1 | /* sha1.c - Functions to compute SHA1 message digest of files or |
2 | memory blocks according to the NIST specification FIPS-180-1. |
3 | |
4 | Copyright (C) 2000-2001, 2003-2006, 2008-2012 Free Software Foundation, Inc. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU Lesser General Public License as published by the |
8 | Free Software Foundation; either version 2.1, or (at your option) any |
9 | later version. |
10 | |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | GNU Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public License |
17 | along with this program; if not, see <http://www.gnu.org/licenses/>. */ |
18 | |
19 | /* Written by Scott G. Miller |
20 | Credits: |
21 | Robert Klep <robert@ilse.nl> -- Expansion function fix |
22 | */ |
23 | |
24 | #include <config.h> |
25 | |
26 | #include "sha1.h" |
27 | |
28 | #include <stdalign.h> |
29 | #include <stdint.h> |
30 | #include <stdlib.h> |
31 | #include <string.h> |
32 | |
33 | #if USE_UNLOCKED_IO |
34 | # include "unlocked-io.h" |
35 | #endif |
36 | |
37 | #ifdef WORDS_BIGENDIAN |
38 | # define SWAP(n) (n) |
39 | #else |
40 | # define SWAP(n) \ |
41 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
42 | #endif |
43 | |
44 | #define BLOCKSIZE 32768 |
45 | #if BLOCKSIZE % 64 != 0 |
46 | # error "invalid BLOCKSIZE" |
47 | #endif |
48 | |
49 | /* This array contains the bytes used to pad the buffer to the next |
50 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ |
51 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
52 | |
53 | |
54 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and |
55 | initialize it to the start constants of the SHA1 algorithm. This |
56 | must be called before using hash in the call to sha1_hash. */ |
57 | void |
58 | sha1_init_ctx (struct sha1_ctx *ctx) |
59 | { |
60 | ctx->A = 0x67452301; |
61 | ctx->B = 0xefcdab89; |
62 | ctx->C = 0x98badcfe; |
63 | ctx->D = 0x10325476; |
64 | ctx->E = 0xc3d2e1f0; |
65 | |
66 | ctx->total[0] = ctx->total[1] = 0; |
67 | ctx->buflen = 0; |
68 | } |
69 | |
70 | /* Copy the 4 byte value from v into the memory location pointed to by *cp, |
71 | If your architecture allows unaligned access this is equivalent to |
72 | * (uint32_t *) cp = v */ |
73 | static inline void |
74 | set_uint32 (char *cp, uint32_t v) |
75 | { |
76 | memcpy (cp, &v, sizeof v); |
77 | } |
78 | |
79 | /* Put result from CTX in first 20 bytes following RESBUF. The result |
80 | must be in little endian byte order. */ |
81 | void * |
82 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) |
83 | { |
84 | char *r = resbuf; |
85 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); |
86 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); |
87 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); |
88 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); |
89 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); |
90 | |
91 | return resbuf; |
92 | } |
93 | |
94 | /* Process the remaining bytes in the internal buffer and the usual |
95 | prolog according to the standard and write the result to RESBUF. */ |
96 | void * |
97 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) |
98 | { |
99 | /* Take yet unprocessed bytes into account. */ |
100 | uint32_t bytes = ctx->buflen; |
101 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; |
102 | |
103 | /* Now count remaining bytes. */ |
104 | ctx->total[0] += bytes; |
105 | if (ctx->total[0] < bytes) |
106 | ++ctx->total[1]; |
107 | |
108 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
