1 | // © 2017 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | |
4 | #include "unicode/utypes.h" |
5 | |
6 | #if !UCONFIG_NO_FORMATTING |
7 | #ifndef __NUMBER_ROUNDINGUTILS_H__ |
8 | #define __NUMBER_ROUNDINGUTILS_H__ |
9 | |
10 | #include "number_types.h" |
11 | |
12 | U_NAMESPACE_BEGIN |
13 | namespace number { |
14 | namespace impl { |
15 | namespace roundingutils { |
16 | |
17 | enum Section { |
18 | SECTION_LOWER_EDGE = -1, |
19 | SECTION_UPPER_EDGE = -2, |
20 | SECTION_LOWER = 1, |
21 | SECTION_MIDPOINT = 2, |
22 | SECTION_UPPER = 3 |
23 | }; |
24 | |
25 | /** |
26 | * Converts a rounding mode and metadata about the quantity being rounded to a boolean determining |
27 | * whether the value should be rounded toward infinity or toward zero. |
28 | * |
29 | * <p>The parameters are of type int because benchmarks on an x86-64 processor against OpenJDK |
30 | * showed that ints were demonstrably faster than enums in switch statements. |
31 | * |
32 | * @param isEven Whether the digit immediately before the rounding magnitude is even. |
33 | * @param isNegative Whether the quantity is negative. |
34 | * @param section Whether the part of the quantity to the right of the rounding magnitude is |
35 | * exactly halfway between two digits, whether it is in the lower part (closer to zero), or |
36 | * whether it is in the upper part (closer to infinity). See {@link #SECTION_LOWER}, {@link |
37 | * #SECTION_MIDPOINT}, and {@link #SECTION_UPPER}. |
38 | * @param roundingMode The integer version of the {@link RoundingMode}, which you can get via |
39 | * {@link RoundingMode#ordinal}. |
40 | * @param status Error code, set to U_FORMAT_INEXACT_ERROR if the rounding mode is kRoundUnnecessary. |
41 | * @return true if the number should be rounded toward zero; false if it should be rounded toward |
42 | * infinity. |
43 | */ |
44 | inline bool |
45 | getRoundingDirection(bool isEven, bool isNegative, Section section, RoundingMode roundingMode, |
46 | UErrorCode &status) { |
47 | switch (roundingMode) { |
48 | case RoundingMode::UNUM_ROUND_UP: |
49 | // round away from zero |
50 | return false; |
51 | |
52 | case RoundingMode::UNUM_ROUND_DOWN: |
53 | // round toward zero |
54 | return true; |
55 | |
56 | case RoundingMode::UNUM_ROUND_CEILING: |
57 | // round toward positive infinity |
58 | return isNegative; |
59 | |
60 | case RoundingMode::UNUM_ROUND_FLOOR: |
61 | // round toward negative infinity |
62 | return !isNegative; |
63 | |
64 | case RoundingMode::UNUM_ROUND_HALFUP: |
65 | switch (section) { |
66 | case SECTION_MIDPOINT: |
67 | return false; |
68 | case SECTION_LOWER: |
69 | return true; |
70 | case SECTION_UPPER: |
71 | return false; |
72 | default: |
73 | break; |
74 | } |
75 | break; |
76 | |
77 | case RoundingMode::UNUM_ROUND_HALFDOWN: |
78 | switch (section) { |
79 | case SECTION_MIDPOINT: |
80 | return true; |
81 | case SECTION_LOWER: |
82 | return true; |
83 | case SECTION_UPPER: |
84 | return false; |
85 | default: |
86 | break; |
87 | } |
88 | break; |
89 | |
90 | case RoundingMode::UNUM_ROUND_HALFEVEN: |
91 | switch (section) { |
92 | case SECTION_MIDPOINT: |
93 | return isEven; |
94 | case SECTION_LOWER: |
95 | return true; |
96 | case SECTION_UPPER: |
97 | return false; |
98 | default: |
99 | break; |
100 | } |
101 | break; |
102 | |
103 | default: |
104 | break; |
105 | } |
106 | |
107 | status = U_FORMAT_INEXACT_ERROR; |
108 | return false; |
109 | } |
110 | |
111 | /** |
112 | * Gets whether the given rounding mode's rounding boundary is at the midpoint. The rounding |
113 | * boundary is the point at which a number switches from being rounded down to being rounded up. |
