1 | /* vsprintf with automatic memory allocation. |
2 | Copyright (C) 1999, 2002-2012 Free Software Foundation, Inc. |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU Lesser General Public License as published by |
6 | the Free Software Foundation; either version 2.1, or (at your option) |
7 | any later version. |
8 | |
9 | This program is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 | GNU Lesser General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU Lesser General Public License along |
15 | with this program; if not, see <http://www.gnu.org/licenses/>. */ |
16 | |
17 | /* This file can be parametrized with the following macros: |
18 | VASNPRINTF The name of the function being defined. |
19 | FCHAR_T The element type of the format string. |
20 | DCHAR_T The element type of the destination (result) string. |
21 | FCHAR_T_ONLY_ASCII Set to 1 to enable verification that all characters |
22 | in the format string are ASCII. MUST be set if |
23 | FCHAR_T and DCHAR_T are not the same type. |
24 | DIRECTIVE Structure denoting a format directive. |
25 | Depends on FCHAR_T. |
26 | DIRECTIVES Structure denoting the set of format directives of a |
27 | format string. Depends on FCHAR_T. |
28 | PRINTF_PARSE Function that parses a format string. |
29 | Depends on FCHAR_T. |
30 | DCHAR_CPY memcpy like function for DCHAR_T[] arrays. |
31 | DCHAR_SET memset like function for DCHAR_T[] arrays. |
32 | DCHAR_MBSNLEN mbsnlen like function for DCHAR_T[] arrays. |
33 | SNPRINTF The system's snprintf (or similar) function. |
34 | This may be either snprintf or swprintf. |
35 | TCHAR_T The element type of the argument and result string |
36 | of the said SNPRINTF function. This may be either |
37 | char or wchar_t. The code exploits that |
38 | sizeof (TCHAR_T) | sizeof (DCHAR_T) and |
39 | alignof (TCHAR_T) <= alignof (DCHAR_T). |
40 | DCHAR_IS_TCHAR Set to 1 if DCHAR_T and TCHAR_T are the same type. |
41 | DCHAR_CONV_FROM_ENCODING A function to convert from char[] to DCHAR[]. |
42 | DCHAR_IS_UINT8_T Set to 1 if DCHAR_T is uint8_t. |
43 | DCHAR_IS_UINT16_T Set to 1 if DCHAR_T is uint16_t. |
44 | DCHAR_IS_UINT32_T Set to 1 if DCHAR_T is uint32_t. */ |
45 | |
46 | /* Tell glibc's <stdio.h> to provide a prototype for snprintf(). |
47 | This must come before <config.h> because <config.h> may include |
48 | <features.h>, and once <features.h> has been included, it's too late. */ |
49 | #ifndef _GNU_SOURCE |
50 | # define _GNU_SOURCE 1 |
51 | #endif |
52 | |
53 | #ifndef VASNPRINTF |
54 | # include <config.h> |
55 | #endif |
56 | #ifndef IN_LIBINTL |
57 | # include <alloca.h> |
58 | #endif |
59 | |
60 | /* Specification. */ |
61 | #ifndef VASNPRINTF |
62 | # if WIDE_CHAR_VERSION |
63 | # include "vasnwprintf.h" |
64 | # else |
65 | # include "vasnprintf.h" |
66 | # endif |
67 | #endif |
68 | |
69 | #include <locale.h> /* localeconv() */ |
70 | #include <stdio.h> /* snprintf(), sprintf() */ |
71 | #include <stdlib.h> /* abort(), malloc(), realloc(), free() */ |
72 | #include <string.h> /* memcpy(), strlen() */ |
73 | #include <errno.h> /* errno */ |
74 | #include <limits.h> /* CHAR_BIT */ |
75 | #include <float.h> /* DBL_MAX_EXP, LDBL_MAX_EXP */ |
76 | #if HAVE_NL_LANGINFO |
77 | # include <langinfo.h> |
78 | #endif |
79 | #ifndef VASNPRINTF |
80 | # if WIDE_CHAR_VERSION |
81 | # include "wprintf-parse.h" |
82 | # else |
83 | # include "printf-parse.h" |
84 | # endif |
85 | #endif |
86 | |
87 | /* Checked size_t computations. */ |
88 | #include "xsize.h" |
89 | |
90 | #include "verify.h" |
91 | |
92 | #if (NEED_PRINTF_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL |
93 | # include <math.h> |
94 | # include "float+.h" |
95 | #endif |
96 | |
97 | #if (NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL |
98 | # include <math.h> |
99 | # include "isnand-nolibm.h" |
100 | #endif |
101 | |
102 | #if (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE) && !defined IN_LIBINTL |
103 | # include <math.h> |
104 | # include "isnanl-nolibm.h" |
105 | # include "fpucw.h" |
106 | #endif |
107 | |
108 | #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL |
109 | # include <math.h> |
110 | # include "isnand-nolibm.h" |
111 | # include "printf-frexp.h" |
112 | #endif |
113 | |
114 | #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL |
115 | # include <math.h> |
116 | # include "isnanl-nolibm.h" |
117 | # include "printf-frexpl.h" |
118 | # include "fpucw.h" |
119 | #endif |
120 | |
121 | /* Default parameters. */ |
122 | #ifndef VASNPRINTF |
123 | # if WIDE_CHAR_VERSION |
124 | # define VASNPRINTF vasnwprintf |
125 | # define FCHAR_T wchar_t |
126 | # define DCHAR_T wchar_t |
127 | # define TCHAR_T wchar_t |
128 | # define DCHAR_IS_TCHAR 1 |
129 | # define DIRECTIVE wchar_t_directive |
130 | # define DIRECTIVES wchar_t_directives |
131 | # define PRINTF_PARSE wprintf_parse |
132 | # define DCHAR_CPY wmemcpy |
133 | # define DCHAR_SET wmemset |
134 | # else |
135 | # define VASNPRINTF vasnprintf |
136 | # define FCHAR_T char |
137 | # define DCHAR_T char |
138 | # define TCHAR_T char |
139 | # define DCHAR_IS_TCHAR 1 |
140 | # define DIRECTIVE char_directive |
141 | # define DIRECTIVES char_directives |
142 | # define PRINTF_PARSE printf_parse |
143 | # define DCHAR_CPY memcpy |
144 | # define DCHAR_SET memset |
145 | # endif |
146 | #endif |
147 | #if WIDE_CHAR_VERSION |
148 | /* TCHAR_T is wchar_t. */ |
149 | # define USE_SNPRINTF 1 |
150 | # if HAVE_DECL__SNWPRINTF |
151 | /* On Windows, the function swprintf() has a different signature than |
152 | on Unix; we use the function _snwprintf() or - on mingw - snwprintf() |
153 | instead. The mingw function snwprintf() has fewer bugs than the |
154 | MSVCRT function _snwprintf(), so prefer that. */ |
155 | # if defined __MINGW32__ |
156 | # define SNPRINTF snwprintf |
157 | # else |
158 | # define SNPRINTF _snwprintf |
159 | # endif |
160 | # else |
161 | /* Unix. */ |
162 | # define SNPRINTF swprintf |
163 | # endif |
164 | #else |
165 | /* TCHAR_T is char. */ |
166 | /* Use snprintf if it exists under the name 'snprintf' or '_snprintf'. |
167 | But don't use it on BeOS, since BeOS snprintf produces no output if the |
168 | size argument is >= 0x3000000. |
169 | Also don't use it on Linux libc5, since there snprintf with size = 1 |
170 | writes any output without bounds, like sprintf. */ |
171 | # if (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) && !defined __BEOS__ && !(__GNU_LIBRARY__ == 1) |
172 | # define USE_SNPRINTF 1 |
173 | # else |
174 | # define USE_SNPRINTF 0 |
175 | # endif |
176 | # if HAVE_DECL__SNPRINTF |
177 | /* Windows. The mingw function snprintf() has fewer bugs than the MSVCRT |
178 | function _snprintf(), so prefer that. */ |
179 | # if defined __MINGW32__ |
180 | # define SNPRINTF snprintf |
181 | /* Here we need to call the native snprintf, not rpl_snprintf. */ |
182 | # undef snprintf |
183 | # else |
184 | # define SNPRINTF _snprintf |
185 | # endif |
186 | # else |
187 | /* Unix. */ |
188 | # define SNPRINTF snprintf |
189 | /* Here we need to call the native snprintf, not rpl_snprintf. */ |
190 | # undef snprintf |
191 | # endif |
192 | #endif |
193 | /* Here we need to call the native sprintf, not rpl_sprintf. */ |
194 | #undef sprintf |
195 | |
196 | /* GCC >= 4.0 with -Wall emits unjustified "... may be used uninitialized" |
197 | warnings in this file. Use -Dlint to suppress them. */ |
198 | #ifdef lint |
199 | # define IF_LINT(Code) Code |
200 | #else |
201 | # define IF_LINT(Code) /* empty */ |
202 | #endif |
203 | |
204 | /* Avoid some warnings from "gcc -Wshadow". |
205 | This file doesn't use the exp() and remainder() functions. */ |
206 | #undef exp |
207 | #define exp expo |
208 | #undef remainder |
209 | #define remainder rem |
210 | |
211 | #if (!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99) && !WIDE_CHAR_VERSION |
212 | # if (HAVE_STRNLEN && !defined _AIX) |
213 | # define local_strnlen strnlen |
214 | # else |
215 | # ifndef local_strnlen_defined |
216 | # define local_strnlen_defined 1 |
217 | static size_t |
218 | local_strnlen (const char *string, size_t maxlen) |
219 | { |
220 | const char *end = memchr (string, '\0', maxlen); |
221 | return end ? (size_t) (end - string) : maxlen; |
222 | } |
223 | # endif |
224 | # endif |
225 | #endif |
226 | |
227 | #if (((!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99) && WIDE_CHAR_VERSION) || ((!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || (NEED_PRINTF_DIRECTIVE_LS && !defined IN_LIBINTL)) && !WIDE_CHAR_VERSION && DCHAR_IS_TCHAR)) && HAVE_WCHAR_T |
228 | # if HAVE_WCSLEN |
229 | # define local_wcslen wcslen |
230 | # else |
231 | /* Solaris 2.5.1 has wcslen() in a separate library libw.so. To avoid |
232 | a dependency towards this library, here is a local substitute. |
233 | Define this substitute only once, even if this file is included |
234 | twice in the same compilation unit. */ |
235 | # ifndef local_wcslen_defined |
236 | # define local_wcslen_defined 1 |
237 | static size_t |
238 | local_wcslen (const wchar_t *s) |
239 | { |
240 | const wchar_t *ptr; |
241 | |
242 | for (ptr = s; *ptr != (wchar_t) 0; ptr++) |
243 | ; |
244 | return ptr - s; |
245 | } |
246 | # endif |
247 | # endif |
248 | #endif |
249 | |
250 | #if (!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99) && HAVE_WCHAR_T && WIDE_CHAR_VERSION |
251 | # if HAVE_WCSNLEN |
252 | # define local_wcsnlen wcsnlen |
253 | # else |
254 | # ifndef local_wcsnlen_defined |
255 | # define local_wcsnlen_defined 1 |
256 | static size_t |
257 | local_wcsnlen (const wchar_t *s, size_t maxlen) |
258 | { |
259 | const wchar_t *ptr; |
260 | |
261 | for (ptr = s; maxlen > 0 && *ptr != (wchar_t) 0; ptr++, maxlen--) |
262 | ; |
263 | return ptr - s; |
264 | } |
265 | # endif |
266 | # endif |
267 | #endif |
268 | |
269 | #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL |
270 | /* Determine the decimal-point character according to the current locale. */ |
271 | # ifndef decimal_point_char_defined |
272 | # define decimal_point_char_defined 1 |
273 | static char |
274 | decimal_point_char (void) |
275 | { |
276 | const char *point; |
277 | /* Determine it in a multithread-safe way. We know nl_langinfo is |
278 | multithread-safe on glibc systems and MacOS X systems, but is not required |
279 | to be multithread-safe by POSIX. sprintf(), however, is multithread-safe. |
280 | localeconv() is rarely multithread-safe. */ |
281 | # if HAVE_NL_LANGINFO && (__GLIBC__ || defined __UCLIBC__ || (defined __APPLE__ && defined __MACH__)) |
282 | point = nl_langinfo (RADIXCHAR); |
283 | # elif 1 |
284 | char pointbuf[5]; |
285 | sprintf (pointbuf, "%#.0f" , 1.0); |
286 | point = &pointbuf[1]; |
287 | # else |
288 | point = localeconv () -> decimal_point; |
289 | # endif |
290 | /* The decimal point is always a single byte: either '.' or ','. */ |
291 | return (point[0] != '\0' ? point[0] : '.'); |
292 | } |
293 | # endif |
294 | #endif |
295 | |
296 | #if NEED_PRINTF_INFINITE_DOUBLE && !NEED_PRINTF_DOUBLE && !defined IN_LIBINTL |
297 | |
298 | /* Equivalent to !isfinite(x) || x == 0, but does not require libm. */ |
299 | static int |
300 | is_infinite_or_zero (double x) |
301 | { |
302 | return isnand (x) || x + x == x; |
303 | } |
304 | |
305 | #endif |
306 | |
307 | #if NEED_PRINTF_INFINITE_LONG_DOUBLE && !NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL |
308 | |
309 | /* Equivalent to !isfinite(x) || x == 0, but does not require libm. */ |
310 | static int |
311 | is_infinite_or_zerol (long double x) |
312 | { |
313 | return isnanl (x) || x + x == x; |
314 | } |
315 | |
316 | #endif |
317 | |
318 | #if (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL |
319 | |
320 | /* Converting 'long double' to decimal without rare rounding bugs requires |
321 | real bignums. We use the naming conventions of GNU gmp, but vastly simpler |
322 | (and slower) algorithms. */ |
323 | |
324 | typedef unsigned int mp_limb_t; |
325 | # define GMP_LIMB_BITS 32 |
326 | verify (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS); |
327 | |
328 | typedef unsigned long long mp_twolimb_t; |
329 | # define GMP_TWOLIMB_BITS 64 |
330 | verify (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS); |
331 | |
332 | /* Representation of a bignum >= 0. */ |
333 | typedef struct |
334 | { |
335 | size_t nlimbs; |
336 | mp_limb_t *limbs; /* Bits in little-endian order, allocated with malloc(). */ |
337 | } mpn_t; |
338 | |
339 | /* Compute the product of two bignums >= 0. |
340 | Return the allocated memory in case of success, NULL in case of memory |
341 | allocation failure. */ |
342 | static void * |
343 | multiply (mpn_t src1, mpn_t src2, mpn_t *dest) |
344 | { |
345 | const mp_limb_t *p1; |
346 | const mp_limb_t *p2; |
347 | size_t len1; |
348 | size_t len2; |
349 | |
350 | if (src1.nlimbs <= src2.nlimbs) |
351 | { |
352 | len1 = src1.nlimbs; |
353 | p1 = src1.limbs; |
354 | len2 = src2.nlimbs; |
355 | p2 = src2.limbs; |
356 | } |
357 | else |
358 | { |
359 | len1 = src2.nlimbs; |
360 | p1 = src2.limbs; |
361 | len2 = src1.nlimbs; |
362 | p2 = src1.limbs; |
363 | } |
364 | /* Now 0 <= len1 <= len2. */ |
365 | if (len1 == 0) |
366 | { |
367 | /* src1 or src2 is zero. */ |
368 | dest->nlimbs = 0; |
369 | dest->limbs = (mp_limb_t *) malloc (1); |
370 | } |
371 | else |
372 | { |
373 | /* Here 1 <= len1 <= len2. */ |
374 | size_t dlen; |
375 | mp_limb_t *dp; |
376 | size_t k, i, j; |
377 | |
378 | dlen = len1 + len2; |
379 | dp = (mp_limb_t *) malloc (dlen * sizeof (mp_limb_t)); |
380 | if (dp == NULL) |
381 | return NULL; |
382 | for (k = len2; k > 0; ) |
383 | dp[--k] = 0; |
384 | for (i = 0; i < len1; i++) |
385 | { |
386 | mp_limb_t digit1 = p1[i]; |
387 | mp_twolimb_t carry = 0; |
388 | for (j = 0; j < len2; j++) |
389 | { |
390 | mp_limb_t digit2 = p2[j]; |
391 | carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2; |
392 | carry += dp[i + j]; |
393 | dp[i + j] = (mp_limb_t) carry; |
394 | carry = carry >> GMP_LIMB_BITS; |
395 | } |
396 | dp[i + len2] = (mp_limb_t) carry; |
397 | } |
398 | /* Normalise. */ |
399 | while (dlen > 0 && dp[dlen - 1] == 0) |
400 | dlen--; |
401 | dest->nlimbs = dlen; |
402 | dest->limbs = dp; |
403 | } |
404 | return dest->limbs; |
405 | } |
406 | |
407 | /* Compute the quotient of a bignum a >= 0 and a bignum b > 0. |
408 | a is written as a = q * b + r with 0 <= r < b. q is the quotient, r |
409 | the remainder. |
410 | Finally, round-to-even is performed: If r > b/2 or if r = b/2 and q is odd, |
411 | q is incremented. |
412 | Return the allocated memory in case of success, NULL in case of memory |
413 | allocation failure. */ |
414 | static void * |
415 | divide (mpn_t a, mpn_t b, mpn_t *q) |
416 | { |
417 | /* Algorithm: |
418 | First normalise a and b: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]] |
419 | with m>=0 and n>0 (in base beta = 2^GMP_LIMB_BITS). |
420 | If m<n, then q:=0 and r:=a. |
421 | If m>=n=1, perform a single-precision division: |
422 | r:=0, j:=m, |
423 | while j>0 do |
424 | {Here (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j = |
425 | = a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta} |
426 | j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j]. |
427 | Normalise [q[m-1],...,q[0]], yields q. |
428 | If m>=n>1, perform a multiple-precision division: |
429 | We have a/b < beta^(m-n+1). |
430 | s:=intDsize-1-(highest bit in b[n-1]), 0<=s<intDsize. |
431 | Shift a and b left by s bits, copying them. r:=a. |
432 | r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] with b[n-1]>=beta/2. |
433 | For j=m-n,...,0: {Here 0 <= r < b*beta^(j+1).} |
434 | Compute q* : |
435 | q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]). |
436 | In case of overflow (q* >= beta) set q* := beta-1. |
437 | Compute c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2] |
438 | and c3 := b[n-2] * q*. |
439 | {We have 0 <= c2 < 2*beta^2, even 0 <= c2 < beta^2 if no overflow |
440 | occurred. Furthermore 0 <= c3 < beta^2. |
441 | If there was overflow and |
442 | r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta, i.e. c2 >= beta^2, |
443 | the next test can be skipped.} |
444 | While c3 > c2, {Here 0 <= c2 < c3 < beta^2} |
445 | Put q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2]. |
446 | If q* > 0: |
447 | Put r := r - b * q* * beta^j. In detail: |
448 | [r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]]. |
449 | hence: u:=0, for i:=0 to n-1 do |
450 | u := u + q* * b[i], |
451 | r[j+i]:=r[j+i]-(u mod beta) (+ beta, if carry), |
452 | u:=u div beta (+ 1, if carry in subtraction) |
453 | r[n+j]:=r[n+j]-u. |
454 | {Since always u = (q* * [b[i-1],...,b[0]] div beta^i) + 1 |
455 | < q* + 1 <= beta, |
456 | the carry u does not overflow.} |
457 | If a negative carry occurs, put q* := q* - 1 |
458 | and [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]]. |
459 | Set q[j] := q*. |
460 | Normalise [q[m-n],..,q[0]]; this yields the quotient q. |
461 | Shift [r[n-1],...,r[0]] right by s bits and normalise; this yields the |
462 | rest r. |
463 | The room for q[j] can be allocated at the memory location of r[n+j]. |
464 | Finally, round-to-even: |
465 | Shift r left by 1 bit. |
466 | If r > b or if r = b and q[0] is odd, q := q+1. |
467 | */ |
468 | const mp_limb_t *a_ptr = a.limbs; |
469 | size_t a_len = a.nlimbs; |
470 | const mp_limb_t *b_ptr = b.limbs; |
471 | size_t b_len = b.nlimbs; |
472 | mp_limb_t *roomptr; |
473 | mp_limb_t *tmp_roomptr = NULL; |
474 | mp_limb_t *q_ptr; |
475 | size_t q_len; |
476 | mp_limb_t *r_ptr; |
477 | size_t r_len; |
478 | |
479 | /* Allocate room for a_len+2 digits. |
480 | (Need a_len+1 digits for the real division and 1 more digit for the |
481 | final rounding of q.) */ |
482 | roomptr = (mp_limb_t *) malloc ((a_len + 2) * sizeof (mp_limb_t)); |
483 | if (roomptr == NULL) |
484 | return NULL; |
485 | |
486 | /* Normalise a. */ |
487 | while (a_len > 0 && a_ptr[a_len - 1] == 0) |
488 | a_len--; |
489 | |
490 | /* Normalise b. */ |
491 | for (;;) |
492 | { |
493 | if (b_len == 0) |
494 | /* Division by zero. */ |
495 | abort (); |
496 | if (b_ptr[b_len - 1] == 0) |
497 | b_len--; |
498 | else |
499 | break; |
500 | } |
501 | |
502 | /* Here m = a_len >= 0 and n = b_len > 0. */ |
503 | |
504 | if (a_len < b_len) |
505 | { |
506 | /* m<n: trivial case. q=0, r := copy of a. */ |
507 | r_ptr = roomptr; |
508 | r_len = a_len; |
509 | memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t)); |
510 | q_ptr = roomptr + a_len; |
511 | q_len = 0; |
512 | } |
513 | else if (b_len == 1) |
514 | { |
515 | /* n=1: single precision division. |
516 | beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m */ |
517 | r_ptr = roomptr; |
518 | q_ptr = roomptr + 1; |
519 | { |
520 | mp_limb_t den = b_ptr[0]; |
521 | mp_limb_t remainder = 0; |
522 | const mp_limb_t *sourceptr = a_ptr + a_len; |
523 | mp_limb_t *destptr = q_ptr + a_len; |
524 | size_t count; |
525 | for (count = a_len; count > 0; count--) |
526 | { |
527 | mp_twolimb_t num = |
528 | ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--sourceptr; |
529 | *--destptr = num / den; |
530 | remainder = num % den; |
531 | } |
532 | /* Normalise and store r. */ |
533 | if (remainder > 0) |
534 | { |
535 | r_ptr[0] = remainder; |
536 | r_len = 1; |
537 | } |
538 | else |
539 | r_len = 0; |
540 | /* Normalise q. */ |
541 | q_len = a_len; |
542 | if (q_ptr[q_len - 1] == 0) |
543 | q_len--; |
544 | } |
545 | } |
546 | else |
547 | { |
548 | /* n>1: multiple precision division. |
549 | beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==> |
550 | beta^(m-n-1) <= a/b < beta^(m-n+1). */ |
551 | /* Determine s. */ |
552 | size_t s; |
553 | { |
554 | mp_limb_t msd = b_ptr[b_len - 1]; /* = b[n-1], > 0 */ |
555 | /* Determine s = GMP_LIMB_BITS - integer_length (msd). |
556 | Code copied from gnulib's integer_length.c. */ |
557 | # if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) |
558 | s = __builtin_clz (msd); |
559 | # else |
560 | # if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT |
561 | if (GMP_LIMB_BITS <= DBL_MANT_BIT) |
562 | { |
563 | /* Use 'double' operations. |
564 | Assumes an IEEE 754 'double' implementation. */ |
565 | # define DBL_EXP_MASK ((DBL_MAX_EXP - DBL_MIN_EXP) | 7) |
566 | # define DBL_EXP_BIAS (DBL_EXP_MASK / 2 - 1) |
567 | # define NWORDS \ |
568 | ((sizeof (double) + sizeof (unsigned int) - 1) / sizeof (unsigned int)) |
569 | union { double value; unsigned int word[NWORDS]; } m; |
570 | |
571 | /* Use a single integer to floating-point conversion. */ |
572 | m.value = msd; |
573 | |
574 | s = GMP_LIMB_BITS |
575 | - (((m.word[DBL_EXPBIT0_WORD] >> DBL_EXPBIT0_BIT) & DBL_EXP_MASK) |
576 | - DBL_EXP_BIAS); |
577 | } |
578 | else |
579 | # undef NWORDS |
580 | # endif |
581 | { |
582 | s = 31; |
583 | if (msd >= 0x10000) |
584 | { |
585 | msd = msd >> 16; |
586 | s -= 16; |
587 | } |
588 | if (msd >= 0x100) |
589 | { |
590 | msd = msd >> 8; |
591 | s -= 8; |
592 | } |
593 | if (msd >= 0x10) |
594 | { |
595 | msd = msd >> 4; |
