOUBLE_CONVERSION_ASSERT(*current != end); |
| 400 | } |
| 401 | int written_exponent = 0; |
| 402 | while (IsDecimalDigitForRadix(**current, 10)) { |
| 403 | // No need to read exponents if they are too big. That could potentially overflow |
| 404 | // the `written_exponent` variable. |
| 405 | if (abs(written_exponent) <= 100 * Double::kMaxExponent) { |
| 406 | written_exponent = 10 * written_exponent + **current - '0'; |
| 407 | } |
| 408 | if (Advance(current, separator, radix, end)) break; |
| 409 | } |
| 410 | if (is_negative) written_exponent = -written_exponent; |
| 411 | exponent += written_exponent; |
| 412 | } |
| 413 | |
| 414 | if (exponent == 0 || number == 0) { |
| 415 | if (sign) { |
| 416 | if (number == 0) return -0.0; |
| 417 | number = -number; |
| 418 | } |
| 419 | return static_cast<double>(number); |
| 420 | } |
| 421 | |
| 422 | DOUBLE_CONVERSION_ASSERT(number != 0); |
| 423 | double result = Double(DiyFp(number, exponent)).value(); |
| 424 | return sign ? -result : result; |
| 425 | } |
| 426 | |
| 427 | template <class Iterator> |
| 428 | double StringToDoubleConverter::StringToIeee( |
| 429 | Iterator input, |
| 430 | int length, |
| 431 | bool read_as_double, |
| 432 | int* processed_characters_count) const { |
| 433 | Iterator current = input; |
| 434 | Iterator end = input + length; |
| 435 | |
| 436 | *processed_characters_count = 0; |
| 437 | |
| 438 | const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; |
| 439 | const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; |
| 440 | const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; |
| 441 | const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; |
| 442 | const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0; |
| 443 | |
| 444 | // To make sure that iterator dereferencing is valid the following |
| 445 | // convention is used: |
| 446 | // 1. Each '++current' statement is followed by check for equality to 'end'. |
| 447 | // 2. If AdvanceToNonspace returned false then current == end. |
| 448 | // 3. If 'current' becomes equal to 'end' the function returns or goes to |
| 449 | // 'parsing_done'. |
| 450 | // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| 451 | // 5. Code before 'parsing_done' may rely on 'current != end'. |
| 452 | if (current == end) return empty_string_value_; |
| 453 | |
| 454 | if (allow_leading_spaces || allow_trailing_spaces) { |
| 455 | if (!AdvanceToNonspace(¤t, end)) { |
| 456 | *processed_characters_count = static_cast<int>(current - input); |
| 457 | return empty_string_value_; |
| 458 | } |
| 459 | if (!allow_leading_spaces && (input != current)) { |
| 460 | // No leading spaces allowed, but AdvanceToNonspace moved forward. |
| 461 | return junk_string_value_; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
| 466 | const int kBufferSize = kMaxSignificantDigits + 10; |
| 467 | char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| 468 | int buffer_pos = 0; |
| 469 | |
| 470 | // Exponent will be adjusted if insignificant digits of the integer part |
| 471 | // or insignificant leading zeros of the fractional part are dropped. |
| 472 | int exponent = 0; |
| 473 | int significant_digits = 0; |
| 474 | int insignificant_digits = 0; |
| 475 | bool nonzero_digit_dropped = false; |
| 476 | |
| 477 | bool sign = false; |
| 478 | |
| 479 | if (*current == '+' || *current == '-') { |
| 480 | sign = (*current == '-'); |
| 481 | ++current; |
| 482 | Iterator next_non_space = current; |
| 483 | // Skip following spaces (if allowed). |
| 484 | if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; |
| 485 | if (!allow_spaces_after_sign && (current != next_non_space)) { |
| 486 | return junk_string_value_; |
| 487 | } |
| 488 | current = next_non_space; |
| 489 | } |
| 490 | |
| 491 | if (infinity_symbol_ != NULL) { |
| 492 | if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) { |
| 493 | if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensitivity)) { |
| 494 | return junk_string_value_; |
| 495 | } |
| 496 | |
| 497 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 498 | return junk_string_value_; |
| 499 | } |
| 500 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 501 | return junk_string_value_; |
| 502 | } |
| 503 | |
| 504 | DOUBLE_CONVERSION_ASSERT(buffer_pos == 0); |
| 505 | *processed_characters_count = static_cast<int>(current - input); |
| 506 | return sign ? -Double::Infinity() : Double::Infinity(); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | if (nan_symbol_ != NULL) { |
| 511 | if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) { |
| 512 | if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensitivity)) { |
| 513 | return junk_string_value_; |
| 514 | } |