109 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); |
110 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); |
111 | |
112 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); |
113 | |
114 | /* Process last bytes. */ |
115 | sha1_process_block (ctx->buffer, size * 4, ctx); |
116 | |
117 | return sha1_read_ctx (ctx, resbuf); |
118 | } |
119 | |
120 | /* Compute SHA1 message digest for bytes read from STREAM. The |
121 | resulting message digest number will be written into the 16 bytes |
122 | beginning at RESBLOCK. */ |
123 | int |
124 | sha1_stream (FILE *stream, void *resblock) |
125 | { |
126 | struct sha1_ctx ctx; |
127 | size_t sum; |
128 | |
129 | char *buffer = malloc (BLOCKSIZE + 72); |
130 | if (!buffer) |
131 | return 1; |
132 | |
133 | /* Initialize the computation context. */ |
134 | sha1_init_ctx (&ctx); |
135 | |
136 | /* Iterate over full file contents. */ |
137 | while (1) |
138 | { |
139 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the |
140 | computation function processes the whole buffer so that with the |
141 | next round of the loop another block can be read. */ |
142 | size_t n; |
143 | sum = 0; |
144 | |
145 | /* Read block. Take care for partial reads. */ |
146 | while (1) |
147 | { |
148 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); |
149 | |
150 | sum += n; |
151 | |
152 | if (sum == BLOCKSIZE) |
153 | break; |
154 | |
155 | if (n == 0) |
156 | { |
157 | /* Check for the error flag IFF N == 0, so that we don't |
158 | exit the loop after a partial read due to e.g., EAGAIN |
159 | or EWOULDBLOCK. */ |
160 | if (ferror (stream)) |
161 | { |
162 | free (buffer); |
163 | return 1; |
164 | } |
165 | goto process_partial_block; |
166 | } |
167 | |
168 | /* We've read at least one byte, so ignore errors. But always |
169 | check for EOF, since feof may be true even though N > 0. |
170 | Otherwise, we could end up calling fread after EOF. */ |
171 | if (feof (stream)) |
172 | goto process_partial_block; |
173 | } |
174 | |
175 | /* Process buffer with BLOCKSIZE bytes. Note that |
176 | BLOCKSIZE % 64 == 0 |
177 | */ |
178 | sha1_process_block (buffer, BLOCKSIZE, &ctx); |
179 | } |
180 | |
181 | process_partial_block:; |
182 | |
183 | /* Process any remaining bytes. */ |
184 | if (sum > 0) |
185 | sha1_process_bytes (buffer, sum, &ctx); |
186 | |
187 | /* Construct result in desired memory. */ |
188 | sha1_finish_ctx (&ctx, resblock); |
189 | free (buffer); |
190 | return 0; |
191 | } |
192 | |
193 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The |
194 | result is always in little endian byte order, so that a byte-wise |
195 | output yields to the wanted ASCII representation of the message |
196 | digest. */ |
197 | void * |
198 | sha1_buffer (const char *buffer, size_t len, void *resblock) |
199 | { |
200 | struct sha1_ctx ctx; |
201 | |
202 | /* Initialize the computation context. */ |
203 | sha1_init_ctx (&ctx); |
204 | |
205 | /* Process whole buffer but last len % 64 bytes. */ |
206 | sha1_process_bytes (buffer, len, &ctx); |
207 | |
208 | /* Put result in desired memory area. */ |
209 | return sha1_finish_ctx (&ctx, resblock); |
210 | } |
211 | |
212 | void |
213 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) |
214 | { |
215 | /* When we already have some bits in our internal buffer concatenate |
216 | both inputs first. */ |
217 | if (ctx->buflen != 0) |
218 | { |
219 | size_t left_over = ctx->buflen; |
220 | size_t add = 128 - left_over > len ? len : 128 - left_over; |
221 | |
222 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); |