596 | s -= 4; |
597 | } |
598 | if (msd >= 0x4) |
599 | { |
600 | msd = msd >> 2; |
601 | s -= 2; |
602 | } |
603 | if (msd >= 0x2) |
604 | { |
605 | msd = msd >> 1; |
606 | s -= 1; |
607 | } |
608 | } |
609 | # endif |
610 | } |
611 | /* 0 <= s < GMP_LIMB_BITS. |
612 | Copy b, shifting it left by s bits. */ |
613 | if (s > 0) |
614 | { |
615 | tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t)); |
616 | if (tmp_roomptr == NULL) |
617 | { |
618 | free (roomptr); |
619 | return NULL; |
620 | } |
621 | { |
622 | const mp_limb_t *sourceptr = b_ptr; |
623 | mp_limb_t *destptr = tmp_roomptr; |
624 | mp_twolimb_t accu = 0; |
625 | size_t count; |
626 | for (count = b_len; count > 0; count--) |
627 | { |
628 | accu += (mp_twolimb_t) *sourceptr++ << s; |
629 | *destptr++ = (mp_limb_t) accu; |
630 | accu = accu >> GMP_LIMB_BITS; |
631 | } |
632 | /* accu must be zero, since that was how s was determined. */ |
633 | if (accu != 0) |
634 | abort (); |
635 | } |
636 | b_ptr = tmp_roomptr; |
637 | } |
638 | /* Copy a, shifting it left by s bits, yields r. |
639 | Memory layout: |
640 | At the beginning: r = roomptr[0..a_len], |
641 | at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */ |
642 | r_ptr = roomptr; |
643 | if (s == 0) |
644 | { |
645 | memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t)); |
646 | r_ptr[a_len] = 0; |
647 | } |
648 | else |
649 | { |
650 | const mp_limb_t *sourceptr = a_ptr; |
651 | mp_limb_t *destptr = r_ptr; |
652 | mp_twolimb_t accu = 0; |
653 | size_t count; |
654 | for (count = a_len; count > 0; count--) |
655 | { |
656 | accu += (mp_twolimb_t) *sourceptr++ << s; |
657 | *destptr++ = (mp_limb_t) accu; |
658 | accu = accu >> GMP_LIMB_BITS; |
659 | } |
660 | *destptr++ = (mp_limb_t) accu; |
661 | } |
662 | q_ptr = roomptr + b_len; |
663 | q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */ |
664 | { |
665 | size_t j = a_len - b_len; /* m-n */ |
666 | mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */ |
667 | mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */ |
668 | mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */ |
669 | ((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd; |
670 | /* Division loop, traversed m-n+1 times. |
671 | j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */ |
672 | for (;;) |
673 | { |
674 | mp_limb_t q_star; |
675 | mp_limb_t c1; |
676 | if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */ |
677 | { |
678 | /* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */ |
679 | mp_twolimb_t num = |
680 | ((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS) |
681 | | r_ptr[j + b_len - 1]; |
682 | q_star = num / b_msd; |
683 | c1 = num % b_msd; |
684 | } |
685 | else |
686 | { |
687 | /* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */ |
688 | q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */ |
689 | /* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta |
690 | <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta |
691 | <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) |
692 | {<= beta !}. |
693 | If yes, jump directly to the subtraction loop. |
694 | (Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta |
695 | <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */ |
696 | if (r_ptr[j + b_len] > b_msd |
697 | || (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd) |
698 | /* r[j+n] >= b[n-1]+1 or |
699 | r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a |
700 | carry. */ |
701 | goto subtract; |
702 | } |
703 | /* q_star = q*, |
704 | c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */ |
705 | { |
706 | mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */ |
707 | ((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2]; |
708 | mp_twolimb_t c3 = /* b[n-2] * q* */ |
709 | (mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star; |
710 | /* While c2 < c3, increase c2 and decrease c3. |
711 | Consider c3-c2. While it is > 0, decrease it by |
712 | b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2 |
713 | this can happen only twice. */ |
714 | if (c3 > c2) |
715 | { |
716 | q_star = q_star - 1; /* q* := q* - 1 */ |
717 | if (c3 - c2 > b_msdd) |
718 | q_star = q_star - 1; /* q* := q* - 1 */ |
719 | } |
720 | } |
721 | if (q_star > 0) |
722 | subtract: |
723 | { |
724 | /* Subtract r := r - b * q* * beta^j. */ |
725 | mp_limb_t cr; |
726 | { |
727 | const mp_limb_t *sourceptr = b_ptr; |
728 | mp_limb_t *destptr = r_ptr + j; |
729 | mp_twolimb_t carry = 0; |
730 | size_t count; |
731 | for (count = b_len; count > 0; count--) |
732 | { |
733 | /* Here 0 <= carry <= q*. */ |
734 | carry = |
735 | carry |
736 | + (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++ |
737 | + (mp_limb_t) ~(*destptr); |
738 | /* Here 0 <= carry <= beta*q* + beta-1. */ |
739 | *destptr++ = ~(mp_limb_t) carry; |
740 | carry = carry >> GMP_LIMB_BITS; /* <= q* */ |
741 | } |
742 | cr = (mp_limb_t) carry; |
743 | } |
744 | /* Subtract cr from r_ptr[j + b_len], then forget about |
745 | r_ptr[j + b_len]. */ |
746 | if (cr > r_ptr[j + b_len]) |
747 | { |
748 | /* Subtraction gave a carry. */ |
749 | q_star = q_star - 1; /* q* := q* - 1 */ |
750 | /* Add b back. */ |
751 | { |
752 | const mp_limb_t *sourceptr = b_ptr; |
753 | mp_limb_t *destptr = r_ptr + j; |
754 | mp_limb_t carry = 0; |
755 | size_t count; |
756 | for (count = b_len; count > 0; count--) |
757 | { |
758 | mp_limb_t source1 = *sourceptr++; |
759 | mp_limb_t source2 = *destptr; |
760 | *destptr++ = source1 + source2 + carry; |
761 | carry = |
762 | (carry |
763 | ? source1 >= (mp_limb_t) ~source2 |
764 | : source1 > (mp_limb_t) ~source2); |
765 | } |
766 | } |
767 | /* Forget about the carry and about r[j+n]. */ |
768 | } |
769 | } |
770 | /* q* is determined. Store it as q[j]. */ |
771 | q_ptr[j] = q_star; |
772 | if (j == 0) |
773 | break; |
774 | j--; |
775 | } |
776 | } |
777 | r_len = b_len; |
778 | /* Normalise q. */ |
779 | if (q_ptr[q_len - 1] == 0) |
780 | q_len--; |
781 | # if 0 /* Not needed here, since we need r only to compare it with b/2, and |
782 | b is shifted left by s bits. */ |
783 | /* Shift r right by s bits. */ |
784 | if (s > 0) |
785 | { |
786 | mp_limb_t ptr = r_ptr + r_len; |
787 | mp_twolimb_t accu = 0; |
788 | size_t count; |
789 | for (count = r_len; count > 0; count--) |
790 | { |
791 | accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS; |
792 | accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s); |
793 | *ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS); |
794 | } |
795 | } |
796 | # endif |
797 | /* Normalise r. */ |
798 | while (r_len > 0 && r_ptr[r_len - 1] == 0) |
799 | r_len--; |
800 | } |
801 | /* Compare r << 1 with b. */ |
802 | if (r_len > b_len) |
803 | goto increment_q; |
804 | { |
805 | size_t i; |
806 | for (i = b_len;;) |
807 | { |
808 | mp_limb_t r_i = |
809 | (i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0) |
810 | | (i < r_len ? r_ptr[i] << 1 : 0); |
811 | mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0); |
812 | if (r_i > b_i) |
813 | goto increment_q; |
814 | if (r_i < b_i) |
815 | goto keep_q; |
816 | if (i == 0) |
817 | break; |
818 | i--; |
819 | } |
820 | } |
821 | if (q_len > 0 && ((q_ptr[0] & 1) != 0)) |
822 | /* q is odd. */ |
823 | increment_q: |
824 | { |
825 | size_t i; |
826 | for (i = 0; i < q_len; i++) |
827 | if (++(q_ptr[i]) != 0) |
828 | goto keep_q; |
829 | q_ptr[q_len++] = 1; |
830 | } |
831 | keep_q: |
832 | if (tmp_roomptr != NULL) |
833 | free (tmp_roomptr); |
834 | q->limbs = q_ptr; |
835 | q->nlimbs = q_len; |
836 | return roomptr; |
837 | } |
838 | |
839 | /* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal |
840 | representation. |
841 | Destroys the contents of a. |
842 | Return the allocated memory - containing the decimal digits in low-to-high |
843 | order, terminated with a NUL character - in case of success, NULL in case |
844 | of memory allocation failure. */ |
845 | static char * |
846 | convert_to_decimal (mpn_t a, size_t extra_zeroes) |
847 | { |
848 | mp_limb_t *a_ptr = a.limbs; |
849 | size_t a_len = a.nlimbs; |
850 | /* 0.03345 is slightly larger than log(2)/(9*log(10)). */ |
851 | size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1); |
852 | char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes)); |
853 | if (c_ptr != NULL) |
854 | { |
855 | char *d_ptr = c_ptr; |
856 | for (; extra_zeroes > 0; extra_zeroes--) |
857 | *d_ptr++ = '0'; |
858 | while (a_len > 0) |
859 | { |
860 | /* Divide a by 10^9, in-place. */ |
861 | mp_limb_t remainder = 0; |
862 | mp_limb_t *ptr = a_ptr + a_len; |
863 | size_t count; |
864 | for (count = a_len; count > 0; count--) |
865 | { |
866 | mp_twolimb_t num = |
867 | ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr; |
868 | *ptr = num / 1000000000; |
869 | remainder = num % 1000000000; |
870 | } |
871 | /* Store the remainder as 9 decimal digits. */ |
872 | for (count = 9; count > 0; count--) |
873 | { |
874 | *d_ptr++ = '0' + (remainder % 10); |
875 | remainder = remainder / 10; |
876 | } |
877 | /* Normalize a. */ |
878 | if (a_ptr[a_len - 1] == 0) |
879 | a_len--; |
880 | } |
881 | /* Remove leading zeroes. */ |
882 | while (d_ptr > c_ptr && d_ptr[-1] == '0') |
883 | d_ptr--; |
884 | /* But keep at least one zero. */ |
885 | if (d_ptr == c_ptr) |
886 | *d_ptr++ = '0'; |
887 | /* Terminate the string. */ |
888 | *d_ptr = '\0'; |
889 | } |
890 | return c_ptr; |
891 | } |
892 | |
893 | # if NEED_PRINTF_LONG_DOUBLE |
894 | |
895 | /* Assuming x is finite and >= 0: |
896 | write x as x = 2^e * m, where m is a bignum. |
897 | Return the allocated memory in case of success, NULL in case of memory |
898 | allocation failure. */ |
899 | static void * |
900 | decode_long_double (long double x, int *ep, mpn_t *mp) |
901 | { |
902 | mpn_t m; |
903 | int exp; |
904 | long double y; |
905 | size_t i; |
906 | |
907 | /* Allocate memory for result. */ |
908 | m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS; |
909 | m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t)); |
910 | if (m.limbs == NULL) |
911 | return NULL; |
912 | /* Split into exponential part and mantissa. */ |
913 | y = frexpl (x, &exp); |
914 | if (!(y >= 0.0L && y < 1.0L)) |
915 | abort (); |
916 | /* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * 2^LDBL_MANT_BIT), and the |
917 | latter is an integer. */ |
918 | /* Convert the mantissa (y * 2^LDBL_MANT_BIT) to a sequence of limbs. |
919 | I'm not sure whether it's safe to cast a 'long double' value between |
920 | 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only |
921 | 'long double' values between 0 and 2^16 (to 'unsigned int' or 'int', |
922 | doesn't matter). */ |
923 | # if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0 |
924 | # if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2 |
925 | { |
926 | mp_limb_t hi, lo; |
927 | y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2)); |
928 | hi = (int) y; |
929 | y -= hi; |
930 | if (!(y >= 0.0L && y < 1.0L)) |
931 | abort (); |
932 | y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); |
933 | lo = (int) y; |
934 | y -= lo; |
935 | if (!(y >= 0.0L && y < 1.0L)) |
936 | abort (); |
937 | m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo; |
938 | } |
939 | # else |
940 | { |
941 | mp_limb_t d; |
942 | y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS); |
943 | d = (int) y; |
944 | y -= d; |
945 | if (!(y >= 0.0L && y < 1.0L)) |
946 | abort (); |
947 | m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d; |
948 | } |
949 | # endif |
950 | # endif |
951 | for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; ) |
952 | { |
953 | mp_limb_t hi, lo; |
954 | y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); |
955 | hi = (int) y; |
956 | y -= hi; |
957 | if (!(y >= 0.0L && y < 1.0L)) |
958 | abort (); |
959 | y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); |
960 | lo = (int) y; |
961 | y -= lo; |
962 | if (!(y >= 0.0L && y < 1.0L)) |
963 | abort (); |
964 | m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo; |
965 | } |
966 | # if 0 /* On FreeBSD 6.1/x86, 'long double' numbers sometimes have excess |
967 | precision. */ |
968 | if (!(y == 0.0L)) |
969 | abort (); |
970 | # endif |
971 | /* Normalise. */ |
972 | while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0) |
973 | m.nlimbs--; |
974 | *mp = m; |
975 | *ep = exp - LDBL_MANT_BIT; |
976 | return m.limbs; |
977 | } |
978 | |
979 | # endif |
980 | |
981 | # if NEED_PRINTF_DOUBLE |
982 | |
983 | /* Assuming x is finite and >= 0: |
984 | write x as x = 2^e * m, where m is a bignum. |
985 | Return the allocated memory in case of success, NULL in case of memory |
986 | allocation failure. */ |
987 | static void * |
988 | decode_double (double x, int *ep, mpn_t *mp) |
989 | { |
990 | mpn_t m; |
991 | int exp; |
992 | double y; |
993 | size_t i; |
994 | |
995 | /* Allocate memory for result. */ |
996 | m.nlimbs = (DBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS; |
997 | m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t)); |
998 | if (m.limbs == NULL) |
999 | return NULL; |
1000 | /* Split into exponential part and mantissa. */ |
1001 | y = frexp (x, &exp); |
1002 | if (!(y >= 0.0 && y < 1.0)) |
1003 | abort (); |
1004 | /* x = 2^exp * y = 2^(exp - DBL_MANT_BIT) * (y * 2^DBL_MANT_BIT), and the |
1005 | latter is an integer. */ |
1006 | /* Convert the mantissa (y * 2^DBL_MANT_BIT) to a sequence of limbs. |
1007 | I'm not sure whether it's safe to cast a 'double' value between |
1008 | 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only |
1009 | 'double' values between 0 and 2^16 (to 'unsigned int' or 'int', |
1010 | doesn't matter). */ |
1011 | # if (DBL_MANT_BIT % GMP_LIMB_BITS) != 0 |
1012 | # if (DBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2 |
1013 | { |
1014 | mp_limb_t hi, lo; |
1015 | y *= (mp_limb_t) 1 << (DBL_MANT_BIT % (GMP_LIMB_BITS / 2)); |
1016 | hi = (int) y; |
1017 | y -= hi; |
1018 | if (!(y >= 0.0 && y < 1.0)) |
1019 | abort (); |
1020 | y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); |
1021 | lo = (int) y; |
1022 | y -= lo; |
1023 | if (!(y >= 0.0 && y < 1.0)) |
1024 | abort (); |
1025 | m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo; |
1026 | } |
1027 | # else |
1028 | { |
1029 | mp_limb_t d; |
1030 | y *= (mp_limb_t) 1 << (DBL_MANT_BIT % GMP_LIMB_BITS); |
1031 | d = (int) y; |
1032 | y -= d; |
1033 | if (!(y >= 0.0 && y < 1.0)) |
1034 | abort (); |
1035 | m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = d; |
1036 | } |
1037 | # endif |
1038 | # endif |
1039 | for (i = DBL_MANT_BIT / GMP_LIMB_BITS; i > 0; ) |
1040 | { |
1041 | mp_limb_t hi, lo; |
1042 | y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); |
1043 | hi = (int) y; |
1044 | y -= hi; |
1045 | if (!(y >= 0.0 && y < 1.0)) |
1046 | abort (); |
1047 | y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); |
1048 | lo = (int) y; |
1049 | y -= lo; |
1050 | if (!(y >= 0.0 && y < 1.0)) |
1051 | abort (); |
1052 | m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo; |
1053 | } |
1054 | if (!(y == 0.0)) |
1055 | abort (); |
1056 | /* Normalise. */ |
1057 | while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0) |
1058 | m.nlimbs--; |
1059 | *mp = m; |
1060 | *ep = exp - DBL_MANT_BIT; |
1061 | return m.limbs; |
1062 | } |
1063 | |
1064 | # endif |
1065 | |
1066 | /* Assuming x = 2^e * m is finite and >= 0, and n is an integer: |
1067 | Returns the decimal representation of round (x * 10^n). |
1068 | Return the allocated memory - containing the decimal digits in low-to-high |
1069 | order, terminated with a NUL character - in case of success, NULL in case |
1070 | of memory allocation failure. */ |
1071 | static char * |
1072 | scale10_round_decimal_decoded (int e, mpn_t m, void *memory, int n) |
1073 | { |
1074 | int s; |
1075 | size_t extra_zeroes; |
1076 | unsigned int abs_n; |
1077 | unsigned int abs_s; |
1078 | mp_limb_t *pow5_ptr; |
1079 | size_t pow5_len; |
1080 | unsigned int s_limbs; |
1081 | unsigned int s_bits; |
1082 | mpn_t pow5; |
1083 | mpn_t z; |
1084 | void *z_memory; |
1085 | char *digits; |
1086 | |
1087 | if (memory == NULL) |
1088 | return NULL; |
1089 | /* x = 2^e * m, hence |
1090 | y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m) |
1091 | = round (2^s * 5^n * m). */ |
1092 | s = e + n; |
1093 | extra_zeroes = 0; |
1094 | /* Factor out a common power of 10 if possible. */ |
1095 | if (s > 0 && n > 0) |
1096 | { |
1097 | extra_zeroes = (s < n ? s : n); |
1098 | s -= extra_zeroes; |
1099 | n -= extra_zeroes; |
1100 | } |
1101 | /* Here y = round (2^s * 5^n * m) * 10^extra_zeroes. |
1102 | Before converting to decimal, we need to compute |
1103 | z = round (2^s * 5^n * m). */ |
1104 | /* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same |
1105 | sign. 2.322 is slightly larger than log(5)/log(2). */ |
1106 | abs_n = (n >= 0 ? n : -n); |
1107 | abs_s = (s >= 0 ? s : -s); |
1108 | pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1 |
1109 | + abs_s / GMP_LIMB_BITS + 1) |
1110 | * sizeof (mp_limb_t)); |
1111 | if (pow5_ptr == NULL) |
1112 | { |
1113 | free (memory); |
1114 | return NULL; |
1115 | } |
1116 | /* Initialize with 1. */ |
1117 | pow5_ptr[0] = 1; |
1118 | pow5_len = 1; |
1119 | /* Multiply with 5^|n|. */ |
1120 | if (abs_n > 0) |
1121 | { |
1122 | static mp_limb_t const small_pow5[13 + 1] = |
1123 | { |
1124 | 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, |
1125 | 48828125, 244140625, 1220703125 |
1126 | }; |
1127 | unsigned int n13; |
1128 | for (n13 = 0; n13 <= abs_n; n13 += 13) |
1129 | { |
1130 | mp_limb_t digit1 = small_pow5[n13 + 13 <= abs_n ? 13 : abs_n - n13]; |
1131 | size_t j; |
1132 | mp_twolimb_t carry = 0; |
1133 | for (j = 0; j < pow5_len; j++) |
1134 | { |
1135 | mp_limb_t digit2 = pow5_ptr[j]; |
1136 | carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2; |
1137 | pow5_ptr[j] = (mp_limb_t) carry; |
1138 | carry = carry >> GMP_LIMB_BITS; |
1139 | } |
1140 | if (carry > 0) |
1141 | pow5_ptr[pow5_len++] = (mp_limb_t) carry; |
1142 | } |
1143 | } |
1144 | s_limbs = abs_s / GMP_LIMB_BITS; |
1145 | s_bits = abs_s % GMP_LIMB_BITS; |
1146 | if (n >= 0 ? s >= 0 : s <= 0) |
1147 | { |
1148 | /* Multiply with 2^|s|. */ |
1149 | if (s_bits > 0) |
1150 | { |
1151 | mp_limb_t *ptr = pow5_ptr; |
1152 | mp_twolimb_t accu = 0; |
1153 | size_t count; |
1154 | for (count = pow5_len; count > 0; count--) |
1155 | { |
1156 | accu += (mp_twolimb_t) *ptr << s_bits; |
1157 | *ptr++ = (mp_limb_t) accu; |
1158 | accu = accu >> GMP_LIMB_BITS; |
1159 | } |
1160 | if (accu > 0) |
1161 | { |
1162 | *ptr = (mp_limb_t) accu; |
1163 | pow5_len++; |
1164 | } |
1165 | } |
1166 | if (s_limbs > 0) |
1167 | { |
1168 | size_t count; |
1169 | for (count = pow5_len; count > 0;) |
1170 | { |
1171 | count--; |
1172 | pow5_ptr[s_limbs + count] = pow5_ptr[count]; |
1173 | } |
1174 | for (count = s_limbs; count > 0;) |
1175 | { |
1176 | count--; |
1177 | pow5_ptr[count] = 0; |
1178 | } |
1179 | pow5_len += s_limbs; |
1180 | } |
1181 | pow5.limbs = pow5_ptr; |
1182 | pow5.nlimbs = pow5_len; |
1183 | if (n >= 0) |
1184 | { |
1185 | /* Multiply m with pow5. No division needed. */ |
1186 | z_memory = multiply (m, pow5, &z); |
1187 | } |
1188 | else |
1189 | { |
1190 | /* Divide m by pow5 and round. */ |
1191 | z_memory = divide (m, pow5, &z); |
1192 | } |
1193 | } |
1194 | else |
1195 | { |
1196 | pow5.limbs = pow5_ptr; |
1197 | pow5.nlimbs = pow5_len; |
1198 | if (n >= 0) |
1199 | { |
1200 | /* n >= 0, s < 0. |
1201 | Multiply m with pow5, then divide by 2^|s|. */ |
1202 | mpn_t numerator; |
1203 | mpn_t denominator; |
1204 | void *tmp_memory; |
1205 | tmp_memory = multiply (m, pow5, &numerator); |
1206 | if (tmp_memory == NULL) |
1207 | { |
1208 | free (pow5_ptr); |
1209 | free (memory); |
1210 | return NULL; |
1211 | } |
1212 | /* Construct 2^|s|. */ |
1213 | { |
1214 | mp_limb_t *ptr = pow5_ptr + pow5_len; |
1215 | size_t i; |
1216 | for (i = 0; i < s_limbs; i++) |
1217 | ptr[i] = 0; |
1218 | ptr[s_limbs] = (mp_limb_t) 1 << s_bits; |
1219 | denominator.limbs = ptr; |
1220 | denominator.nlimbs = s_limbs + 1; |
1221 | } |
1222 | z_memory = divide (numerator, denominator, &z); |
1223 | free (tmp_memory); |
1224 | } |
1225 | else |
1226 | { |
1227 | /* n < 0, s > 0. |
1228 | Multiply m with 2^s, then divide by pow5. */ |
1229 | mpn_t numerator; |
1230 | mp_limb_t *num_ptr; |
1231 | num_ptr = (mp_limb_t *) malloc ((m.nlimbs + s_limbs + 1) |
1232 | * sizeof (mp_limb_t)); |
1233 | if (num_ptr == NULL) |
1234 | { |
1235 | free (pow5_ptr); |
1236 | free (memory); |
1237 | return NULL; |
1238 | } |
1239 | { |
1240 | mp_limb_t *destptr = num_ptr; |
1241 | { |
1242 | size_t i; |
1243 | for (i = 0; i < s_limbs; i++) |
1244 | *destptr++ = 0; |
1245 | } |
1246 | if (s_bits > 0) |
1247 | { |
1248 | const mp_limb_t *sourceptr = m.limbs; |
1249 | mp_twolimb_t accu = 0; |
1250 | size_t count; |
1251 | for (count = m.nlimbs; count > 0; count--) |
1252 | { |
1253 | accu += (mp_twolimb_t) *sourceptr++ << s_bits; |
1254 | *destptr++ = (mp_limb_t) accu; |
