| 1 | #define JEMALLOC_RTREE_C_ |
| 2 | #include "jemalloc/internal/jemalloc_preamble.h" |
| 3 | #include "jemalloc/internal/jemalloc_internal_includes.h" |
| 4 | |
| 5 | #include "jemalloc/internal/assert.h" |
| 6 | #include "jemalloc/internal/mutex.h" |
| 7 | |
| 8 | /* |
| 9 | * Only the most significant bits of keys passed to rtree_{read,write}() are |
| 10 | * used. |
| 11 | */ |
| 12 | bool |
| 13 | rtree_new(rtree_t *rtree, bool zeroed) { |
| 14 | #ifdef JEMALLOC_JET |
| 15 | if (!zeroed) { |
| 16 | memset(rtree, 0, sizeof(rtree_t)); /* Clear root. */ |
| 17 | } |
| 18 | #else |
| 19 | assert(zeroed); |
| 20 | #endif |
| 21 | |
| 22 | if (malloc_mutex_init(&rtree->init_lock, "rtree" , WITNESS_RANK_RTREE, |
| 23 | malloc_mutex_rank_exclusive)) { |
| 24 | return true; |
| 25 | } |
| 26 | |
| 27 | return false; |
| 28 | } |
| 29 | |
| 30 | static rtree_node_elm_t * |
| 31 | rtree_node_alloc_impl(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) { |
| 32 | return (rtree_node_elm_t *)base_alloc(tsdn, b0get(), nelms * |
| 33 | sizeof(rtree_node_elm_t), CACHELINE); |
| 34 | } |
| 35 | rtree_node_alloc_t *JET_MUTABLE rtree_node_alloc = rtree_node_alloc_impl; |
| 36 | |
| 37 | static void |
| 38 | rtree_node_dalloc_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *node) { |
| 39 | /* Nodes are never deleted during normal operation. */ |
| 40 | not_reached(); |
| 41 | } |
| 42 | rtree_node_dalloc_t *JET_MUTABLE rtree_node_dalloc = |
| 43 | rtree_node_dalloc_impl; |
| 44 | |
| 45 | static rtree_leaf_elm_t * |
| 46 | rtree_leaf_alloc_impl(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) { |
| 47 | return (rtree_leaf_elm_t *)base_alloc(tsdn, b0get(), nelms * |
| 48 | sizeof(rtree_leaf_elm_t), CACHELINE); |
| 49 | } |
| 50 | rtree_leaf_alloc_t *JET_MUTABLE rtree_leaf_alloc = rtree_leaf_alloc_impl; |
| 51 | |
| 52 | static void |
| 53 | rtree_leaf_dalloc_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *leaf) { |
| 54 | /* Leaves are never deleted during normal operation. */ |
| 55 | not_reached(); |
| 56 | } |
| 57 | rtree_leaf_dalloc_t *JET_MUTABLE rtree_leaf_dalloc = |
| 58 | rtree_leaf_dalloc_impl; |
| 59 | |
| 60 | #ifdef JEMALLOC_JET |
| 61 | # if RTREE_HEIGHT > 1 |
| 62 | static void |
| 63 | rtree_delete_subtree(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *subtree, |
| 64 | unsigned level) { |
| 65 | size_t nchildren = ZU(1) << rtree_levels[level].bits; |
| 66 | if (level + 2 < RTREE_HEIGHT) { |
| 67 | for (size_t i = 0; i < nchildren; i++) { |
| 68 | rtree_node_elm_t *node = |
| 69 | (rtree_node_elm_t *)atomic_load_p(&subtree[i].child, |
| 70 | ATOMIC_RELAXED); |
| 71 | if (node != NULL) { |
| 72 | rtree_delete_subtree(tsdn, rtree, node, level + |
| 73 | 1); |
| 74 | } |
| 75 | } |
| 76 | } else { |
| 77 | for (size_t i = 0; i < nchildren; i++) { |