223 | ctx->buflen += add; |
224 | |
225 | if (ctx->buflen > 64) |
226 | { |
227 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); |
228 | |
229 | ctx->buflen &= 63; |
230 | /* The regions in the following copy operation cannot overlap. */ |
231 | memcpy (ctx->buffer, |
232 | &((char *) ctx->buffer)[(left_over + add) & ~63], |
233 | ctx->buflen); |
234 | } |
235 | |
236 | buffer = (const char *) buffer + add; |
237 | len -= add; |
238 | } |
239 | |
240 | /* Process available complete blocks. */ |
241 | if (len >= 64) |
242 | { |
243 | #if !_STRING_ARCH_unaligned |
244 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) |
245 | if (UNALIGNED_P (buffer)) |
246 | while (len > 64) |
247 | { |
248 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); |
249 | buffer = (const char *) buffer + 64; |
250 | len -= 64; |
251 | } |
252 | else |
253 | #endif |
254 | { |
255 | sha1_process_block (buffer, len & ~63, ctx); |
256 | buffer = (const char *) buffer + (len & ~63); |
257 | len &= 63; |
258 | } |
259 | } |
260 | |
261 | /* Move remaining bytes in internal buffer. */ |
262 | if (len > 0) |
263 | { |
264 | size_t left_over = ctx->buflen; |
265 | |
266 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); |
267 | left_over += len; |
268 | if (left_over >= 64) |
269 | { |
270 | sha1_process_block (ctx->buffer, 64, ctx); |
271 | left_over -= 64; |
272 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); |
273 | } |
274 | ctx->buflen = left_over; |
275 | } |
276 | } |
277 | |
278 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ |
279 | |
280 | /* SHA1 round constants */ |
281 | #define K1 0x5a827999 |
282 | #define K2 0x6ed9eba1 |
283 | #define K3 0x8f1bbcdc |
284 | #define K4 0xca62c1d6 |
285 | |
286 | /* Round functions. Note that F2 is the same as F4. */ |
287 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) |
288 | #define F2(B,C,D) (B ^ C ^ D) |
289 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) |
290 | #define F4(B,C,D) (B ^ C ^ D) |
291 | |
292 | /* Process LEN bytes of BUFFER, accumulating context into CTX. |
293 | It is assumed that LEN % 64 == 0. |
294 | Most of this code comes from GnuPG's cipher/sha1.c. */ |
295 | |
296 | void |
297 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) |
298 | { |
299 | const uint32_t *words = buffer; |
300 | size_t nwords = len / sizeof (uint32_t); |
301 | const uint32_t *endp = words + nwords; |
302 | uint32_t x[16]; |
303 | uint32_t a = ctx->A; |
304 | uint32_t b = ctx->B; |
305 | uint32_t c = ctx->C; |
306 | uint32_t d = ctx->D; |
307 | uint32_t e = ctx->E; |
308 | uint32_t lolen = len; |
309 | |
310 | /* First increment the byte count. RFC 1321 specifies the possible |
311 | length of the file up to 2^64 bits. Here we only compute the |
312 | number of bytes. Do a double word increment. */ |
313 | ctx->total[0] += lolen; |
314 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); |
315 | |
316 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) |
317 | |
318 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ |
319 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ |
320 | , (x[I&0x0f] = rol(tm, 1)) ) |
321 | |
322 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ |
323 | + F( B, C, D ) \ |
324 | + K \ |
325 | + M; \ |
326 | B = rol( B, 30 ); \ |
327 | } while(0) |
328 | |
329 | while (words < endp) |
330 | { |
331 | uint32_t tm; |
332 | int t; |
333 | for (t = 0; t < 16; t++) |
334 | { |
335 | x[t] = SWAP (*words); |
336 | words++; |
337 | } |
338 | |
339 | R( a, b, c, d, e, F1, K1, x[ 0] ); |