1255 | accu = accu >> GMP_LIMB_BITS; |
1256 | } |
1257 | if (accu > 0) |
1258 | *destptr++ = (mp_limb_t) accu; |
1259 | } |
1260 | else |
1261 | { |
1262 | const mp_limb_t *sourceptr = m.limbs; |
1263 | size_t count; |
1264 | for (count = m.nlimbs; count > 0; count--) |
1265 | *destptr++ = *sourceptr++; |
1266 | } |
1267 | numerator.limbs = num_ptr; |
1268 | numerator.nlimbs = destptr - num_ptr; |
1269 | } |
1270 | z_memory = divide (numerator, pow5, &z); |
1271 | free (num_ptr); |
1272 | } |
1273 | } |
1274 | free (pow5_ptr); |
1275 | free (memory); |
1276 | |
1277 | /* Here y = round (x * 10^n) = z * 10^extra_zeroes. */ |
1278 | |
1279 | if (z_memory == NULL) |
1280 | return NULL; |
1281 | digits = convert_to_decimal (z, extra_zeroes); |
1282 | free (z_memory); |
1283 | return digits; |
1284 | } |
1285 | |
1286 | # if NEED_PRINTF_LONG_DOUBLE |
1287 | |
1288 | /* Assuming x is finite and >= 0, and n is an integer: |
1289 | Returns the decimal representation of round (x * 10^n). |
1290 | Return the allocated memory - containing the decimal digits in low-to-high |
1291 | order, terminated with a NUL character - in case of success, NULL in case |
1292 | of memory allocation failure. */ |
1293 | static char * |
1294 | scale10_round_decimal_long_double (long double x, int n) |
1295 | { |
1296 | int e IF_LINT(= 0); |
1297 | mpn_t m; |
1298 | void *memory = decode_long_double (x, &e, &m); |
1299 | return scale10_round_decimal_decoded (e, m, memory, n); |
1300 | } |
1301 | |
1302 | # endif |
1303 | |
1304 | # if NEED_PRINTF_DOUBLE |
1305 | |
1306 | /* Assuming x is finite and >= 0, and n is an integer: |
1307 | Returns the decimal representation of round (x * 10^n). |
1308 | Return the allocated memory - containing the decimal digits in low-to-high |
1309 | order, terminated with a NUL character - in case of success, NULL in case |
1310 | of memory allocation failure. */ |
1311 | static char * |
1312 | scale10_round_decimal_double (double x, int n) |
1313 | { |
1314 | int e IF_LINT(= 0); |
1315 | mpn_t m; |
1316 | void *memory = decode_double (x, &e, &m); |
1317 | return scale10_round_decimal_decoded (e, m, memory, n); |
1318 | } |
1319 | |
1320 | # endif |
1321 | |
1322 | # if NEED_PRINTF_LONG_DOUBLE |
1323 | |
1324 | /* Assuming x is finite and > 0: |
1325 | Return an approximation for n with 10^n <= x < 10^(n+1). |
1326 | The approximation is usually the right n, but may be off by 1 sometimes. */ |
1327 | static int |
1328 | floorlog10l (long double x) |
1329 | { |
1330 | int exp; |
1331 | long double y; |
1332 | double z; |
1333 | double l; |
1334 | |
1335 | /* Split into exponential part and mantissa. */ |
1336 | y = frexpl (x, &exp); |
1337 | if (!(y >= 0.0L && y < 1.0L)) |
1338 | abort (); |
1339 | if (y == 0.0L) |
1340 | return INT_MIN; |
1341 | if (y < 0.5L) |
1342 | { |
1343 | while (y < (1.0L / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2)))) |
1344 | { |
1345 | y *= 1.0L * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2)); |
1346 | exp -= GMP_LIMB_BITS; |
1347 | } |
1348 | if (y < (1.0L / (1 << 16))) |
1349 | { |
1350 | y *= 1.0L * (1 << 16); |
1351 | exp -= 16; |
1352 | } |
1353 | if (y < (1.0L / (1 << 8))) |
1354 | { |
1355 | y *= 1.0L * (1 << 8); |
1356 | exp -= 8; |
1357 | } |
1358 | if (y < (1.0L / (1 << 4))) |
1359 | { |
1360 | y *= 1.0L * (1 << 4); |
1361 | exp -= 4; |
1362 | } |
1363 | if (y < (1.0L / (1 << 2))) |
1364 | { |
1365 | y *= 1.0L * (1 << 2); |
1366 | exp -= 2; |
1367 | } |
1368 | if (y < (1.0L / (1 << 1))) |
1369 | { |
1370 | y *= 1.0L * (1 << 1); |
1371 | exp -= 1; |
1372 | } |
1373 | } |
1374 | if (!(y >= 0.5L && y < 1.0L)) |
1375 | abort (); |
1376 | /* Compute an approximation for l = log2(x) = exp + log2(y). */ |
1377 | l = exp; |
1378 | z = y; |
1379 | if (z < 0.70710678118654752444) |
1380 | { |
1381 | z *= 1.4142135623730950488; |
1382 | l -= 0.5; |
1383 | } |
1384 | if (z < 0.8408964152537145431) |
1385 | { |
1386 | z *= 1.1892071150027210667; |
1387 | l -= 0.25; |
1388 | } |
1389 | if (z < 0.91700404320467123175) |
1390 | { |
1391 | z *= 1.0905077326652576592; |
1392 | l -= 0.125; |
1393 | } |
1394 | if (z < 0.9576032806985736469) |
1395 | { |
1396 | z *= 1.0442737824274138403; |
1397 | l -= 0.0625; |
1398 | } |
1399 | /* Now 0.95 <= z <= 1.01. */ |
1400 | z = 1 - z; |
1401 | /* log2(1-z) = 1/log(2) * (- z - z^2/2 - z^3/3 - z^4/4 - ...) |
1402 | Four terms are enough to get an approximation with error < 10^-7. */ |
1403 | l -= 1.4426950408889634074 * z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25))); |
1404 | /* Finally multiply with log(2)/log(10), yields an approximation for |
1405 | log10(x). */ |
1406 | l *= 0.30102999566398119523; |
1407 | /* Round down to the next integer. */ |
1408 | return (int) l + (l < 0 ? -1 : 0); |
1409 | } |
1410 | |
1411 | # endif |
1412 | |
1413 | # if NEED_PRINTF_DOUBLE |
1414 | |
1415 | /* Assuming x is finite and > 0: |
1416 | Return an approximation for n with 10^n <= x < 10^(n+1). |
1417 | The approximation is usually the right n, but may be off by 1 sometimes. */ |
1418 | static int |
1419 | floorlog10 (double x) |
1420 | { |
1421 | int exp; |
1422 | double y; |
1423 | double z; |
1424 | double l; |
1425 | |
1426 | /* Split into exponential part and mantissa. */ |
1427 | y = frexp (x, &exp); |
1428 | if (!(y >= 0.0 && y < 1.0)) |
1429 | abort (); |
1430 | if (y == 0.0) |
1431 | return INT_MIN; |
1432 | if (y < 0.5) |
1433 | { |
1434 | while (y < (1.0 / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2)))) |
1435 | { |
1436 | y *= 1.0 * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2)); |
1437 | exp -= GMP_LIMB_BITS; |
1438 | } |
1439 | if (y < (1.0 / (1 << 16))) |
1440 | { |
1441 | y *= 1.0 * (1 << 16); |
1442 | exp -= 16; |
1443 | } |
1444 | if (y < (1.0 / (1 << 8))) |
1445 | { |
1446 | y *= 1.0 * (1 << 8); |
1447 | exp -= 8; |
1448 | } |
1449 | if (y < (1.0 / (1 << 4))) |
1450 | { |
1451 | y *= 1.0 * (1 << 4); |
1452 | exp -= 4; |
1453 | } |
1454 | if (y < (1.0 / (1 << 2))) |
1455 | { |
1456 | y *= 1.0 * (1 << 2); |
1457 | exp -= 2; |
1458 | } |
1459 | if (y < (1.0 / (1 << 1))) |
1460 | { |
1461 | y *= 1.0 * (1 << 1); |
1462 | exp -= 1; |
1463 | } |
1464 | } |
1465 | if (!(y >= 0.5 && y < 1.0)) |
1466 | abort (); |
1467 | /* Compute an approximation for l = log2(x) = exp + log2(y). */ |
1468 | l = exp; |
1469 | z = y; |
1470 | if (z < 0.70710678118654752444) |
1471 | { |
1472 | z *= 1.4142135623730950488; |
1473 | l -= 0.5; |
1474 | } |
1475 | if (z < 0.8408964152537145431) |
1476 | { |
1477 | z *= 1.1892071150027210667; |
1478 | l -= 0.25; |
1479 | } |
1480 | if (z < 0.91700404320467123175) |
1481 | { |
1482 | z *= 1.0905077326652576592; |
1483 | l -= 0.125; |
1484 | } |
1485 | if (z < 0.9576032806985736469) |
1486 | { |
1487 | z *= 1.0442737824274138403; |
1488 | l -= 0.0625; |
1489 | } |
1490 | /* Now 0.95 <= z <= 1.01. */ |
1491 | z = 1 - z; |
1492 | /* log2(1-z) = 1/log(2) * (- z - z^2/2 - z^3/3 - z^4/4 - ...) |
1493 | Four terms are enough to get an approximation with error < 10^-7. */ |
1494 | l -= 1.4426950408889634074 * z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25))); |
1495 | /* Finally multiply with log(2)/log(10), yields an approximation for |
1496 | log10(x). */ |
1497 | l *= 0.30102999566398119523; |
1498 | /* Round down to the next integer. */ |
1499 | return (int) l + (l < 0 ? -1 : 0); |
1500 | } |
1501 | |
1502 | # endif |
1503 | |
1504 | /* Tests whether a string of digits consists of exactly PRECISION zeroes and |
1505 | a single '1' digit. */ |
1506 | static int |
1507 | is_borderline (const char *digits, size_t precision) |
1508 | { |
1509 | for (; precision > 0; precision--, digits++) |
1510 | if (*digits != '0') |
1511 | return 0; |
1512 | if (*digits != '1') |
1513 | return 0; |
1514 | digits++; |
1515 | return *digits == '\0'; |
1516 | } |
1517 | |
1518 | #endif |
1519 | |
1520 | #if !USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 |
1521 | |
1522 | /* Use a different function name, to make it possible that the 'wchar_t' |
1523 | parametrization and the 'char' parametrization get compiled in the same |
1524 | translation unit. */ |
1525 | # if WIDE_CHAR_VERSION |
1526 | # define MAX_ROOM_NEEDED wmax_room_needed |
1527 | # else |
1528 | # define MAX_ROOM_NEEDED max_room_needed |
1529 | # endif |
1530 | |
1531 | /* Returns the number of TCHAR_T units needed as temporary space for the result |
1532 | of sprintf or SNPRINTF of a single conversion directive. */ |
1533 | static inline size_t |
1534 | MAX_ROOM_NEEDED (const arguments *ap, size_t arg_index, FCHAR_T conversion, |
1535 | arg_type type, int flags, size_t width, int has_precision, |
1536 | size_t precision, int pad_ourselves) |
1537 | { |
1538 | size_t tmp_length; |
1539 | |
1540 | switch (conversion) |
1541 | { |
1542 | case 'd': case 'i': case 'u': |
1543 | # if HAVE_LONG_LONG_INT |
1544 | if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT) |
1545 | tmp_length = |
1546 | (unsigned int) (sizeof (unsigned long long) * CHAR_BIT |
1547 | * 0.30103 /* binary -> decimal */ |
1548 | ) |
1549 | + 1; /* turn floor into ceil */ |
1550 | else |
1551 | # endif |
1552 | if (type == TYPE_LONGINT || type == TYPE_ULONGINT) |
1553 | tmp_length = |
1554 | (unsigned int) (sizeof (unsigned long) * CHAR_BIT |
1555 | * 0.30103 /* binary -> decimal */ |
1556 | ) |
1557 | + 1; /* turn floor into ceil */ |
1558 | else |
1559 | tmp_length = |
1560 | (unsigned int) (sizeof (unsigned int) * CHAR_BIT |
1561 | * 0.30103 /* binary -> decimal */ |
1562 | ) |
1563 | + 1; /* turn floor into ceil */ |
1564 | if (tmp_length < precision) |
1565 | tmp_length = precision; |
1566 | /* Multiply by 2, as an estimate for FLAG_GROUP. */ |
1567 | tmp_length = xsum (tmp_length, tmp_length); |
1568 | /* Add 1, to account for a leading sign. */ |
1569 | tmp_length = xsum (tmp_length, 1); |
1570 | break; |
1571 | |
1572 | case 'o': |
1573 | # if HAVE_LONG_LONG_INT |
1574 | if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT) |
1575 | tmp_length = |
1576 | (unsigned int) (sizeof (unsigned long long) * CHAR_BIT |
1577 | * 0.333334 /* binary -> octal */ |
1578 | ) |
1579 | + 1; /* turn floor into ceil */ |
1580 | else |
1581 | # endif |
1582 | if (type == TYPE_LONGINT || type == TYPE_ULONGINT) |
1583 | tmp_length = |
1584 | (unsigned int) (sizeof (unsigned long) * CHAR_BIT |
1585 | * 0.333334 /* binary -> octal */ |
1586 | ) |
1587 | + 1; /* turn floor into ceil */ |
1588 | else |
1589 | tmp_length = |
1590 | (unsigned int) (sizeof (unsigned int) * CHAR_BIT |
1591 | * 0.333334 /* binary -> octal */ |
1592 | ) |
1593 | + 1; /* turn floor into ceil */ |
1594 | if (tmp_length < precision) |
1595 | tmp_length = precision; |
1596 | /* Add 1, to account for a leading sign. */ |
1597 | tmp_length = xsum (tmp_length, 1); |
1598 | break; |
1599 | |
1600 | case 'x': case 'X': |
1601 | # if HAVE_LONG_LONG_INT |
1602 | if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT) |
1603 | tmp_length = |
1604 | (unsigned int) (sizeof (unsigned long long) * CHAR_BIT |
1605 | * 0.25 /* binary -> hexadecimal */ |
1606 | ) |
1607 | + 1; /* turn floor into ceil */ |
1608 | else |
1609 | # endif |
1610 | if (type == TYPE_LONGINT || type == TYPE_ULONGINT) |
1611 | tmp_length = |
1612 | (unsigned int) (sizeof (unsigned long) * CHAR_BIT |
1613 | * 0.25 /* binary -> hexadecimal */ |
1614 | ) |
1615 | + 1; /* turn floor into ceil */ |
1616 | else |
1617 | tmp_length = |
1618 | (unsigned int) (sizeof (unsigned int) * CHAR_BIT |
1619 | * 0.25 /* binary -> hexadecimal */ |
1620 | ) |
1621 | + 1; /* turn floor into ceil */ |
1622 | if (tmp_length < precision) |
1623 | tmp_length = precision; |
1624 | /* Add 2, to account for a leading sign or alternate form. */ |
1625 | tmp_length = xsum (tmp_length, 2); |
1626 | break; |
1627 | |
1628 | case 'f': case 'F': |
1629 | if (type == TYPE_LONGDOUBLE) |
1630 | tmp_length = |
1631 | (unsigned int) (LDBL_MAX_EXP |
1632 | * 0.30103 /* binary -> decimal */ |
1633 | * 2 /* estimate for FLAG_GROUP */ |
1634 | ) |
1635 | + 1 /* turn floor into ceil */ |
1636 | + 10; /* sign, decimal point etc. */ |
1637 | else |
1638 | tmp_length = |
1639 | (unsigned int) (DBL_MAX_EXP |
1640 | * 0.30103 /* binary -> decimal */ |
1641 | * 2 /* estimate for FLAG_GROUP */ |
1642 | ) |
1643 | + 1 /* turn floor into ceil */ |
1644 | + 10; /* sign, decimal point etc. */ |
1645 | tmp_length = xsum (tmp_length, precision); |
1646 | break; |
1647 | |
1648 | case 'e': case 'E': case 'g': case 'G': |
1649 | tmp_length = |
1650 | 12; /* sign, decimal point, exponent etc. */ |
1651 | tmp_length = xsum (tmp_length, precision); |
1652 | break; |
1653 | |
1654 | case 'a': case 'A': |
1655 | if (type == TYPE_LONGDOUBLE) |
1656 | tmp_length = |
1657 | (unsigned int) (LDBL_DIG |
1658 | * 0.831 /* decimal -> hexadecimal */ |
1659 | ) |
1660 | + 1; /* turn floor into ceil */ |
1661 | else |
1662 | tmp_length = |
1663 | (unsigned int) (DBL_DIG |
1664 | * 0.831 /* decimal -> hexadecimal */ |
1665 | ) |
1666 | + 1; /* turn floor into ceil */ |
1667 | if (tmp_length < precision) |
1668 | tmp_length = precision; |
1669 | /* Account for sign, decimal point etc. */ |
1670 | tmp_length = xsum (tmp_length, 12); |
1671 | break; |
1672 | |
1673 | case 'c': |
1674 | # if HAVE_WINT_T && !WIDE_CHAR_VERSION |
1675 | if (type == TYPE_WIDE_CHAR) |
1676 | tmp_length = MB_CUR_MAX; |
1677 | else |
1678 | # endif |
1679 | tmp_length = 1; |
1680 | break; |
1681 | |
1682 | case 's': |
1683 | # if HAVE_WCHAR_T |
1684 | if (type == TYPE_WIDE_STRING) |
1685 | { |
1686 | # if WIDE_CHAR_VERSION |
1687 | /* ISO C says about %ls in fwprintf: |
1688 | "If the precision is not specified or is greater than the size |
1689 | of the array, the array shall contain a null wide character." |
1690 | So if there is a precision, we must not use wcslen. */ |
1691 | const wchar_t *arg = ap->arg[arg_index].a.a_wide_string; |
1692 | |
1693 | if (has_precision) |
1694 | tmp_length = local_wcsnlen (arg, precision); |
1695 | else |
1696 | tmp_length = local_wcslen (arg); |
1697 | # else |
1698 | /* ISO C says about %ls in fprintf: |
1699 | "If a precision is specified, no more than that many bytes are |
1700 | written (including shift sequences, if any), and the array |
1701 | shall contain a null wide character if, to equal the multibyte |
1702 | character sequence length given by the precision, the function |
1703 | would need to access a wide character one past the end of the |
1704 | array." |
1705 | So if there is a precision, we must not use wcslen. */ |
1706 | /* This case has already been handled separately in VASNPRINTF. */ |
1707 | abort (); |
1708 | # endif |
1709 | } |
1710 | else |
1711 | # endif |
1712 | { |
1713 | # if WIDE_CHAR_VERSION |
1714 | /* ISO C says about %s in fwprintf: |
1715 | "If the precision is not specified or is greater than the size |
1716 | of the converted array, the converted array shall contain a |
1717 | null wide character." |
1718 | So if there is a precision, we must not use strlen. */ |
1719 | /* This case has already been handled separately in VASNPRINTF. */ |
1720 | abort (); |
1721 | # else |
1722 | /* ISO C says about %s in fprintf: |
1723 | "If the precision is not specified or greater than the size of |
1724 | the array, the array shall contain a null character." |
1725 | So if there is a precision, we must not use strlen. */ |
1726 | const char *arg = ap->arg[arg_index].a.a_string; |
1727 | |
1728 | if (has_precision) |
1729 | tmp_length = local_strnlen (arg, precision); |
1730 | else |
1731 | tmp_length = strlen (arg); |
1732 | # endif |
1733 | } |
1734 | break; |
1735 | |
1736 | case 'p': |
1737 | tmp_length = |
1738 | (unsigned int) (sizeof (void *) * CHAR_BIT |
1739 | * 0.25 /* binary -> hexadecimal */ |
1740 | ) |
1741 | + 1 /* turn floor into ceil */ |
1742 | + 2; /* account for leading 0x */ |
1743 | break; |
1744 | |
1745 | default: |
1746 | abort (); |
1747 | } |
1748 | |
1749 | if (!pad_ourselves) |
1750 | { |
1751 | # if ENABLE_UNISTDIO |
1752 | /* Padding considers the number of characters, therefore the number of |
1753 | elements after padding may be |
1754 | > max (tmp_length, width) |
1755 | but is certainly |
1756 | <= tmp_length + width. */ |
1757 | tmp_length = xsum (tmp_length, width); |
1758 | # else |
1759 | /* Padding considers the number of elements, says POSIX. */ |
1760 | if (tmp_length < width) |
1761 | tmp_length = width; |
1762 | # endif |
1763 | } |
1764 | |
1765 | tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */ |
1766 | |
1767 | return tmp_length; |
1768 | } |
1769 | |
1770 | #endif |
1771 | |
1772 | DCHAR_T * |
1773 | VASNPRINTF (DCHAR_T *resultbuf, size_t *lengthp, |
1774 | const FCHAR_T *format, va_list args) |
1775 | { |
1776 | DIRECTIVES d; |
1777 | arguments a; |
1778 | |
1779 | if (PRINTF_PARSE (format, &d, &a) < 0) |
1780 | /* errno is already set. */ |
1781 | return NULL; |
1782 | |
1783 | #define CLEANUP() \ |
1784 | if (d.dir != d.direct_alloc_dir) \ |
1785 | free (d.dir); \ |
1786 | if (a.arg != a.direct_alloc_arg) \ |
1787 | free (a.arg); |
1788 | |
1789 | if (PRINTF_FETCHARGS (args, &a) < 0) |
1790 | { |
1791 | CLEANUP (); |
1792 | errno = EINVAL; |
1793 | return NULL; |
1794 | } |
1795 | |
1796 | { |
1797 | size_t buf_neededlength; |
1798 | TCHAR_T *buf; |
1799 | TCHAR_T *buf_malloced; |
1800 | const FCHAR_T *cp; |
1801 | size_t i; |
1802 | DIRECTIVE *dp; |
1803 | /* Output string accumulator. */ |
1804 | DCHAR_T *result; |
1805 | size_t allocated; |
1806 | size_t length; |
1807 | |
1808 | /* Allocate a small buffer that will hold a directive passed to |
1809 | sprintf or snprintf. */ |
1810 | buf_neededlength = |
1811 | xsum4 (7, d.max_width_length, d.max_precision_length, 6); |
1812 | #if HAVE_ALLOCA |
1813 | if (buf_neededlength < 4000 / sizeof (TCHAR_T)) |
1814 | { |
1815 | buf = (TCHAR_T *) alloca (buf_neededlength * sizeof (TCHAR_T)); |
1816 | buf_malloced = NULL; |
1817 | } |
1818 | else |
1819 | #endif |
1820 | { |
1821 | size_t buf_memsize = xtimes (buf_neededlength, sizeof (TCHAR_T)); |
1822 | if (size_overflow_p (buf_memsize)) |
1823 | goto out_of_memory_1; |
1824 | buf = (TCHAR_T *) malloc (buf_memsize); |
1825 | if (buf == NULL) |
1826 | goto out_of_memory_1; |
1827 | buf_malloced = buf; |
1828 | } |
1829 | |
1830 | if (resultbuf != NULL) |
1831 | { |
1832 | result = resultbuf; |
1833 | allocated = *lengthp; |
1834 | } |
1835 | else |
1836 | { |
1837 | result = NULL; |
1838 | allocated = 0; |
1839 | } |
1840 | length = 0; |
1841 | /* Invariants: |
1842 | result is either == resultbuf or == NULL or malloc-allocated. |
1843 | If length > 0, then result != NULL. */ |
1844 | |
1845 | /* Ensures that allocated >= needed. Aborts through a jump to |
1846 | out_of_memory if needed is SIZE_MAX or otherwise too big. */ |
1847 | #define ENSURE_ALLOCATION(needed) \ |
1848 | if ((needed) > allocated) \ |
1849 | { \ |
1850 | size_t memory_size; \ |
1851 | DCHAR_T *memory; \ |
1852 | \ |
1853 | allocated = (allocated > 0 ? xtimes (allocated, 2) : 12); \ |
1854 | if ((needed) > allocated) \ |
1855 | allocated = (needed); \ |
1856 | memory_size = xtimes (allocated, sizeof (DCHAR_T)); \ |
1857 | if (size_overflow_p (memory_size)) \ |
1858 | goto out_of_memory; \ |
1859 | if (result == resultbuf || result == NULL) \ |
1860 | memory = (DCHAR_T *) malloc (memory_size); \ |
1861 | else \ |
1862 | memory = (DCHAR_T *) realloc (result, memory_size); \ |
1863 | if (memory == NULL) \ |
1864 | goto out_of_memory; \ |
1865 | if (result == resultbuf && length > 0) \ |
1866 | DCHAR_CPY (memory, result, length); \ |
1867 | result = memory; \ |
1868 | } |
1869 | |
1870 | for (cp = format, i = 0, dp = &d.dir[0]; ; cp = dp->dir_end, i++, dp++) |
1871 | { |
1872 | if (cp != dp->dir_start) |
1873 | { |
1874 | size_t n = dp->dir_start - cp; |
1875 | size_t augmented_length = xsum (length, n); |
1876 | |
1877 | ENSURE_ALLOCATION (augmented_length); |
1878 | /* This copies a piece of FCHAR_T[] into a DCHAR_T[]. Here we |
1879 | need that the format string contains only ASCII characters |
1880 | if FCHAR_T and DCHAR_T are not the same type. */ |
1881 | if (sizeof (FCHAR_T) == sizeof (DCHAR_T)) |
1882 | { |
1883 | DCHAR_CPY (result + length, (const DCHAR_T *) cp, n); |
1884 | length = augmented_length; |
1885 | } |
1886 | else |
1887 | { |
1888 | do |
1889 | result[length++] = (unsigned char) *cp++; |
1890 | while (--n > 0); |
1891 | } |
1892 | } |
1893 | if (i == d.count) |
1894 | break; |
1895 | |
1896 | /* Execute a single directive. */ |
1897 | if (dp->conversion == '%') |
1898 | { |
1899 | size_t augmented_length; |
1900 | |
1901 | if (!(dp->arg_index == ARG_NONE)) |
1902 | abort (); |
1903 | augmented_length = xsum (length, 1); |
1904 | ENSURE_ALLOCATION (augmented_length); |
1905 | result[length] = '%'; |
1906 | length = augmented_length; |
1907 | } |
1908 | else |
1909 | { |
1910 | if (!(dp->arg_index != ARG_NONE)) |
1911 | abort (); |
1912 | |
1913 | if (dp->conversion == 'n') |
1914 | { |
1915 | switch (a.arg[dp->arg_index].type) |
1916 | { |
1917 | case TYPE_COUNT_SCHAR_POINTER: |