| 515 | |
| 516 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 517 | return junk_string_value_; |
| 518 | } |
| 519 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 520 | return junk_string_value_; |
| 521 | } |
| 522 | |
| 523 | DOUBLE_CONVERSION_ASSERT(buffer_pos == 0); |
| 524 | *processed_characters_count = static_cast<int>(current - input); |
| 525 | return sign ? -Double::NaN() : Double::NaN(); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | bool leading_zero = false; |
| 530 | if (*current == '0') { |
| 531 | if (Advance(¤t, separator_, 10, end)) { |
| 532 | *processed_characters_count = static_cast<int>(current - input); |
| 533 | return SignedZero(sign); |
| 534 | } |
| 535 | |
| 536 | leading_zero = true; |
| 537 | |
| 538 | // It could be hexadecimal value. |
| 539 | if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) && |
| 540 | (*current == 'x' || *current == 'X')) { |
| 541 | ++current; |
| 542 | |
| 543 | if (current == end) return junk_string_value_; // "0x" |
| 544 | |
| 545 | bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) && |
| 546 | IsHexFloatString(current, end, separator_, allow_trailing_junk); |
| 547 | |
| 548 | if (!parse_as_hex_float && !isDigit(*current, 16)) { |
| 549 | return junk_string_value_; |
| 550 | } |
| 551 | |
| 552 | bool result_is_junk; |
| 553 | double result = RadixStringToIeee<4>(¤t, |
| 554 | end, |
| 555 | sign, |
| 556 | separator_, |
| 557 | parse_as_hex_float, |
| 558 | allow_trailing_junk, |
| 559 | junk_string_value_, |
| 560 | read_as_double, |
| 561 | &result_is_junk); |
| 562 | if (!result_is_junk) { |
| 563 | if (allow_trailing_spaces) AdvanceToNonspace(¤t, end); |
| 564 | *processed_characters_count = static_cast<int>(current - input); |
| 565 | } |
| 566 | return result; |
| 567 | } |
| 568 | |
| 569 | // Ignore leading zeros in the integer part. |
| 570 | while (*current == '0') { |
| 571 | if (Advance(¤t, separator_, 10, end)) { |
| 572 | *processed_characters_count = static_cast<int>(current - input); |
| 573 | return SignedZero(sign); |
| 574 | } |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; |
| 579 | |
| 580 | // Copy significant digits of the integer part (if any) to the buffer. |
| 581 | while (*current >= '0' && *current <= '9') { |
| 582 | if (significant_digits < kMaxSignificantDigits) { |
| 583 | DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); |
| 584 | buffer[buffer_pos++] = static_cast<char>(*current); |
| 585 | significant_digits++; |
| 586 | // Will later check if it's an octal in the buffer. |
| 587 | } else { |
| 588 | insignificant_digits++; // Move the digit into the exponential part. |
| 589 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 590 | } |
| 591 | octal = octal && *current < '8'; |
| 592 | if (Advance(¤t, separator_, 10, end)) goto parsing_done; |
| 593 | } |
| 594 | |
| 595 | if (significant_digits == 0) { |
| 596 | octal = false; |
| 597 | } |
| 598 | |
| 599 | if (*current == '.') { |
| 600 | if (octal && !allow_trailing_junk) return junk_string_value_; |
| 601 | if (octal) goto parsing_done; |
| 602 | |
| 603 | if (Advance(¤t, separator_, 10, end)) { |
| 604 | if (significant_digits == 0 && !leading_zero) { |
| 605 | return junk_string_value_; |
| 606 | } else { |
| 607 | goto parsing_done; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | if (significant_digits == 0) { |
| 612 | // octal = false; |
| 613 | // Integer part consists of 0 or is absent. Significant digits start after |
| 614 | // leading zeros (if any). |
| 615 | while (*current == '0') { |
| 616 | if (Advance(¤t, separator_, 10, end)) { |
| 617 | *processed_characters_count = static_cast<int>(current - input); |
| 618 | return SignedZero(sign); |
| 619 | } |
| 620 | exponent--; // Move this 0 into the exponent. |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | // There is a fractional part. |
| 625 | // We don't emit a '.', but adjust the exponent instead. |
| 626 | while (*current >= '0' && *current <= '9') { |
| 627 | if (significant_digits < kMaxSignificantDigits) { |
| 628 | DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); |
| 629 | buffer[buffer_pos++] = static_cast<char>(*current); |
| 630 | significant_digits++; |
| 631 | exponent--; |
| 632 | } else { |
| 633 | // Ignore insignificant digits in the fractional part. |
| 634 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 635 | } |
| 636 | if (Advance(¤t, separator_, 10, end)) goto parsing_done; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| 641 | // If leading_zeros is true then the string contains zeros. |
| 642 | // If exponent < 0 then string was [+-]\.0*... |
| 643 | // If significant_digits != 0 the string is not equal to 0. |
