| 1 | /* |
| 2 | ******************************************************************************* |
| 3 | * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each |
| 4 | * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash |
| 5 | * functions are employed. The original cuckoo hashing algorithm was described |
| 6 | * in: |
| 7 | * |
| 8 | * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms |
| 9 | * 51(2):122-144. |
| 10 | * |
| 11 | * Generalization of cuckoo hashing was discussed in: |
| 12 | * |
| 13 | * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical |
| 14 | * alternative to traditional hash tables. In Proceedings of the 7th |
| 15 | * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA, |
| 16 | * January 2006. |
| 17 | * |
| 18 | * This implementation uses precisely two hash functions because that is the |
| 19 | * fewest that can work, and supporting multiple hashes is an implementation |
| 20 | * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006) |
| 21 | * that shows approximate expected maximum load factors for various |
| 22 | * configurations: |
| 23 | * |
| 24 | * | #cells/bucket | |
| 25 | * #hashes | 1 | 2 | 4 | 8 | |
| 26 | * --------+-------+-------+-------+-------+ |
| 27 | * 1 | 0.006 | 0.006 | 0.03 | 0.12 | |
| 28 | * 2 | 0.49 | 0.86 |>0.93< |>0.96< | |
| 29 | * 3 | 0.91 | 0.97 | 0.98 | 0.999 | |
| 30 | * 4 | 0.97 | 0.99 | 0.999 | | |
| 31 | * |
| 32 | * The number of cells per bucket is chosen such that a bucket fits in one cache |
| 33 | * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing, |
| 34 | * respectively. |
| 35 | * |
| 36 | ******************************************************************************/ |
| 37 | #define JEMALLOC_CKH_C_ |
| 38 | #include "jemalloc/internal/jemalloc_preamble.h" |
| 39 | |
| 40 | #include "jemalloc/internal/ckh.h" |
| 41 | |
| 42 | #include "jemalloc/internal/jemalloc_internal_includes.h" |
| 43 | |
| 44 | #include "jemalloc/internal/assert.h" |
| 45 | #include "jemalloc/internal/hash.h" |
| 46 | #include "jemalloc/internal/malloc_io.h" |
| 47 | #include "jemalloc/internal/prng.h" |
| 48 | #include "jemalloc/internal/util.h" |
| 49 | |
| 50 | /******************************************************************************/ |
| 51 | /* Function prototypes for non-inline static functions. */ |
| 52 | |
| 53 | static bool ckh_grow(tsd_t *tsd, ckh_t *ckh); |
| 54 | static void ckh_shrink(tsd_t *tsd, ckh_t *ckh); |
| 55 | |
| 56 | /******************************************************************************/ |
| 57 | |
| 58 | /* |
| 59 | * Search bucket for key and return the cell number if found; SIZE_T_MAX |
| 60 | * otherwise. |
| 61 | */ |
| 62 | static size_t |
| 63 | ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) { |
| 64 | ckhc_t *cell; |
| 65 | unsigned i; |
| 66 | |
| 67 | for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { |
| 68 | cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; |
| 69 | if (cell->key != NULL && ckh->keycomp(key, cell->key)) { |
| 70 | return (bucket << LG_CKH_BUCKET_CELLS) + i; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | return SIZE_T_MAX; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * Search table for key and return cell number if found; SIZE_T_MAX otherwise. |
| 79 | */ |
| 80 | static size_t |
| 81 | ckh_isearch(ckh_t *ckh, const void *key) { |
| 82 | size_t hashes[2], bucket, cell; |
| 83 | |
| 84 | assert(ckh != NULL); |
| 85 | |
| 86 | ckh->hash(key, hashes); |
| 87 | |
| 88 | /* Search primary bucket. */ |
| 89 | bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| 90 | cell = ckh_bucket_search(ckh, bucket, key); |
| 91 | if (cell != SIZE_T_MAX) { |
| 92 | return cell; |
| 93 | } |
| 94 | |
| 95 | /* Search secondary bucket. */ |
| 96 | bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| 97 | cell = ckh_bucket_search(ckh, bucket, key); |