1918 | *a.arg[dp->arg_index].a.a_count_schar_pointer = length; |
1919 | break; |
1920 | case TYPE_COUNT_SHORT_POINTER: |
1921 | *a.arg[dp->arg_index].a.a_count_short_pointer = length; |
1922 | break; |
1923 | case TYPE_COUNT_INT_POINTER: |
1924 | *a.arg[dp->arg_index].a.a_count_int_pointer = length; |
1925 | break; |
1926 | case TYPE_COUNT_LONGINT_POINTER: |
1927 | *a.arg[dp->arg_index].a.a_count_longint_pointer = length; |
1928 | break; |
1929 | #if HAVE_LONG_LONG_INT |
1930 | case TYPE_COUNT_LONGLONGINT_POINTER: |
1931 | *a.arg[dp->arg_index].a.a_count_longlongint_pointer = length; |
1932 | break; |
1933 | #endif |
1934 | default: |
1935 | abort (); |
1936 | } |
1937 | } |
1938 | #if ENABLE_UNISTDIO |
1939 | /* The unistdio extensions. */ |
1940 | else if (dp->conversion == 'U') |
1941 | { |
1942 | arg_type type = a.arg[dp->arg_index].type; |
1943 | int flags = dp->flags; |
1944 | int has_width; |
1945 | size_t width; |
1946 | int has_precision; |
1947 | size_t precision; |
1948 | |
1949 | has_width = 0; |
1950 | width = 0; |
1951 | if (dp->width_start != dp->width_end) |
1952 | { |
1953 | if (dp->width_arg_index != ARG_NONE) |
1954 | { |
1955 | int arg; |
1956 | |
1957 | if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) |
1958 | abort (); |
1959 | arg = a.arg[dp->width_arg_index].a.a_int; |
1960 | if (arg < 0) |
1961 | { |
1962 | /* "A negative field width is taken as a '-' flag |
1963 | followed by a positive field width." */ |
1964 | flags |= FLAG_LEFT; |
1965 | width = (unsigned int) (-arg); |
1966 | } |
1967 | else |
1968 | width = arg; |
1969 | } |
1970 | else |
1971 | { |
1972 | const FCHAR_T *digitp = dp->width_start; |
1973 | |
1974 | do |
1975 | width = xsum (xtimes (width, 10), *digitp++ - '0'); |
1976 | while (digitp != dp->width_end); |
1977 | } |
1978 | has_width = 1; |
1979 | } |
1980 | |
1981 | has_precision = 0; |
1982 | precision = 0; |
1983 | if (dp->precision_start != dp->precision_end) |
1984 | { |
1985 | if (dp->precision_arg_index != ARG_NONE) |
1986 | { |
1987 | int arg; |
1988 | |
1989 | if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) |
1990 | abort (); |
1991 | arg = a.arg[dp->precision_arg_index].a.a_int; |
1992 | /* "A negative precision is taken as if the precision |
1993 | were omitted." */ |
1994 | if (arg >= 0) |
1995 | { |
1996 | precision = arg; |
1997 | has_precision = 1; |
1998 | } |
1999 | } |
2000 | else |
2001 | { |
2002 | const FCHAR_T *digitp = dp->precision_start + 1; |
2003 | |
2004 | precision = 0; |
2005 | while (digitp != dp->precision_end) |
2006 | precision = xsum (xtimes (precision, 10), *digitp++ - '0'); |
2007 | has_precision = 1; |
2008 | } |
2009 | } |
2010 | |
2011 | switch (type) |
2012 | { |
2013 | case TYPE_U8_STRING: |
2014 | { |
2015 | const uint8_t *arg = a.arg[dp->arg_index].a.a_u8_string; |
2016 | const uint8_t *arg_end; |
2017 | size_t characters; |
2018 | |
2019 | if (has_precision) |
2020 | { |
2021 | /* Use only PRECISION characters, from the left. */ |
2022 | arg_end = arg; |
2023 | characters = 0; |
2024 | for (; precision > 0; precision--) |
2025 | { |
2026 | int count = u8_strmblen (arg_end); |
2027 | if (count == 0) |
2028 | break; |
2029 | if (count < 0) |
2030 | { |
2031 | if (!(result == resultbuf || result == NULL)) |
2032 | free (result); |
2033 | if (buf_malloced != NULL) |
2034 | free (buf_malloced); |
2035 | CLEANUP (); |
2036 | errno = EILSEQ; |
2037 | return NULL; |
2038 | } |
2039 | arg_end += count; |
2040 | characters++; |
2041 | } |
2042 | } |
2043 | else if (has_width) |
2044 | { |
2045 | /* Use the entire string, and count the number of |
2046 | characters. */ |
2047 | arg_end = arg; |
2048 | characters = 0; |
2049 | for (;;) |
2050 | { |
2051 | int count = u8_strmblen (arg_end); |
2052 | if (count == 0) |
2053 | break; |
2054 | if (count < 0) |
2055 | { |
2056 | if (!(result == resultbuf || result == NULL)) |
2057 | free (result); |
2058 | if (buf_malloced != NULL) |
2059 | free (buf_malloced); |
2060 | CLEANUP (); |
2061 | errno = EILSEQ; |
2062 | return NULL; |
2063 | } |
2064 | arg_end += count; |
2065 | characters++; |
2066 | } |
2067 | } |
2068 | else |
2069 | { |
2070 | /* Use the entire string. */ |
2071 | arg_end = arg + u8_strlen (arg); |
2072 | /* The number of characters doesn't matter. */ |
2073 | characters = 0; |
2074 | } |
2075 | |
2076 | if (has_width && width > characters |
2077 | && !(dp->flags & FLAG_LEFT)) |
2078 | { |
2079 | size_t n = width - characters; |
2080 | ENSURE_ALLOCATION (xsum (length, n)); |
2081 | DCHAR_SET (result + length, ' ', n); |
2082 | length += n; |
2083 | } |
2084 | |
2085 | # if DCHAR_IS_UINT8_T |
2086 | { |
2087 | size_t n = arg_end - arg; |
2088 | ENSURE_ALLOCATION (xsum (length, n)); |
2089 | DCHAR_CPY (result + length, arg, n); |
2090 | length += n; |
2091 | } |
2092 | # else |
2093 | { /* Convert. */ |
2094 | DCHAR_T *converted = result + length; |
2095 | size_t converted_len = allocated - length; |
2096 | # if DCHAR_IS_TCHAR |
2097 | /* Convert from UTF-8 to locale encoding. */ |
2098 | converted = |
2099 | u8_conv_to_encoding (locale_charset (), |
2100 | iconveh_question_mark, |
2101 | arg, arg_end - arg, NULL, |
2102 | converted, &converted_len); |
2103 | # else |
2104 | /* Convert from UTF-8 to UTF-16/UTF-32. */ |
2105 | converted = |
2106 | U8_TO_DCHAR (arg, arg_end - arg, |
2107 | converted, &converted_len); |
2108 | # endif |
2109 | if (converted == NULL) |
2110 | { |
2111 | int saved_errno = errno; |
2112 | if (!(result == resultbuf || result == NULL)) |
2113 | free (result); |
2114 | if (buf_malloced != NULL) |
2115 | free (buf_malloced); |
2116 | CLEANUP (); |
2117 | errno = saved_errno; |
2118 | return NULL; |
2119 | } |
2120 | if (converted != result + length) |
2121 | { |
2122 | ENSURE_ALLOCATION (xsum (length, converted_len)); |
2123 | DCHAR_CPY (result + length, converted, converted_len); |
2124 | free (converted); |
2125 | } |
2126 | length += converted_len; |
2127 | } |
2128 | # endif |
2129 | |
2130 | if (has_width && width > characters |
2131 | && (dp->flags & FLAG_LEFT)) |
2132 | { |
2133 | size_t n = width - characters; |
2134 | ENSURE_ALLOCATION (xsum (length, n)); |
2135 | DCHAR_SET (result + length, ' ', n); |
2136 | length += n; |
2137 | } |
2138 | } |
2139 | break; |
2140 | |
2141 | case TYPE_U16_STRING: |
2142 | { |
2143 | const uint16_t *arg = a.arg[dp->arg_index].a.a_u16_string; |
2144 | const uint16_t *arg_end; |
2145 | size_t characters; |
2146 | |
2147 | if (has_precision) |
2148 | { |
2149 | /* Use only PRECISION characters, from the left. */ |
2150 | arg_end = arg; |
2151 | characters = 0; |
2152 | for (; precision > 0; precision--) |
2153 | { |
2154 | int count = u16_strmblen (arg_end); |
2155 | if (count == 0) |
2156 | break; |
2157 | if (count < 0) |
2158 | { |
2159 | if (!(result == resultbuf || result == NULL)) |
2160 | free (result); |
2161 | if (buf_malloced != NULL) |
2162 | free (buf_malloced); |
2163 | CLEANUP (); |
2164 | errno = EILSEQ; |
2165 | return NULL; |
2166 | } |
2167 | arg_end += count; |
2168 | characters++; |
2169 | } |
2170 | } |
2171 | else if (has_width) |
2172 | { |
2173 | /* Use the entire string, and count the number of |
2174 | characters. */ |
2175 | arg_end = arg; |
2176 | characters = 0; |
2177 | for (;;) |
2178 | { |
2179 | int count = u16_strmblen (arg_end); |
2180 | if (count == 0) |
2181 | break; |
2182 | if (count < 0) |
2183 | { |
2184 | if (!(result == resultbuf || result == NULL)) |
2185 | free (result); |
2186 | if (buf_malloced != NULL) |
2187 | free (buf_malloced); |
2188 | CLEANUP (); |
2189 | errno = EILSEQ; |
2190 | return NULL; |
2191 | } |
2192 | arg_end += count; |
2193 | characters++; |
2194 | } |
2195 | } |
2196 | else |
2197 | { |
2198 | /* Use the entire string. */ |
2199 | arg_end = arg + u16_strlen (arg); |
2200 | /* The number of characters doesn't matter. */ |
2201 | characters = 0; |
2202 | } |
2203 | |
2204 | if (has_width && width > characters |
2205 | && !(dp->flags & FLAG_LEFT)) |
2206 | { |
2207 | size_t n = width - characters; |
2208 | ENSURE_ALLOCATION (xsum (length, n)); |
2209 | DCHAR_SET (result + length, ' ', n); |
2210 | length += n; |
2211 | } |
2212 | |
2213 | # if DCHAR_IS_UINT16_T |
2214 | { |
2215 | size_t n = arg_end - arg; |
2216 | ENSURE_ALLOCATION (xsum (length, n)); |
2217 | DCHAR_CPY (result + length, arg, n); |
2218 | length += n; |
2219 | } |
2220 | # else |
2221 | { /* Convert. */ |
2222 | DCHAR_T *converted = result + length; |
2223 | size_t converted_len = allocated - length; |
2224 | # if DCHAR_IS_TCHAR |
2225 | /* Convert from UTF-16 to locale encoding. */ |
2226 | converted = |
2227 | u16_conv_to_encoding (locale_charset (), |
2228 | iconveh_question_mark, |
2229 | arg, arg_end - arg, NULL, |
2230 | converted, &converted_len); |
2231 | # else |
2232 | /* Convert from UTF-16 to UTF-8/UTF-32. */ |
2233 | converted = |
2234 | U16_TO_DCHAR (arg, arg_end - arg, |
2235 | converted, &converted_len); |
2236 | # endif |
2237 | if (converted == NULL) |
2238 | { |
2239 | int saved_errno = errno; |
2240 | if (!(result == resultbuf || result == NULL)) |
2241 | free (result); |
2242 | if (buf_malloced != NULL) |
2243 | free (buf_malloced); |
2244 | CLEANUP (); |
2245 | errno = saved_errno; |
2246 | return NULL; |
2247 | } |
2248 | if (converted != result + length) |
2249 | { |
2250 | ENSURE_ALLOCATION (xsum (length, converted_len)); |
2251 | DCHAR_CPY (result + length, converted, converted_len); |
2252 | free (converted); |
2253 | } |
2254 | length += converted_len; |
2255 | } |
2256 | # endif |
2257 | |
2258 | if (has_width && width > characters |
2259 | && (dp->flags & FLAG_LEFT)) |
2260 | { |
2261 | size_t n = width - characters; |
2262 | ENSURE_ALLOCATION (xsum (length, n)); |
2263 | DCHAR_SET (result + length, ' ', n); |
2264 | length += n; |
2265 | } |
2266 | } |
2267 | break; |
2268 | |
2269 | case TYPE_U32_STRING: |
2270 | { |
2271 | const uint32_t *arg = a.arg[dp->arg_index].a.a_u32_string; |
2272 | const uint32_t *arg_end; |
2273 | size_t characters; |
2274 | |
2275 | if (has_precision) |
2276 | { |
2277 | /* Use only PRECISION characters, from the left. */ |
2278 | arg_end = arg; |
2279 | characters = 0; |
2280 | for (; precision > 0; precision--) |
2281 | { |
2282 | int count = u32_strmblen (arg_end); |
2283 | if (count == 0) |
2284 | break; |
2285 | if (count < 0) |
2286 | { |
2287 | if (!(result == resultbuf || result == NULL)) |
2288 | free (result); |
2289 | if (buf_malloced != NULL) |
2290 | free (buf_malloced); |
2291 | CLEANUP (); |
2292 | errno = EILSEQ; |
2293 | return NULL; |
2294 | } |
2295 | arg_end += count; |
2296 | characters++; |
2297 | } |
2298 | } |
2299 | else if (has_width) |
2300 | { |
2301 | /* Use the entire string, and count the number of |
2302 | characters. */ |
2303 | arg_end = arg; |
2304 | characters = 0; |
2305 | for (;;) |
2306 | { |
2307 | int count = u32_strmblen (arg_end); |
2308 | if (count == 0) |
2309 | break; |
2310 | if (count < 0) |
2311 | { |
2312 | if (!(result == resultbuf || result == NULL)) |
2313 | free (result); |
2314 | if (buf_malloced != NULL) |
2315 | free (buf_malloced); |
2316 | CLEANUP (); |
2317 | errno = EILSEQ; |
2318 | return NULL; |
2319 | } |
2320 | arg_end += count; |
2321 | characters++; |
2322 | } |
2323 | } |
2324 | else |
2325 | { |
2326 | /* Use the entire string. */ |
2327 | arg_end = arg + u32_strlen (arg); |
2328 | /* The number of characters doesn't matter. */ |
2329 | characters = 0; |
2330 | } |
2331 | |
2332 | if (has_width && width > characters |
2333 | && !(dp->flags & FLAG_LEFT)) |
2334 | { |
2335 | size_t n = width - characters; |
2336 | ENSURE_ALLOCATION (xsum (length, n)); |
2337 | DCHAR_SET (result + length, ' ', n); |
2338 | length += n; |
2339 | } |
2340 | |
2341 | # if DCHAR_IS_UINT32_T |
2342 | { |
2343 | size_t n = arg_end - arg; |
2344 | ENSURE_ALLOCATION (xsum (length, n)); |
2345 | DCHAR_CPY (result + length, arg, n); |
2346 | length += n; |
2347 | } |
2348 | # else |
2349 | { /* Convert. */ |
2350 | DCHAR_T *converted = result + length; |
2351 | size_t converted_len = allocated - length; |
2352 | # if DCHAR_IS_TCHAR |
2353 | /* Convert from UTF-32 to locale encoding. */ |
2354 | converted = |
2355 | u32_conv_to_encoding (locale_charset (), |
2356 | iconveh_question_mark, |
2357 | arg, arg_end - arg, NULL, |
2358 | converted, &converted_len); |
2359 | # else |
2360 | /* Convert from UTF-32 to UTF-8/UTF-16. */ |
2361 | converted = |
2362 | U32_TO_DCHAR (arg, arg_end - arg, |
2363 | converted, &converted_len); |
2364 | # endif |
2365 | if (converted == NULL) |
2366 | { |
2367 | int saved_errno = errno; |
2368 | if (!(result == resultbuf || result == NULL)) |
2369 | free (result); |
2370 | if (buf_malloced != NULL) |
2371 | free (buf_malloced); |
2372 | CLEANUP (); |
2373 | errno = saved_errno; |
2374 | return NULL; |
2375 | } |
2376 | if (converted != result + length) |
2377 | { |
2378 | ENSURE_ALLOCATION (xsum (length, converted_len)); |
2379 | DCHAR_CPY (result + length, converted, converted_len); |
2380 | free (converted); |
2381 | } |
2382 | length += converted_len; |
2383 | } |
2384 | # endif |
2385 | |
2386 | if (has_width && width > characters |
2387 | && (dp->flags & FLAG_LEFT)) |
2388 | { |
2389 | size_t n = width - characters; |
2390 | ENSURE_ALLOCATION (xsum (length, n)); |
2391 | DCHAR_SET (result + length, ' ', n); |
2392 | length += n; |
2393 | } |
2394 | } |
2395 | break; |
2396 | |
2397 | default: |
2398 | abort (); |
2399 | } |
2400 | } |
2401 | #endif |
2402 | #if (!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || (NEED_PRINTF_DIRECTIVE_LS && !defined IN_LIBINTL)) && HAVE_WCHAR_T |
2403 | else if (dp->conversion == 's' |
2404 | # if WIDE_CHAR_VERSION |
2405 | && a.arg[dp->arg_index].type != TYPE_WIDE_STRING |
2406 | # else |
2407 | && a.arg[dp->arg_index].type == TYPE_WIDE_STRING |
2408 | # endif |
2409 | ) |
2410 | { |
2411 | /* The normal handling of the 's' directive below requires |
2412 | allocating a temporary buffer. The determination of its |
2413 | length (tmp_length), in the case when a precision is |
2414 | specified, below requires a conversion between a char[] |
2415 | string and a wchar_t[] wide string. It could be done, but |
2416 | we have no guarantee that the implementation of sprintf will |
2417 | use the exactly same algorithm. Without this guarantee, it |
2418 | is possible to have buffer overrun bugs. In order to avoid |
2419 | such bugs, we implement the entire processing of the 's' |
2420 | directive ourselves. */ |
2421 | int flags = dp->flags; |
2422 | int has_width; |
2423 | size_t width; |
2424 | int has_precision; |
2425 | size_t precision; |
2426 | |
2427 | has_width = 0; |
2428 | width = 0; |
2429 | if (dp->width_start != dp->width_end) |
2430 | { |
2431 | if (dp->width_arg_index != ARG_NONE) |
2432 | { |
2433 | int arg; |
2434 | |
2435 | if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) |
2436 | abort (); |
2437 | arg = a.arg[dp->width_arg_index].a.a_int; |
2438 | if (arg < 0) |
2439 | { |
2440 | /* "A negative field width is taken as a '-' flag |
2441 | followed by a positive field width." */ |
2442 | flags |= FLAG_LEFT; |
2443 | width = (unsigned int) (-arg); |
2444 | } |
2445 | else |
2446 | width = arg; |
2447 | } |
2448 | else |
2449 | { |
2450 | const FCHAR_T *digitp = dp->width_start; |
2451 | |
2452 | do |
2453 | width = xsum (xtimes (width, 10), *digitp++ - '0'); |
2454 | while (digitp != dp->width_end); |
2455 | } |
2456 | has_width = 1; |
2457 | } |
2458 | |
2459 | has_precision = 0; |
2460 | precision = 6; |
2461 | if (dp->precision_start != dp->precision_end) |
2462 | { |
2463 | if (dp->precision_arg_index != ARG_NONE) |
2464 | { |
2465 | int arg; |
2466 | |
2467 | if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) |
2468 | abort (); |
2469 | arg = a.arg[dp->precision_arg_index].a.a_int; |
2470 | /* "A negative precision is taken as if the precision |
2471 | were omitted." */ |
2472 | if (arg >= 0) |
2473 | { |
2474 | precision = arg; |
2475 | has_precision = 1; |
2476 | } |
2477 | } |
2478 | else |
2479 | { |
2480 | const FCHAR_T *digitp = dp->precision_start + 1; |
2481 | |
2482 | precision = 0; |
2483 | while (digitp != dp->precision_end) |
2484 | precision = xsum (xtimes (precision, 10), *digitp++ - '0'); |
2485 | has_precision = 1; |
2486 | } |
2487 | } |
2488 | |
2489 | # if WIDE_CHAR_VERSION |
2490 | /* %s in vasnwprintf. See the specification of fwprintf. */ |
2491 | { |
2492 | const char *arg = a.arg[dp->arg_index].a.a_string; |
2493 | const char *arg_end; |
2494 | size_t characters; |
2495 | |
2496 | if (has_precision) |
2497 | { |
2498 | /* Use only as many bytes as needed to produce PRECISION |
2499 | wide characters, from the left. */ |
2500 | # if HAVE_MBRTOWC |
2501 | mbstate_t state; |
2502 | memset (&state, '\0', sizeof (mbstate_t)); |
2503 | # endif |
2504 | arg_end = arg; |
2505 | characters = 0; |
2506 | for (; precision > 0; precision--) |
2507 | { |
2508 | int count; |
2509 | # if HAVE_MBRTOWC |
2510 | count = mbrlen (arg_end, MB_CUR_MAX, &state); |
2511 | # else |
2512 | count = mblen (arg_end, MB_CUR_MAX); |
2513 | # endif |
2514 | if (count == 0) |
2515 | /* Found the terminating NUL. */ |
2516 | break; |
2517 | if (count < 0) |
2518 | { |
2519 | /* Invalid or incomplete multibyte character. */ |
2520 | if (!(result == resultbuf || result == NULL)) |
2521 | free (result); |
2522 | if (buf_malloced != NULL) |
2523 | free (buf_malloced); |
2524 | CLEANUP (); |
2525 | errno = EILSEQ; |
2526 | return NULL; |
2527 | } |
2528 | arg_end += count; |
2529 | characters++; |
2530 | } |
2531 | } |
2532 | else if (has_width) |
2533 | { |
2534 | /* Use the entire string, and count the number of wide |
2535 | characters. */ |
2536 | # if HAVE_MBRTOWC |
2537 | mbstate_t state; |
2538 | memset (&state, '\0', sizeof (mbstate_t)); |
2539 | # endif |
2540 | arg_end = arg; |
2541 | characters = 0; |
2542 | for (;;) |
2543 | { |
2544 | int count; |
2545 | # if HAVE_MBRTOWC |
2546 | count = mbrlen (arg_end, MB_CUR_MAX, &state); |
2547 | # else |
2548 | count = mblen (arg_end, MB_CUR_MAX); |
2549 | # endif |
2550 | if (count == 0) |
2551 | /* Found the terminating NUL. */ |
2552 | break; |
2553 | if (count < 0) |
2554 | { |
2555 | /* Invalid or incomplete multibyte character. */ |
2556 | if (!(result == resultbuf || result == NULL)) |
2557 | free (result); |
2558 | if (buf_malloced != NULL) |
2559 | free (buf_malloced); |
2560 | CLEANUP (); |
2561 | errno = EILSEQ; |
2562 | return NULL; |
2563 | } |
2564 | arg_end += count; |
2565 | characters++; |
2566 | } |
2567 | } |
2568 | else |
2569 | { |
2570 | /* Use the entire string. */ |
2571 | arg_end = arg + strlen (arg); |
2572 | /* The number of characters doesn't matter. */ |
2573 | characters = 0; |
2574 | } |
2575 | |
2576 | if (has_width && width > characters |
2577 | && !(dp->flags & FLAG_LEFT)) |
2578 | { |
2579 | size_t n = width - characters; |
2580 | ENSURE_ALLOCATION (xsum (length, n)); |
2581 | DCHAR_SET (result + length, ' ', n); |
2582 | length += n; |
2583 | } |
2584 | |
2585 | if (has_precision || has_width) |
2586 | { |
2587 | /* We know the number of wide characters in advance. */ |
2588 | size_t remaining; |
2589 | # if HAVE_MBRTOWC |
2590 | mbstate_t state; |
2591 | memset (&state, '\0', sizeof (mbstate_t)); |
2592 | # endif |
2593 | ENSURE_ALLOCATION (xsum (length, characters)); |
2594 | for (remaining = characters; remaining > 0; remaining--) |
2595 | { |
2596 | wchar_t wc; |
2597 | int count; |
2598 | # if HAVE_MBRTOWC |
2599 | count = mbrtowc (&wc, arg, arg_end - arg, &state); |
2600 | # else |
2601 | count = mbtowc (&wc, arg, arg_end - arg); |
2602 | # endif |
2603 | if (count <= 0) |
2604 | /* mbrtowc not consistent with mbrlen, or mbtowc |
2605 | not consistent with mblen. */ |
2606 | abort (); |
2607 | result[length++] = wc; |
2608 | arg += count; |
2609 | } |
2610 | if (!(arg == arg_end)) |
2611 | abort (); |
2612 | } |
2613 | else |
2614 | { |
2615 | # if HAVE_MBRTOWC |
2616 | mbstate_t state; |
2617 | memset (&state, '\0', sizeof (mbstate_t)); |
2618 | # endif |
2619 | while (arg < arg_end) |
2620 | { |
2621 | wchar_t wc; |
2622 | int count; |
2623 | # if HAVE_MBRTOWC |
2624 | count = mbrtowc (&wc, arg, arg_end - arg, &state); |
2625 | # else |
2626 | count = mbtowc (&wc, arg, arg_end - arg); |
2627 | # endif |
2628 | if (count <= 0) |
2629 | /* mbrtowc not consistent with mbrlen, or mbtowc |
2630 | not consistent with mblen. */ |
2631 | abort (); |
2632 | ENSURE_ALLOCATION (xsum (length, 1)); |
2633 | result[length++] = wc; |
2634 | arg += count; |
2635 | } |
2636 | } |
2637 | |
2638 | if (has_width && width > characters |
2639 | && (dp->flags & FLAG_LEFT)) |
2640 | { |
2641 | size_t n = width - characters; |
2642 | ENSURE_ALLOCATION (xsum (length, n)); |
2643 | DCHAR_SET (result + length, ' ', n); |
2644 | length += n; |
2645 | } |
2646 | } |
2647 | # else |
2648 | /* %ls in vasnprintf. See the specification of fprintf. */ |
2649 | { |
2650 | const wchar_t *arg = a.arg[dp->arg_index].a.a_wide_string; |
2651 | const wchar_t *arg_end; |