| 78 | rtree_leaf_elm_t *leaf = |
| 79 | (rtree_leaf_elm_t *)atomic_load_p(&subtree[i].child, |
| 80 | ATOMIC_RELAXED); |
| 81 | if (leaf != NULL) { |
| 82 | rtree_leaf_dalloc(tsdn, rtree, leaf); |
| 83 | } |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | if (subtree != rtree->root) { |
| 88 | rtree_node_dalloc(tsdn, rtree, subtree); |
| 89 | } |
| 90 | } |
| 91 | # endif |
| 92 | |
| 93 | void |
| 94 | rtree_delete(tsdn_t *tsdn, rtree_t *rtree) { |
| 95 | # if RTREE_HEIGHT > 1 |
| 96 | rtree_delete_subtree(tsdn, rtree, rtree->root, 0); |
| 97 | # endif |
| 98 | } |
| 99 | #endif |
| 100 | |
| 101 | static rtree_node_elm_t * |
| 102 | rtree_node_init(tsdn_t *tsdn, rtree_t *rtree, unsigned level, |
| 103 | atomic_p_t *elmp) { |
| 104 | malloc_mutex_lock(tsdn, &rtree->init_lock); |
| 105 | /* |
| 106 | * If *elmp is non-null, then it was initialized with the init lock |
| 107 | * held, so we can get by with 'relaxed' here. |
| 108 | */ |
| 109 | rtree_node_elm_t *node = atomic_load_p(elmp, ATOMIC_RELAXED); |
| 110 | if (node == NULL) { |
| 111 | node = rtree_node_alloc(tsdn, rtree, ZU(1) << |
| 112 | rtree_levels[level].bits); |
| 113 | if (node == NULL) { |
| 114 | malloc_mutex_unlock(tsdn, &rtree->init_lock); |
| 115 | return NULL; |
| 116 | } |
| 117 | /* |
| 118 | * Even though we hold the lock, a later reader might not; we |
| 119 | * need release semantics. |
| 120 | */ |
| 121 | atomic_store_p(elmp, node, ATOMIC_RELEASE); |
| 122 | } |
| 123 | malloc_mutex_unlock(tsdn, &rtree->init_lock); |
| 124 | |
| 125 | return node; |
| 126 | } |
| 127 | |
| 128 | static rtree_leaf_elm_t * |
| 129 | rtree_leaf_init(tsdn_t *tsdn, rtree_t *rtree, atomic_p_t *elmp) { |
| 130 | malloc_mutex_lock(tsdn, &rtree->init_lock); |
| 131 | /* |
| 132 | * If *elmp is non-null, then it was initialized with the init lock |
| 133 | * held, so we can get by with 'relaxed' here. |
| 134 | */ |
| 135 | rtree_leaf_elm_t *leaf = atomic_load_p(elmp, ATOMIC_RELAXED); |
| 136 | if (leaf == NULL) { |
| 137 | leaf = rtree_leaf_alloc(tsdn, rtree, ZU(1) << |
| 138 | rtree_levels[RTREE_HEIGHT-1].bits); |
| 139 | if (leaf == NULL) { |
| 140 | malloc_mutex_unlock(tsdn, &rtree->init_lock); |
| 141 | return NULL; |
| 142 | } |
| 143 | /* |
| 144 | * Even though we hold the lock, a later reader might not; we |
| 145 | * need release semantics. |
| 146 | */ |
| 147 | atomic_store_p(elmp, leaf, ATOMIC_RELEASE); |
| 148 | } |
| 149 | malloc_mutex_unlock(tsdn, &rtree->init_lock); |
| 150 | |
| 151 | return leaf; |
| 152 | } |
| 153 | |
| 154 | static bool |
| 155 | rtree_node_valid(rtree_node_elm_t *node) { |
| 156 | return ((uintptr_t)node != (uintptr_t)0); |
| 157 | } |
| 158 | |
| 159 | static bool |
| 160 | rtree_leaf_valid(rtree_leaf_elm_t *leaf) { |
| 161 | return ((uintptr_t)leaf != (uintptr_t)0); |
| 162 | } |
| 163 | |