114 | * For example, with rounding mode HALF_EVEN, HALF_UP, or HALF_DOWN, the rounding boundary is at |
115 | * the midpoint, and this function would return true. However, for UP, DOWN, CEILING, and FLOOR, |
116 | * the rounding boundary is at the "edge", and this function would return false. |
117 | * |
118 | * @param roundingMode The integer version of the {@link RoundingMode}. |
119 | * @return true if rounding mode is HALF_EVEN, HALF_UP, or HALF_DOWN; false otherwise. |
120 | */ |
121 | inline bool roundsAtMidpoint(int roundingMode) { |
122 | switch (roundingMode) { |
123 | case RoundingMode::UNUM_ROUND_UP: |
124 | case RoundingMode::UNUM_ROUND_DOWN: |
125 | case RoundingMode::UNUM_ROUND_CEILING: |
126 | case RoundingMode::UNUM_ROUND_FLOOR: |
127 | return false; |
128 | |
129 | default: |
130 | return true; |
131 | } |
132 | } |
133 | |
134 | /** |
135 | * Computes the number of fraction digits in a double. Used for computing maxFrac for an increment. |
136 | * Calls into the DoubleToStringConverter library to do so. |
137 | * |
138 | * @param singleDigit An output parameter; set to a number if that is the |
139 | * only digit in the double, or -1 if there is more than one digit. |
140 | */ |
141 | digits_t doubleFractionLength(double input, int8_t* singleDigit); |
142 | |
143 | } // namespace roundingutils |
144 | |
145 | |
146 | /** |
147 | * Encapsulates a Precision and a RoundingMode and performs rounding on a DecimalQuantity. |
148 | * |
149 | * This class does not exist in Java: instead, the base Precision class is used. |
150 | */ |
151 | class RoundingImpl { |
152 | public: |
153 | RoundingImpl() = default; // defaults to pass-through rounder |
154 | |
155 | RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode, |
156 | const CurrencyUnit& currency, UErrorCode& status); |
157 | |
158 | static RoundingImpl passThrough(); |
159 | |
160 | /** Required for ScientificFormatter */ |
161 | bool isSignificantDigits() const; |
162 | |
163 | /** |
164 | * Rounding endpoint used by Engineering and Compact notation. Chooses the most appropriate multiplier (magnitude |
165 | * adjustment), applies the adjustment, rounds, and returns the chosen multiplier. |
166 | * |
167 | * <p> |
168 | * In most cases, this is simple. However, when rounding the number causes it to cross a multiplier boundary, we |
169 | * need to re-do the rounding. For example, to display 999,999 in Engineering notation with 2 sigfigs, first you |
170 | * guess the multiplier to be -3. However, then you end up getting 1000E3, which is not the correct output. You then |
171 | * change your multiplier to be -6, and you get 1.0E6, which is correct. |
172 | * |
173 | * @param input The quantity to process. |
174 | * @param producer Function to call to return a multiplier based on a magnitude. |
175 | * @return The number of orders of magnitude the input was adjusted by this method. |
176 | */ |
177 | int32_t |
178 | chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer, |
179 | UErrorCode &status); |
180 | |
181 | void apply(impl::DecimalQuantity &value, UErrorCode &status) const; |
182 | |
183 | /** Version of {@link #apply} that obeys minInt constraints. Used for scientific notation compatibility mode. */ |
184 | void apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode status); |
185 | |
186 | private: |
187 | Precision fPrecision; |
188 | UNumberFormatRoundingMode fRoundingMode; |
189 | bool fPassThrough = true; // default value |
190 | }; |
191 | |
192 | |
193 | } // namespace impl |
194 | } // namespace number |
195 | U_NAMESPACE_END |
196 | |
197 | #endif //__NUMBER_ROUNDINGUTILS_H__ |
198 | |
199 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
200 | |