2652 | size_t characters; |
2653 | # if !DCHAR_IS_TCHAR |
2654 | /* This code assumes that TCHAR_T is 'char'. */ |
2655 | verify (sizeof (TCHAR_T) == 1); |
2656 | TCHAR_T *tmpsrc; |
2657 | DCHAR_T *tmpdst; |
2658 | size_t tmpdst_len; |
2659 | # endif |
2660 | size_t w; |
2661 | |
2662 | if (has_precision) |
2663 | { |
2664 | /* Use only as many wide characters as needed to produce |
2665 | at most PRECISION bytes, from the left. */ |
2666 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2667 | mbstate_t state; |
2668 | memset (&state, '\0', sizeof (mbstate_t)); |
2669 | # endif |
2670 | arg_end = arg; |
2671 | characters = 0; |
2672 | while (precision > 0) |
2673 | { |
2674 | char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */ |
2675 | int count; |
2676 | |
2677 | if (*arg_end == 0) |
2678 | /* Found the terminating null wide character. */ |
2679 | break; |
2680 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2681 | count = wcrtomb (cbuf, *arg_end, &state); |
2682 | # else |
2683 | count = wctomb (cbuf, *arg_end); |
2684 | # endif |
2685 | if (count < 0) |
2686 | { |
2687 | /* Cannot convert. */ |
2688 | if (!(result == resultbuf || result == NULL)) |
2689 | free (result); |
2690 | if (buf_malloced != NULL) |
2691 | free (buf_malloced); |
2692 | CLEANUP (); |
2693 | errno = EILSEQ; |
2694 | return NULL; |
2695 | } |
2696 | if (precision < count) |
2697 | break; |
2698 | arg_end++; |
2699 | characters += count; |
2700 | precision -= count; |
2701 | } |
2702 | } |
2703 | # if DCHAR_IS_TCHAR |
2704 | else if (has_width) |
2705 | # else |
2706 | else |
2707 | # endif |
2708 | { |
2709 | /* Use the entire string, and count the number of |
2710 | bytes. */ |
2711 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2712 | mbstate_t state; |
2713 | memset (&state, '\0', sizeof (mbstate_t)); |
2714 | # endif |
2715 | arg_end = arg; |
2716 | characters = 0; |
2717 | for (;;) |
2718 | { |
2719 | char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */ |
2720 | int count; |
2721 | |
2722 | if (*arg_end == 0) |
2723 | /* Found the terminating null wide character. */ |
2724 | break; |
2725 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2726 | count = wcrtomb (cbuf, *arg_end, &state); |
2727 | # else |
2728 | count = wctomb (cbuf, *arg_end); |
2729 | # endif |
2730 | if (count < 0) |
2731 | { |
2732 | /* Cannot convert. */ |
2733 | if (!(result == resultbuf || result == NULL)) |
2734 | free (result); |
2735 | if (buf_malloced != NULL) |
2736 | free (buf_malloced); |
2737 | CLEANUP (); |
2738 | errno = EILSEQ; |
2739 | return NULL; |
2740 | } |
2741 | arg_end++; |
2742 | characters += count; |
2743 | } |
2744 | } |
2745 | # if DCHAR_IS_TCHAR |
2746 | else |
2747 | { |
2748 | /* Use the entire string. */ |
2749 | arg_end = arg + local_wcslen (arg); |
2750 | /* The number of bytes doesn't matter. */ |
2751 | characters = 0; |
2752 | } |
2753 | # endif |
2754 | |
2755 | # if !DCHAR_IS_TCHAR |
2756 | /* Convert the string into a piece of temporary memory. */ |
2757 | tmpsrc = (TCHAR_T *) malloc (characters * sizeof (TCHAR_T)); |
2758 | if (tmpsrc == NULL) |
2759 | goto out_of_memory; |
2760 | { |
2761 | TCHAR_T *tmpptr = tmpsrc; |
2762 | size_t remaining; |
2763 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2764 | mbstate_t state; |
2765 | memset (&state, '\0', sizeof (mbstate_t)); |
2766 | # endif |
2767 | for (remaining = characters; remaining > 0; ) |
2768 | { |
2769 | char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */ |
2770 | int count; |
2771 | |
2772 | if (*arg == 0) |
2773 | abort (); |
2774 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2775 | count = wcrtomb (cbuf, *arg, &state); |
2776 | # else |
2777 | count = wctomb (cbuf, *arg); |
2778 | # endif |
2779 | if (count <= 0) |
2780 | /* Inconsistency. */ |
2781 | abort (); |
2782 | memcpy (tmpptr, cbuf, count); |
2783 | tmpptr += count; |
2784 | arg++; |
2785 | remaining -= count; |
2786 | } |
2787 | if (!(arg == arg_end)) |
2788 | abort (); |
2789 | } |
2790 | |
2791 | /* Convert from TCHAR_T[] to DCHAR_T[]. */ |
2792 | tmpdst = |
2793 | DCHAR_CONV_FROM_ENCODING (locale_charset (), |
2794 | iconveh_question_mark, |
2795 | tmpsrc, characters, |
2796 | NULL, |
2797 | NULL, &tmpdst_len); |
2798 | if (tmpdst == NULL) |
2799 | { |
2800 | int saved_errno = errno; |
2801 | free (tmpsrc); |
2802 | if (!(result == resultbuf || result == NULL)) |
2803 | free (result); |
2804 | if (buf_malloced != NULL) |
2805 | free (buf_malloced); |
2806 | CLEANUP (); |
2807 | errno = saved_errno; |
2808 | return NULL; |
2809 | } |
2810 | free (tmpsrc); |
2811 | # endif |
2812 | |
2813 | if (has_width) |
2814 | { |
2815 | # if ENABLE_UNISTDIO |
2816 | /* Outside POSIX, it's preferable to compare the width |
2817 | against the number of _characters_ of the converted |
2818 | value. */ |
2819 | w = DCHAR_MBSNLEN (result + length, characters); |
2820 | # else |
2821 | /* The width is compared against the number of _bytes_ |
2822 | of the converted value, says POSIX. */ |
2823 | w = characters; |
2824 | # endif |
2825 | } |
2826 | else |
2827 | /* w doesn't matter. */ |
2828 | w = 0; |
2829 | |
2830 | if (has_width && width > w |
2831 | && !(dp->flags & FLAG_LEFT)) |
2832 | { |
2833 | size_t n = width - w; |
2834 | ENSURE_ALLOCATION (xsum (length, n)); |
2835 | DCHAR_SET (result + length, ' ', n); |
2836 | length += n; |
2837 | } |
2838 | |
2839 | # if DCHAR_IS_TCHAR |
2840 | if (has_precision || has_width) |
2841 | { |
2842 | /* We know the number of bytes in advance. */ |
2843 | size_t remaining; |
2844 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2845 | mbstate_t state; |
2846 | memset (&state, '\0', sizeof (mbstate_t)); |
2847 | # endif |
2848 | ENSURE_ALLOCATION (xsum (length, characters)); |
2849 | for (remaining = characters; remaining > 0; ) |
2850 | { |
2851 | char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */ |
2852 | int count; |
2853 | |
2854 | if (*arg == 0) |
2855 | abort (); |
2856 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2857 | count = wcrtomb (cbuf, *arg, &state); |
2858 | # else |
2859 | count = wctomb (cbuf, *arg); |
2860 | # endif |
2861 | if (count <= 0) |
2862 | /* Inconsistency. */ |
2863 | abort (); |
2864 | memcpy (result + length, cbuf, count); |
2865 | length += count; |
2866 | arg++; |
2867 | remaining -= count; |
2868 | } |
2869 | if (!(arg == arg_end)) |
2870 | abort (); |
2871 | } |
2872 | else |
2873 | { |
2874 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2875 | mbstate_t state; |
2876 | memset (&state, '\0', sizeof (mbstate_t)); |
2877 | # endif |
2878 | while (arg < arg_end) |
2879 | { |
2880 | char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */ |
2881 | int count; |
2882 | |
2883 | if (*arg == 0) |
2884 | abort (); |
2885 | # if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t |
2886 | count = wcrtomb (cbuf, *arg, &state); |
2887 | # else |
2888 | count = wctomb (cbuf, *arg); |
2889 | # endif |
2890 | if (count <= 0) |
2891 | { |
2892 | /* Cannot convert. */ |
2893 | if (!(result == resultbuf || result == NULL)) |
2894 | free (result); |
2895 | if (buf_malloced != NULL) |
2896 | free (buf_malloced); |
2897 | CLEANUP (); |
2898 | errno = EILSEQ; |
2899 | return NULL; |
2900 | } |
2901 | ENSURE_ALLOCATION (xsum (length, count)); |
2902 | memcpy (result + length, cbuf, count); |
2903 | length += count; |
2904 | arg++; |
2905 | } |
2906 | } |
2907 | # else |
2908 | ENSURE_ALLOCATION (xsum (length, tmpdst_len)); |
2909 | DCHAR_CPY (result + length, tmpdst, tmpdst_len); |
2910 | free (tmpdst); |
2911 | length += tmpdst_len; |
2912 | # endif |
2913 | |
2914 | if (has_width && width > w |
2915 | && (dp->flags & FLAG_LEFT)) |
2916 | { |
2917 | size_t n = width - w; |
2918 | ENSURE_ALLOCATION (xsum (length, n)); |
2919 | DCHAR_SET (result + length, ' ', n); |
2920 | length += n; |
2921 | } |
2922 | } |
2923 | # endif |
2924 | } |
2925 | #endif |
2926 | #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL |
2927 | else if ((dp->conversion == 'a' || dp->conversion == 'A') |
2928 | # if !(NEED_PRINTF_DIRECTIVE_A || (NEED_PRINTF_LONG_DOUBLE && NEED_PRINTF_DOUBLE)) |
2929 | && (0 |
2930 | # if NEED_PRINTF_DOUBLE |
2931 | || a.arg[dp->arg_index].type == TYPE_DOUBLE |
2932 | # endif |
2933 | # if NEED_PRINTF_LONG_DOUBLE |
2934 | || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE |
2935 | # endif |
2936 | ) |
2937 | # endif |
2938 | ) |
2939 | { |
2940 | arg_type type = a.arg[dp->arg_index].type; |
2941 | int flags = dp->flags; |
2942 | int has_width; |
2943 | size_t width; |
2944 | int has_precision; |
2945 | size_t precision; |
2946 | size_t tmp_length; |
2947 | DCHAR_T tmpbuf[700]; |
2948 | DCHAR_T *tmp; |
2949 | DCHAR_T *pad_ptr; |
2950 | DCHAR_T *p; |
2951 | |
2952 | has_width = 0; |
2953 | width = 0; |
2954 | if (dp->width_start != dp->width_end) |
2955 | { |
2956 | if (dp->width_arg_index != ARG_NONE) |
2957 | { |
2958 | int arg; |
2959 | |
2960 | if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) |
2961 | abort (); |
2962 | arg = a.arg[dp->width_arg_index].a.a_int; |
2963 | if (arg < 0) |
2964 | { |
2965 | /* "A negative field width is taken as a '-' flag |
2966 | followed by a positive field width." */ |
2967 | flags |= FLAG_LEFT; |
2968 | width = (unsigned int) (-arg); |
2969 | } |
2970 | else |
2971 | width = arg; |
2972 | } |
2973 | else |
2974 | { |
2975 | const FCHAR_T *digitp = dp->width_start; |
2976 | |
2977 | do |
2978 | width = xsum (xtimes (width, 10), *digitp++ - '0'); |
2979 | while (digitp != dp->width_end); |
2980 | } |
2981 | has_width = 1; |
2982 | } |
2983 | |
2984 | has_precision = 0; |
2985 | precision = 0; |
2986 | if (dp->precision_start != dp->precision_end) |
2987 | { |
2988 | if (dp->precision_arg_index != ARG_NONE) |
2989 | { |
2990 | int arg; |
2991 | |
2992 | if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) |
2993 | abort (); |
2994 | arg = a.arg[dp->precision_arg_index].a.a_int; |
2995 | /* "A negative precision is taken as if the precision |
2996 | were omitted." */ |
2997 | if (arg >= 0) |
2998 | { |
2999 | precision = arg; |
3000 | has_precision = 1; |
3001 | } |
3002 | } |
3003 | else |
3004 | { |
3005 | const FCHAR_T *digitp = dp->precision_start + 1; |
3006 | |
3007 | precision = 0; |
3008 | while (digitp != dp->precision_end) |
3009 | precision = xsum (xtimes (precision, 10), *digitp++ - '0'); |
3010 | has_precision = 1; |
3011 | } |
3012 | } |
3013 | |
3014 | /* Allocate a temporary buffer of sufficient size. */ |
3015 | if (type == TYPE_LONGDOUBLE) |
3016 | tmp_length = |
3017 | (unsigned int) ((LDBL_DIG + 1) |
3018 | * 0.831 /* decimal -> hexadecimal */ |
3019 | ) |
3020 | + 1; /* turn floor into ceil */ |
3021 | else |
3022 | tmp_length = |
3023 | (unsigned int) ((DBL_DIG + 1) |
3024 | * 0.831 /* decimal -> hexadecimal */ |
3025 | ) |
3026 | + 1; /* turn floor into ceil */ |
3027 | if (tmp_length < precision) |
3028 | tmp_length = precision; |
3029 | /* Account for sign, decimal point etc. */ |
3030 | tmp_length = xsum (tmp_length, 12); |
3031 | |
3032 | if (tmp_length < width) |
3033 | tmp_length = width; |
3034 | |
3035 | tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */ |
3036 | |
3037 | if (tmp_length <= sizeof (tmpbuf) / sizeof (DCHAR_T)) |
3038 | tmp = tmpbuf; |
3039 | else |
3040 | { |
3041 | size_t tmp_memsize = xtimes (tmp_length, sizeof (DCHAR_T)); |
3042 | |
3043 | if (size_overflow_p (tmp_memsize)) |
3044 | /* Overflow, would lead to out of memory. */ |
3045 | goto out_of_memory; |
3046 | tmp = (DCHAR_T *) malloc (tmp_memsize); |
3047 | if (tmp == NULL) |
3048 | /* Out of memory. */ |
3049 | goto out_of_memory; |
3050 | } |
3051 | |
3052 | pad_ptr = NULL; |
3053 | p = tmp; |
3054 | if (type == TYPE_LONGDOUBLE) |
3055 | { |
3056 | # if NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE |
3057 | long double arg = a.arg[dp->arg_index].a.a_longdouble; |
3058 | |
3059 | if (isnanl (arg)) |
3060 | { |
3061 | if (dp->conversion == 'A') |
3062 | { |
3063 | *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; |
3064 | } |
3065 | else |
3066 | { |
3067 | *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; |
3068 | } |
3069 | } |
3070 | else |
3071 | { |
3072 | int sign = 0; |
3073 | DECL_LONG_DOUBLE_ROUNDING |
3074 | |
3075 | BEGIN_LONG_DOUBLE_ROUNDING (); |
3076 | |
3077 | if (signbit (arg)) /* arg < 0.0L or negative zero */ |
3078 | { |
3079 | sign = -1; |
3080 | arg = -arg; |
3081 | } |
3082 | |
3083 | if (sign < 0) |
3084 | *p++ = '-'; |
3085 | else if (flags & FLAG_SHOWSIGN) |
3086 | *p++ = '+'; |
3087 | else if (flags & FLAG_SPACE) |
3088 | *p++ = ' '; |
3089 | |
3090 | if (arg > 0.0L && arg + arg == arg) |
3091 | { |
3092 | if (dp->conversion == 'A') |
3093 | { |
3094 | *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; |
3095 | } |
3096 | else |
3097 | { |
3098 | *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; |
3099 | } |
3100 | } |
3101 | else |
3102 | { |
3103 | int exponent; |
3104 | long double mantissa; |
3105 | |
3106 | if (arg > 0.0L) |
3107 | mantissa = printf_frexpl (arg, &exponent); |
3108 | else |
3109 | { |
3110 | exponent = 0; |
3111 | mantissa = 0.0L; |
3112 | } |
3113 | |
3114 | if (has_precision |
3115 | && precision < (unsigned int) ((LDBL_DIG + 1) * 0.831) + 1) |
3116 | { |
3117 | /* Round the mantissa. */ |
3118 | long double tail = mantissa; |
3119 | size_t q; |
3120 | |
3121 | for (q = precision; ; q--) |
3122 | { |
3123 | int digit = (int) tail; |
3124 | tail -= digit; |
3125 | if (q == 0) |
3126 | { |
3127 | if (digit & 1 ? tail >= 0.5L : tail > 0.5L) |
3128 | tail = 1 - tail; |
3129 | else |
3130 | tail = - tail; |
3131 | break; |
3132 | } |
3133 | tail *= 16.0L; |
3134 | } |
3135 | if (tail != 0.0L) |
3136 | for (q = precision; q > 0; q--) |
3137 | tail *= 0.0625L; |
3138 | mantissa += tail; |
3139 | } |
3140 | |
3141 | *p++ = '0'; |
3142 | *p++ = dp->conversion - 'A' + 'X'; |
3143 | pad_ptr = p; |
3144 | { |
3145 | int digit; |
3146 | |
3147 | digit = (int) mantissa; |
3148 | mantissa -= digit; |
3149 | *p++ = '0' + digit; |
3150 | if ((flags & FLAG_ALT) |
3151 | || mantissa > 0.0L || precision > 0) |
3152 | { |
3153 | *p++ = decimal_point_char (); |
3154 | /* This loop terminates because we assume |
3155 | that FLT_RADIX is a power of 2. */ |
3156 | while (mantissa > 0.0L) |
3157 | { |
3158 | mantissa *= 16.0L; |
3159 | digit = (int) mantissa; |
3160 | mantissa -= digit; |
3161 | *p++ = digit |
3162 | + (digit < 10 |
3163 | ? '0' |
3164 | : dp->conversion - 10); |
3165 | if (precision > 0) |
3166 | precision--; |
3167 | } |
3168 | while (precision > 0) |
3169 | { |
3170 | *p++ = '0'; |
3171 | precision--; |
3172 | } |
3173 | } |
3174 | } |
3175 | *p++ = dp->conversion - 'A' + 'P'; |
3176 | # if WIDE_CHAR_VERSION |
3177 | { |
3178 | static const wchar_t decimal_format[] = |
3179 | { '%', '+', 'd', '\0' }; |
3180 | SNPRINTF (p, 6 + 1, decimal_format, exponent); |
3181 | } |
3182 | while (*p != '\0') |
3183 | p++; |
3184 | # else |
3185 | if (sizeof (DCHAR_T) == 1) |
3186 | { |
3187 | sprintf ((char *) p, "%+d" , exponent); |
3188 | while (*p != '\0') |
3189 | p++; |
3190 | } |
3191 | else |
3192 | { |
3193 | char expbuf[6 + 1]; |
3194 | const char *ep; |
3195 | sprintf (expbuf, "%+d" , exponent); |
3196 | for (ep = expbuf; (*p = *ep) != '\0'; ep++) |
3197 | p++; |
3198 | } |
3199 | # endif |
3200 | } |
3201 | |
3202 | END_LONG_DOUBLE_ROUNDING (); |
3203 | } |
3204 | # else |
3205 | abort (); |
3206 | # endif |
3207 | } |
3208 | else |
3209 | { |
3210 | # if NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_DOUBLE |
3211 | double arg = a.arg[dp->arg_index].a.a_double; |
3212 | |
3213 | if (isnand (arg)) |
3214 | { |
3215 | if (dp->conversion == 'A') |
3216 | { |
3217 | *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; |
3218 | } |
3219 | else |
3220 | { |
3221 | *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; |
3222 | } |
3223 | } |
3224 | else |
3225 | { |
3226 | int sign = 0; |
3227 | |
3228 | if (signbit (arg)) /* arg < 0.0 or negative zero */ |
3229 | { |
3230 | sign = -1; |
3231 | arg = -arg; |
3232 | } |
3233 | |
3234 | if (sign < 0) |
3235 | *p++ = '-'; |
3236 | else if (flags & FLAG_SHOWSIGN) |
3237 | *p++ = '+'; |
3238 | else if (flags & FLAG_SPACE) |
3239 | *p++ = ' '; |
3240 | |
3241 | if (arg > 0.0 && arg + arg == arg) |
3242 | { |
3243 | if (dp->conversion == 'A') |
3244 | { |
3245 | *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; |
3246 | } |
3247 | else |
3248 | { |
3249 | *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; |
3250 | } |
3251 | } |
3252 | else |
3253 | { |
3254 | int exponent; |
3255 | double mantissa; |
3256 | |
3257 | if (arg > 0.0) |
3258 | mantissa = printf_frexp (arg, &exponent); |
3259 | else |
3260 | { |
3261 | exponent = 0; |
3262 | mantissa = 0.0; |
3263 | } |
3264 | |
3265 | if (has_precision |
3266 | && precision < (unsigned int) ((DBL_DIG + 1) * 0.831) + 1) |
3267 | { |
3268 | /* Round the mantissa. */ |
3269 | double tail = mantissa; |
3270 | size_t q; |
3271 | |
3272 | for (q = precision; ; q--) |
3273 | { |
3274 | int digit = (int) tail; |
3275 | tail -= digit; |
3276 | if (q == 0) |
3277 | { |
3278 | if (digit & 1 ? tail >= 0.5 : tail > 0.5) |
3279 | tail = 1 - tail; |
3280 | else |
3281 | tail = - tail; |
3282 | break; |
3283 | } |
3284 | tail *= 16.0; |
3285 | } |
3286 | if (tail != 0.0) |
3287 | for (q = precision; q > 0; q--) |
3288 | tail *= 0.0625; |
3289 | mantissa += tail; |
3290 | } |
3291 | |
3292 | *p++ = '0'; |
3293 | *p++ = dp->conversion - 'A' + 'X'; |
3294 | pad_ptr = p; |
3295 | { |
3296 | int digit; |
3297 | |
3298 | digit = (int) mantissa; |
3299 | mantissa -= digit; |
3300 | *p++ = '0' + digit; |
3301 | if ((flags & FLAG_ALT) |
3302 | || mantissa > 0.0 || precision > 0) |
3303 | { |
3304 | *p++ = decimal_point_char (); |
3305 | /* This loop terminates because we assume |
3306 | that FLT_RADIX is a power of 2. */ |
3307 | while (mantissa > 0.0) |
3308 | { |
3309 | mantissa *= 16.0; |
3310 | digit = (int) mantissa; |
3311 | mantissa -= digit; |
3312 | *p++ = digit |
3313 | + (digit < 10 |
3314 | ? '0' |
3315 | : dp->conversion - 10); |
3316 | if (precision > 0) |
3317 | precision--; |
3318 | } |
3319 | while (precision > 0) |
3320 | { |
3321 | *p++ = '0'; |
3322 | precision--; |
3323 | } |
3324 | } |
3325 | } |
3326 | *p++ = dp->conversion - 'A' + 'P'; |
3327 | # if WIDE_CHAR_VERSION |
3328 | { |
3329 | static const wchar_t decimal_format[] = |
3330 | { '%', '+', 'd', '\0' }; |
3331 | SNPRINTF (p, 6 + 1, decimal_format, exponent); |
3332 | } |
3333 | while (*p != '\0') |
3334 | p++; |
3335 | # else |
3336 | if (sizeof (DCHAR_T) == 1) |
3337 | { |
3338 | sprintf ((char *) p, "%+d" , exponent); |
3339 | while (*p != '\0') |
3340 | p++; |
3341 | } |
3342 | else |
3343 | { |
3344 | char expbuf[6 + 1]; |
3345 | const char *ep; |
3346 | sprintf (expbuf, "%+d" , exponent); |
3347 | for (ep = expbuf; (*p = *ep) != '\0'; ep++) |
3348 | p++; |
3349 | } |
3350 | # endif |
3351 | } |
3352 | } |
3353 | # else |
3354 | abort (); |
3355 | # endif |
3356 | } |
3357 | /* The generated string now extends from tmp to p, with the |
3358 | zero padding insertion point being at pad_ptr. */ |
3359 | if (has_width && p - tmp < width) |
3360 | { |
3361 | size_t pad = width - (p - tmp); |
3362 | DCHAR_T *end = p + pad; |
3363 | |
3364 | if (flags & FLAG_LEFT) |
3365 | { |
3366 | /* Pad with spaces on the right. */ |
3367 | for (; pad > 0; pad--) |
3368 | *p++ = ' '; |
3369 | } |
3370 | else if ((flags & FLAG_ZERO) && pad_ptr != NULL) |
3371 | { |
3372 | /* Pad with zeroes. */ |
3373 | DCHAR_T *q = end; |
3374 | |
3375 | while (p > pad_ptr) |
3376 | *--q = *--p; |
3377 | for (; pad > 0; pad--) |
3378 | *p++ = '0'; |
3379 | } |
3380 | else |
3381 | { |
3382 | /* Pad with spaces on the left. */ |
3383 | DCHAR_T *q = end; |
3384 | |
3385 | while (p > tmp) |
3386 | *--q = *--p; |
3387 | for (; pad > 0; pad--) |
3388 | *p++ = ' '; |
3389 | } |
3390 | |
3391 | p = end; |
3392 | } |
3393 | |
3394 | { |
3395 | size_t count = p - tmp; |
3396 | |
3397 | if (count >= tmp_length) |
3398 | /* tmp_length was incorrectly calculated - fix the |
3399 | code above! */ |
3400 | abort (); |
3401 | |
3402 | /* Make room for the result. */ |
3403 | if (count >= allocated - length) |
3404 | { |
3405 | size_t n = xsum (length, count); |
3406 | |
3407 | ENSURE_ALLOCATION (n); |
3408 | } |
3409 | |
3410 | /* Append the result. */ |
3411 | memcpy (result + length, tmp, count * sizeof (DCHAR_T)); |
3412 | if (tmp != tmpbuf) |
3413 | free (tmp); |
3414 | length += count; |
3415 | } |
3416 | } |
3417 | #endif |
3418 | #if (NEED_PRINTF_INFINITE_DOUBLE || NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL |
3419 | else if ((dp->conversion == 'f' || dp->conversion == 'F' |
3420 | || dp->conversion == 'e' || dp->conversion == 'E' |
3421 | || dp->conversion == 'g' || dp->conversion == 'G' |
3422 | || dp->conversion == 'a' || dp->conversion == 'A') |
3423 | && (0 |
3424 | # if NEED_PRINTF_DOUBLE |
3425 | || a.arg[dp->arg_index].type == TYPE_DOUBLE |
