| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * Copyright (C) 1997-2015, International Business Machines |
| 6 | * Corporation and others. All Rights Reserved. |
| 7 | ****************************************************************************** |
| 8 | * file name: nfrule.cpp |
| 9 | * encoding: UTF-8 |
| 10 | * tab size: 8 (not used) |
| 11 | * indentation:4 |
| 12 | * |
| 13 | * Modification history |
| 14 | * Date Name Comments |
| 15 | * 10/11/2001 Doug Ported from ICU4J |
| 16 | */ |
| 17 | |
| 18 | #include "nfrule.h" |
| 19 | |
| 20 | #if U_HAVE_RBNF |
| 21 | |
| 22 | #include "unicode/localpointer.h" |
| 23 | #include "unicode/rbnf.h" |
| 24 | #include "unicode/tblcoll.h" |
| 25 | #include "unicode/plurfmt.h" |
| 26 | #include "unicode/upluralrules.h" |
| 27 | #include "unicode/coleitr.h" |
| 28 | #include "unicode/uchar.h" |
| 29 | #include "nfrs.h" |
| 30 | #include "nfrlist.h" |
| 31 | #include "nfsubs.h" |
| 32 | #include "patternprops.h" |
| 33 | #include "putilimp.h" |
| 34 | |
| 35 | U_NAMESPACE_BEGIN |
| 36 | |
| 37 | NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status) |
| 38 | : baseValue((int32_t)0) |
| 39 | , radix(10) |
| 40 | , exponent(0) |
| 41 | , decimalPoint(0) |
| 42 | , fRuleText(_ruleText) |
| 43 | , sub1(NULL) |
| 44 | , sub2(NULL) |
| 45 | , formatter(_rbnf) |
| 46 | , rulePatternFormat(NULL) |
| 47 | { |
| 48 | if (!fRuleText.isEmpty()) { |
| 49 | parseRuleDescriptor(fRuleText, status); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | NFRule::~NFRule() |
| 54 | { |
| 55 | if (sub1 != sub2) { |
| 56 | delete sub2; |
| 57 | sub2 = NULL; |
| 58 | } |
| 59 | delete sub1; |
| 60 | sub1 = NULL; |
| 61 | delete rulePatternFormat; |
| 62 | rulePatternFormat = NULL; |
| 63 | } |
| 64 | |
| 65 | static const UChar gLeftBracket = 0x005b; |
| 66 | static const UChar gRightBracket = 0x005d; |
| 67 | static const UChar gColon = 0x003a; |
| 68 | static const UChar gZero = 0x0030; |
| 69 | static const UChar gNine = 0x0039; |
| 70 | static const UChar gSpace = 0x0020; |
| 71 | static const UChar gSlash = 0x002f; |
| 72 | static const UChar gGreaterThan = 0x003e; |
| 73 | static const UChar gLessThan = 0x003c; |
| 74 | static const UChar gComma = 0x002c; |
| 75 | static const UChar gDot = 0x002e; |
| 76 | static const UChar gTick = 0x0027; |
| 77 | //static const UChar gMinus = 0x002d; |
| 78 | static const UChar gSemicolon = 0x003b; |
| 79 | static const UChar gX = 0x0078; |
| 80 | |
| 81 | static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ |
| 82 | static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */ |
| 83 | static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */ |
| 84 | |
| 85 | static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */ |
| 86 | static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */ |
| 87 | |
| 88 | static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ |
| 89 | static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ |
| 90 | static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ |
| 91 | static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ |
| 92 | static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ |
| 93 | static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ |
| 94 | static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ |
| 95 | static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ |
| 96 | static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ |
| 97 | static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ |
| 98 | static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ |
| 99 | static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ |
| 100 | |
| 101 | static const UChar * const RULE_PREFIXES[] = { |
| 102 | gLessLess, gLessPercent, gLessHash, gLessZero, |
| 103 | gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, |
| 104 | gEqualPercent, gEqualHash, gEqualZero, NULL |
| 105 | }; |
| 106 | |
| 107 | void |
| 108 | NFRule::makeRules(UnicodeString& description, |
| 109 | NFRuleSet *owner, |
| 110 | const NFRule *predecessor, |
| 111 | const RuleBasedNumberFormat *rbnf, |
| 112 | NFRuleList& rules, |
| 113 | UErrorCode& status) |
| 114 | { |
| 115 | // we know we're making at least one rule, so go ahead and |
| 116 | // new it up and initialize its basevalue and divisor |
| 117 | // (this also strips the rule descriptor, if any, off the |
| 118 | // descripton string) |
| 119 | NFRule* rule1 = new NFRule(rbnf, description, status); |
| 120 | /* test for NULL */ |
| 121 | if (rule1 == 0) { |
| 122 | status = U_MEMORY_ALLOCATION_ERROR; |
| 123 | return; |
| 124 | } |
| 125 | description = rule1->fRuleText; |
| 126 | |
| 127 | // check the description to see whether there's text enclosed |
| 128 | // in brackets |
| 129 | int32_t brack1 = description.indexOf(gLeftBracket); |
| 130 | int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket); |
| 131 | |
| 132 | // if the description doesn't contain a matched pair of brackets, |
| 133 | // or if it's of a type that doesn't recognize bracketed text, |
| 134 | // then leave the description alone, initialize the rule's |
| 135 | // rule text and substitutions, and return that rule |
| 136 | if (brack2 < 0 || brack1 > brack2 |
| 137 | || rule1->getType() == kProperFractionRule |
| 138 | || rule1->getType() == kNegativeNumberRule |
| 139 | || rule1->getType() == kInfinityRule |
| 140 | || rule1->getType() == kNaNRule) |
| 141 | { |
| 142 | rule1->extractSubstitutions(owner, description, predecessor, status); |
| 143 | } |
| 144 | else { |
| 145 | // if the description does contain a matched pair of brackets, |
| 146 | // then it's really shorthand for two rules (with one exception) |
| 147 | NFRule* rule2 = NULL; |
| 148 | UnicodeString sbuf; |
| 149 | |
| 150 | // we'll actually only split the rule into two rules if its |
| 151 | // base value is an even multiple of its divisor (or it's one |
| 152 | // of the special rules) |
| 153 | if ((rule1->baseValue > 0 |
| 154 | && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) |
| 155 | || rule1->getType() == kImproperFractionRule |
| 156 | || rule1->getType() == kMasterRule) { |
| 157 | |
| 158 | // if it passes that test, new up the second rule. If the |
| 159 | // rule set both rules will belong to is a fraction rule |
| 160 | // set, they both have the same base value; otherwise, |
| 161 | // increment the original rule's base value ("rule1" actually |
| 162 | // goes SECOND in the rule set's rule list) |
| 163 | rule2 = new NFRule(rbnf, UnicodeString(), status); |
| 164 | /* test for NULL */ |
| 165 | if (rule2 == 0) { |
| 166 | status = U_MEMORY_ALLOCATION_ERROR; |
| 167 | return; |
| 168 | } |
| 169 | if (rule1->baseValue >= 0) { |
| 170 | rule2->baseValue = rule1->baseValue; |
| 171 | if (!owner->isFractionRuleSet()) { |
| 172 | ++rule1->baseValue; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | // if the description began with "x.x" and contains bracketed |
| 177 | // text, it describes both the improper fraction rule and |
| 178 | // the proper fraction rule |
| 179 | else if (rule1->getType() == kImproperFractionRule) { |
| 180 | rule2->setType(kProperFractionRule); |
| 181 | } |
| 182 | |
| 183 | // if the description began with "x.0" and contains bracketed |
| 184 | // text, it describes both the master rule and the |
| 185 | // improper fraction rule |
| 186 | else if (rule1->getType() == kMasterRule) { |
| 187 | rule2->baseValue = rule1->baseValue; |
| 188 | rule1->setType(kImproperFractionRule); |
| 189 | } |
| 190 | |
| 191 | // both rules have the same radix and exponent (i.e., the |
| 192 | // same divisor) |
| 193 | rule2->radix = rule1->radix; |
| 194 | rule2->exponent = rule1->exponent; |
| 195 | |
| 196 | // rule2's rule text omits the stuff in brackets: initalize |
| 197 | // its rule text and substitutions accordingly |
| 198 | sbuf.append(description, 0, brack1); |
| 199 | if (brack2 + 1 < description.length()) { |
| 200 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); |
| 201 | } |
| 202 | rule2->extractSubstitutions(owner, sbuf, predecessor, status); |
| 203 | } |
| 204 | |
| 205 | // rule1's text includes the text in the brackets but omits |
| 206 | // the brackets themselves: initialize _its_ rule text and |
| 207 | // substitutions accordingly |
| 208 | sbuf.setTo(description, 0, brack1); |
| 209 | sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); |
| 210 | if (brack2 + 1 < description.length()) { |
| 211 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); |
| 212 | } |
| 213 | rule1->extractSubstitutions(owner, sbuf, predecessor, status); |