| 164 | static rtree_node_elm_t * |
| 165 | rtree_child_node_tryread(rtree_node_elm_t *elm, bool dependent) { |
| 166 | rtree_node_elm_t *node; |
| 167 | |
| 168 | if (dependent) { |
| 169 | node = (rtree_node_elm_t *)atomic_load_p(&elm->child, |
| 170 | ATOMIC_RELAXED); |
| 171 | } else { |
| 172 | node = (rtree_node_elm_t *)atomic_load_p(&elm->child, |
| 173 | ATOMIC_ACQUIRE); |
| 174 | } |
| 175 | |
| 176 | assert(!dependent || node != NULL); |
| 177 | return node; |
| 178 | } |
| 179 | |
| 180 | static rtree_node_elm_t * |
| 181 | rtree_child_node_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm, |
| 182 | unsigned level, bool dependent) { |
| 183 | rtree_node_elm_t *node; |
| 184 | |
| 185 | node = rtree_child_node_tryread(elm, dependent); |
| 186 | if (!dependent && unlikely(!rtree_node_valid(node))) { |
| 187 | node = rtree_node_init(tsdn, rtree, level + 1, &elm->child); |
| 188 | } |
| 189 | assert(!dependent || node != NULL); |
| 190 | return node; |
| 191 | } |
| 192 | |
| 193 | static rtree_leaf_elm_t * |
| 194 | rtree_child_leaf_tryread(rtree_node_elm_t *elm, bool dependent) { |
| 195 | rtree_leaf_elm_t *leaf; |
| 196 | |
| 197 | if (dependent) { |
| 198 | leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child, |
| 199 | ATOMIC_RELAXED); |
| 200 | } else { |
| 201 | leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child, |
| 202 | ATOMIC_ACQUIRE); |
| 203 | } |
| 204 | |
| 205 | assert(!dependent || leaf != NULL); |
| 206 | return leaf; |
| 207 | } |
| 208 | |
| 209 | static rtree_leaf_elm_t * |
| 210 | rtree_child_leaf_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm, |
| 211 | unsigned level, bool dependent) { |
| 212 | rtree_leaf_elm_t *leaf; |
| 213 | |
| 214 | leaf = rtree_child_leaf_tryread(elm, dependent); |
| 215 | if (!dependent && unlikely(!rtree_leaf_valid(leaf))) { |
| 216 | leaf = rtree_leaf_init(tsdn, rtree, &elm->child); |
| 217 | } |
| 218 | assert(!dependent || leaf != NULL); |
| 219 | return leaf; |
| 220 | } |
| 221 | |
| 222 | rtree_leaf_elm_t * |
| 223 | rtree_leaf_elm_lookup_hard(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, |
| 224 | uintptr_t key, bool dependent, bool init_missing) { |
| 225 | rtree_node_elm_t *node; |
| 226 | rtree_leaf_elm_t *leaf; |
| 227 | #if RTREE_HEIGHT > 1 |
| 228 | node = rtree->root; |
| 229 | #else |
| 230 | leaf = rtree->root; |
| 231 | #endif |
| 232 | |
| 233 | if (config_debug) { |
| 234 | uintptr_t leafkey = rtree_leafkey(key); |
| 235 | for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) { |
| 236 | assert(rtree_ctx->cache[i].leafkey != leafkey); |
| 237 | } |
| 238 | for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) { |
| 239 | assert(rtree_ctx->l2_cache[i].leafkey != leafkey); |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | #define RTREE_GET_CHILD(level) { \ |