3426 | # elif NEED_PRINTF_INFINITE_DOUBLE |
3427 | || (a.arg[dp->arg_index].type == TYPE_DOUBLE |
3428 | /* The systems (mingw) which produce wrong output |
3429 | for Inf, -Inf, and NaN also do so for -0.0. |
3430 | Therefore we treat this case here as well. */ |
3431 | && is_infinite_or_zero (a.arg[dp->arg_index].a.a_double)) |
3432 | # endif |
3433 | # if NEED_PRINTF_LONG_DOUBLE |
3434 | || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE |
3435 | # elif NEED_PRINTF_INFINITE_LONG_DOUBLE |
3436 | || (a.arg[dp->arg_index].type == TYPE_LONGDOUBLE |
3437 | /* Some systems produce wrong output for Inf, |
3438 | -Inf, and NaN. Some systems in this category |
3439 | (IRIX 5.3) also do so for -0.0. Therefore we |
3440 | treat this case here as well. */ |
3441 | && is_infinite_or_zerol (a.arg[dp->arg_index].a.a_longdouble)) |
3442 | # endif |
3443 | )) |
3444 | { |
3445 | # if (NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE) |
3446 | arg_type type = a.arg[dp->arg_index].type; |
3447 | # endif |
3448 | int flags = dp->flags; |
3449 | int has_width; |
3450 | size_t width; |
3451 | int has_precision; |
3452 | size_t precision; |
3453 | size_t tmp_length; |
3454 | DCHAR_T tmpbuf[700]; |
3455 | DCHAR_T *tmp; |
3456 | DCHAR_T *pad_ptr; |
3457 | DCHAR_T *p; |
3458 | |
3459 | has_width = 0; |
3460 | width = 0; |
3461 | if (dp->width_start != dp->width_end) |
3462 | { |
3463 | if (dp->width_arg_index != ARG_NONE) |
3464 | { |
3465 | int arg; |
3466 | |
3467 | if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) |
3468 | abort (); |
3469 | arg = a.arg[dp->width_arg_index].a.a_int; |
3470 | if (arg < 0) |
3471 | { |
3472 | /* "A negative field width is taken as a '-' flag |
3473 | followed by a positive field width." */ |
3474 | flags |= FLAG_LEFT; |
3475 | width = (unsigned int) (-arg); |
3476 | } |
3477 | else |
3478 | width = arg; |
3479 | } |
3480 | else |
3481 | { |
3482 | const FCHAR_T *digitp = dp->width_start; |
3483 | |
3484 | do |
3485 | width = xsum (xtimes (width, 10), *digitp++ - '0'); |
3486 | while (digitp != dp->width_end); |
3487 | } |
3488 | has_width = 1; |
3489 | } |
3490 | |
3491 | has_precision = 0; |
3492 | precision = 0; |
3493 | if (dp->precision_start != dp->precision_end) |
3494 | { |
3495 | if (dp->precision_arg_index != ARG_NONE) |
3496 | { |
3497 | int arg; |
3498 | |
3499 | if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) |
3500 | abort (); |
3501 | arg = a.arg[dp->precision_arg_index].a.a_int; |
3502 | /* "A negative precision is taken as if the precision |
3503 | were omitted." */ |
3504 | if (arg >= 0) |
3505 | { |
3506 | precision = arg; |
3507 | has_precision = 1; |
3508 | } |
3509 | } |
3510 | else |
3511 | { |
3512 | const FCHAR_T *digitp = dp->precision_start + 1; |
3513 | |
3514 | precision = 0; |
3515 | while (digitp != dp->precision_end) |
3516 | precision = xsum (xtimes (precision, 10), *digitp++ - '0'); |
3517 | has_precision = 1; |
3518 | } |
3519 | } |
3520 | |
3521 | /* POSIX specifies the default precision to be 6 for %f, %F, |
3522 | %e, %E, but not for %g, %G. Implementations appear to use |
3523 | the same default precision also for %g, %G. But for %a, %A, |
3524 | the default precision is 0. */ |
3525 | if (!has_precision) |
3526 | if (!(dp->conversion == 'a' || dp->conversion == 'A')) |
3527 | precision = 6; |
3528 | |
3529 | /* Allocate a temporary buffer of sufficient size. */ |
3530 | # if NEED_PRINTF_DOUBLE && NEED_PRINTF_LONG_DOUBLE |
3531 | tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : DBL_DIG + 1); |
3532 | # elif NEED_PRINTF_INFINITE_DOUBLE && NEED_PRINTF_LONG_DOUBLE |
3533 | tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : 0); |
3534 | # elif NEED_PRINTF_LONG_DOUBLE |
3535 | tmp_length = LDBL_DIG + 1; |
3536 | # elif NEED_PRINTF_DOUBLE |
3537 | tmp_length = DBL_DIG + 1; |
3538 | # else |
3539 | tmp_length = 0; |
3540 | # endif |
3541 | if (tmp_length < precision) |
3542 | tmp_length = precision; |
3543 | # if NEED_PRINTF_LONG_DOUBLE |
3544 | # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE |
3545 | if (type == TYPE_LONGDOUBLE) |
3546 | # endif |
3547 | if (dp->conversion == 'f' || dp->conversion == 'F') |
3548 | { |
3549 | long double arg = a.arg[dp->arg_index].a.a_longdouble; |
3550 | if (!(isnanl (arg) || arg + arg == arg)) |
3551 | { |
3552 | /* arg is finite and nonzero. */ |
3553 | int exponent = floorlog10l (arg < 0 ? -arg : arg); |
3554 | if (exponent >= 0 && tmp_length < exponent + precision) |
3555 | tmp_length = exponent + precision; |
3556 | } |
3557 | } |
3558 | # endif |
3559 | # if NEED_PRINTF_DOUBLE |
3560 | # if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE |
3561 | if (type == TYPE_DOUBLE) |
3562 | # endif |
3563 | if (dp->conversion == 'f' || dp->conversion == 'F') |
3564 | { |
3565 | double arg = a.arg[dp->arg_index].a.a_double; |
3566 | if (!(isnand (arg) || arg + arg == arg)) |
3567 | { |
3568 | /* arg is finite and nonzero. */ |
3569 | int exponent = floorlog10 (arg < 0 ? -arg : arg); |
3570 | if (exponent >= 0 && tmp_length < exponent + precision) |
3571 | tmp_length = exponent + precision; |
3572 | } |
3573 | } |
3574 | # endif |
3575 | /* Account for sign, decimal point etc. */ |
3576 | tmp_length = xsum (tmp_length, 12); |
3577 | |
3578 | if (tmp_length < width) |
3579 | tmp_length = width; |
3580 | |
3581 | tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */ |
3582 | |
3583 | if (tmp_length <= sizeof (tmpbuf) / sizeof (DCHAR_T)) |
3584 | tmp = tmpbuf; |
3585 | else |
3586 | { |
3587 | size_t tmp_memsize = xtimes (tmp_length, sizeof (DCHAR_T)); |
3588 | |
3589 | if (size_overflow_p (tmp_memsize)) |
3590 | /* Overflow, would lead to out of memory. */ |
3591 | goto out_of_memory; |
3592 | tmp = (DCHAR_T *) malloc (tmp_memsize); |
3593 | if (tmp == NULL) |
3594 | /* Out of memory. */ |
3595 | goto out_of_memory; |
3596 | } |
3597 | |
3598 | pad_ptr = NULL; |
3599 | p = tmp; |
3600 | |
3601 | # if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE |
3602 | # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE |
3603 | if (type == TYPE_LONGDOUBLE) |
3604 | # endif |
3605 | { |
3606 | long double arg = a.arg[dp->arg_index].a.a_longdouble; |
3607 | |
3608 | if (isnanl (arg)) |
3609 | { |
3610 | if (dp->conversion >= 'A' && dp->conversion <= 'Z') |
3611 | { |
3612 | *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; |
3613 | } |
3614 | else |
3615 | { |
3616 | *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; |
3617 | } |
3618 | } |
3619 | else |
3620 | { |
3621 | int sign = 0; |
3622 | DECL_LONG_DOUBLE_ROUNDING |
3623 | |
3624 | BEGIN_LONG_DOUBLE_ROUNDING (); |
3625 | |
3626 | if (signbit (arg)) /* arg < 0.0L or negative zero */ |
3627 | { |
3628 | sign = -1; |
3629 | arg = -arg; |
3630 | } |
3631 | |
3632 | if (sign < 0) |
3633 | *p++ = '-'; |
3634 | else if (flags & FLAG_SHOWSIGN) |
3635 | *p++ = '+'; |
3636 | else if (flags & FLAG_SPACE) |
3637 | *p++ = ' '; |
3638 | |
3639 | if (arg > 0.0L && arg + arg == arg) |
3640 | { |
3641 | if (dp->conversion >= 'A' && dp->conversion <= 'Z') |
3642 | { |
3643 | *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; |
3644 | } |
3645 | else |
3646 | { |
3647 | *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; |
3648 | } |
3649 | } |
3650 | else |
3651 | { |
3652 | # if NEED_PRINTF_LONG_DOUBLE |
3653 | pad_ptr = p; |
3654 | |
3655 | if (dp->conversion == 'f' || dp->conversion == 'F') |
3656 | { |
3657 | char *digits; |
3658 | size_t ndigits; |
3659 | |
3660 | digits = |
3661 | scale10_round_decimal_long_double (arg, precision); |
3662 | if (digits == NULL) |
3663 | { |
3664 | END_LONG_DOUBLE_ROUNDING (); |
3665 | goto out_of_memory; |
3666 | } |
3667 | ndigits = strlen (digits); |
3668 | |
3669 | if (ndigits > precision) |
3670 | do |
3671 | { |
3672 | --ndigits; |
3673 | *p++ = digits[ndigits]; |
3674 | } |
3675 | while (ndigits > precision); |
3676 | else |
3677 | *p++ = '0'; |
3678 | /* Here ndigits <= precision. */ |
3679 | if ((flags & FLAG_ALT) || precision > 0) |
3680 | { |
3681 | *p++ = decimal_point_char (); |
3682 | for (; precision > ndigits; precision--) |
3683 | *p++ = '0'; |
3684 | while (ndigits > 0) |
3685 | { |
3686 | --ndigits; |
3687 | *p++ = digits[ndigits]; |
3688 | } |
3689 | } |
3690 | |
3691 | free (digits); |
3692 | } |
3693 | else if (dp->conversion == 'e' || dp->conversion == 'E') |
3694 | { |
3695 | int exponent; |
3696 | |
3697 | if (arg == 0.0L) |
3698 | { |
3699 | exponent = 0; |
3700 | *p++ = '0'; |
3701 | if ((flags & FLAG_ALT) || precision > 0) |
3702 | { |
3703 | *p++ = decimal_point_char (); |
3704 | for (; precision > 0; precision--) |
3705 | *p++ = '0'; |
3706 | } |
3707 | } |
3708 | else |
3709 | { |
3710 | /* arg > 0.0L. */ |
3711 | int adjusted; |
3712 | char *digits; |
3713 | size_t ndigits; |
3714 | |
3715 | exponent = floorlog10l (arg); |
3716 | adjusted = 0; |
3717 | for (;;) |
3718 | { |
3719 | digits = |
3720 | scale10_round_decimal_long_double (arg, |
3721 | (int)precision - exponent); |
3722 | if (digits == NULL) |
3723 | { |
3724 | END_LONG_DOUBLE_ROUNDING (); |
3725 | goto out_of_memory; |
3726 | } |
3727 | ndigits = strlen (digits); |
3728 | |
3729 | if (ndigits == precision + 1) |
3730 | break; |
3731 | if (ndigits < precision |
3732 | || ndigits > precision + 2) |
3733 | /* The exponent was not guessed |
3734 | precisely enough. */ |
3735 | abort (); |
3736 | if (adjusted) |
3737 | /* None of two values of exponent is |
3738 | the right one. Prevent an endless |
3739 | loop. */ |
3740 | abort (); |
3741 | free (digits); |
3742 | if (ndigits == precision) |
3743 | exponent -= 1; |
3744 | else |
3745 | exponent += 1; |
3746 | adjusted = 1; |
3747 | } |
3748 | /* Here ndigits = precision+1. */ |
3749 | if (is_borderline (digits, precision)) |
3750 | { |
3751 | /* Maybe the exponent guess was too high |
3752 | and a smaller exponent can be reached |
3753 | by turning a 10...0 into 9...9x. */ |
3754 | char *digits2 = |
3755 | scale10_round_decimal_long_double (arg, |
3756 | (int)precision - exponent + 1); |
3757 | if (digits2 == NULL) |
3758 | { |
3759 | free (digits); |
3760 | END_LONG_DOUBLE_ROUNDING (); |
3761 | goto out_of_memory; |
3762 | } |
3763 | if (strlen (digits2) == precision + 1) |
3764 | { |
3765 | free (digits); |
3766 | digits = digits2; |
3767 | exponent -= 1; |
3768 | } |
3769 | else |
3770 | free (digits2); |
3771 | } |
3772 | /* Here ndigits = precision+1. */ |
3773 | |
3774 | *p++ = digits[--ndigits]; |
3775 | if ((flags & FLAG_ALT) || precision > 0) |
3776 | { |
3777 | *p++ = decimal_point_char (); |
3778 | while (ndigits > 0) |
3779 | { |
3780 | --ndigits; |
3781 | *p++ = digits[ndigits]; |
3782 | } |
3783 | } |
3784 | |
3785 | free (digits); |
3786 | } |
3787 | |
3788 | *p++ = dp->conversion; /* 'e' or 'E' */ |
3789 | # if WIDE_CHAR_VERSION |
3790 | { |
3791 | static const wchar_t decimal_format[] = |
3792 | { '%', '+', '.', '2', 'd', '\0' }; |
3793 | SNPRINTF (p, 6 + 1, decimal_format, exponent); |
3794 | } |
3795 | while (*p != '\0') |
3796 | p++; |
3797 | # else |
3798 | if (sizeof (DCHAR_T) == 1) |
3799 | { |
3800 | sprintf ((char *) p, "%+.2d" , exponent); |
3801 | while (*p != '\0') |
3802 | p++; |
3803 | } |
3804 | else |
3805 | { |
3806 | char expbuf[6 + 1]; |
3807 | const char *ep; |
3808 | sprintf (expbuf, "%+.2d" , exponent); |
3809 | for (ep = expbuf; (*p = *ep) != '\0'; ep++) |
3810 | p++; |
3811 | } |
3812 | # endif |
3813 | } |
3814 | else if (dp->conversion == 'g' || dp->conversion == 'G') |
3815 | { |
3816 | if (precision == 0) |
3817 | precision = 1; |
3818 | /* precision >= 1. */ |
3819 | |
3820 | if (arg == 0.0L) |
3821 | /* The exponent is 0, >= -4, < precision. |
3822 | Use fixed-point notation. */ |
3823 | { |
3824 | size_t ndigits = precision; |
3825 | /* Number of trailing zeroes that have to be |
3826 | dropped. */ |
3827 | size_t nzeroes = |
3828 | (flags & FLAG_ALT ? 0 : precision - 1); |
3829 | |
3830 | --ndigits; |
3831 | *p++ = '0'; |
3832 | if ((flags & FLAG_ALT) || ndigits > nzeroes) |
3833 | { |
3834 | *p++ = decimal_point_char (); |
3835 | while (ndigits > nzeroes) |
3836 | { |
3837 | --ndigits; |
3838 | *p++ = '0'; |
3839 | } |
3840 | } |
3841 | } |
3842 | else |
3843 | { |
3844 | /* arg > 0.0L. */ |
3845 | int exponent; |
3846 | int adjusted; |
3847 | char *digits; |
3848 | size_t ndigits; |
3849 | size_t nzeroes; |
3850 | |
3851 | exponent = floorlog10l (arg); |
3852 | adjusted = 0; |
3853 | for (;;) |
3854 | { |
3855 | digits = |
3856 | scale10_round_decimal_long_double (arg, |
3857 | (int)(precision - 1) - exponent); |
3858 | if (digits == NULL) |
3859 | { |
3860 | END_LONG_DOUBLE_ROUNDING (); |
3861 | goto out_of_memory; |
3862 | } |
3863 | ndigits = strlen (digits); |
3864 | |
3865 | if (ndigits == precision) |
3866 | break; |
3867 | if (ndigits < precision - 1 |
3868 | || ndigits > precision + 1) |
3869 | /* The exponent was not guessed |
3870 | precisely enough. */ |
3871 | abort (); |
3872 | if (adjusted) |
3873 | /* None of two values of exponent is |
3874 | the right one. Prevent an endless |
3875 | loop. */ |
3876 | abort (); |
3877 | free (digits); |
3878 | if (ndigits < precision) |
3879 | exponent -= 1; |
3880 | else |
3881 | exponent += 1; |
3882 | adjusted = 1; |
3883 | } |
3884 | /* Here ndigits = precision. */ |
3885 | if (is_borderline (digits, precision - 1)) |
3886 | { |
3887 | /* Maybe the exponent guess was too high |
3888 | and a smaller exponent can be reached |
3889 | by turning a 10...0 into 9...9x. */ |
3890 | char *digits2 = |
3891 | scale10_round_decimal_long_double (arg, |
3892 | (int)(precision - 1) - exponent + 1); |
3893 | if (digits2 == NULL) |
3894 | { |
3895 | free (digits); |
3896 | END_LONG_DOUBLE_ROUNDING (); |
3897 | goto out_of_memory; |
3898 | } |
3899 | if (strlen (digits2) == precision) |
3900 | { |
3901 | free (digits); |
3902 | digits = digits2; |
3903 | exponent -= 1; |
3904 | } |
3905 | else |
3906 | free (digits2); |
3907 | } |
3908 | /* Here ndigits = precision. */ |
3909 | |
3910 | /* Determine the number of trailing zeroes |
3911 | that have to be dropped. */ |
3912 | nzeroes = 0; |
3913 | if ((flags & FLAG_ALT) == 0) |
3914 | while (nzeroes < ndigits |
3915 | && digits[nzeroes] == '0') |
3916 | nzeroes++; |
3917 | |
3918 | /* The exponent is now determined. */ |
3919 | if (exponent >= -4 |
3920 | && exponent < (long)precision) |
3921 | { |
3922 | /* Fixed-point notation: |
3923 | max(exponent,0)+1 digits, then the |
3924 | decimal point, then the remaining |
3925 | digits without trailing zeroes. */ |
3926 | if (exponent >= 0) |
3927 | { |
3928 | size_t count = exponent + 1; |
3929 | /* Note: count <= precision = ndigits. */ |
3930 | for (; count > 0; count--) |
3931 | *p++ = digits[--ndigits]; |
3932 | if ((flags & FLAG_ALT) || ndigits > nzeroes) |
3933 | { |
3934 | *p++ = decimal_point_char (); |
3935 | while (ndigits > nzeroes) |
3936 | { |
3937 | --ndigits; |
3938 | *p++ = digits[ndigits]; |
3939 | } |
3940 | } |
3941 | } |
3942 | else |
3943 | { |
3944 | size_t count = -exponent - 1; |
3945 | *p++ = '0'; |
3946 | *p++ = decimal_point_char (); |
3947 | for (; count > 0; count--) |
3948 | *p++ = '0'; |
3949 | while (ndigits > nzeroes) |
3950 | { |
3951 | --ndigits; |
3952 | *p++ = digits[ndigits]; |
3953 | } |
3954 | } |
3955 | } |
3956 | else |
3957 | { |
3958 | /* Exponential notation. */ |
3959 | *p++ = digits[--ndigits]; |
3960 | if ((flags & FLAG_ALT) || ndigits > nzeroes) |
3961 | { |
3962 | *p++ = decimal_point_char (); |
3963 | while (ndigits > nzeroes) |
3964 | { |
3965 | --ndigits; |
3966 | *p++ = digits[ndigits]; |
3967 | } |
3968 | } |
3969 | *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */ |
3970 | # if WIDE_CHAR_VERSION |
3971 | { |
3972 | static const wchar_t decimal_format[] = |
3973 | { '%', '+', '.', '2', 'd', '\0' }; |
3974 | SNPRINTF (p, 6 + 1, decimal_format, exponent); |
3975 | } |
3976 | while (*p != '\0') |
3977 | p++; |
3978 | # else |
3979 | if (sizeof (DCHAR_T) == 1) |
3980 | { |
3981 | sprintf ((char *) p, "%+.2d" , exponent); |
3982 | while (*p != '\0') |
3983 | p++; |
3984 | } |
3985 | else |
3986 | { |
3987 | char expbuf[6 + 1]; |
3988 | const char *ep; |
3989 | sprintf (expbuf, "%+.2d" , exponent); |
3990 | for (ep = expbuf; (*p = *ep) != '\0'; ep++) |
3991 | p++; |
3992 | } |
3993 | # endif |
3994 | } |
3995 | |
3996 | free (digits); |
3997 | } |
3998 | } |
3999 | else |
4000 | abort (); |
4001 | # else |
4002 | /* arg is finite. */ |
4003 | if (!(arg == 0.0L)) |
4004 | abort (); |
4005 | |
4006 | pad_ptr = p; |
4007 | |
4008 | if (dp->conversion == 'f' || dp->conversion == 'F') |
4009 | { |
4010 | *p++ = '0'; |
4011 | if ((flags & FLAG_ALT) || precision > 0) |
4012 | { |
4013 | *p++ = decimal_point_char (); |
4014 | for (; precision > 0; precision--) |
4015 | *p++ = '0'; |
4016 | } |
4017 | } |
4018 | else if (dp->conversion == 'e' || dp->conversion == 'E') |
4019 | { |
4020 | *p++ = '0'; |
4021 | if ((flags & FLAG_ALT) || precision > 0) |
4022 | { |
4023 | *p++ = decimal_point_char (); |
4024 | for (; precision > 0; precision--) |
4025 | *p++ = '0'; |
4026 | } |
4027 | *p++ = dp->conversion; /* 'e' or 'E' */ |
4028 | *p++ = '+'; |
4029 | *p++ = '0'; |
4030 | *p++ = '0'; |
4031 | } |
4032 | else if (dp->conversion == 'g' || dp->conversion == 'G') |
4033 | { |
4034 | *p++ = '0'; |
4035 | if (flags & FLAG_ALT) |
4036 | { |
4037 | size_t ndigits = |
4038 | (precision > 0 ? precision - 1 : 0); |
4039 | *p++ = decimal_point_char (); |
4040 | for (; ndigits > 0; --ndigits) |
4041 | *p++ = '0'; |
4042 | } |
4043 | } |
4044 | else if (dp->conversion == 'a' || dp->conversion == 'A') |
4045 | { |
4046 | *p++ = '0'; |
4047 | *p++ = dp->conversion - 'A' + 'X'; |
4048 | pad_ptr = p; |
4049 | *p++ = '0'; |
4050 | if ((flags & FLAG_ALT) || precision > 0) |
4051 | { |
4052 | *p++ = decimal_point_char (); |
4053 | for (; precision > 0; precision--) |
4054 | *p++ = '0'; |
4055 | } |
4056 | *p++ = dp->conversion - 'A' + 'P'; |
4057 | *p++ = '+'; |
4058 | *p++ = '0'; |
4059 | } |
4060 | else |
4061 | abort (); |
4062 | # endif |
4063 | } |
4064 | |
4065 | END_LONG_DOUBLE_ROUNDING (); |
4066 | } |
4067 | } |
4068 | # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE |
4069 | else |
4070 | # endif |
4071 | # endif |
4072 | # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE |
4073 | { |
4074 | double arg = a.arg[dp->arg_index].a.a_double; |
4075 | |
4076 | if (isnand (arg)) |
4077 | { |
4078 | if (dp->conversion >= 'A' && dp->conversion <= 'Z') |
4079 | { |
4080 | *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; |
4081 | } |
4082 | else |
4083 | { |
4084 | *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; |
4085 | } |
4086 | } |
4087 | else |
4088 | { |
4089 | int sign = 0; |
4090 | |
4091 | if (signbit (arg)) /* arg < 0.0 or negative zero */ |
4092 | { |
4093 | sign = -1; |
4094 | arg = -arg; |
4095 | } |
4096 | |
4097 | if (sign < 0) |
4098 | *p++ = '-'; |
4099 | else if (flags & FLAG_SHOWSIGN) |
4100 | *p++ = '+'; |
4101 | else if (flags & FLAG_SPACE) |
4102 | *p++ = ' '; |
4103 | |
4104 | if (arg > 0.0 && arg + arg == arg) |
4105 | { |
4106 | if (dp->conversion >= 'A' && dp->conversion <= 'Z') |
4107 | { |
4108 | *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; |
4109 | } |
4110 | else |
4111 | { |
4112 | *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; |
4113 | } |
4114 | } |
4115 | else |
4116 | { |
4117 | # if NEED_PRINTF_DOUBLE |
4118 | pad_ptr = p; |
4119 | |
4120 | if (dp->conversion == 'f' || dp->conversion == 'F') |
4121 | { |
4122 | char *digits; |
4123 | size_t ndigits; |
4124 | |
4125 | digits = |
4126 | scale10_round_decimal_double (arg, precision); |
4127 | if (digits == NULL) |
4128 | goto out_of_memory; |
4129 | ndigits = strlen (digits); |
4130 | |
4131 | if (ndigits > precision) |
4132 | do |
4133 | { |
4134 | --ndigits; |
4135 | *p++ = digits[ndigits]; |
4136 | } |
4137 | while (ndigits > precision); |
4138 | else |
4139 | *p++ = '0'; |
4140 | /* Here ndigits <= precision. */ |
4141 | if ((flags & FLAG_ALT) || precision > 0) |
4142 | { |
4143 | *p++ = decimal_point_char (); |
4144 | for (; precision > ndigits; precision--) |
4145 | *p++ = '0'; |
4146 | while (ndigits > 0) |
4147 | { |
4148 | --ndigits; |
4149 | *p++ = digits[ndigits]; |
4150 | } |
4151 | } |
4152 | |
4153 | free (digits); |
4154 | } |
4155 | else if (dp->conversion == 'e' || dp->conversion == 'E') |
4156 | { |
4157 | int exponent; |
4158 | |
4159 | if (arg == 0.0) |
4160 | { |
4161 | exponent = 0; |
4162 | *p++ = '0'; |
4163 | if ((flags & FLAG_ALT) || precision > 0) |
4164 | { |
4165 | *p++ = decimal_point_char (); |
4166 | for (; precision > 0; precision--) |
4167 | *p++ = '0'; |
4168 | } |
4169 | } |
4170 | else |
4171 | { |
4172 | /* arg > 0.0. */ |
4173 | int adjusted; |
4174 | char *digits; |
4175 | size_t ndigits; |
4176 | |
4177 | exponent = floorlog10 (arg); |
4178 | adjusted = 0; |
4179 | for (;;) |
4180 | { |
4181 | digits = |
4182 | scale10_round_decimal_double (arg, |
4183 | (int)precision - exponent); |
4184 | if (digits == NULL) |