| 214 | |
| 215 | // if we only have one rule, return it; if we have two, return |
| 216 | // a two-element array containing them (notice that rule2 goes |
| 217 | // BEFORE rule1 in the list: in all cases, rule2 OMITS the |
| 218 | // material in the brackets and rule1 INCLUDES the material |
| 219 | // in the brackets) |
| 220 | if (rule2 != NULL) { |
| 221 | if (rule2->baseValue >= kNoBase) { |
| 222 | rules.add(rule2); |
| 223 | } |
| 224 | else { |
| 225 | owner->setNonNumericalRule(rule2); |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | if (rule1->baseValue >= kNoBase) { |
| 230 | rules.add(rule1); |
| 231 | } |
| 232 | else { |
| 233 | owner->setNonNumericalRule(rule1); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | /** |
| 238 | * This function parses the rule's rule descriptor (i.e., the base |
| 239 | * value and/or other tokens that precede the rule's rule text |
| 240 | * in the description) and sets the rule's base value, radix, and |
| 241 | * exponent according to the descriptor. (If the description doesn't |
| 242 | * include a rule descriptor, then this function sets everything to |
| 243 | * default values and the rule set sets the rule's real base value). |
| 244 | * @param description The rule's description |
| 245 | * @return If "description" included a rule descriptor, this is |
| 246 | * "description" with the descriptor and any trailing whitespace |
| 247 | * stripped off. Otherwise; it's "descriptor" unchangd. |
| 248 | */ |
| 249 | void |
| 250 | NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) |
| 251 | { |
| 252 | // the description consists of a rule descriptor and a rule body, |
| 253 | // separated by a colon. The rule descriptor is optional. If |
| 254 | // it's omitted, just set the base value to 0. |
| 255 | int32_t p = description.indexOf(gColon); |
| 256 | if (p != -1) { |
| 257 | // copy the descriptor out into its own string and strip it, |
| 258 | // along with any trailing whitespace, out of the original |
| 259 | // description |
| 260 | UnicodeString descriptor; |
| 261 | descriptor.setTo(description, 0, p); |
| 262 | |
| 263 | ++p; |
| 264 | while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { |
| 265 | ++p; |
| 266 | } |
| 267 | description.removeBetween(0, p); |
| 268 | |
| 269 | // check first to see if the rule descriptor matches the token |
| 270 | // for one of the special rules. If it does, set the base |
| 271 | // value to the correct identifier value |
| 272 | int descriptorLength = descriptor.length(); |
| 273 | UChar firstChar = descriptor.charAt(0); |
| 274 | UChar lastChar = descriptor.charAt(descriptorLength - 1); |
| 275 | if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) { |
| 276 | // if the rule descriptor begins with a digit, it's a descriptor |
| 277 | // for a normal rule |
| 278 | // since we don't have Long.parseLong, and this isn't much work anyway, |
| 279 | // just build up the value as we encounter the digits. |
| 280 | int64_t val = 0; |
| 281 | p = 0; |
| 282 | UChar c = gSpace; |
| 283 | |
| 284 | // begin parsing the descriptor: copy digits |
| 285 | // into "tempValue", skip periods, commas, and spaces, |
| 286 | // stop on a slash or > sign (or at the end of the string), |
| 287 | // and throw an exception on any other character |
| 288 | int64_t ll_10 = 10; |
| 289 | while (p < descriptorLength) { |
| 290 | c = descriptor.charAt(p); |
| 291 | if (c >= gZero && c <= gNine) { |
| 292 | val = val * ll_10 + (int32_t)(c - gZero); |
| 293 | } |
| 294 | else if (c == gSlash || c == gGreaterThan) { |
| 295 | break; |
| 296 | } |
| 297 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
| 298 | } |
| 299 | else { |
| 300 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); |
| 301 | status = U_PARSE_ERROR; |
| 302 | return; |
| 303 | } |
| 304 | ++p; |
| 305 | } |
| 306 | |
| 307 | // we have the base value, so set it |
| 308 | setBaseValue(val, status); |
| 309 | |
| 310 | // if we stopped the previous loop on a slash, we're |
| 311 | // now parsing the rule's radix. Again, accumulate digits |
| 312 | // in tempValue, skip punctuation, stop on a > mark, and |
| 313 | // throw an exception on anything else |
| 314 | if (c == gSlash) { |
| 315 | val = 0; |
| 316 | ++p; |
| 317 | ll_10 = 10; |
| 318 | while (p < descriptorLength) { |
| 319 | c = descriptor.charAt(p); |
| 320 | if (c >= gZero && c <= gNine) { |
| 321 | val = val * ll_10 + (int32_t)(c - gZero); |
| 322 | } |
| 323 | else if (c == gGreaterThan) { |
| 324 | break; |
| 325 | } |
| 326 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
| 327 | } |
| 328 | else { |
| 329 | // throw new IllegalArgumentException("Illegal character is rule descriptor"); |
| 330 | status = U_PARSE_ERROR; |
| 331 | return; |
| 332 | } |
| 333 | ++p; |
| 334 | } |
| 335 | |
| 336 | // tempValue now contain's the rule's radix. Set it |
| 337 | // accordingly, and recalculate the rule's exponent |
| 338 | radix = (int32_t)val; |
| 339 | if (radix == 0) { |
| 340 | // throw new IllegalArgumentException("Rule can't have radix of 0"); |
| 341 | status = U_PARSE_ERROR; |
| 342 | } |
| 343 | |
| 344 | exponent = expectedExponent(); |
| 345 | } |
| 346 | |
| 347 | // if we stopped the previous loop on a > sign, then continue |
| 348 | // for as long as we still see > signs. For each one, |
| 349 | // decrement the exponent (unless the exponent is already 0). |
| 350 | // If we see another character before reaching the end of |
| 351 | // the descriptor, that's also a syntax error. |
| 352 | if (c == gGreaterThan) { |
| 353 | while (p < descriptor.length()) { |
| 354 | c = descriptor.charAt(p); |
| 355 | if (c == gGreaterThan && exponent > 0) { |
| 356 | --exponent; |
| 357 | } else { |
| 358 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); |
| 359 | status = U_PARSE_ERROR; |
| 360 | return; |
| 361 | } |
| 362 | ++p; |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | else if (0 == descriptor.compare(gMinusX, 2)) { |
| 367 | setType(kNegativeNumberRule); |
| 368 | } |
| 369 | else if (descriptorLength == 3) { |
| 370 | if (firstChar == gZero && lastChar == gX) { |
| 371 | setBaseValue(kProperFractionRule, status); |
| 372 | decimalPoint = descriptor.charAt(1); |
| 373 | } |
| 374 | else if (firstChar == gX && lastChar == gX) { |
| 375 | setBaseValue(kImproperFractionRule, status); |
| 376 | decimalPoint = descriptor.charAt(1); |
| 377 | } |
| 378 | else if (firstChar == gX && lastChar == gZero) { |
| 379 | setBaseValue(kMasterRule, status); |
| 380 | decimalPoint = descriptor.charAt(1); |
| 381 | } |
| 382 | else if (descriptor.compare(gNaN, 3) == 0) { |
| 383 | setBaseValue(kNaNRule, status); |
| 384 | } |
| 385 | else if (descriptor.compare(gInf, 3) == 0) { |
| 386 | setBaseValue(kInfinityRule, status); |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | // else use the default base value for now. |
| 391 | |
| 392 | // finally, if the rule body begins with an apostrophe, strip it off |
| 393 | // (this is generally used to put whitespace at the beginning of |
| 394 | // a rule's rule text) |
| 395 | if (description.length() > 0 && description.charAt(0) == gTick) { |
| 396 | description.removeBetween(0, 1); |
| 397 | } |
| 398 | |
| 399 | // return the description with all the stuff we've just waded through |
| 400 | // stripped off the front. It now contains just the rule body. |
| 401 | // return description; |
| 402 | } |
| 403 | |
| 404 | /** |
| 405 | * Searches the rule's rule text for the substitution tokens, |
| 406 | * creates the substitutions, and removes the substitution tokens |
| 407 | * from the rule's rule text. |
| 408 | * @param owner The rule set containing this rule |
| 409 | * @param predecessor The rule preseding this one in "owners" rule list |
| 410 | * @param ownersOwner The RuleBasedFormat that owns this rule |
| 411 | */ |
| 412 | void |
| 413 | NFRule::(const NFRuleSet* ruleSet, |
| 414 | const UnicodeString &ruleText, |
| 415 | const NFRule* predecessor, |
| 416 | UErrorCode& status) |
| 417 | { |
| 418 | if (U_FAILURE(status)) { |
| 419 | return; |
| 420 | } |
| 421 | fRuleText = ruleText; |
| 422 | sub1 = extractSubstitution(ruleSet, predecessor, status); |
| 423 | if (sub1 == NULL) { |
| 424 | // Small optimization. There is no need to create a redundant NullSubstitution. |
| 425 | sub2 = NULL; |
| 426 | } |
| 427 | else { |
| 428 | sub2 = extractSubstitution(ruleSet, predecessor, status); |
| 429 | } |
| 430 | int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
| 431 | int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1); |