| 644 | // Otherwise there are no digits in the string. |
| 645 | return junk_string_value_; |
| 646 | } |
| 647 | |
| 648 | // Parse exponential part. |
| 649 | if (*current == 'e' || *current == 'E') { |
| 650 | if (octal && !allow_trailing_junk) return junk_string_value_; |
| 651 | if (octal) goto parsing_done; |
| 652 | Iterator junk_begin = current; |
| 653 | ++current; |
| 654 | if (current == end) { |
| 655 | if (allow_trailing_junk) { |
| 656 | current = junk_begin; |
| 657 | goto parsing_done; |
| 658 | } else { |
| 659 | return junk_string_value_; |
| 660 | } |
| 661 | } |
| 662 | char exponen_sign = '+'; |
| 663 | if (*current == '+' || *current == '-') { |
| 664 | exponen_sign = static_cast<char>(*current); |
| 665 | ++current; |
| 666 | if (current == end) { |
| 667 | if (allow_trailing_junk) { |
| 668 | current = junk_begin; |
| 669 | goto parsing_done; |
| 670 | } else { |
| 671 | return junk_string_value_; |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | if (current == end || *current < '0' || *current > '9') { |
| 677 | if (allow_trailing_junk) { |
| 678 | current = junk_begin; |
| 679 | goto parsing_done; |
| 680 | } else { |
| 681 | return junk_string_value_; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | const int max_exponent = INT_MAX / 2; |
| 686 | DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| 687 | int num = 0; |
| 688 | do { |
| 689 | // Check overflow. |
| 690 | int digit = *current - '0'; |
| 691 | if (num >= max_exponent / 10 |
| 692 | && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| 693 | num = max_exponent; |
| 694 | } else { |
| 695 | num = num * 10 + digit; |
| 696 | } |
| 697 | ++current; |
| 698 | } while (current != end && *current >= '0' && *current <= '9'); |
| 699 | |
| 700 | exponent += (exponen_sign == '-' ? -num : num); |
| 701 | } |
| 702 | |
| 703 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 704 | return junk_string_value_; |
| 705 | } |
| 706 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 707 | return junk_string_value_; |
| 708 | } |
| 709 | if (allow_trailing_spaces) { |
| 710 | AdvanceToNonspace(¤t, end); |
| 711 | } |
| 712 | |
| 713 | parsing_done: |
| 714 | exponent += insignificant_digits; |
| 715 | |
| 716 | if (octal) { |
| 717 | double result; |
| 718 | bool result_is_junk; |
| 719 | char* start = buffer; |
| 720 | result = RadixStringToIeee<3>(&start, |
| 721 | buffer + buffer_pos, |
| 722 | sign, |
| 723 | separator_, |
| 724 | false, // Don't parse as hex_float. |
| 725 | allow_trailing_junk, |
| 726 | junk_string_value_, |
| 727 | read_as_double, |
| 728 | &result_is_junk); |
| 729 | DOUBLE_CONVERSION_ASSERT(!result_is_junk); |
| 730 | *processed_characters_count = static_cast<int>(current - input); |
| 731 | return result; |
| 732 | } |
| 733 | |
| 734 | if (nonzero_digit_dropped) { |
| 735 | buffer[buffer_pos++] = '1'; |
| 736 | exponent--; |
| 737 | } |
| 738 | |
| 739 | DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); |
| 740 | buffer[buffer_pos] = '\0'; |
| 741 | |
| 742 | double converted; |
| 743 | if (read_as_double) { |
| 744 | converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
| 745 | } else { |
| 746 | converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); |
| 747 | } |
| 748 | *processed_characters_count = static_cast<int>(current - input); |
| 749 | return sign? -converted: converted; |
| 750 | } |
| 751 | |
| 752 | |
| 753 | double StringToDoubleConverter::StringToDouble( |
| 754 | const char* buffer, |
| 755 | int length, |
| 756 | int* processed_characters_count) const { |
| 757 | return StringToIeee(buffer, length, true, processed_characters_count); |
| 758 | } |
| 759 | |
| 760 | |
| 761 | double StringToDoubleConverter::StringToDouble( |
| 762 | const uc16* buffer, |
| 763 | int length, |
| 764 | int* processed_characters_count) const { |
| 765 | return StringToIeee(buffer, length, true, processed_characters_count); |
| 766 | } |
| 767 | |
| 768 | |
| 769 | float StringToDoubleConverter::StringToFloat( |
| 770 | const char* buffer, |
| 771 | int length, |
| 772 | int* processed_characters_count) const { |
| 773 | return static_cast<float>(StringToIeee(buffer, length, false, |
| 774 | processed_characters_count)); |
| 775 | } |
| 776 | |
| 777 | |
| 778 | float StringToDoubleConverter::StringToFloat( |
| 779 | const uc16* buffer, |
| 780 | int length, |
| 781 | int* processed_characters_count) const { |
| 782 | return static_cast<float>(StringToIeee(buffer, length, false, |
| 783 | processed_characters_count)); |
| 784 | } |
| 785 | |
| 786 | } // namespace double_conversion |
| 787 | |
| 788 | // ICU PATCH: Close ICU namespace |
| 789 | U_NAMESPACE_END |
| 790 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |
| 791 | |