4185 | goto out_of_memory; |
4186 | ndigits = strlen (digits); |
4187 | |
4188 | if (ndigits == precision + 1) |
4189 | break; |
4190 | if (ndigits < precision |
4191 | || ndigits > precision + 2) |
4192 | /* The exponent was not guessed |
4193 | precisely enough. */ |
4194 | abort (); |
4195 | if (adjusted) |
4196 | /* None of two values of exponent is |
4197 | the right one. Prevent an endless |
4198 | loop. */ |
4199 | abort (); |
4200 | free (digits); |
4201 | if (ndigits == precision) |
4202 | exponent -= 1; |
4203 | else |
4204 | exponent += 1; |
4205 | adjusted = 1; |
4206 | } |
4207 | /* Here ndigits = precision+1. */ |
4208 | if (is_borderline (digits, precision)) |
4209 | { |
4210 | /* Maybe the exponent guess was too high |
4211 | and a smaller exponent can be reached |
4212 | by turning a 10...0 into 9...9x. */ |
4213 | char *digits2 = |
4214 | scale10_round_decimal_double (arg, |
4215 | (int)precision - exponent + 1); |
4216 | if (digits2 == NULL) |
4217 | { |
4218 | free (digits); |
4219 | goto out_of_memory; |
4220 | } |
4221 | if (strlen (digits2) == precision + 1) |
4222 | { |
4223 | free (digits); |
4224 | digits = digits2; |
4225 | exponent -= 1; |
4226 | } |
4227 | else |
4228 | free (digits2); |
4229 | } |
4230 | /* Here ndigits = precision+1. */ |
4231 | |
4232 | *p++ = digits[--ndigits]; |
4233 | if ((flags & FLAG_ALT) || precision > 0) |
4234 | { |
4235 | *p++ = decimal_point_char (); |
4236 | while (ndigits > 0) |
4237 | { |
4238 | --ndigits; |
4239 | *p++ = digits[ndigits]; |
4240 | } |
4241 | } |
4242 | |
4243 | free (digits); |
4244 | } |
4245 | |
4246 | *p++ = dp->conversion; /* 'e' or 'E' */ |
4247 | # if WIDE_CHAR_VERSION |
4248 | { |
4249 | static const wchar_t decimal_format[] = |
4250 | /* Produce the same number of exponent digits |
4251 | as the native printf implementation. */ |
4252 | # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ |
4253 | { '%', '+', '.', '3', 'd', '\0' }; |
4254 | # else |
4255 | { '%', '+', '.', '2', 'd', '\0' }; |
4256 | # endif |
4257 | SNPRINTF (p, 6 + 1, decimal_format, exponent); |
4258 | } |
4259 | while (*p != '\0') |
4260 | p++; |
4261 | # else |
4262 | { |
4263 | static const char decimal_format[] = |
4264 | /* Produce the same number of exponent digits |
4265 | as the native printf implementation. */ |
4266 | # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ |
4267 | "%+.3d" ; |
4268 | # else |
4269 | "%+.2d" ; |
4270 | # endif |
4271 | if (sizeof (DCHAR_T) == 1) |
4272 | { |
4273 | sprintf ((char *) p, decimal_format, exponent); |
4274 | while (*p != '\0') |
4275 | p++; |
4276 | } |
4277 | else |
4278 | { |
4279 | char expbuf[6 + 1]; |
4280 | const char *ep; |
4281 | sprintf (expbuf, decimal_format, exponent); |
4282 | for (ep = expbuf; (*p = *ep) != '\0'; ep++) |
4283 | p++; |
4284 | } |
4285 | } |
4286 | # endif |
4287 | } |
4288 | else if (dp->conversion == 'g' || dp->conversion == 'G') |
4289 | { |
4290 | if (precision == 0) |
4291 | precision = 1; |
4292 | /* precision >= 1. */ |
4293 | |
4294 | if (arg == 0.0) |
4295 | /* The exponent is 0, >= -4, < precision. |
4296 | Use fixed-point notation. */ |
4297 | { |
4298 | size_t ndigits = precision; |
4299 | /* Number of trailing zeroes that have to be |
4300 | dropped. */ |
4301 | size_t nzeroes = |
4302 | (flags & FLAG_ALT ? 0 : precision - 1); |
4303 | |
4304 | --ndigits; |
4305 | *p++ = '0'; |
4306 | if ((flags & FLAG_ALT) || ndigits > nzeroes) |
4307 | { |
4308 | *p++ = decimal_point_char (); |
4309 | while (ndigits > nzeroes) |
4310 | { |
4311 | --ndigits; |
4312 | *p++ = '0'; |
4313 | } |
4314 | } |
4315 | } |
4316 | else |
4317 | { |
4318 | /* arg > 0.0. */ |
4319 | int exponent; |
4320 | int adjusted; |
4321 | char *digits; |
4322 | size_t ndigits; |
4323 | size_t nzeroes; |
4324 | |
4325 | exponent = floorlog10 (arg); |
4326 | adjusted = 0; |
4327 | for (;;) |
4328 | { |
4329 | digits = |
4330 | scale10_round_decimal_double (arg, |
4331 | (int)(precision - 1) - exponent); |
4332 | if (digits == NULL) |
4333 | goto out_of_memory; |
4334 | ndigits = strlen (digits); |
4335 | |
4336 | if (ndigits == precision) |
4337 | break; |
4338 | if (ndigits < precision - 1 |
4339 | || ndigits > precision + 1) |
4340 | /* The exponent was not guessed |
4341 | precisely enough. */ |
4342 | abort (); |
4343 | if (adjusted) |
4344 | /* None of two values of exponent is |
4345 | the right one. Prevent an endless |
4346 | loop. */ |
4347 | abort (); |
4348 | free (digits); |
4349 | if (ndigits < precision) |
4350 | exponent -= 1; |
4351 | else |
4352 | exponent += 1; |
4353 | adjusted = 1; |
4354 | } |
4355 | /* Here ndigits = precision. */ |
4356 | if (is_borderline (digits, precision - 1)) |
4357 | { |
4358 | /* Maybe the exponent guess was too high |
4359 | and a smaller exponent can be reached |
4360 | by turning a 10...0 into 9...9x. */ |
4361 | char *digits2 = |
4362 | scale10_round_decimal_double (arg, |
4363 | (int)(precision - 1) - exponent + 1); |
4364 | if (digits2 == NULL) |
4365 | { |
4366 | free (digits); |
4367 | goto out_of_memory; |
4368 | } |
4369 | if (strlen (digits2) == precision) |
4370 | { |
4371 | free (digits); |
4372 | digits = digits2; |
4373 | exponent -= 1; |
4374 | } |
4375 | else |
4376 | free (digits2); |
4377 | } |
4378 | /* Here ndigits = precision. */ |
4379 | |
4380 | /* Determine the number of trailing zeroes |
4381 | that have to be dropped. */ |
4382 | nzeroes = 0; |
4383 | if ((flags & FLAG_ALT) == 0) |
4384 | while (nzeroes < ndigits |
4385 | && digits[nzeroes] == '0') |
4386 | nzeroes++; |
4387 | |
4388 | /* The exponent is now determined. */ |
4389 | if (exponent >= -4 |
4390 | && exponent < (long)precision) |
4391 | { |
4392 | /* Fixed-point notation: |
4393 | max(exponent,0)+1 digits, then the |
4394 | decimal point, then the remaining |
4395 | digits without trailing zeroes. */ |
4396 | if (exponent >= 0) |
4397 | { |
4398 | size_t count = exponent + 1; |
4399 | /* Note: count <= precision = ndigits. */ |
4400 | for (; count > 0; count--) |
4401 | *p++ = digits[--ndigits]; |
4402 | if ((flags & FLAG_ALT) || ndigits > nzeroes) |
4403 | { |
4404 | *p++ = decimal_point_char (); |
4405 | while (ndigits > nzeroes) |
4406 | { |
4407 | --ndigits; |
4408 | *p++ = digits[ndigits]; |
4409 | } |
4410 | } |
4411 | } |
4412 | else |
4413 | { |
4414 | size_t count = -exponent - 1; |
4415 | *p++ = '0'; |
4416 | *p++ = decimal_point_char (); |
4417 | for (; count > 0; count--) |
4418 | *p++ = '0'; |
4419 | while (ndigits > nzeroes) |
4420 | { |
4421 | --ndigits; |
4422 | *p++ = digits[ndigits]; |
4423 | } |
4424 | } |
4425 | } |
4426 | else |
4427 | { |
4428 | /* Exponential notation. */ |
4429 | *p++ = digits[--ndigits]; |
4430 | if ((flags & FLAG_ALT) || ndigits > nzeroes) |
4431 | { |
4432 | *p++ = decimal_point_char (); |
4433 | while (ndigits > nzeroes) |
4434 | { |
4435 | --ndigits; |
4436 | *p++ = digits[ndigits]; |
4437 | } |
4438 | } |
4439 | *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */ |
4440 | # if WIDE_CHAR_VERSION |
4441 | { |
4442 | static const wchar_t decimal_format[] = |
4443 | /* Produce the same number of exponent digits |
4444 | as the native printf implementation. */ |
4445 | # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ |
4446 | { '%', '+', '.', '3', 'd', '\0' }; |
4447 | # else |
4448 | { '%', '+', '.', '2', 'd', '\0' }; |
4449 | # endif |
4450 | SNPRINTF (p, 6 + 1, decimal_format, exponent); |
4451 | } |
4452 | while (*p != '\0') |
4453 | p++; |
4454 | # else |
4455 | { |
4456 | static const char decimal_format[] = |
4457 | /* Produce the same number of exponent digits |
4458 | as the native printf implementation. */ |
4459 | # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ |
4460 | "%+.3d" ; |
4461 | # else |
4462 | "%+.2d" ; |
4463 | # endif |
4464 | if (sizeof (DCHAR_T) == 1) |
4465 | { |
4466 | sprintf ((char *) p, decimal_format, exponent); |
4467 | while (*p != '\0') |
4468 | p++; |
4469 | } |
4470 | else |
4471 | { |
4472 | char expbuf[6 + 1]; |
4473 | const char *ep; |
4474 | sprintf (expbuf, decimal_format, exponent); |
4475 | for (ep = expbuf; (*p = *ep) != '\0'; ep++) |
4476 | p++; |
4477 | } |
4478 | } |
4479 | # endif |
4480 | } |
4481 | |
4482 | free (digits); |
4483 | } |
4484 | } |
4485 | else |
4486 | abort (); |
4487 | # else |
4488 | /* arg is finite. */ |
4489 | if (!(arg == 0.0)) |
4490 | abort (); |
4491 | |
4492 | pad_ptr = p; |
4493 | |
4494 | if (dp->conversion == 'f' || dp->conversion == 'F') |
4495 | { |
4496 | *p++ = '0'; |
4497 | if ((flags & FLAG_ALT) || precision > 0) |
4498 | { |
4499 | *p++ = decimal_point_char (); |
4500 | for (; precision > 0; precision--) |
4501 | *p++ = '0'; |
4502 | } |
4503 | } |
4504 | else if (dp->conversion == 'e' || dp->conversion == 'E') |
4505 | { |
4506 | *p++ = '0'; |
4507 | if ((flags & FLAG_ALT) || precision > 0) |
4508 | { |
4509 | *p++ = decimal_point_char (); |
4510 | for (; precision > 0; precision--) |
4511 | *p++ = '0'; |
4512 | } |
4513 | *p++ = dp->conversion; /* 'e' or 'E' */ |
4514 | *p++ = '+'; |
4515 | /* Produce the same number of exponent digits as |
4516 | the native printf implementation. */ |
4517 | # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ |
4518 | *p++ = '0'; |
4519 | # endif |
4520 | *p++ = '0'; |
4521 | *p++ = '0'; |
4522 | } |
4523 | else if (dp->conversion == 'g' || dp->conversion == 'G') |
4524 | { |
4525 | *p++ = '0'; |
4526 | if (flags & FLAG_ALT) |
4527 | { |
4528 | size_t ndigits = |
4529 | (precision > 0 ? precision - 1 : 0); |
4530 | *p++ = decimal_point_char (); |
4531 | for (; ndigits > 0; --ndigits) |
4532 | *p++ = '0'; |
4533 | } |
4534 | } |
4535 | else |
4536 | abort (); |
4537 | # endif |
4538 | } |
4539 | } |
4540 | } |
4541 | # endif |
4542 | |
4543 | /* The generated string now extends from tmp to p, with the |
4544 | zero padding insertion point being at pad_ptr. */ |
4545 | if (has_width && p - tmp < width) |
4546 | { |
4547 | size_t pad = width - (p - tmp); |
4548 | DCHAR_T *end = p + pad; |
4549 | |
4550 | if (flags & FLAG_LEFT) |
4551 | { |
4552 | /* Pad with spaces on the right. */ |
4553 | for (; pad > 0; pad--) |
4554 | *p++ = ' '; |
4555 | } |
4556 | else if ((flags & FLAG_ZERO) && pad_ptr != NULL) |
4557 | { |
4558 | /* Pad with zeroes. */ |
4559 | DCHAR_T *q = end; |
4560 | |
4561 | while (p > pad_ptr) |
4562 | *--q = *--p; |
4563 | for (; pad > 0; pad--) |
4564 | *p++ = '0'; |
4565 | } |
4566 | else |
4567 | { |
4568 | /* Pad with spaces on the left. */ |
4569 | DCHAR_T *q = end; |
4570 | |
4571 | while (p > tmp) |
4572 | *--q = *--p; |
4573 | for (; pad > 0; pad--) |
4574 | *p++ = ' '; |
4575 | } |
4576 | |
4577 | p = end; |
4578 | } |
4579 | |
4580 | { |
4581 | size_t count = p - tmp; |
4582 | |
4583 | if (count >= tmp_length) |
4584 | /* tmp_length was incorrectly calculated - fix the |
4585 | code above! */ |
4586 | abort (); |
4587 | |
4588 | /* Make room for the result. */ |
4589 | if (count >= allocated - length) |
4590 | { |
4591 | size_t n = xsum (length, count); |
4592 | |
4593 | ENSURE_ALLOCATION (n); |
4594 | } |
4595 | |
4596 | /* Append the result. */ |
4597 | memcpy (result + length, tmp, count * sizeof (DCHAR_T)); |
4598 | if (tmp != tmpbuf) |
4599 | free (tmp); |
4600 | length += count; |
4601 | } |
4602 | } |
4603 | #endif |
4604 | else |
4605 | { |
4606 | arg_type type = a.arg[dp->arg_index].type; |
4607 | int flags = dp->flags; |
4608 | #if !USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_LEFTADJUST || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION |
4609 | int has_width; |
4610 | size_t width; |
4611 | #endif |
4612 | #if !USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || NEED_PRINTF_UNBOUNDED_PRECISION |
4613 | int has_precision; |
4614 | size_t precision; |
4615 | #endif |
4616 | #if NEED_PRINTF_UNBOUNDED_PRECISION |
4617 | int prec_ourselves; |
4618 | #else |
4619 | # define prec_ourselves 0 |
4620 | #endif |
4621 | #if NEED_PRINTF_FLAG_LEFTADJUST |
4622 | # define pad_ourselves 1 |
4623 | #elif !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION |
4624 | int pad_ourselves; |
4625 | #else |
4626 | # define pad_ourselves 0 |
4627 | #endif |
4628 | TCHAR_T *fbp; |
4629 | unsigned int prefix_count; |
4630 | int prefixes[2] IF_LINT (= { 0 }); |
4631 | int orig_errno; |
4632 | #if !USE_SNPRINTF |
4633 | size_t tmp_length; |
4634 | TCHAR_T tmpbuf[700]; |
4635 | TCHAR_T *tmp; |
4636 | #endif |
4637 | |
4638 | #if !USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_LEFTADJUST || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION |
4639 | has_width = 0; |
4640 | width = 0; |
4641 | if (dp->width_start != dp->width_end) |
4642 | { |
4643 | if (dp->width_arg_index != ARG_NONE) |
4644 | { |
4645 | int arg; |
4646 | |
4647 | if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) |
4648 | abort (); |
4649 | arg = a.arg[dp->width_arg_index].a.a_int; |
4650 | if (arg < 0) |
4651 | { |
4652 | /* "A negative field width is taken as a '-' flag |
4653 | followed by a positive field width." */ |
4654 | flags |= FLAG_LEFT; |
4655 | width = (unsigned int) (-arg); |
4656 | } |
4657 | else |
4658 | width = arg; |
4659 | } |
4660 | else |
4661 | { |
4662 | const FCHAR_T *digitp = dp->width_start; |
4663 | |
4664 | do |
4665 | width = xsum (xtimes (width, 10), *digitp++ - '0'); |
4666 | while (digitp != dp->width_end); |
4667 | } |
4668 | has_width = 1; |
4669 | } |
4670 | #endif |
4671 | |
4672 | #if !USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || NEED_PRINTF_UNBOUNDED_PRECISION |
4673 | has_precision = 0; |
4674 | precision = 6; |
4675 | if (dp->precision_start != dp->precision_end) |
4676 | { |
4677 | if (dp->precision_arg_index != ARG_NONE) |
4678 | { |
4679 | int arg; |
4680 | |
4681 | if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) |
4682 | abort (); |
4683 | arg = a.arg[dp->precision_arg_index].a.a_int; |
4684 | /* "A negative precision is taken as if the precision |
4685 | were omitted." */ |
4686 | if (arg >= 0) |
4687 | { |
4688 | precision = arg; |
4689 | has_precision = 1; |
4690 | } |
4691 | } |
4692 | else |
4693 | { |
4694 | const FCHAR_T *digitp = dp->precision_start + 1; |
4695 | |
4696 | precision = 0; |
4697 | while (digitp != dp->precision_end) |
4698 | precision = xsum (xtimes (precision, 10), *digitp++ - '0'); |
4699 | has_precision = 1; |
4700 | } |
4701 | } |
4702 | #endif |
4703 | |
4704 | /* Decide whether to handle the precision ourselves. */ |
4705 | #if NEED_PRINTF_UNBOUNDED_PRECISION |
4706 | switch (dp->conversion) |
4707 | { |
4708 | case 'd': case 'i': case 'u': |
4709 | case 'o': |
4710 | case 'x': case 'X': case 'p': |
4711 | prec_ourselves = has_precision && (precision > 0); |
4712 | break; |
4713 | default: |
4714 | prec_ourselves = 0; |
4715 | break; |
4716 | } |
4717 | #endif |
4718 | |
4719 | /* Decide whether to perform the padding ourselves. */ |
4720 | #if !NEED_PRINTF_FLAG_LEFTADJUST && (!DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION) |
4721 | switch (dp->conversion) |
4722 | { |
4723 | # if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO |
4724 | /* If we need conversion from TCHAR_T[] to DCHAR_T[], we need |
4725 | to perform the padding after this conversion. Functions |
4726 | with unistdio extensions perform the padding based on |
4727 | character count rather than element count. */ |
4728 | case 'c': case 's': |
4729 | # endif |
4730 | # if NEED_PRINTF_FLAG_ZERO |
4731 | case 'f': case 'F': case 'e': case 'E': case 'g': case 'G': |
4732 | case 'a': case 'A': |
4733 | # endif |
4734 | pad_ourselves = 1; |
4735 | break; |
4736 | default: |
4737 | pad_ourselves = prec_ourselves; |
4738 | break; |
4739 | } |
4740 | #endif |
4741 | |
4742 | #if !USE_SNPRINTF |
4743 | /* Allocate a temporary buffer of sufficient size for calling |
4744 | sprintf. */ |
4745 | tmp_length = |
4746 | MAX_ROOM_NEEDED (&a, dp->arg_index, dp->conversion, type, |
4747 | flags, width, has_precision, precision, |
4748 | pad_ourselves); |
4749 | |
4750 | if (tmp_length <= sizeof (tmpbuf) / sizeof (TCHAR_T)) |
4751 | tmp = tmpbuf; |
4752 | else |
4753 | { |
4754 | size_t tmp_memsize = xtimes (tmp_length, sizeof (TCHAR_T)); |
4755 | |
4756 | if (size_overflow_p (tmp_memsize)) |
4757 | /* Overflow, would lead to out of memory. */ |
4758 | goto out_of_memory; |
4759 | tmp = (TCHAR_T *) malloc (tmp_memsize); |
4760 | if (tmp == NULL) |
4761 | /* Out of memory. */ |
4762 | goto out_of_memory; |
4763 | } |
4764 | #endif |
4765 | |
4766 | /* Construct the format string for calling snprintf or |
4767 | sprintf. */ |
4768 | fbp = buf; |
4769 | *fbp++ = '%'; |
4770 | #if NEED_PRINTF_FLAG_GROUPING |
4771 | /* The underlying implementation doesn't support the ' flag. |
4772 | Produce no grouping characters in this case; this is |
4773 | acceptable because the grouping is locale dependent. */ |
4774 | #else |
4775 | if (flags & FLAG_GROUP) |
4776 | *fbp++ = '\''; |
4777 | #endif |
4778 | if (flags & FLAG_LEFT) |
4779 | *fbp++ = '-'; |
4780 | if (flags & FLAG_SHOWSIGN) |
4781 | *fbp++ = '+'; |
4782 | if (flags & FLAG_SPACE) |
4783 | *fbp++ = ' '; |
4784 | if (flags & FLAG_ALT) |
4785 | *fbp++ = '#'; |
4786 | #if __GLIBC__ >= 2 && !defined __UCLIBC__ |
4787 | if (flags & FLAG_LOCALIZED) |
4788 | *fbp++ = 'I'; |
4789 | #endif |
4790 | if (!pad_ourselves) |
4791 | { |
4792 | if (flags & FLAG_ZERO) |
4793 | *fbp++ = '0'; |
4794 | if (dp->width_start != dp->width_end) |
4795 | { |
4796 | size_t n = dp->width_end - dp->width_start; |
4797 | /* The width specification is known to consist only |
4798 | of standard ASCII characters. */ |
4799 | if (sizeof (FCHAR_T) == sizeof (TCHAR_T)) |
4800 | { |
4801 | memcpy (fbp, dp->width_start, n * sizeof (TCHAR_T)); |
4802 | fbp += n; |
4803 | } |
4804 | else |
4805 | { |
4806 | const FCHAR_T *mp = dp->width_start; |
4807 | do |
4808 | *fbp++ = (unsigned char) *mp++; |
4809 | while (--n > 0); |
4810 | } |
4811 | } |
4812 | } |
4813 | if (!prec_ourselves) |
4814 | { |
4815 | if (dp->precision_start != dp->precision_end) |
4816 | { |
4817 | size_t n = dp->precision_end - dp->precision_start; |
4818 | /* The precision specification is known to consist only |
4819 | of standard ASCII characters. */ |
4820 | if (sizeof (FCHAR_T) == sizeof (TCHAR_T)) |
4821 | { |
4822 | memcpy (fbp, dp->precision_start, n * sizeof (TCHAR_T)); |
4823 | fbp += n; |
4824 | } |
4825 | else |
4826 | { |
4827 | const FCHAR_T *mp = dp->precision_start; |
4828 | do |
4829 | *fbp++ = (unsigned char) *mp++; |
4830 | while (--n > 0); |
4831 | } |
4832 | } |
4833 | } |
4834 | |
4835 | switch (type) |
4836 | { |
4837 | #if HAVE_LONG_LONG_INT |
4838 | case TYPE_LONGLONGINT: |
4839 | case TYPE_ULONGLONGINT: |
4840 | # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ |
4841 | *fbp++ = 'I'; |
4842 | *fbp++ = '6'; |
4843 | *fbp++ = '4'; |
4844 | break; |
4845 | # else |
4846 | *fbp++ = 'l'; |
4847 | /*FALLTHROUGH*/ |
4848 | # endif |
4849 | #endif |
4850 | case TYPE_LONGINT: |
4851 | case TYPE_ULONGINT: |
4852 | #if HAVE_WINT_T |
4853 | case TYPE_WIDE_CHAR: |
4854 | #endif |
4855 | #if HAVE_WCHAR_T |
4856 | case TYPE_WIDE_STRING: |
4857 | #endif |
4858 | *fbp++ = 'l'; |
4859 | break; |
4860 | case TYPE_LONGDOUBLE: |
4861 | *fbp++ = 'L'; |
4862 | break; |
4863 | default: |
4864 | break; |
4865 | } |
4866 | #if NEED_PRINTF_DIRECTIVE_F |
4867 | if (dp->conversion == 'F') |
4868 | *fbp = 'f'; |
4869 | else |
4870 | #endif |
4871 | *fbp = dp->conversion; |
4872 | #if USE_SNPRINTF |
4873 | # if !(((__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) && !defined __UCLIBC__) || ((defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__)) |
4874 | fbp[1] = '%'; |
4875 | fbp[2] = 'n'; |
4876 | fbp[3] = '\0'; |
4877 | # else |
4878 | /* On glibc2 systems from glibc >= 2.3 - probably also older |
4879 | ones - we know that snprintf's return value conforms to |
4880 | ISO C 99: the tests gl_SNPRINTF_RETVAL_C99 and |
4881 | gl_SNPRINTF_TRUNCATION_C99 pass. |
4882 | Therefore we can avoid using %n in this situation. |
4883 | On glibc2 systems from 2004-10-18 or newer, the use of %n |
4884 | in format strings in writable memory may crash the program |
4885 | (if compiled with _FORTIFY_SOURCE=2), so we should avoid it |
4886 | in this situation. */ |
4887 | /* On native Windows systems (such as mingw), we can avoid using |
4888 | %n because: |
4889 | - Although the gl_SNPRINTF_TRUNCATION_C99 test fails, |
4890 | snprintf does not write more than the specified number |
4891 | of bytes. (snprintf (buf, 3, "%d %d", 4567, 89) writes |
4892 | '4', '5', '6' into buf, not '4', '5', '\0'.) |
4893 | - Although the gl_SNPRINTF_RETVAL_C99 test fails, snprintf |
4894 | allows us to recognize the case of an insufficient |
4895 | buffer size: it returns -1 in this case. |
4896 | On native Windows systems (such as mingw) where the OS is |
4897 | Windows Vista, the use of %n in format strings by default |
4898 | crashes the program. See |
4899 | <http://gcc.gnu.org/ml/gcc/2007-06/msg00122.html> and |
4900 | <http://msdn2.microsoft.com/en-us/library/ms175782(VS.80).aspx> |