| 432 | if (pluralRuleEnd >= 0) { |
| 433 | int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart); |
| 434 | if (endType < 0) { |
| 435 | status = U_PARSE_ERROR; |
| 436 | return; |
| 437 | } |
| 438 | UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2)); |
| 439 | UPluralType pluralType; |
| 440 | if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal" ))) { |
| 441 | pluralType = UPLURAL_TYPE_CARDINAL; |
| 442 | } |
| 443 | else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal" ))) { |
| 444 | pluralType = UPLURAL_TYPE_ORDINAL; |
| 445 | } |
| 446 | else { |
| 447 | status = U_ILLEGAL_ARGUMENT_ERROR; |
| 448 | return; |
| 449 | } |
| 450 | rulePatternFormat = formatter->createPluralFormat(pluralType, |
| 451 | fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /** |
| 456 | * Searches the rule's rule text for the first substitution token, |
| 457 | * creates a substitution based on it, and removes the token from |
| 458 | * the rule's rule text. |
| 459 | * @param owner The rule set containing this rule |
| 460 | * @param predecessor The rule preceding this one in the rule set's |
| 461 | * rule list |
| 462 | * @param ownersOwner The RuleBasedNumberFormat that owns this rule |
| 463 | * @return The newly-created substitution. This is never null; if |
| 464 | * the rule text doesn't contain any substitution tokens, this will |
| 465 | * be a NullSubstitution. |
| 466 | */ |
| 467 | NFSubstitution * |
| 468 | NFRule::(const NFRuleSet* ruleSet, |
| 469 | const NFRule* predecessor, |
| 470 | UErrorCode& status) |
| 471 | { |
| 472 | NFSubstitution* result = NULL; |
| 473 | |
| 474 | // search the rule's rule text for the first two characters of |
| 475 | // a substitution token |
| 476 | int32_t subStart = indexOfAnyRulePrefix(); |
| 477 | int32_t subEnd = subStart; |
| 478 | |
| 479 | // if we didn't find one, create a null substitution positioned |
| 480 | // at the end of the rule text |
| 481 | if (subStart == -1) { |
| 482 | return NULL; |
| 483 | } |
| 484 | |
| 485 | // special-case the ">>>" token, since searching for the > at the |
| 486 | // end will actually find the > in the middle |
| 487 | if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { |
| 488 | subEnd = subStart + 2; |
| 489 | |
| 490 | // otherwise the substitution token ends with the same character |
| 491 | // it began with |
| 492 | } else { |
| 493 | UChar c = fRuleText.charAt(subStart); |
| 494 | subEnd = fRuleText.indexOf(c, subStart + 1); |
| 495 | // special case for '<%foo<<' |
| 496 | if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) { |
| 497 | // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle |
| 498 | // occurs because of the juxtaposition of two different rules. The check for '<' is a hack |
| 499 | // to get around this. Having the duplicate at the front would cause problems with |
| 500 | // rules like "<<%" to format, say, percents... |
| 501 | ++subEnd; |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | // if we don't find the end of the token (i.e., if we're on a single, |
| 506 | // unmatched token character), create a null substitution positioned |
| 507 | // at the end of the rule |
| 508 | if (subEnd == -1) { |
| 509 | return NULL; |
| 510 | } |
| 511 | |
| 512 | // if we get here, we have a real substitution token (or at least |
| 513 | // some text bounded by substitution token characters). Use |
| 514 | // makeSubstitution() to create the right kind of substitution |
| 515 | UnicodeString subToken; |
| 516 | subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart); |
| 517 | result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, |
| 518 | this->formatter, subToken, status); |
| 519 | |
| 520 | // remove the substitution from the rule text |
| 521 | fRuleText.removeBetween(subStart, subEnd+1); |
| 522 | |
| 523 | return result; |
| 524 | } |
| 525 | |
| 526 | /** |
| 527 | * Sets the rule's base value, and causes the radix and exponent |
| 528 | * to be recalculated. This is used during construction when we |
| 529 | * don't know the rule's base value until after it's been |
| 530 | * constructed. It should be used at any other time. |
| 531 | * @param The new base value for the rule. |
| 532 | */ |
| 533 | void |
| 534 | NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) |
| 535 | { |
| 536 | // set the base value |
| 537 | baseValue = newBaseValue; |
| 538 | radix = 10; |
| 539 | |
| 540 | // if this isn't a special rule, recalculate the radix and exponent |
| 541 | // (the radix always defaults to 10; if it's supposed to be something |
| 542 | // else, it's cleaned up by the caller and the exponent is |
| 543 | // recalculated again-- the only function that does this is |
| 544 | // NFRule.parseRuleDescriptor() ) |
| 545 | if (baseValue >= 1) { |
| 546 | exponent = expectedExponent(); |
| 547 | |
| 548 | // this function gets called on a fully-constructed rule whose |
| 549 | // description didn't specify a base value. This means it |
| 550 | // has substitutions, and some substitutions hold on to copies |
| 551 | // of the rule's divisor. Fix their copies of the divisor. |
| 552 | if (sub1 != NULL) { |
| 553 | sub1->setDivisor(radix, exponent, status); |
| 554 | } |
| 555 | if (sub2 != NULL) { |
| 556 | sub2->setDivisor(radix, exponent, status); |
| 557 | } |
| 558 | |
| 559 | // if this is a special rule, its radix and exponent are basically |
| 560 | // ignored. Set them to "safe" default values |
| 561 | } else { |
| 562 | exponent = 0; |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /** |
| 567 | * This calculates the rule's exponent based on its radix and base |
| 568 | * value. This will be the highest power the radix can be raised to |
| 569 | * and still produce a result less than or equal to the base value. |
| 570 | */ |
| 571 | int16_t |
| 572 | NFRule::expectedExponent() const |
| 573 | { |
| 574 | // since the log of 0, or the log base 0 of something, causes an |
| 575 | // error, declare the exponent in these cases to be 0 (we also |
| 576 | // deal with the special-rule identifiers here) |
| 577 | if (radix == 0 || baseValue < 1) { |
| 578 | return 0; |
| 579 | } |
| 580 | |
| 581 | // we get rounding error in some cases-- for example, log 1000 / log 10 |
| 582 | // gives us 1.9999999996 instead of 2. The extra logic here is to take |
| 583 | // that into account |
| 584 | int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); |
| 585 | int64_t temp = util64_pow(radix, tempResult + 1); |
| 586 | if (temp <= baseValue) { |
| 587 | tempResult += 1; |
| 588 | } |
| 589 | return tempResult; |
| 590 | } |
| 591 | |
| 592 | /** |
| 593 | * Searches the rule's rule text for any of the specified strings. |
| 594 | * @return The index of the first match in the rule's rule text |
| 595 | * (i.e., the first substring in the rule's rule text that matches |
| 596 | * _any_ of the strings in "strings"). If none of the strings in |
| 597 | * "strings" is found in the rule's rule text, returns -1. |
| 598 | */ |
| 599 | int32_t |
| 600 | NFRule::indexOfAnyRulePrefix() const |
| 601 | { |
| 602 | int result = -1; |
| 603 | for (int i = 0; RULE_PREFIXES[i]; i++) { |
| 604 | int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]); |
| 605 | if (pos != -1 && (result == -1 || pos < result)) { |
| 606 | result = pos; |
| 607 | } |
| 608 | } |
| 609 | return result; |
| 610 | } |
| 611 | |
| 612 | //----------------------------------------------------------------------- |
| 613 | // boilerplate |
| 614 | //----------------------------------------------------------------------- |
| 615 | |
| 616 | static UBool |
| 617 | util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2) |
| 618 | { |
| 619 | if (sub1) { |
| 620 | if (sub2) { |
| 621 | return *sub1 == *sub2; |
| 622 | } |
| 623 | } else if (!sub2) { |
| 624 | return TRUE; |
| 625 | } |
| 626 | return FALSE; |
| 627 | } |
| 628 | |
| 629 | /** |
| 630 | * Tests two rules for equality. |
| 631 | * @param that The rule to compare this one against |
| 632 | * @return True is the two rules are functionally equivalent |
| 633 | */ |
| 634 | UBool |
| 635 | NFRule::operator==(const NFRule& rhs) const |
| 636 | { |
| 637 | return baseValue == rhs.baseValue |
| 638 | && radix == rhs.radix |
| 639 | && exponent == rhs.exponent |
| 640 | && fRuleText == rhs.fRuleText |
| 641 | && util_equalSubstitutions(sub1, rhs.sub1) |
| 642 | && util_equalSubstitutions(sub2, rhs.sub2); |
| 643 | } |
| 644 | |
| 645 | /** |
| 646 | * Returns a textual representation of the rule. This won't |
| 647 | * necessarily be the same as the description that this rule |