| 244 | assert(level < RTREE_HEIGHT-1); \ |
| 245 | if (level != 0 && !dependent && \ |
| 246 | unlikely(!rtree_node_valid(node))) { \ |
| 247 | return NULL; \ |
| 248 | } \ |
| 249 | uintptr_t subkey = rtree_subkey(key, level); \ |
| 250 | if (level + 2 < RTREE_HEIGHT) { \ |
| 251 | node = init_missing ? \ |
| 252 | rtree_child_node_read(tsdn, rtree, \ |
| 253 | &node[subkey], level, dependent) : \ |
| 254 | rtree_child_node_tryread(&node[subkey], \ |
| 255 | dependent); \ |
| 256 | } else { \ |
| 257 | leaf = init_missing ? \ |
| 258 | rtree_child_leaf_read(tsdn, rtree, \ |
| 259 | &node[subkey], level, dependent) : \ |
| 260 | rtree_child_leaf_tryread(&node[subkey], \ |
| 261 | dependent); \ |
| 262 | } \ |
| 263 | } |
| 264 | /* |
| 265 | * Cache replacement upon hard lookup (i.e. L1 & L2 rtree cache miss): |
| 266 | * (1) evict last entry in L2 cache; (2) move the collision slot from L1 |
| 267 | * cache down to L2; and 3) fill L1. |
| 268 | */ |
| 269 | #define RTREE_GET_LEAF(level) { \ |
| 270 | assert(level == RTREE_HEIGHT-1); \ |
| 271 | if (!dependent && unlikely(!rtree_leaf_valid(leaf))) { \ |
| 272 | return NULL; \ |
| 273 | } \ |
| 274 | if (RTREE_CTX_NCACHE_L2 > 1) { \ |
| 275 | memmove(&rtree_ctx->l2_cache[1], \ |
| 276 | &rtree_ctx->l2_cache[0], \ |
| 277 | sizeof(rtree_ctx_cache_elm_t) * \ |
| 278 | (RTREE_CTX_NCACHE_L2 - 1)); \ |
| 279 | } \ |
| 280 | size_t slot = rtree_cache_direct_map(key); \ |
| 281 | rtree_ctx->l2_cache[0].leafkey = \ |
| 282 | rtree_ctx->cache[slot].leafkey; \ |
| 283 | rtree_ctx->l2_cache[0].leaf = \ |
| 284 | rtree_ctx->cache[slot].leaf; \ |
| 285 | uintptr_t leafkey = rtree_leafkey(key); \ |
| 286 | rtree_ctx->cache[slot].leafkey = leafkey; \ |
| 287 | rtree_ctx->cache[slot].leaf = leaf; \ |
| 288 | uintptr_t subkey = rtree_subkey(key, level); \ |
| 289 | return &leaf[subkey]; \ |
| 290 | } |
| 291 | if (RTREE_HEIGHT > 1) { |
| 292 | RTREE_GET_CHILD(0) |
| 293 | } |
| 294 | if (RTREE_HEIGHT > 2) { |
| 295 | RTREE_GET_CHILD(1) |
| 296 | } |
| 297 | if (RTREE_HEIGHT > 3) { |
| 298 | for (unsigned i = 2; i < RTREE_HEIGHT-1; i++) { |
| 299 | RTREE_GET_CHILD(i) |
| 300 | } |
| 301 | } |
| 302 | RTREE_GET_LEAF(RTREE_HEIGHT-1) |
| 303 | #undef RTREE_GET_CHILD |
| 304 | #undef RTREE_GET_LEAF |
| 305 | not_reached(); |
| 306 | } |
| 307 | |
| 308 | void |
| 309 | rtree_ctx_data_init(rtree_ctx_t *ctx) { |
| 310 | for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) { |
| 311 | rtree_ctx_cache_elm_t *cache = &ctx->cache[i]; |
| 312 | cache->leafkey = RTREE_LEAFKEY_INVALID; |
| 313 | cache->leaf = NULL; |
| 314 | } |
| 315 | for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) { |
| 316 | rtree_ctx_cache_elm_t *cache = &ctx->l2_cache[i]; |
| 317 | cache->leafkey = RTREE_LEAFKEY_INVALID; |
| 318 | cache->leaf = NULL; |
| 319 | } |
| 320 | } |
| 321 | |