| 98 | return cell; |
| 99 | } |
| 100 | |
| 101 | static bool |
| 102 | ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key, |
| 103 | const void *data) { |
| 104 | ckhc_t *cell; |
| 105 | unsigned offset, i; |
| 106 | |
| 107 | /* |
| 108 | * Cycle through the cells in the bucket, starting at a random position. |
| 109 | * The randomness avoids worst-case search overhead as buckets fill up. |
| 110 | */ |
| 111 | offset = (unsigned)prng_lg_range_u64(&ckh->prng_state, |
| 112 | LG_CKH_BUCKET_CELLS); |
| 113 | for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { |
| 114 | cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + |
| 115 | ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))]; |
| 116 | if (cell->key == NULL) { |
| 117 | cell->key = key; |
| 118 | cell->data = data; |
| 119 | ckh->count++; |
| 120 | return false; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * No space is available in bucket. Randomly evict an item, then try to find an |
| 129 | * alternate location for that item. Iteratively repeat this |
| 130 | * eviction/relocation procedure until either success or detection of an |
| 131 | * eviction/relocation bucket cycle. |
| 132 | */ |
| 133 | static bool |
| 134 | ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey, |
| 135 | void const **argdata) { |
| 136 | const void *key, *data, *tkey, *tdata; |
| 137 | ckhc_t *cell; |
| 138 | size_t hashes[2], bucket, tbucket; |
| 139 | unsigned i; |
| 140 | |
| 141 | bucket = argbucket; |
| 142 | key = *argkey; |
| 143 | data = *argdata; |
| 144 | while (true) { |
| 145 | /* |
| 146 | * Choose a random item within the bucket to evict. This is |
| 147 | * critical to correct function, because without (eventually) |
| 148 | * evicting all items within a bucket during iteration, it |
| 149 | * would be possible to get stuck in an infinite loop if there |
| 150 | * were an item for which both hashes indicated the same |
| 151 | * bucket. |
| 152 | */ |
| 153 | i = (unsigned)prng_lg_range_u64(&ckh->prng_state, |
| 154 | LG_CKH_BUCKET_CELLS); |
| 155 | cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; |
| 156 | assert(cell->key != NULL); |
| 157 | |
| 158 | /* Swap cell->{key,data} and {key,data} (evict). */ |
| 159 | tkey = cell->key; tdata = cell->data; |
| 160 | cell->key = key; cell->data = data; |
| 161 | key = tkey; data = tdata; |
| 162 | |
| 163 | #ifdef CKH_COUNT |
| 164 | ckh->nrelocs++; |
| 165 | #endif |
| 166 | |
| 167 | /* Find the alternate bucket for the evicted item. */ |
| 168 | ckh->hash(key, hashes); |
| 169 | tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| 170 | if (tbucket == bucket) { |
| 171 | tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) |
| 172 | - 1); |
| 173 | /* |
| 174 | * It may be that (tbucket == bucket) still, if the |
| 175 | * item's hashes both indicate this bucket. However, |
| 176 | * we are guaranteed to eventually escape this bucket |
| 177 | * during iteration, assuming pseudo-random item |
| 178 | * selection (true randomness would make infinite |
| 179 | * looping a remote possibility). The reason we can |
| 180 | * never get trapped forever is that there are two |
| 181 | * cases: |
| 182 | * |
| 183 | * 1) This bucket == argbucket, so we will quickly |
| 184 | * detect an eviction cycle and terminate. |
| 185 | * 2) An item was evicted to this bucket from another, |
| 186 | * which means that at least one item in this bucket |
| 187 | * has hashes that indicate distinct buckets. |
| 188 | */ |
| 189 | } |
| 190 | /* Check for a cycle. */ |
| 191 | if (tbucket == argbucket) { |
| 192 | *argkey = key; |
| 193 | *argdata = data; |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | bucket = tbucket; |
| 198 | if (!ckh_try_bucket_insert(ckh, bucket, key, data)) { |