| 648 | * was created with, but it will produce the same result. |
| 649 | * @return A textual description of the rule |
| 650 | */ |
| 651 | static void util_append64(UnicodeString& result, int64_t n) |
| 652 | { |
| 653 | UChar buffer[256]; |
| 654 | int32_t len = util64_tou(n, buffer, sizeof(buffer)); |
| 655 | UnicodeString temp(buffer, len); |
| 656 | result.append(temp); |
| 657 | } |
| 658 | |
| 659 | void |
| 660 | NFRule::_appendRuleText(UnicodeString& result) const |
| 661 | { |
| 662 | switch (getType()) { |
| 663 | case kNegativeNumberRule: result.append(gMinusX, 2); break; |
| 664 | case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
| 665 | case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
| 666 | case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break; |
| 667 | case kInfinityRule: result.append(gInf, 3); break; |
| 668 | case kNaNRule: result.append(gNaN, 3); break; |
| 669 | default: |
| 670 | // for a normal rule, write out its base value, and if the radix is |
| 671 | // something other than 10, write out the radix (with the preceding |
| 672 | // slash, of course). Then calculate the expected exponent and if |
| 673 | // if isn't the same as the actual exponent, write an appropriate |
| 674 | // number of > signs. Finally, terminate the whole thing with |
| 675 | // a colon. |
| 676 | util_append64(result, baseValue); |
| 677 | if (radix != 10) { |
| 678 | result.append(gSlash); |
| 679 | util_append64(result, radix); |
| 680 | } |
| 681 | int numCarets = expectedExponent() - exponent; |
| 682 | for (int i = 0; i < numCarets; i++) { |
| 683 | result.append(gGreaterThan); |
| 684 | } |
| 685 | break; |
| 686 | } |
| 687 | result.append(gColon); |
| 688 | result.append(gSpace); |
| 689 | |
| 690 | // if the rule text begins with a space, write an apostrophe |
| 691 | // (whitespace after the rule descriptor is ignored; the |
| 692 | // apostrophe is used to make the whitespace significant) |
| 693 | if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) { |
| 694 | result.append(gTick); |
| 695 | } |
| 696 | |
| 697 | // now, write the rule's rule text, inserting appropriate |
| 698 | // substitution tokens in the appropriate places |
| 699 | UnicodeString ruleTextCopy; |
| 700 | ruleTextCopy.setTo(fRuleText); |
| 701 | |
| 702 | UnicodeString temp; |
| 703 | if (sub2 != NULL) { |
| 704 | sub2->toString(temp); |
| 705 | ruleTextCopy.insert(sub2->getPos(), temp); |
| 706 | } |
| 707 | if (sub1 != NULL) { |
| 708 | sub1->toString(temp); |
| 709 | ruleTextCopy.insert(sub1->getPos(), temp); |
| 710 | } |
| 711 | |
| 712 | result.append(ruleTextCopy); |
| 713 | |
| 714 | // and finally, top the whole thing off with a semicolon and |
| 715 | // return the result |
| 716 | result.append(gSemicolon); |
| 717 | } |
| 718 | |
| 719 | int64_t NFRule::getDivisor() const |
| 720 | { |
| 721 | return util64_pow(radix, exponent); |
| 722 | } |
| 723 | |
| 724 | |
| 725 | //----------------------------------------------------------------------- |
| 726 | // formatting |
| 727 | //----------------------------------------------------------------------- |
| 728 | |
| 729 | /** |
| 730 | * Formats the number, and inserts the resulting text into |
| 731 | * toInsertInto. |
| 732 | * @param number The number being formatted |
| 733 | * @param toInsertInto The string where the resultant text should |
| 734 | * be inserted |
| 735 | * @param pos The position in toInsertInto where the resultant text |
| 736 | * should be inserted |
| 737 | */ |
| 738 | void |
| 739 | NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
| 740 | { |
| 741 | // first, insert the rule's rule text into toInsertInto at the |
| 742 | // specified position, then insert the results of the substitutions |
| 743 | // into the right places in toInsertInto (notice we do the |
| 744 | // substitutions in reverse order so that the offsets don't get |
| 745 | // messed up) |
| 746 | int32_t pluralRuleStart = fRuleText.length(); |
| 747 | int32_t lengthOffset = 0; |
| 748 | if (!rulePatternFormat) { |
| 749 | toInsertInto.insert(pos, fRuleText); |
| 750 | } |
| 751 | else { |
| 752 | pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
| 753 | int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); |
| 754 | int initialLength = toInsertInto.length(); |
| 755 | if (pluralRuleEnd < fRuleText.length() - 1) { |
| 756 | toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2)); |
| 757 | } |
| 758 | toInsertInto.insert(pos, |
| 759 | rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status)); |
| 760 | if (pluralRuleStart > 0) { |
| 761 | toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart)); |
| 762 | } |
| 763 | lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength); |
| 764 | } |
| 765 | |
| 766 | if (sub2 != NULL) { |
| 767 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
| 768 | } |
| 769 | if (sub1 != NULL) { |
| 770 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | /** |
| 775 | * Formats the number, and inserts the resulting text into |
| 776 | * toInsertInto. |
| 777 | * @param number The number being formatted |
| 778 | * @param toInsertInto The string where the resultant text should |
| 779 | * be inserted |
| 780 | * @param pos The position in toInsertInto where the resultant text |
| 781 | * should be inserted |
| 782 | */ |
| 783 | void |
| 784 | NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
| 785 | { |
| 786 | // first, insert the rule's rule text into toInsertInto at the |
| 787 | // specified position, then insert the results of the substitutions |
| 788 | // into the right places in toInsertInto |
| 789 | // [again, we have two copies of this routine that do the same thing |
| 790 | // so that we don't sacrifice precision in a long by casting it |
| 791 | // to a double] |
| 792 | int32_t pluralRuleStart = fRuleText.length(); |
| 793 | int32_t lengthOffset = 0; |
| 794 | if (!rulePatternFormat) { |
| 795 | toInsertInto.insert(pos, fRuleText); |
| 796 | } |
| 797 | else { |
| 798 | pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
| 799 | int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); |
| 800 | int initialLength = toInsertInto.length(); |
| 801 | if (pluralRuleEnd < fRuleText.length() - 1) { |
| 802 | toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2)); |
| 803 | } |
| 804 | double pluralVal = number; |
| 805 | if (0 <= pluralVal && pluralVal < 1) { |
| 806 | // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior. |
| 807 | // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors. |
| 808 | pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent)); |
| 809 | } |
| 810 | else { |
| 811 | pluralVal = pluralVal / util64_pow(radix, exponent); |
| 812 | } |
| 813 | toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status)); |
| 814 | if (pluralRuleStart > 0) { |
| 815 | toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart)); |
| 816 | } |
| 817 | lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength); |
| 818 | } |
| 819 | |
| 820 | if (sub2 != NULL) { |
| 821 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
| 822 | } |
| 823 | if (sub1 != NULL) { |
| 824 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /** |
| 829 | * Used by the owning rule set to determine whether to invoke the |
| 830 | * rollback rule (i.e., whether this rule or the one that precedes |
| 831 | * it in the rule set's list should be used to format the number) |
| 832 | * @param The number being formatted |
| 833 | * @return True if the rule set should use the rule that precedes |
| 834 | * this one in its list; false if it should use this rule |
| 835 | */ |
| 836 | UBool |
| 837 | NFRule::shouldRollBack(int64_t number) const |
| 838 | { |
| 839 | // we roll back if the rule contains a modulus substitution, |
| 840 | // the number being formatted is an even multiple of the rule's |
| 841 | // divisor, and the rule's base value is NOT an even multiple |
| 842 | // of its divisor |
| 843 | // In other words, if the original description had |
| 844 | // 100: << hundred[ >>]; |
| 845 | // that expands into |
| 846 | // 100: << hundred; |
| 847 | // 101: << hundred >>; |
| 848 | // internally. But when we're formatting 200, if we use the rule |
| 849 | // at 101, which would normally apply, we get "two hundred zero". |
| 850 | // To prevent this, we roll back and use the rule at 100 instead. |
| 851 | // This is the logic that makes this happen: the rule at 101 has |
| 852 | // a modulus substitution, its base value isn't an even multiple |
| 853 | // of 100, and the value we're trying to format _is_ an even |