4901 | So we should avoid %n in this situation. */ |
4902 | fbp[1] = '\0'; |
4903 | # endif |
4904 | #else |
4905 | fbp[1] = '\0'; |
4906 | #endif |
4907 | |
4908 | /* Construct the arguments for calling snprintf or sprintf. */ |
4909 | prefix_count = 0; |
4910 | if (!pad_ourselves && dp->width_arg_index != ARG_NONE) |
4911 | { |
4912 | if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) |
4913 | abort (); |
4914 | prefixes[prefix_count++] = a.arg[dp->width_arg_index].a.a_int; |
4915 | } |
4916 | if (!prec_ourselves && dp->precision_arg_index != ARG_NONE) |
4917 | { |
4918 | if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) |
4919 | abort (); |
4920 | prefixes[prefix_count++] = a.arg[dp->precision_arg_index].a.a_int; |
4921 | } |
4922 | |
4923 | #if USE_SNPRINTF |
4924 | /* The SNPRINTF result is appended after result[0..length]. |
4925 | The latter is an array of DCHAR_T; SNPRINTF appends an |
4926 | array of TCHAR_T to it. This is possible because |
4927 | sizeof (TCHAR_T) divides sizeof (DCHAR_T) and |
4928 | alignof (TCHAR_T) <= alignof (DCHAR_T). */ |
4929 | # define TCHARS_PER_DCHAR (sizeof (DCHAR_T) / sizeof (TCHAR_T)) |
4930 | /* Ensure that maxlen below will be >= 2. Needed on BeOS, |
4931 | where an snprintf() with maxlen==1 acts like sprintf(). */ |
4932 | ENSURE_ALLOCATION (xsum (length, |
4933 | (2 + TCHARS_PER_DCHAR - 1) |
4934 | / TCHARS_PER_DCHAR)); |
4935 | /* Prepare checking whether snprintf returns the count |
4936 | via %n. */ |
4937 | *(TCHAR_T *) (result + length) = '\0'; |
4938 | #endif |
4939 | |
4940 | orig_errno = errno; |
4941 | |
4942 | for (;;) |
4943 | { |
4944 | int count = -1; |
4945 | |
4946 | #if USE_SNPRINTF |
4947 | int retcount = 0; |
4948 | size_t maxlen = allocated - length; |
4949 | /* SNPRINTF can fail if its second argument is |
4950 | > INT_MAX. */ |
4951 | if (maxlen > INT_MAX / TCHARS_PER_DCHAR) |
4952 | maxlen = INT_MAX / TCHARS_PER_DCHAR; |
4953 | maxlen = maxlen * TCHARS_PER_DCHAR; |
4954 | # define SNPRINTF_BUF(arg) \ |
4955 | switch (prefix_count) \ |
4956 | { \ |
4957 | case 0: \ |
4958 | retcount = SNPRINTF ((TCHAR_T *) (result + length), \ |
4959 | maxlen, buf, \ |
4960 | arg, &count); \ |
4961 | break; \ |
4962 | case 1: \ |
4963 | retcount = SNPRINTF ((TCHAR_T *) (result + length), \ |
4964 | maxlen, buf, \ |
4965 | prefixes[0], arg, &count); \ |
4966 | break; \ |
4967 | case 2: \ |
4968 | retcount = SNPRINTF ((TCHAR_T *) (result + length), \ |
4969 | maxlen, buf, \ |
4970 | prefixes[0], prefixes[1], arg, \ |
4971 | &count); \ |
4972 | break; \ |
4973 | default: \ |
4974 | abort (); \ |
4975 | } |
4976 | #else |
4977 | # define SNPRINTF_BUF(arg) \ |
4978 | switch (prefix_count) \ |
4979 | { \ |
4980 | case 0: \ |
4981 | count = sprintf (tmp, buf, arg); \ |
4982 | break; \ |
4983 | case 1: \ |
4984 | count = sprintf (tmp, buf, prefixes[0], arg); \ |
4985 | break; \ |
4986 | case 2: \ |
4987 | count = sprintf (tmp, buf, prefixes[0], prefixes[1],\ |
4988 | arg); \ |
4989 | break; \ |
4990 | default: \ |
4991 | abort (); \ |
4992 | } |
4993 | #endif |
4994 | |
4995 | errno = 0; |
4996 | switch (type) |
4997 | { |
4998 | case TYPE_SCHAR: |
4999 | { |
5000 | int arg = a.arg[dp->arg_index].a.a_schar; |
5001 | SNPRINTF_BUF (arg); |
5002 | } |
5003 | break; |
5004 | case TYPE_UCHAR: |
5005 | { |
5006 | unsigned int arg = a.arg[dp->arg_index].a.a_uchar; |
5007 | SNPRINTF_BUF (arg); |
5008 | } |
5009 | break; |
5010 | case TYPE_SHORT: |
5011 | { |
5012 | int arg = a.arg[dp->arg_index].a.a_short; |
5013 | SNPRINTF_BUF (arg); |
5014 | } |
5015 | break; |
5016 | case TYPE_USHORT: |
5017 | { |
5018 | unsigned int arg = a.arg[dp->arg_index].a.a_ushort; |
5019 | SNPRINTF_BUF (arg); |
5020 | } |
5021 | break; |
5022 | case TYPE_INT: |
5023 | { |
5024 | int arg = a.arg[dp->arg_index].a.a_int; |
5025 | SNPRINTF_BUF (arg); |
5026 | } |
5027 | break; |
5028 | case TYPE_UINT: |
5029 | { |
5030 | unsigned int arg = a.arg[dp->arg_index].a.a_uint; |
5031 | SNPRINTF_BUF (arg); |
5032 | } |
5033 | break; |
5034 | case TYPE_LONGINT: |
5035 | { |
5036 | long int arg = a.arg[dp->arg_index].a.a_longint; |
5037 | SNPRINTF_BUF (arg); |
5038 | } |
5039 | break; |
5040 | case TYPE_ULONGINT: |
5041 | { |
5042 | unsigned long int arg = a.arg[dp->arg_index].a.a_ulongint; |
5043 | SNPRINTF_BUF (arg); |
5044 | } |
5045 | break; |
5046 | #if HAVE_LONG_LONG_INT |
5047 | case TYPE_LONGLONGINT: |
5048 | { |
5049 | long long int arg = a.arg[dp->arg_index].a.a_longlongint; |
5050 | SNPRINTF_BUF (arg); |
5051 | } |
5052 | break; |
5053 | case TYPE_ULONGLONGINT: |
5054 | { |
5055 | unsigned long long int arg = a.arg[dp->arg_index].a.a_ulonglongint; |
5056 | SNPRINTF_BUF (arg); |
5057 | } |
5058 | break; |
5059 | #endif |
5060 | case TYPE_DOUBLE: |
5061 | { |
5062 | double arg = a.arg[dp->arg_index].a.a_double; |
5063 | SNPRINTF_BUF (arg); |
5064 | } |
5065 | break; |
5066 | case TYPE_LONGDOUBLE: |
5067 | { |
5068 | long double arg = a.arg[dp->arg_index].a.a_longdouble; |
5069 | SNPRINTF_BUF (arg); |
5070 | } |
5071 | break; |
5072 | case TYPE_CHAR: |
5073 | { |
5074 | int arg = a.arg[dp->arg_index].a.a_char; |
5075 | SNPRINTF_BUF (arg); |
5076 | } |
5077 | break; |
5078 | #if HAVE_WINT_T |
5079 | case TYPE_WIDE_CHAR: |
5080 | { |
5081 | wint_t arg = a.arg[dp->arg_index].a.a_wide_char; |
5082 | SNPRINTF_BUF (arg); |
5083 | } |
5084 | break; |
5085 | #endif |
5086 | case TYPE_STRING: |
5087 | { |
5088 | const char *arg = a.arg[dp->arg_index].a.a_string; |
5089 | SNPRINTF_BUF (arg); |
5090 | } |
5091 | break; |
5092 | #if HAVE_WCHAR_T |
5093 | case TYPE_WIDE_STRING: |
5094 | { |
5095 | const wchar_t *arg = a.arg[dp->arg_index].a.a_wide_string; |
5096 | SNPRINTF_BUF (arg); |
5097 | } |
5098 | break; |
5099 | #endif |
5100 | case TYPE_POINTER: |
5101 | { |
5102 | void *arg = a.arg[dp->arg_index].a.a_pointer; |
5103 | SNPRINTF_BUF (arg); |
5104 | } |
5105 | break; |
5106 | default: |
5107 | abort (); |
5108 | } |
5109 | |
5110 | #if USE_SNPRINTF |
5111 | /* Portability: Not all implementations of snprintf() |
5112 | are ISO C 99 compliant. Determine the number of |
5113 | bytes that snprintf() has produced or would have |
5114 | produced. */ |
5115 | if (count >= 0) |
5116 | { |
5117 | /* Verify that snprintf() has NUL-terminated its |
5118 | result. */ |
5119 | if (count < maxlen |
5120 | && ((TCHAR_T *) (result + length)) [count] != '\0') |
5121 | abort (); |
5122 | /* Portability hack. */ |
5123 | if (retcount > count) |
5124 | count = retcount; |
5125 | } |
5126 | else |
5127 | { |
5128 | /* snprintf() doesn't understand the '%n' |
5129 | directive. */ |
5130 | if (fbp[1] != '\0') |
5131 | { |
5132 | /* Don't use the '%n' directive; instead, look |
5133 | at the snprintf() return value. */ |
5134 | fbp[1] = '\0'; |
5135 | continue; |
5136 | } |
5137 | else |
5138 | { |
5139 | /* Look at the snprintf() return value. */ |
5140 | if (retcount < 0) |
5141 | { |
5142 | # if !HAVE_SNPRINTF_RETVAL_C99 |
5143 | /* HP-UX 10.20 snprintf() is doubly deficient: |
5144 | It doesn't understand the '%n' directive, |
5145 | *and* it returns -1 (rather than the length |
5146 | that would have been required) when the |
5147 | buffer is too small. |
5148 | But a failure at this point can also come |
5149 | from other reasons than a too small buffer, |
5150 | such as an invalid wide string argument to |
5151 | the %ls directive, or possibly an invalid |
5152 | floating-point argument. */ |
5153 | size_t tmp_length = |
5154 | MAX_ROOM_NEEDED (&a, dp->arg_index, |
5155 | dp->conversion, type, flags, |
5156 | width, has_precision, |
5157 | precision, pad_ourselves); |
5158 | |
5159 | if (maxlen < tmp_length) |
5160 | { |
5161 | /* Make more room. But try to do through |
5162 | this reallocation only once. */ |
5163 | size_t bigger_need = |
5164 | xsum (length, |
5165 | xsum (tmp_length, |
5166 | TCHARS_PER_DCHAR - 1) |
5167 | / TCHARS_PER_DCHAR); |
5168 | /* And always grow proportionally. |
5169 | (There may be several arguments, each |
5170 | needing a little more room than the |
5171 | previous one.) */ |
5172 | size_t bigger_need2 = |
5173 | xsum (xtimes (allocated, 2), 12); |
5174 | if (bigger_need < bigger_need2) |
5175 | bigger_need = bigger_need2; |
5176 | ENSURE_ALLOCATION (bigger_need); |
5177 | continue; |
5178 | } |
5179 | # endif |
5180 | } |
5181 | else |
5182 | count = retcount; |
5183 | } |
5184 | } |
5185 | #endif |
5186 | |
5187 | /* Attempt to handle failure. */ |
5188 | if (count < 0) |
5189 | { |
5190 | /* SNPRINTF or sprintf failed. Save and use the errno |
5191 | that it has set, if any. */ |
5192 | int saved_errno = errno; |
5193 | |
5194 | if (!(result == resultbuf || result == NULL)) |
5195 | free (result); |
5196 | if (buf_malloced != NULL) |
5197 | free (buf_malloced); |
5198 | CLEANUP (); |
5199 | errno = |
5200 | (saved_errno != 0 |
5201 | ? saved_errno |
5202 | : (dp->conversion == 'c' || dp->conversion == 's' |
5203 | ? EILSEQ |
5204 | : EINVAL)); |
5205 | return NULL; |
5206 | } |
5207 | |
5208 | #if USE_SNPRINTF |
5209 | /* Handle overflow of the allocated buffer. |
5210 | If such an overflow occurs, a C99 compliant snprintf() |
5211 | returns a count >= maxlen. However, a non-compliant |
5212 | snprintf() function returns only count = maxlen - 1. To |
5213 | cover both cases, test whether count >= maxlen - 1. */ |
5214 | if ((unsigned int) count + 1 >= maxlen) |
5215 | { |
5216 | /* If maxlen already has attained its allowed maximum, |
5217 | allocating more memory will not increase maxlen. |
5218 | Instead of looping, bail out. */ |
5219 | if (maxlen == INT_MAX / TCHARS_PER_DCHAR) |
5220 | goto overflow; |
5221 | else |
5222 | { |
5223 | /* Need at least (count + 1) * sizeof (TCHAR_T) |
5224 | bytes. (The +1 is for the trailing NUL.) |
5225 | But ask for (count + 2) * sizeof (TCHAR_T) |
5226 | bytes, so that in the next round, we likely get |
5227 | maxlen > (unsigned int) count + 1 |
5228 | and so we don't get here again. |
5229 | And allocate proportionally, to avoid looping |
5230 | eternally if snprintf() reports a too small |
5231 | count. */ |
5232 | size_t n = |
5233 | xmax (xsum (length, |
5234 | ((unsigned int) count + 2 |
5235 | + TCHARS_PER_DCHAR - 1) |
5236 | / TCHARS_PER_DCHAR), |
5237 | xtimes (allocated, 2)); |
5238 | |
5239 | ENSURE_ALLOCATION (n); |
5240 | continue; |
5241 | } |
5242 | } |
5243 | #endif |
5244 | |
5245 | #if NEED_PRINTF_UNBOUNDED_PRECISION |
5246 | if (prec_ourselves) |
5247 | { |
5248 | /* Handle the precision. */ |
5249 | TCHAR_T *prec_ptr = |
5250 | # if USE_SNPRINTF |
5251 | (TCHAR_T *) (result + length); |
5252 | # else |
5253 | tmp; |
5254 | # endif |
5255 | size_t prefix_count; |
5256 | size_t move; |
5257 | |
5258 | prefix_count = 0; |
5259 | /* Put the additional zeroes after the sign. */ |
5260 | if (count >= 1 |
5261 | && (*prec_ptr == '-' || *prec_ptr == '+' |
5262 | || *prec_ptr == ' ')) |
5263 | prefix_count = 1; |
5264 | /* Put the additional zeroes after the 0x prefix if |
5265 | (flags & FLAG_ALT) || (dp->conversion == 'p'). */ |
5266 | else if (count >= 2 |
5267 | && prec_ptr[0] == '0' |
5268 | && (prec_ptr[1] == 'x' || prec_ptr[1] == 'X')) |
5269 | prefix_count = 2; |
5270 | |
5271 | move = count - prefix_count; |
5272 | if (precision > move) |
5273 | { |
5274 | /* Insert zeroes. */ |
5275 | size_t insert = precision - move; |
5276 | TCHAR_T *prec_end; |
5277 | |
5278 | # if USE_SNPRINTF |
5279 | size_t n = |
5280 | xsum (length, |
5281 | (count + insert + TCHARS_PER_DCHAR - 1) |
5282 | / TCHARS_PER_DCHAR); |
5283 | length += (count + TCHARS_PER_DCHAR - 1) / TCHARS_PER_DCHAR; |
5284 | ENSURE_ALLOCATION (n); |
5285 | length -= (count + TCHARS_PER_DCHAR - 1) / TCHARS_PER_DCHAR; |
5286 | prec_ptr = (TCHAR_T *) (result + length); |
5287 | # endif |
5288 | |
5289 | prec_end = prec_ptr + count; |
5290 | prec_ptr += prefix_count; |
5291 | |
5292 | while (prec_end > prec_ptr) |
5293 | { |
5294 | prec_end--; |
5295 | prec_end[insert] = prec_end[0]; |
5296 | } |
5297 | |
5298 | prec_end += insert; |
5299 | do |
5300 | *--prec_end = '0'; |
5301 | while (prec_end > prec_ptr); |
5302 | |
5303 | count += insert; |
5304 | } |
5305 | } |
5306 | #endif |
5307 | |
5308 | #if !USE_SNPRINTF |
5309 | if (count >= tmp_length) |
5310 | /* tmp_length was incorrectly calculated - fix the |
5311 | code above! */ |
5312 | abort (); |
5313 | #endif |
5314 | |
5315 | #if !DCHAR_IS_TCHAR |
5316 | /* Convert from TCHAR_T[] to DCHAR_T[]. */ |
5317 | if (dp->conversion == 'c' || dp->conversion == 's') |
5318 | { |
5319 | /* type = TYPE_CHAR or TYPE_WIDE_CHAR or TYPE_STRING |
5320 | TYPE_WIDE_STRING. |
5321 | The result string is not certainly ASCII. */ |
5322 | const TCHAR_T *tmpsrc; |
5323 | DCHAR_T *tmpdst; |
5324 | size_t tmpdst_len; |
5325 | /* This code assumes that TCHAR_T is 'char'. */ |
5326 | verify (sizeof (TCHAR_T) == 1); |
5327 | # if USE_SNPRINTF |
5328 | tmpsrc = (TCHAR_T *) (result + length); |
5329 | # else |
5330 | tmpsrc = tmp; |
5331 | # endif |
5332 | tmpdst = |
5333 | DCHAR_CONV_FROM_ENCODING (locale_charset (), |
5334 | iconveh_question_mark, |
5335 | tmpsrc, count, |
5336 | NULL, |
5337 | NULL, &tmpdst_len); |
5338 | if (tmpdst == NULL) |
5339 | { |
5340 | int saved_errno = errno; |
5341 | if (!(result == resultbuf || result == NULL)) |
5342 | free (result); |
5343 | if (buf_malloced != NULL) |
5344 | free (buf_malloced); |
5345 | CLEANUP (); |
5346 | errno = saved_errno; |
5347 | return NULL; |
5348 | } |
5349 | ENSURE_ALLOCATION (xsum (length, tmpdst_len)); |
5350 | DCHAR_CPY (result + length, tmpdst, tmpdst_len); |
5351 | free (tmpdst); |
5352 | count = tmpdst_len; |
5353 | } |
5354 | else |
5355 | { |
5356 | /* The result string is ASCII. |
5357 | Simple 1:1 conversion. */ |
5358 | # if USE_SNPRINTF |
5359 | /* If sizeof (DCHAR_T) == sizeof (TCHAR_T), it's a |
5360 | no-op conversion, in-place on the array starting |
5361 | at (result + length). */ |
5362 | if (sizeof (DCHAR_T) != sizeof (TCHAR_T)) |
5363 | # endif |
5364 | { |
5365 | const TCHAR_T *tmpsrc; |
5366 | DCHAR_T *tmpdst; |
5367 | size_t n; |
5368 | |
5369 | # if USE_SNPRINTF |
5370 | if (result == resultbuf) |
5371 | { |
5372 | tmpsrc = (TCHAR_T *) (result + length); |
5373 | /* ENSURE_ALLOCATION will not move tmpsrc |
5374 | (because it's part of resultbuf). */ |
5375 | ENSURE_ALLOCATION (xsum (length, count)); |
5376 | } |
5377 | else |
5378 | { |
5379 | /* ENSURE_ALLOCATION will move the array |
5380 | (because it uses realloc(). */ |
5381 | ENSURE_ALLOCATION (xsum (length, count)); |
5382 | tmpsrc = (TCHAR_T *) (result + length); |
5383 | } |
5384 | # else |
5385 | tmpsrc = tmp; |
5386 | ENSURE_ALLOCATION (xsum (length, count)); |
5387 | # endif |
5388 | tmpdst = result + length; |
5389 | /* Copy backwards, because of overlapping. */ |
5390 | tmpsrc += count; |
5391 | tmpdst += count; |
5392 | for (n = count; n > 0; n--) |
5393 | *--tmpdst = (unsigned char) *--tmpsrc; |
5394 | } |
5395 | } |
5396 | #endif |
5397 | |
5398 | #if DCHAR_IS_TCHAR && !USE_SNPRINTF |
5399 | /* Make room for the result. */ |
5400 | if (count > allocated - length) |
5401 | { |
5402 | /* Need at least count elements. But allocate |
5403 | proportionally. */ |
5404 | size_t n = |
5405 | xmax (xsum (length, count), xtimes (allocated, 2)); |
5406 | |
5407 | ENSURE_ALLOCATION (n); |
5408 | } |
5409 | #endif |
5410 | |
5411 | /* Here count <= allocated - length. */ |
5412 | |
5413 | /* Perform padding. */ |
5414 | #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_LEFTADJUST || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION |
5415 | if (pad_ourselves && has_width) |
5416 | { |
5417 | size_t w; |
5418 | # if ENABLE_UNISTDIO |
5419 | /* Outside POSIX, it's preferable to compare the width |
5420 | against the number of _characters_ of the converted |
5421 | value. */ |
5422 | w = DCHAR_MBSNLEN (result + length, count); |
5423 | # else |
5424 | /* The width is compared against the number of _bytes_ |
5425 | of the converted value, says POSIX. */ |
5426 | w = count; |
5427 | # endif |
5428 | if (w < width) |
5429 | { |
5430 | size_t pad = width - w; |
5431 | |
5432 | /* Make room for the result. */ |
5433 | if (xsum (count, pad) > allocated - length) |
5434 | { |
5435 | /* Need at least count + pad elements. But |
5436 | allocate proportionally. */ |
5437 | size_t n = |
5438 | xmax (xsum3 (length, count, pad), |
5439 | xtimes (allocated, 2)); |
5440 | |
5441 | # if USE_SNPRINTF |
5442 | length += count; |
5443 | ENSURE_ALLOCATION (n); |
5444 | length -= count; |
5445 | # else |
5446 | ENSURE_ALLOCATION (n); |
5447 | # endif |
5448 | } |
5449 | /* Here count + pad <= allocated - length. */ |
5450 | |
5451 | { |
5452 | # if !DCHAR_IS_TCHAR || USE_SNPRINTF |
5453 | DCHAR_T * const rp = result + length; |
5454 | # else |
5455 | DCHAR_T * const rp = tmp; |
5456 | # endif |
5457 | DCHAR_T *p = rp + count; |
5458 | DCHAR_T *end = p + pad; |
5459 | DCHAR_T *pad_ptr; |
5460 | # if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO |
5461 | if (dp->conversion == 'c' |
5462 | || dp->conversion == 's') |
5463 | /* No zero-padding for string directives. */ |
5464 | pad_ptr = NULL; |
5465 | else |
5466 | # endif |
5467 | { |
5468 | pad_ptr = (*rp == '-' ? rp + 1 : rp); |
5469 | /* No zero-padding of "inf" and "nan". */ |
5470 | if ((*pad_ptr >= 'A' && *pad_ptr <= 'Z') |
5471 | || (*pad_ptr >= 'a' && *pad_ptr <= 'z')) |
5472 | pad_ptr = NULL; |
5473 | } |
5474 | /* The generated string now extends from rp to p, |
5475 | with the zero padding insertion point being at |
5476 | pad_ptr. */ |
5477 | |
5478 | count = count + pad; /* = end - rp */ |
5479 | |
5480 | if (flags & FLAG_LEFT) |
5481 | { |
5482 | /* Pad with spaces on the right. */ |
5483 | for (; pad > 0; pad--) |
5484 | *p++ = ' '; |
5485 | } |
5486 | else if ((flags & FLAG_ZERO) && pad_ptr != NULL) |
5487 | { |
5488 | /* Pad with zeroes. */ |
5489 | DCHAR_T *q = end; |
5490 | |
5491 | while (p > pad_ptr) |
5492 | *--q = *--p; |
5493 | for (; pad > 0; pad--) |
5494 | *p++ = '0'; |
5495 | } |
5496 | else |
5497 | { |
5498 | /* Pad with spaces on the left. */ |
5499 | DCHAR_T *q = end; |
5500 | |
5501 | while (p > rp) |
5502 | *--q = *--p; |
5503 | for (; pad > 0; pad--) |
5504 | *p++ = ' '; |
5505 | } |
5506 | } |
5507 | } |
5508 | } |
5509 | #endif |
5510 | |
5511 | /* Here still count <= allocated - length. */ |
5512 | |
5513 | #if !DCHAR_IS_TCHAR || USE_SNPRINTF |
5514 | /* The snprintf() result did fit. */ |
5515 | #else |
5516 | /* Append the sprintf() result. */ |
5517 | memcpy (result + length, tmp, count * sizeof (DCHAR_T)); |
5518 | #endif |
5519 | #if !USE_SNPRINTF |
5520 | if (tmp != tmpbuf) |
5521 | free (tmp); |
5522 | #endif |
5523 | |
5524 | #if NEED_PRINTF_DIRECTIVE_F |
5525 | if (dp->conversion == 'F') |
5526 | { |
5527 | /* Convert the %f result to upper case for %F. */ |
5528 | DCHAR_T *rp = result + length; |
5529 | size_t rc; |
5530 | for (rc = count; rc > 0; rc--, rp++) |
5531 | if (*rp >= 'a' && *rp <= 'z') |
5532 | *rp = *rp - 'a' + 'A'; |
5533 | } |
5534 | #endif |
5535 | |
5536 | length += count; |
5537 | break; |
5538 | } |
5539 | errno = orig_errno; |
5540 | #undef pad_ourselves |
5541 | #undef prec_ourselves |
5542 | } |
5543 | } |
5544 | } |
5545 | |
5546 | /* Add the final NUL. */ |
5547 | ENSURE_ALLOCATION (xsum (length, 1)); |
5548 | result[length] = '\0'; |
5549 | |
5550 | if (result != resultbuf && length + 1 < allocated) |
5551 | { |
5552 | /* Shrink the allocated memory if possible. */ |
5553 | DCHAR_T *memory; |
5554 | |
5555 | memory = (DCHAR_T *) realloc (result, (length + 1) * sizeof (DCHAR_T)); |
5556 | if (memory != NULL) |
5557 | result = memory; |
5558 | } |
5559 | |
5560 | if (buf_malloced != NULL) |
5561 | free (buf_malloced); |
5562 | CLEANUP (); |
5563 | *lengthp = length; |
5564 | /* Note that we can produce a big string of a length > INT_MAX. POSIX |
5565 | says that snprintf() fails with errno = EOVERFLOW in this case, but |
5566 | that's only because snprintf() returns an 'int'. This function does |
5567 | not have this limitation. */ |
5568 | return result; |
5569 | |
5570 | #if USE_SNPRINTF |
5571 | overflow: |
5572 | if (!(result == resultbuf || result == NULL)) |
5573 | free (result); |
5574 | if (buf_malloced != NULL) |
5575 | free (buf_malloced); |
5576 | CLEANUP (); |
5577 | errno = EOVERFLOW; |
5578 | return NULL; |
5579 | #endif |
5580 | |
5581 | out_of_memory: |
5582 | if (!(result == resultbuf || result == NULL)) |
5583 | free (result); |
5584 | if (buf_malloced != NULL) |
5585 | free (buf_malloced); |
5586 | out_of_memory_1: |
5587 | CLEANUP (); |
5588 | errno = ENOMEM; |
5589 | return NULL; |
5590 | } |
5591 | } |
5592 | |
5593 | #undef MAX_ROOM_NEEDED |
5594 | #undef TCHARS_PER_DCHAR |
5595 | #undef SNPRINTF |
5596 | #undef USE_SNPRINTF |
5597 | #undef DCHAR_SET |
5598 | #undef DCHAR_CPY |
5599 | #undef PRINTF_PARSE |
5600 | #undef DIRECTIVES |
5601 | #undef DIRECTIVE |
5602 | #undef DCHAR_IS_TCHAR |
5603 | #undef TCHAR_T |
5604 | #undef DCHAR_T |
5605 | #undef FCHAR_T |
5606 | #undef VASNPRINTF |
5607 | |