| 199 | return false; |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | static bool |
| 205 | ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) { |
| 206 | size_t hashes[2], bucket; |
| 207 | const void *key = *argkey; |
| 208 | const void *data = *argdata; |
| 209 | |
| 210 | ckh->hash(key, hashes); |
| 211 | |
| 212 | /* Try to insert in primary bucket. */ |
| 213 | bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| 214 | if (!ckh_try_bucket_insert(ckh, bucket, key, data)) { |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | /* Try to insert in secondary bucket. */ |
| 219 | bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| 220 | if (!ckh_try_bucket_insert(ckh, bucket, key, data)) { |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Try to find a place for this item via iterative eviction/relocation. |
| 226 | */ |
| 227 | return ckh_evict_reloc_insert(ckh, bucket, argkey, argdata); |
| 228 | } |
| 229 | |
| 230 | /* |
| 231 | * Try to rebuild the hash table from scratch by inserting all items from the |
| 232 | * old table into the new. |
| 233 | */ |
| 234 | static bool |
| 235 | ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) { |
| 236 | size_t count, i, nins; |
| 237 | const void *key, *data; |
| 238 | |
| 239 | count = ckh->count; |
| 240 | ckh->count = 0; |
| 241 | for (i = nins = 0; nins < count; i++) { |
| 242 | if (aTab[i].key != NULL) { |
| 243 | key = aTab[i].key; |
| 244 | data = aTab[i].data; |
| 245 | if (ckh_try_insert(ckh, &key, &data)) { |
| 246 | ckh->count = count; |
| 247 | return true; |
| 248 | } |
| 249 | nins++; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | return false; |
| 254 | } |
| 255 | |
| 256 | static bool |
| 257 | ckh_grow(tsd_t *tsd, ckh_t *ckh) { |
| 258 | bool ret; |
| 259 | ckhc_t *tab, *ttab; |
| 260 | unsigned lg_prevbuckets, lg_curcells; |
| 261 | |
| 262 | #ifdef CKH_COUNT |
| 263 | ckh->ngrows++; |
| 264 | #endif |
| 265 | |
| 266 | /* |
| 267 | * It is possible (though unlikely, given well behaved hashes) that the |
| 268 | * table will have to be doubled more than once in order to create a |
| 269 | * usable table. |
| 270 | */ |
| 271 | lg_prevbuckets = ckh->lg_curbuckets; |
| 272 | lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS; |
| 273 | while (true) { |
| 274 | size_t usize; |
| 275 | |
| 276 | lg_curcells++; |
| 277 | usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); |
| 278 | if (unlikely(usize == 0 |
| 279 | || usize > SC_LARGE_MAXCLASS)) { |
| 280 | ret = true; |
| 281 | goto label_return; |
| 282 | } |
| 283 | tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, |
| 284 | true, NULL, true, arena_ichoose(tsd, NULL)); |
| 285 | if (tab == NULL) { |
| 286 | ret = true; |
| 287 | goto label_return; |
| 288 | } |
| 289 | /* Swap in new table. */ |
| 290 | ttab = ckh->tab; |
| 291 | ckh->tab = tab; |
| 292 | tab = ttab; |
| 293 | ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; |
| 294 | |
| 295 | if (!ckh_rebuild(ckh, tab)) { |
| 296 | idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true); |
| 297 | break; |
| 298 | } |
| 299 | |
| 300 | /* Rebuilding failed, so back out partially rebuilt table. */ |
| 301 | idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true); |
| 302 | ckh->tab = tab; |
| 303 | ckh->lg_curbuckets = lg_prevbuckets; |
| 304 | } |
| 305 | |
| 306 | ret = false; |
| 307 | label_return: |
| 308 | return ret; |
| 309 | } |
| 310 | |
| 311 | static void |
| 312 | ckh_shrink(tsd_t *tsd, ckh_t *ckh) { |
| 313 | ckhc_t *tab, *ttab; |
| 314 | size_t usize; |
| 315 | unsigned lg_prevbuckets, lg_curcells; |
| 316 | |
| 317 | /* |
| 318 | * It is possible (though unlikely, given well behaved hashes) that the |
| 319 | * table rebuild will fail. |
| 320 | */ |
| 321 | lg_prevbuckets = ckh->lg_curbuckets; |