| 854 | // multiple of 100. This is called the "rollback rule." |
| 855 | if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) { |
| 856 | int64_t re = util64_pow(radix, exponent); |
| 857 | return (number % re) == 0 && (baseValue % re) != 0; |
| 858 | } |
| 859 | return FALSE; |
| 860 | } |
| 861 | |
| 862 | //----------------------------------------------------------------------- |
| 863 | // parsing |
| 864 | //----------------------------------------------------------------------- |
| 865 | |
| 866 | /** |
| 867 | * Attempts to parse the string with this rule. |
| 868 | * @param text The string being parsed |
| 869 | * @param parsePosition On entry, the value is ignored and assumed to |
| 870 | * be 0. On exit, this has been updated with the position of the first |
| 871 | * character not consumed by matching the text against this rule |
| 872 | * (if this rule doesn't match the text at all, the parse position |
| 873 | * if left unchanged (presumably at 0) and the function returns |
| 874 | * new Long(0)). |
| 875 | * @param isFractionRule True if this rule is contained within a |
| 876 | * fraction rule set. This is only used if the rule has no |
| 877 | * substitutions. |
| 878 | * @return If this rule matched the text, this is the rule's base value |
| 879 | * combined appropriately with the results of parsing the substitutions. |
| 880 | * If nothing matched, this is new Long(0) and the parse position is |
| 881 | * left unchanged. The result will be an instance of Long if the |
| 882 | * result is an integer and Double otherwise. The result is never null. |
| 883 | */ |
| 884 | #ifdef RBNF_DEBUG |
| 885 | #include <stdio.h> |
| 886 | |
| 887 | static void dumpUS(FILE* f, const UnicodeString& us) { |
| 888 | int len = us.length(); |
| 889 | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; |
| 890 | if (buf != NULL) { |
| 891 | us.extract(0, len, buf); |
| 892 | buf[len] = 0; |
| 893 | fprintf(f, "%s" , buf); |
| 894 | uprv_free(buf); //delete[] buf; |
| 895 | } |
| 896 | } |
| 897 | #endif |
| 898 | UBool |
| 899 | NFRule::doParse(const UnicodeString& text, |
| 900 | ParsePosition& parsePosition, |
| 901 | UBool isFractionRule, |
| 902 | double upperBound, |
| 903 | uint32_t nonNumericalExecutedRuleMask, |
| 904 | Formattable& resVal) const |
| 905 | { |
| 906 | // internally we operate on a copy of the string being parsed |
| 907 | // (because we're going to change it) and use our own ParsePosition |
| 908 | ParsePosition pp; |
| 909 | UnicodeString workText(text); |
| 910 | |
| 911 | int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length(); |
| 912 | int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length(); |
| 913 | |
| 914 | // check to see whether the text before the first substitution |
| 915 | // matches the text at the beginning of the string being |
| 916 | // parsed. If it does, strip that off the front of workText; |
| 917 | // otherwise, dump out with a mismatch |
| 918 | UnicodeString prefix; |
| 919 | prefix.setTo(fRuleText, 0, sub1Pos); |
| 920 | |
| 921 | #ifdef RBNF_DEBUG |
| 922 | fprintf(stderr, "doParse %p " , this); |
| 923 | { |
| 924 | UnicodeString rt; |
| 925 | _appendRuleText(rt); |
| 926 | dumpUS(stderr, rt); |
| 927 | } |
| 928 | |
| 929 | fprintf(stderr, " text: '" ); |
| 930 | dumpUS(stderr, text); |
| 931 | fprintf(stderr, "' prefix: '" ); |
| 932 | dumpUS(stderr, prefix); |
| 933 | #endif |
| 934 | stripPrefix(workText, prefix, pp); |
| 935 | int32_t prefixLength = text.length() - workText.length(); |
| 936 | |
| 937 | #ifdef RBNF_DEBUG |
| 938 | fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n" , prefixLength, pp.getIndex(), sub1Pos); |
| 939 | #endif |
| 940 | |
| 941 | if (pp.getIndex() == 0 && sub1Pos != 0) { |
| 942 | // commented out because ParsePosition doesn't have error index in 1.1.x |
| 943 | // restored for ICU4C port |
| 944 | parsePosition.setErrorIndex(pp.getErrorIndex()); |
| 945 | resVal.setLong(0); |
| 946 | return TRUE; |
| 947 | } |
| 948 | if (baseValue == kInfinityRule) { |
| 949 | // If you match this, don't try to perform any calculations on it. |
| 950 | parsePosition.setIndex(pp.getIndex()); |
| 951 | resVal.setDouble(uprv_getInfinity()); |
| 952 | return TRUE; |
| 953 | } |
| 954 | if (baseValue == kNaNRule) { |
| 955 | // If you match this, don't try to perform any calculations on it. |
| 956 | parsePosition.setIndex(pp.getIndex()); |
| 957 | resVal.setDouble(uprv_getNaN()); |
| 958 | return TRUE; |
| 959 | } |
| 960 | |
| 961 | // this is the fun part. The basic guts of the rule-matching |
| 962 | // logic is matchToDelimiter(), which is called twice. The first |
| 963 | // time it searches the input string for the rule text BETWEEN |
| 964 | // the substitutions and tries to match the intervening text |
| 965 | // in the input string with the first substitution. If that |
| 966 | // succeeds, it then calls it again, this time to look for the |
| 967 | // rule text after the second substitution and to match the |
| 968 | // intervening input text against the second substitution. |
| 969 | // |
| 970 | // For example, say we have a rule that looks like this: |
| 971 | // first << middle >> last; |
| 972 | // and input text that looks like this: |
| 973 | // first one middle two last |
| 974 | // First we use stripPrefix() to match "first " in both places and |
| 975 | // strip it off the front, leaving |
| 976 | // one middle two last |
| 977 | // Then we use matchToDelimiter() to match " middle " and try to |
| 978 | // match "one" against a substitution. If it's successful, we now |
| 979 | // have |
| 980 | // two last |
| 981 | // We use matchToDelimiter() a second time to match " last" and |
| 982 | // try to match "two" against a substitution. If "two" matches |
| 983 | // the substitution, we have a successful parse. |
| 984 | // |
| 985 | // Since it's possible in many cases to find multiple instances |
| 986 | // of each of these pieces of rule text in the input string, |
| 987 | // we need to try all the possible combinations of these |
| 988 | // locations. This prevents us from prematurely declaring a mismatch, |
| 989 | // and makes sure we match as much input text as we can. |
| 990 | int highWaterMark = 0; |
| 991 | double result = 0; |
| 992 | int start = 0; |
| 993 | double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); |
| 994 | |
| 995 | UnicodeString temp; |
| 996 | do { |
| 997 | // our partial parse result starts out as this rule's base |
| 998 | // value. If it finds a successful match, matchToDelimiter() |
| 999 | // will compose this in some way with what it gets back from |
| 1000 | // the substitution, giving us a new partial parse result |
| 1001 | pp.setIndex(0); |
| 1002 | |
| 1003 | temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos); |
| 1004 | double partialResult = matchToDelimiter(workText, start, tempBaseValue, |
| 1005 | temp, pp, sub1, |
| 1006 | nonNumericalExecutedRuleMask, |
| 1007 | upperBound); |
| 1008 | |
| 1009 | // if we got a successful match (or were trying to match a |
| 1010 | // null substitution), pp is now pointing at the first unmatched |
| 1011 | // character. Take note of that, and try matchToDelimiter() |
| 1012 | // on the input text again |
| 1013 | if (pp.getIndex() != 0 || sub1 == NULL) { |
| 1014 | start = pp.getIndex(); |
| 1015 | |
| 1016 | UnicodeString workText2; |
| 1017 | workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); |
| 1018 | ParsePosition pp2; |
| 1019 | |
| 1020 | // the second matchToDelimiter() will compose our previous |
| 1021 | // partial result with whatever it gets back from its |
| 1022 | // substitution if there's a successful match, giving us |
| 1023 | // a real result |
| 1024 | temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos); |
| 1025 | partialResult = matchToDelimiter(workText2, 0, partialResult, |
| 1026 | temp, pp2, sub2, |
| 1027 | nonNumericalExecutedRuleMask, |
| 1028 | upperBound); |
| 1029 | |
| 1030 | // if we got a successful match on this second |
| 1031 | // matchToDelimiter() call, update the high-water mark |
| 1032 | // and result (if necessary) |
| 1033 | if (pp2.getIndex() != 0 || sub2 == NULL) { |
| 1034 | if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { |
| 1035 | highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); |
| 1036 | result = partialResult; |
| 1037 | } |
| 1038 | } |
| 1039 | else { |
| 1040 | // commented out because ParsePosition doesn't have error index in 1.1.x |
| 1041 | // restored for ICU4C port |
| 1042 | int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex(); |