340 | R( e, a, b, c, d, F1, K1, x[ 1] ); |
341 | R( d, e, a, b, c, F1, K1, x[ 2] ); |
342 | R( c, d, e, a, b, F1, K1, x[ 3] ); |
343 | R( b, c, d, e, a, F1, K1, x[ 4] ); |
344 | R( a, b, c, d, e, F1, K1, x[ 5] ); |
345 | R( e, a, b, c, d, F1, K1, x[ 6] ); |
346 | R( d, e, a, b, c, F1, K1, x[ 7] ); |
347 | R( c, d, e, a, b, F1, K1, x[ 8] ); |
348 | R( b, c, d, e, a, F1, K1, x[ 9] ); |
349 | R( a, b, c, d, e, F1, K1, x[10] ); |
350 | R( e, a, b, c, d, F1, K1, x[11] ); |
351 | R( d, e, a, b, c, F1, K1, x[12] ); |
352 | R( c, d, e, a, b, F1, K1, x[13] ); |
353 | R( b, c, d, e, a, F1, K1, x[14] ); |
354 | R( a, b, c, d, e, F1, K1, x[15] ); |
355 | R( e, a, b, c, d, F1, K1, M(16) ); |
356 | R( d, e, a, b, c, F1, K1, M(17) ); |
357 | R( c, d, e, a, b, F1, K1, M(18) ); |
358 | R( b, c, d, e, a, F1, K1, M(19) ); |
359 | R( a, b, c, d, e, F2, K2, M(20) ); |
360 | R( e, a, b, c, d, F2, K2, M(21) ); |
361 | R( d, e, a, b, c, F2, K2, M(22) ); |
362 | R( c, d, e, a, b, F2, K2, M(23) ); |
363 | R( b, c, d, e, a, F2, K2, M(24) ); |
364 | R( a, b, c, d, e, F2, K2, M(25) ); |
365 | R( e, a, b, c, d, F2, K2, M(26) ); |
366 | R( d, e, a, b, c, F2, K2, M(27) ); |
367 | R( c, d, e, a, b, F2, K2, M(28) ); |
368 | R( b, c, d, e, a, F2, K2, M(29) ); |
369 | R( a, b, c, d, e, F2, K2, M(30) ); |
370 | R( e, a, b, c, d, F2, K2, M(31) ); |
371 | R( d, e, a, b, c, F2, K2, M(32) ); |
372 | R( c, d, e, a, b, F2, K2, M(33) ); |
373 | R( b, c, d, e, a, F2, K2, M(34) ); |
374 | R( a, b, c, d, e, F2, K2, M(35) ); |
375 | R( e, a, b, c, d, F2, K2, M(36) ); |
376 | R( d, e, a, b, c, F2, K2, M(37) ); |
377 | R( c, d, e, a, b, F2, K2, M(38) ); |
378 | R( b, c, d, e, a, F2, K2, M(39) ); |
379 | R( a, b, c, d, e, F3, K3, M(40) ); |
380 | R( e, a, b, c, d, F3, K3, M(41) ); |
381 | R( d, e, a, b, c, F3, K3, M(42) ); |
382 | R( c, d, e, a, b, F3, K3, M(43) ); |
383 | R( b, c, d, e, a, F3, K3, M(44) ); |
384 | R( a, b, c, d, e, F3, K3, M(45) ); |
385 | R( e, a, b, c, d, F3, K3, M(46) ); |
386 | R( d, e, a, b, c, F3, K3, M(47) ); |
387 | R( c, d, e, a, b, F3, K3, M(48) ); |
388 | R( b, c, d, e, a, F3, K3, M(49) ); |
389 | R( a, b, c, d, e, F3, K3, M(50) ); |
390 | R( e, a, b, c, d, F3, K3, M(51) ); |
391 | R( d, e, a, b, c, F3, K3, M(52) ); |
392 | R( c, d, e, a, b, F3, K3, M(53) ); |
393 | R( b, c, d, e, a, F3, K3, M(54) ); |
394 | R( a, b, c, d, e, F3, K3, M(55) ); |
395 | R( e, a, b, c, d, F3, K3, M(56) ); |
396 | R( d, e, a, b, c, F3, K3, M(57) ); |
397 | R( c, d, e, a, b, F3, K3, M(58) ); |
398 | R( b, c, d, e, a, F3, K3, M(59) ); |
399 | R( a, b, c, d, e, F4, K4, M(60) ); |
400 | R( e, a, b, c, d, F4, K4, M(61) ); |
401 | R( d, e, a, b, c, F4, K4, M(62) ); |
402 | R( c, d, e, a, b, F4, K4, M(63) ); |
403 | R( b, c, d, e, a, F4, K4, M(64) ); |
404 | R( a, b, c, d, e, F4, K4, M(65) ); |
405 | R( e, a, b, c, d, F4, K4, M(66) ); |
406 | R( d, e, a, b, c, F4, K4, M(67) ); |
407 | R( c, d, e, a, b, F4, K4, M(68) ); |
408 | R( b, c, d, e, a, F4, K4, M(69) ); |
409 | R( a, b, c, d, e, F4, K4, M(70) ); |
410 | R( e, a, b, c, d, F4, K4, M(71) ); |
411 | R( d, e, a, b, c, F4, K4, M(72) ); |
412 | R( c, d, e, a, b, F4, K4, M(73) ); |
413 | R( b, c, d, e, a, F4, K4, M(74) ); |
414 | R( a, b, c, d, e, F4, K4, M(75) ); |
415 | R( e, a, b, c, d, F4, K4, M(76) ); |
416 | R( d, e, a, b, c, F4, K4, M(77) ); |
417 | R( c, d, e, a, b, F4, K4, M(78) ); |
418 | R( b, c, d, e, a, F4, K4, M(79) ); |
419 | |
420 | a = ctx->A += a; |
421 | b = ctx->B += b; |
422 | c = ctx->C += c; |
423 | d = ctx->D += d; |
424 | e = ctx->E += e; |
425 | } |
426 | } |
427 | |