| 322 | lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1; |
| 323 | usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); |
| 324 | if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { |
| 325 | return; |
| 326 | } |
| 327 | tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true, NULL, |
| 328 | true, arena_ichoose(tsd, NULL)); |
| 329 | if (tab == NULL) { |
| 330 | /* |
| 331 | * An OOM error isn't worth propagating, since it doesn't |
| 332 | * prevent this or future operations from proceeding. |
| 333 | */ |
| 334 | return; |
| 335 | } |
| 336 | /* Swap in new table. */ |
| 337 | ttab = ckh->tab; |
| 338 | ckh->tab = tab; |
| 339 | tab = ttab; |
| 340 | ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; |
| 341 | |
| 342 | if (!ckh_rebuild(ckh, tab)) { |
| 343 | idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true); |
| 344 | #ifdef CKH_COUNT |
| 345 | ckh->nshrinks++; |
| 346 | #endif |
| 347 | return; |
| 348 | } |
| 349 | |
| 350 | /* Rebuilding failed, so back out partially rebuilt table. */ |
| 351 | idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true); |
| 352 | ckh->tab = tab; |
| 353 | ckh->lg_curbuckets = lg_prevbuckets; |
| 354 | #ifdef CKH_COUNT |
| 355 | ckh->nshrinkfails++; |
| 356 | #endif |
| 357 | } |
| 358 | |
| 359 | bool |
| 360 | ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash, |
| 361 | ckh_keycomp_t *keycomp) { |
| 362 | bool ret; |
| 363 | size_t mincells, usize; |
| 364 | unsigned lg_mincells; |
| 365 | |
| 366 | assert(minitems > 0); |
| 367 | assert(hash != NULL); |
| 368 | assert(keycomp != NULL); |
| 369 | |
| 370 | #ifdef CKH_COUNT |
| 371 | ckh->ngrows = 0; |
| 372 | ckh->nshrinks = 0; |
| 373 | ckh->nshrinkfails = 0; |
| 374 | ckh->ninserts = 0; |
| 375 | ckh->nrelocs = 0; |
| 376 | #endif |
| 377 | ckh->prng_state = 42; /* Value doesn't really matter. */ |
| 378 | ckh->count = 0; |
| 379 | |
| 380 | /* |
| 381 | * Find the minimum power of 2 that is large enough to fit minitems |
| 382 | * entries. We are using (2+,2) cuckoo hashing, which has an expected |
| 383 | * maximum load factor of at least ~0.86, so 0.75 is a conservative load |
| 384 | * factor that will typically allow mincells items to fit without ever |
| 385 | * growing the table. |
| 386 | */ |
| 387 | assert(LG_CKH_BUCKET_CELLS > 0); |
| 388 | mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2; |
| 389 | for (lg_mincells = LG_CKH_BUCKET_CELLS; |
| 390 | (ZU(1) << lg_mincells) < mincells; |
| 391 | lg_mincells++) { |
| 392 | /* Do nothing. */ |
| 393 | } |
| 394 | ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; |
| 395 | ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; |
| 396 | ckh->hash = hash; |
| 397 | ckh->keycomp = keycomp; |
| 398 | |
| 399 | usize = sz_sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE); |
| 400 | if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { |
| 401 | ret = true; |
| 402 | goto label_return; |
| 403 | } |
| 404 | ckh->tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true, |
| 405 | NULL, true, arena_ichoose(tsd, NULL)); |
| 406 | if (ckh->tab == NULL) { |
| 407 | ret = true; |
| 408 | goto label_return; |
| 409 | } |
| 410 | |
| 411 | ret = false; |
| 412 | label_return: |
| 413 | return ret; |
| 414 | } |
| 415 | |
| 416 | void |
| 417 | ckh_delete(tsd_t *tsd, ckh_t *ckh) { |
| 418 | assert(ckh != NULL); |
| 419 | |
| 420 | #ifdef CKH_VERBOSE |
| 421 | malloc_printf( |
| 422 | "%s(%p): ngrows: %" FMTu64", nshrinks: %" FMTu64"," |
| 423 | " nshrinkfails: %" FMTu64", ninserts: %" FMTu64"," |
| 424 | " nrelocs: %" FMTu64"\n" , __func__, ckh, |
| 425 | (unsigned long long)ckh->ngrows, |
| 426 | (unsigned long long)ckh->nshrinks, |
| 427 | (unsigned long long)ckh->nshrinkfails, |
| 428 | (unsigned long long)ckh->ninserts, |
| 429 | (unsigned long long)ckh->nrelocs); |
| 430 | #endif |
| 431 | |