| 1043 | if (i_temp> parsePosition.getErrorIndex()) { |
| 1044 | parsePosition.setErrorIndex(i_temp); |
| 1045 | } |
| 1046 | } |
| 1047 | } |
| 1048 | else { |
| 1049 | // commented out because ParsePosition doesn't have error index in 1.1.x |
| 1050 | // restored for ICU4C port |
| 1051 | int32_t i_temp = sub1Pos + pp.getErrorIndex(); |
| 1052 | if (i_temp > parsePosition.getErrorIndex()) { |
| 1053 | parsePosition.setErrorIndex(i_temp); |
| 1054 | } |
| 1055 | } |
| 1056 | // keep trying to match things until the outer matchToDelimiter() |
| 1057 | // call fails to make a match (each time, it picks up where it |
| 1058 | // left off the previous time) |
| 1059 | } while (sub1Pos != sub2Pos |
| 1060 | && pp.getIndex() > 0 |
| 1061 | && pp.getIndex() < workText.length() |
| 1062 | && pp.getIndex() != start); |
| 1063 | |
| 1064 | // update the caller's ParsePosition with our high-water mark |
| 1065 | // (i.e., it now points at the first character this function |
| 1066 | // didn't match-- the ParsePosition is therefore unchanged if |
| 1067 | // we didn't match anything) |
| 1068 | parsePosition.setIndex(highWaterMark); |
| 1069 | // commented out because ParsePosition doesn't have error index in 1.1.x |
| 1070 | // restored for ICU4C port |
| 1071 | if (highWaterMark > 0) { |
| 1072 | parsePosition.setErrorIndex(0); |
| 1073 | } |
| 1074 | |
| 1075 | // this is a hack for one unusual condition: Normally, whether this |
| 1076 | // rule belong to a fraction rule set or not is handled by its |
| 1077 | // substitutions. But if that rule HAS NO substitutions, then |
| 1078 | // we have to account for it here. By definition, if the matching |
| 1079 | // rule in a fraction rule set has no substitutions, its numerator |
| 1080 | // is 1, and so the result is the reciprocal of its base value. |
| 1081 | if (isFractionRule && highWaterMark > 0 && sub1 == NULL) { |
| 1082 | result = 1 / result; |
| 1083 | } |
| 1084 | |
| 1085 | resVal.setDouble(result); |
| 1086 | return TRUE; // ??? do we need to worry if it is a long or a double? |
| 1087 | } |
| 1088 | |
| 1089 | /** |
| 1090 | * This function is used by parse() to match the text being parsed |
| 1091 | * against a possible prefix string. This function |
| 1092 | * matches characters from the beginning of the string being parsed |
| 1093 | * to characters from the prospective prefix. If they match, pp is |
| 1094 | * updated to the first character not matched, and the result is |
| 1095 | * the unparsed part of the string. If they don't match, the whole |
| 1096 | * string is returned, and pp is left unchanged. |
| 1097 | * @param text The string being parsed |
| 1098 | * @param prefix The text to match against |
| 1099 | * @param pp On entry, ignored and assumed to be 0. On exit, points |
| 1100 | * to the first unmatched character (assuming the whole prefix matched), |
| 1101 | * or is unchanged (if the whole prefix didn't match). |
| 1102 | * @return If things match, this is the unparsed part of "text"; |
| 1103 | * if they didn't match, this is "text". |
| 1104 | */ |
| 1105 | void |
| 1106 | NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const |
| 1107 | { |
| 1108 | // if the prefix text is empty, dump out without doing anything |
| 1109 | if (prefix.length() != 0) { |
| 1110 | UErrorCode status = U_ZERO_ERROR; |
| 1111 | // use prefixLength() to match the beginning of |
| 1112 | // "text" against "prefix". This function returns the |
| 1113 | // number of characters from "text" that matched (or 0 if |
| 1114 | // we didn't match the whole prefix) |
| 1115 | int32_t pfl = prefixLength(text, prefix, status); |
| 1116 | if (U_FAILURE(status)) { // Memory allocation error. |
| 1117 | return; |
| 1118 | } |
| 1119 | if (pfl != 0) { |
| 1120 | // if we got a successful match, update the parse position |
| 1121 | // and strip the prefix off of "text" |
| 1122 | pp.setIndex(pp.getIndex() + pfl); |
| 1123 | text.remove(0, pfl); |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | /** |
| 1129 | * Used by parse() to match a substitution and any following text. |
| 1130 | * "text" is searched for instances of "delimiter". For each instance |
| 1131 | * of delimiter, the intervening text is tested to see whether it |
| 1132 | * matches the substitution. The longest match wins. |
| 1133 | * @param text The string being parsed |
| 1134 | * @param startPos The position in "text" where we should start looking |
| 1135 | * for "delimiter". |
| 1136 | * @param baseValue A partial parse result (often the rule's base value), |
| 1137 | * which is combined with the result from matching the substitution |
| 1138 | * @param delimiter The string to search "text" for. |
| 1139 | * @param pp Ignored and presumed to be 0 on entry. If there's a match, |
| 1140 | * on exit this will point to the first unmatched character. |
| 1141 | * @param sub If we find "delimiter" in "text", this substitution is used |
| 1142 | * to match the text between the beginning of the string and the |
| 1143 | * position of "delimiter." (If "delimiter" is the empty string, then |
| 1144 | * this function just matches against this substitution and updates |
| 1145 | * everything accordingly.) |
| 1146 | * @param upperBound When matching the substitution, it will only |
| 1147 | * consider rules with base values lower than this value. |
| 1148 | * @return If there's a match, this is the result of composing |
| 1149 | * baseValue with the result of matching the substitution. Otherwise, |
| 1150 | * this is new Long(0). It's never null. If the result is an integer, |
| 1151 | * this will be an instance of Long; otherwise, it's an instance of |
| 1152 | * Double. |
| 1153 | * |
| 1154 | * !!! note {dlf} in point of fact, in the java code the caller always converts |
| 1155 | * the result to a double, so we might as well return one. |
| 1156 | */ |
| 1157 | double |
| 1158 | NFRule::matchToDelimiter(const UnicodeString& text, |
| 1159 | int32_t startPos, |
| 1160 | double _baseValue, |
| 1161 | const UnicodeString& delimiter, |
| 1162 | ParsePosition& pp, |
| 1163 | const NFSubstitution* sub, |
| 1164 | uint32_t nonNumericalExecutedRuleMask, |
| 1165 | double upperBound) const |
| 1166 | { |
| 1167 | UErrorCode status = U_ZERO_ERROR; |
| 1168 | // if "delimiter" contains real (i.e., non-ignorable) text, search |
| 1169 | // it for "delimiter" beginning at "start". If that succeeds, then |
| 1170 | // use "sub"'s doParse() method to match the text before the |
| 1171 | // instance of "delimiter" we just found. |
| 1172 | if (!allIgnorable(delimiter, status)) { |
| 1173 | if (U_FAILURE(status)) { //Memory allocation error. |
| 1174 | return 0; |
| 1175 | } |
| 1176 | ParsePosition tempPP; |
| 1177 | Formattable result; |
| 1178 | |
| 1179 | // use findText() to search for "delimiter". It returns a two- |
| 1180 | // element array: element 0 is the position of the match, and |
| 1181 | // element 1 is the number of characters that matched |
| 1182 | // "delimiter". |
| 1183 | int32_t dLen; |
| 1184 | int32_t dPos = findText(text, delimiter, startPos, &dLen); |
| 1185 | |
| 1186 | // if findText() succeeded, isolate the text preceding the |
| 1187 | // match, and use "sub" to match that text |
| 1188 | while (dPos >= 0) { |
| 1189 | UnicodeString subText; |
| 1190 | subText.setTo(text, 0, dPos); |
| 1191 | if (subText.length() > 0) { |
| 1192 | UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, |
| 1193 | #if UCONFIG_NO_COLLATION |
| 1194 | FALSE, |
| 1195 | #else |
| 1196 | formatter->isLenient(), |
| 1197 | #endif |
| 1198 | nonNumericalExecutedRuleMask, |
| 1199 | result); |
| 1200 | |
| 1201 | // if the substitution could match all the text up to |
| 1202 | // where we found "delimiter", then this function has |
| 1203 | // a successful match. Bump the caller's parse position |
| 1204 | // to point to the first character after the text |
| 1205 | // that matches "delimiter", and return the result |
| 1206 | // we got from parsing the substitution. |
| 1207 | if (success && tempPP.getIndex() == dPos) { |
| 1208 | pp.setIndex(dPos + dLen); |
| 1209 | return result.getDouble(); |
| 1210 | } |
| 1211 | else { |
| 1212 | // commented out because ParsePosition doesn't have error index in 1.1.x |
| 1213 | // restored for ICU4C port |
| 1214 | if (tempPP.getErrorIndex() > 0) { |
| 1215 | pp.setErrorIndex(tempPP.getErrorIndex()); |
| 1216 | } else { |
| 1217 | pp.setErrorIndex(tempPP.getIndex()); |
| 1218 | } |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | // if we didn't match the substitution, search for another |
| 1223 | // copy of "delimiter" in "text" and repeat the loop if |
| 1224 | // we find it |
| 1225 | tempPP.setIndex(0); |
| 1226 | dPos = findText(text, delimiter, dPos + dLen, &dLen); |
| 1227 | } |
| 1228 | // if we make it here, this was an unsuccessful match, and we |
| 1229 | // leave pp unchanged and return 0 |
| 1230 | pp.setIndex(0); |
| 1231 | return 0; |
| 1232 | |
| 1233 | // if "delimiter" is empty, or consists only of ignorable characters |
| 1234 | // (i.e., is semantically empty), thwe we obviously can't search |
| 1235 | // for "delimiter". Instead, just use "sub" to parse as much of |
| 1236 | // "text" as possible. |
| 1237 | } |
| 1238 | else if (sub == NULL) { |
| 1239 | return _baseValue; |
| 1240 | } |
| 1241 | else { |
| 1242 | ParsePosition tempPP; |
| 1243 | Formattable result; |
| 1244 | |
| 1245 | // try to match the whole string against the substitution |
| 1246 | UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, |
| 1247 | #if UCONFIG_NO_COLLATION |
| 1248 | FALSE, |
| 1249 | #else |
| 1250 | formatter->isLenient(), |
| 1251 | #endif |
| 1252 | nonNumericalExecutedRuleMask, |
| 1253 | result); |
| 1254 | if (success && (tempPP.getIndex() != 0)) { |
| 1255 | // if there's a successful match (or it's a null |
| 1256 | // substitution), update pp to point to the first |
| 1257 | // character we didn't match, and pass the result from |
| 1258 | // sub.doParse() on through to the caller |
| 1259 | pp.setIndex(tempPP.getIndex()); |
| 1260 | return result.getDouble(); |
| 1261 | } |
| 1262 | else { |
| 1263 | // commented out because ParsePosition doesn't have error index in 1.1.x |
| 1264 | // restored for ICU4C port |
| 1265 | pp.setErrorIndex(tempPP.getErrorIndex()); |
| 1266 | } |
| 1267 | |
| 1268 | // and if we get to here, then nothing matched, so we return |
| 1269 | // 0 and leave pp alone |
| 1270 | return 0; |
| 1271 | } |
| 1272 | } |
| 1273 | |
| 1274 | /** |
| 1275 | * Used by stripPrefix() to match characters. If lenient parse mode |
| 1276 | * is off, this just calls startsWith(). If lenient parse mode is on, |
| 1277 | * this function uses CollationElementIterators to match characters in |
| 1278 | * the strings (only primary-order differences are significant in |
| 1279 | * determining whether there's a match). |
| 1280 | * @param str The string being tested |
| 1281 | * @param prefix The text we're hoping to see at the beginning |
| 1282 | * of "str" |
| 1283 | * @return If "prefix" is found at the beginning of "str", this |
| 1284 | * is the number of characters in "str" that were matched (this |
| 1285 | * isn't necessarily the same as the length of "prefix" when matching |
| 1286 | * text with a collator). If there's no match, this is 0. |
| 1287 | */ |
| 1288 | int32_t |
| 1289 | NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const |
| 1290 | { |
| 1291 | // if we're looking for an empty prefix, it obviously matches |
| 1292 | // zero characters. Just go ahead and return 0. |
| 1293 | if (prefix.length() == 0) { |
| 1294 | return 0; |
| 1295 | } |
| 1296 | |
| 1297 | #if !UCONFIG_NO_COLLATION |
| 1298 | // go through all this grief if we're in lenient-parse mode |
| 1299 | if (formatter->isLenient()) { |
| 1300 | // get the formatter's collator and use it to create two |
| 1301 | // collation element iterators, one over the target string |
| 1302 | // and another over the prefix (right now, we'll throw an |
| 1303 | // exception if the collator we get back from the formatter |
| 1304 | // isn't a RuleBasedCollator, because RuleBasedCollator defines |
| 1305 | // the CollationElementIterator protocol. Hopefully, this |
| 1306 | // will change someday.) |
| 1307 | const RuleBasedCollator* collator = formatter->getCollator(); |
| 1308 | if (collator == NULL) { |
| 1309 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1310 | return 0; |
| 1311 | } |
| 1312 | LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str)); |
| 1313 | LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix)); |
| 1314 | // Check for memory allocation error. |
| 1315 | if (strIter.isNull() || prefixIter.isNull()) { |
| 1316 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1317 | return 0; |
| 1318 | } |
| 1319 | |
| 1320 | UErrorCode err = U_ZERO_ERROR; |
| 1321 | |
| 1322 | // The original code was problematic. Consider this match: |
| 1323 | // prefix = "fifty-" |
| 1324 | // string = " fifty-7" |
| 1325 | // The intent is to match string up to the '7', by matching 'fifty-' at position 1 |
| 1326 | // in the string. Unfortunately, we were getting a match, and then computing where |
| 1327 | // the match terminated by rematching the string. The rematch code was using as an |
| 1328 | // initial guess the substring of string between 0 and prefix.length. Because of |
| 1329 | // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving |
| 1330 | // the position before the hyphen in the string. Recursing down, we then parsed the |
| 1331 | // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). |
| 1332 | // This was not pretty, especially since the string "fifty-7" parsed just fine. |
| 1333 | // |
| 1334 | // We have newer APIs now, so we can use calls on the iterator to determine what we |
| 1335 | // matched up to. If we terminate because we hit the last element in the string, |
| 1336 | // our match terminates at this length. If we terminate because we hit the last element |
| 1337 | // in the target, our match terminates at one before the element iterator position. |
| 1338 | |
| 1339 | // match collation elements between the strings |
| 1340 | int32_t oStr = strIter->next(err); |
| 1341 | int32_t oPrefix = prefixIter->next(err); |
| 1342 | |
| 1343 | while (oPrefix != CollationElementIterator::NULLORDER) { |
| 1344 | // skip over ignorable characters in the target string |
| 1345 | while (CollationElementIterator::primaryOrder(oStr) == 0 |
| 1346 | && oStr != CollationElementIterator::NULLORDER) { |
| 1347 | oStr = strIter->next(err); |
| 1348 | } |
| 1349 | |
| 1350 | // skip over ignorable characters in the prefix |
| 1351 | while (CollationElementIterator::primaryOrder(oPrefix) == 0 |
| 1352 | && oPrefix != CollationElementIterator::NULLORDER) { |
| 1353 | oPrefix = prefixIter->next(err); |
| 1354 | } |
| 1355 | |
| 1356 | // dlf: move this above following test, if we consume the |
| 1357 | // entire target, aren't we ok even if the source was also |
| 1358 | // entirely consumed? |
| 1359 | |
| 1360 | // if skipping over ignorables brought to the end of |
| 1361 | // the prefix, we DID match: drop out of the loop |
| 1362 | if (oPrefix == CollationElementIterator::NULLORDER) { |
| 1363 | break; |
| 1364 | } |
| 1365 | |
| 1366 | // if skipping over ignorables brought us to the end |
| 1367 | // of the target string, we didn't match and return 0 |
| 1368 | if (oStr == CollationElementIterator::NULLORDER) { |
| 1369 | return 0; |
| 1370 | } |
| 1371 | |
| 1372 | // match collation elements from the two strings |
| 1373 | // (considering only primary differences). If we |
| 1374 | // get a mismatch, dump out and return 0 |
| 1375 | if (CollationElementIterator::primaryOrder(oStr) |
| 1376 | != CollationElementIterator::primaryOrder(oPrefix)) { |
| 1377 | return 0; |
| 1378 | |
| 1379 | // otherwise, advance to the next character in each string |
| 1380 | // and loop (we drop out of the loop when we exhaust |
| 1381 | // collation elements in the prefix) |
| 1382 | } else { |
| 1383 | oStr = strIter->next(err); |
| 1384 | oPrefix = prefixIter->next(err); |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | int32_t result = strIter->getOffset(); |
| 1389 | if (oStr != CollationElementIterator::NULLORDER) { |
| 1390 | --result; // back over character that we don't want to consume; |
| 1391 | } |
| 1392 | |
| 1393 | #ifdef RBNF_DEBUG |
| 1394 | fprintf(stderr, "prefix length: %d\n" , result); |
| 1395 | #endif |
| 1396 | return result; |
| 1397 | #if 0 |
| 1398 | //---------------------------------------------------------------- |
| 1399 | // JDK 1.2-specific API call |
| 1400 | // return strIter.getOffset(); |
| 1401 | //---------------------------------------------------------------- |
| 1402 | // JDK 1.1 HACK (take out for 1.2-specific code) |
| 1403 | |
| 1404 | // if we make it to here, we have a successful match. Now we |
| 1405 | // have to find out HOW MANY characters from the target string |
| 1406 | // matched the prefix (there isn't necessarily a one-to-one |
| 1407 | // mapping between collation elements and characters). |
| 1408 | // In JDK 1.2, there's a simple getOffset() call we can use. |