| 432 | idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true); |
| 433 | if (config_debug) { |
| 434 | memset(ckh, JEMALLOC_FREE_JUNK, sizeof(ckh_t)); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | size_t |
| 439 | ckh_count(ckh_t *ckh) { |
| 440 | assert(ckh != NULL); |
| 441 | |
| 442 | return ckh->count; |
| 443 | } |
| 444 | |
| 445 | bool |
| 446 | ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) { |
| 447 | size_t i, ncells; |
| 448 | |
| 449 | for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets + |
| 450 | LG_CKH_BUCKET_CELLS)); i < ncells; i++) { |
| 451 | if (ckh->tab[i].key != NULL) { |
| 452 | if (key != NULL) { |
| 453 | *key = (void *)ckh->tab[i].key; |
| 454 | } |
| 455 | if (data != NULL) { |
| 456 | *data = (void *)ckh->tab[i].data; |
| 457 | } |
| 458 | *tabind = i + 1; |
| 459 | return false; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | return true; |
| 464 | } |
| 465 | |
| 466 | bool |
| 467 | ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data) { |
| 468 | bool ret; |
| 469 | |
| 470 | assert(ckh != NULL); |
| 471 | assert(ckh_search(ckh, key, NULL, NULL)); |
| 472 | |
| 473 | #ifdef CKH_COUNT |
| 474 | ckh->ninserts++; |
| 475 | #endif |
| 476 | |
| 477 | while (ckh_try_insert(ckh, &key, &data)) { |
| 478 | if (ckh_grow(tsd, ckh)) { |
| 479 | ret = true; |
| 480 | goto label_return; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | ret = false; |
| 485 | label_return: |
| 486 | return ret; |
| 487 | } |
| 488 | |
| 489 | bool |
| 490 | ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key, |
| 491 | void **data) { |
| 492 | size_t cell; |
| 493 | |
| 494 | assert(ckh != NULL); |
| 495 | |
| 496 | cell = ckh_isearch(ckh, searchkey); |
| 497 | if (cell != SIZE_T_MAX) { |
| 498 | if (key != NULL) { |
| 499 | *key = (void *)ckh->tab[cell].key; |
| 500 | } |
| 501 | if (data != NULL) { |
| 502 | *data = (void *)ckh->tab[cell].data; |
| 503 | } |
| 504 | ckh->tab[cell].key = NULL; |
| 505 | ckh->tab[cell].data = NULL; /* Not necessary. */ |
| 506 | |
| 507 | ckh->count--; |
| 508 | /* Try to halve the table if it is less than 1/4 full. */ |
| 509 | if (ckh->count < (ZU(1) << (ckh->lg_curbuckets |
| 510 | + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets |
| 511 | > ckh->lg_minbuckets) { |
| 512 | /* Ignore error due to OOM. */ |
| 513 | ckh_shrink(tsd, ckh); |
| 514 | } |
| 515 | |
| 516 | return false; |
| 517 | } |
| 518 | |
| 519 | return true; |
| 520 | } |
| 521 | |
| 522 | bool |
| 523 | ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) { |
| 524 | size_t cell; |
| 525 | |
| 526 | assert(ckh != NULL); |
| 527 | |
| 528 | cell = ckh_isearch(ckh, searchkey); |
| 529 | if (cell != SIZE_T_MAX) { |
| 530 | if (key != NULL) { |
| 531 | *key = (void *)ckh->tab[cell].key; |
| 532 | } |
| 533 | if (data != NULL) { |
| 534 | *data = (void *)ckh->tab[cell].data; |
| 535 | } |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | return true; |
| 540 | } |
| 541 | |
| 542 | void |
| 543 | ckh_string_hash(const void *key, size_t r_hash[2]) { |
| 544 | hash(key, strlen((const char *)key), 0x94122f33U, r_hash); |
| 545 | } |
| 546 | |
| 547 | bool |
| 548 | ckh_string_keycomp(const void *k1, const void *k2) { |
| 549 | assert(k1 != NULL); |
| 550 | assert(k2 != NULL); |
| 551 | |
| 552 | return !strcmp((char *)k1, (char *)k2); |
| 553 | } |
| 554 | |
| 555 | void |
| 556 | ckh_pointer_hash(const void *key, size_t r_hash[2]) { |
| 557 | union { |
| 558 | const void *v; |
| 559 | size_t i; |
| 560 | } u; |
| 561 | |
| 562 | assert(sizeof(u.v) == sizeof(u.i)); |
| 563 | u.v = key; |
| 564 | hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash); |
| 565 | } |
| 566 | |
| 567 | bool |
| 568 | ckh_pointer_keycomp(const void *k1, const void *k2) { |
| 569 | return (k1 == k2); |
| 570 | } |
| 571 | |