| 1409 | // In JDK 1.1, on the other hand, we have to go through some |
| 1410 | // ugly contortions. First, use the collator to compare the |
| 1411 | // same number of characters from the prefix and target string. |
| 1412 | // If they're equal, we're done. |
| 1413 | collator->setStrength(Collator::PRIMARY); |
| 1414 | if (str.length() >= prefix.length()) { |
| 1415 | UnicodeString temp; |
| 1416 | temp.setTo(str, 0, prefix.length()); |
| 1417 | if (collator->equals(temp, prefix)) { |
| 1418 | #ifdef RBNF_DEBUG |
| 1419 | fprintf(stderr, "returning: %d\n" , prefix.length()); |
| 1420 | #endif |
| 1421 | return prefix.length(); |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | // if they're not equal, then we have to compare successively |
| 1426 | // larger and larger substrings of the target string until we |
| 1427 | // get to one that matches the prefix. At that point, we know |
| 1428 | // how many characters matched the prefix, and we can return. |
| 1429 | int32_t p = 1; |
| 1430 | while (p <= str.length()) { |
| 1431 | UnicodeString temp; |
| 1432 | temp.setTo(str, 0, p); |
| 1433 | if (collator->equals(temp, prefix)) { |
| 1434 | return p; |
| 1435 | } else { |
| 1436 | ++p; |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | // SHOULD NEVER GET HERE!!! |
| 1441 | return 0; |
| 1442 | //---------------------------------------------------------------- |
| 1443 | #endif |
| 1444 | |
| 1445 | // If lenient parsing is turned off, forget all that crap above. |
| 1446 | // Just use String.startsWith() and be done with it. |
| 1447 | } else |
| 1448 | #endif |
| 1449 | { |
| 1450 | if (str.startsWith(prefix)) { |
| 1451 | return prefix.length(); |
| 1452 | } else { |
| 1453 | return 0; |
| 1454 | } |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | /** |
| 1459 | * Searches a string for another string. If lenient parsing is off, |
| 1460 | * this just calls indexOf(). If lenient parsing is on, this function |
| 1461 | * uses CollationElementIterator to match characters, and only |
| 1462 | * primary-order differences are significant in determining whether |
| 1463 | * there's a match. |
| 1464 | * @param str The string to search |
| 1465 | * @param key The string to search "str" for |
| 1466 | * @param startingAt The index into "str" where the search is to |
| 1467 | * begin |
| 1468 | * @return A two-element array of ints. Element 0 is the position |
| 1469 | * of the match, or -1 if there was no match. Element 1 is the |
| 1470 | * number of characters in "str" that matched (which isn't necessarily |
| 1471 | * the same as the length of "key") |
| 1472 | */ |
| 1473 | int32_t |
| 1474 | NFRule::findText(const UnicodeString& str, |
| 1475 | const UnicodeString& key, |
| 1476 | int32_t startingAt, |
| 1477 | int32_t* length) const |
| 1478 | { |
| 1479 | if (rulePatternFormat) { |
| 1480 | Formattable result; |
| 1481 | FieldPosition position(UNUM_INTEGER_FIELD); |
| 1482 | position.setBeginIndex(startingAt); |
| 1483 | rulePatternFormat->parseType(str, this, result, position); |
| 1484 | int start = position.getBeginIndex(); |
| 1485 | if (start >= 0) { |
| 1486 | int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
| 1487 | int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2; |
| 1488 | int32_t matchLen = position.getEndIndex() - start; |
| 1489 | UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart)); |
| 1490 | UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix)); |
| 1491 | if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0 |
| 1492 | && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0) |
| 1493 | { |
| 1494 | *length = matchLen + prefix.length() + suffix.length(); |
| 1495 | return start - prefix.length(); |
| 1496 | } |
| 1497 | } |
| 1498 | *length = 0; |
| 1499 | return -1; |
| 1500 | } |
| 1501 | if (!formatter->isLenient()) { |
| 1502 | // if lenient parsing is turned off, this is easy: just call |
| 1503 | // String.indexOf() and we're done |
| 1504 | *length = key.length(); |
| 1505 | return str.indexOf(key, startingAt); |
| 1506 | } |
| 1507 | else { |
| 1508 | // but if lenient parsing is turned ON, we've got some work |
| 1509 | // ahead of us |
| 1510 | return findTextLenient(str, key, startingAt, length); |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | int32_t |
| 1515 | NFRule::findTextLenient(const UnicodeString& str, |
| 1516 | const UnicodeString& key, |
| 1517 | int32_t startingAt, |
| 1518 | int32_t* length) const |
| 1519 | { |
| 1520 | //---------------------------------------------------------------- |
| 1521 | // JDK 1.1 HACK (take out of 1.2-specific code) |
| 1522 | |
| 1523 | // in JDK 1.2, CollationElementIterator provides us with an |
| 1524 | // API to map between character offsets and collation elements |
| 1525 | // and we can do this by marching through the string comparing |
| 1526 | // collation elements. We can't do that in JDK 1.1. Insted, |
| 1527 | // we have to go through this horrible slow mess: |
| 1528 | int32_t p = startingAt; |
| 1529 | int32_t keyLen = 0; |
| 1530 | |
| 1531 | // basically just isolate smaller and smaller substrings of |
| 1532 | // the target string (each running to the end of the string, |
| 1533 | // and with the first one running from startingAt to the end) |
| 1534 | // and then use prefixLength() to see if the search key is at |
| 1535 | // the beginning of each substring. This is excruciatingly |
| 1536 | // slow, but it will locate the key and tell use how long the |
| 1537 | // matching text was. |
| 1538 | UnicodeString temp; |
| 1539 | UErrorCode status = U_ZERO_ERROR; |
| 1540 | while (p < str.length() && keyLen == 0) { |
| 1541 | temp.setTo(str, p, str.length() - p); |
| 1542 | keyLen = prefixLength(temp, key, status); |
| 1543 | if (U_FAILURE(status)) { |
| 1544 | break; |
| 1545 | } |
| 1546 | if (keyLen != 0) { |
| 1547 | *length = keyLen; |
| 1548 | return p; |
| 1549 | } |
| 1550 | ++p; |
| 1551 | } |
| 1552 | // if we make it to here, we didn't find it. Return -1 for the |
| 1553 | // location. The length should be ignored, but set it to 0, |
| 1554 | // which should be "safe" |
| 1555 | *length = 0; |
| 1556 | return -1; |
| 1557 | } |
| 1558 | |
| 1559 | /** |
| 1560 | * Checks to see whether a string consists entirely of ignorable |
| 1561 | * characters. |
| 1562 | * @param str The string to test. |
| 1563 | * @return true if the string is empty of consists entirely of |
| 1564 | * characters that the number formatter's collator says are |
| 1565 | * ignorable at the primary-order level. false otherwise. |
| 1566 | */ |
| 1567 | UBool |
| 1568 | NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const |
| 1569 | { |
| 1570 | // if the string is empty, we can just return true |
| 1571 | if (str.length() == 0) { |
| 1572 | return TRUE; |
| 1573 | } |
| 1574 | |
| 1575 | #if !UCONFIG_NO_COLLATION |
| 1576 | // if lenient parsing is turned on, walk through the string with |
| 1577 | // a collation element iterator and make sure each collation |
| 1578 | // element is 0 (ignorable) at the primary level |
| 1579 | if (formatter->isLenient()) { |
| 1580 | const RuleBasedCollator* collator = formatter->getCollator(); |
| 1581 | if (collator == NULL) { |
| 1582 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1583 | return FALSE; |
| 1584 | } |
| 1585 | LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str)); |
| 1586 | |
| 1587 | // Memory allocation error check. |
| 1588 | if (iter.isNull()) { |
| 1589 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1590 | return FALSE; |
| 1591 | } |
| 1592 | |
| 1593 | UErrorCode err = U_ZERO_ERROR; |
| 1594 | int32_t o = iter->next(err); |
| 1595 | while (o != CollationElementIterator::NULLORDER |
| 1596 | && CollationElementIterator::primaryOrder(o) == 0) { |
| 1597 | o = iter->next(err); |
| 1598 | } |
| 1599 | |
| 1600 | return o == CollationElementIterator::NULLORDER; |
| 1601 | } |
| 1602 | #endif |
| 1603 | |
| 1604 | // if lenient parsing is turned off, there is no such thing as |
| 1605 | // an ignorable character: return true only if the string is empty |
| 1606 | return FALSE; |
| 1607 | } |
| 1608 | |
| 1609 | void |
| 1610 | NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) { |
| 1611 | if (sub1 != NULL) { |
| 1612 | sub1->setDecimalFormatSymbols(newSymbols, status); |
| 1613 | } |
| 1614 | if (sub2 != NULL) { |
| 1615 | sub2->setDecimalFormatSymbols(newSymbols, status); |
| 1616 | } |
| 1617 | } |
| 1618 | |
| 1619 | U_NAMESPACE_END |
| 1620 | |
| 1621 | /* U_HAVE_RBNF */ |
| 1622 | #endif |
| 1623 | |