| 1 | /* |
| 2 | * librdkafka - Apache Kafka C library |
| 3 | * |
| 4 | * Copyright (c) 2017 Magnus Edenhill |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions are met: |
| 9 | * |
| 10 | * 1. Redistributions of source code must retain the above copyright notice, |
| 11 | * this list of conditions and the following disclaimer. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright notice, |
| 13 | * this list of conditions and the following disclaimer in the documentation |
| 14 | * and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | |
| 30 | #include "rd.h" |
| 31 | #include "rdbuf.h" |
| 32 | #include "rdunittest.h" |
| 33 | #include "rdlog.h" |
| 34 | #include "rdcrc32.h" |
| 35 | #include "crc32c.h" |
| 36 | |
| 37 | |
| 38 | static size_t |
| 39 | rd_buf_get_writable0 (rd_buf_t *rbuf, rd_segment_t **segp, void **p); |
| 40 | |
| 41 | |
| 42 | /** |
| 43 | * @brief Destroy the segment and free its payload. |
| 44 | * |
| 45 | * @remark Will NOT unlink from buffer. |
| 46 | */ |
| 47 | static void rd_segment_destroy (rd_segment_t *seg) { |
| 48 | /* Free payload */ |
| 49 | if (seg->seg_free && seg->seg_p) |
| 50 | seg->seg_free(seg->seg_p); |
| 51 | |
| 52 | if (seg->seg_flags & RD_SEGMENT_F_FREE) |
| 53 | rd_free(seg); |
| 54 | } |
| 55 | |
| 56 | /** |
| 57 | * @brief Initialize segment with absolute offset, backing memory pointer, |
| 58 | * and backing memory size. |
| 59 | * @remark The segment is NOT linked. |
| 60 | */ |
| 61 | static void rd_segment_init (rd_segment_t *seg, void *mem, size_t size) { |
| 62 | memset(seg, 0, sizeof(*seg)); |
| 63 | seg->seg_p = mem; |
| 64 | seg->seg_size = size; |
| 65 | } |
| 66 | |
| 67 | |
| 68 | /** |
| 69 | * @brief Append segment to buffer |
| 70 | * |
| 71 | * @remark Will set the buffer position to the new \p seg if no existing wpos. |
| 72 | * @remark Will set the segment seg_absof to the current length of the buffer. |
| 73 | */ |
| 74 | static rd_segment_t *rd_buf_append_segment (rd_buf_t *rbuf, rd_segment_t *seg) { |
| 75 | TAILQ_INSERT_TAIL(&rbuf->rbuf_segments, seg, seg_link); |
| 76 | rbuf->rbuf_segment_cnt++; |
| 77 | seg->seg_absof = rbuf->rbuf_len; |
| 78 | rbuf->rbuf_len += seg->seg_of; |
| 79 | rbuf->rbuf_size += seg->seg_size; |
| 80 | |
| 81 | /* Update writable position */ |
| 82 | if (!rbuf->rbuf_wpos) |
| 83 | rbuf->rbuf_wpos = seg; |
| 84 | else |
| 85 | rd_buf_get_writable0(rbuf, NULL, NULL); |
| 86 | |
| 87 | return seg; |
| 88 | } |
| 89 | |
| 90 | |
| 91 | |
| 92 | |
| 93 | /** |
| 94 | * @brief Attempt to allocate \p size bytes from the buffers extra buffers. |
| 95 | * @returns the allocated pointer which MUST NOT be freed, or NULL if |
| 96 | * not enough memory. |
| 97 | * @remark the returned pointer is memory-aligned to be safe. |
| 98 | */ |
| 99 | static void * (rd_buf_t *rbuf, size_t size) { |
| 100 | size_t of = RD_ROUNDUP(rbuf->rbuf_extra_len, 8); /* FIXME: 32-bit */ |
| 101 | void *p; |
| 102 | |
| 103 | if (of + size > rbuf->rbuf_extra_size) |
| 104 | return NULL; |
| 105 | |
| 106 | p = rbuf->rbuf_extra + of; /* Aligned pointer */ |
| 107 | |
| 108 | rbuf->rbuf_extra_len = of + size; |
| 109 | |
| 110 | return p; |
| 111 | } |
| 112 | |
| 113 | |
| 114 | |
| 115 | /** |
| 116 | * @brief Get a pre-allocated segment if available, or allocate a new |
| 117 | * segment with the extra amount of \p size bytes allocated for payload. |
| 118 | * |
| 119 | * Will not append the segment to the buffer. |
| 120 | */ |
| 121 | static rd_segment_t * |
| 122 | rd_buf_alloc_segment0 (rd_buf_t *rbuf, size_t size) { |
| 123 | rd_segment_t *seg; |
| 124 | |
| 125 | /* See if there is enough room in the extra buffer for |
| 126 | * allocating the segment header and the buffer, |
| 127 | * or just the segment header, else fall back to malloc. */ |
| 128 | if ((seg = extra_alloc(rbuf, sizeof(*seg) + size))) { |
| 129 | rd_segment_init(seg, size > 0 ? seg+1 : NULL, size); |
| 130 | |
| 131 | } else if ((seg = extra_alloc(rbuf, sizeof(*seg)))) { |
| 132 | rd_segment_init(seg, size > 0 ? rd_malloc(size) : NULL, size); |
| 133 | if (size > 0) |
| 134 | seg->seg_free = rd_free; |
| 135 | |
| 136 | } else if ((seg = rd_malloc(sizeof(*seg) + size))) { |
| 137 | rd_segment_init(seg, size > 0 ? seg+1 : NULL, size); |
| 138 | seg->seg_flags |= RD_SEGMENT_F_FREE; |
| 139 | |
| 140 | } else |
| 141 | rd_assert(!*"segment allocation failure" ); |
| 142 | |
| 143 | return seg; |
| 144 | } |
| 145 | |
| 146 | /** |
| 147 | * @brief Allocate between \p min_size .. \p max_size of backing memory |
| 148 | * and add it as a new segment to the buffer. |
| 149 | * |
| 150 | * The buffer position is updated to point to the new segment. |
| 151 | * |
| 152 | * The segment will be over-allocated if permitted by max_size |
| 153 | * (max_size == 0 or max_size > min_size). |
| 154 | */ |
| 155 | static rd_segment_t * |
| 156 | rd_buf_alloc_segment (rd_buf_t *rbuf, size_t min_size, size_t max_size) { |
| 157 | rd_segment_t *seg; |
| 158 | |
| 159 | /* Over-allocate if allowed. */ |
| 160 | if (min_size != max_size || max_size == 0) |
| 161 | max_size = RD_MAX(sizeof(*seg) * 4, |
| 162 | RD_MAX(min_size * 2, |
| 163 | rbuf->rbuf_size / 2)); |
| 164 | |
| 165 | seg = rd_buf_alloc_segment0(rbuf, max_size); |
| 166 | |
| 167 | rd_buf_append_segment(rbuf, seg); |
| 168 | |
| 169 | return seg; |
| 170 | } |
| 171 | |
| 172 | |
| 173 | /** |
| 174 | * @brief Ensures that \p size bytes will be available |
| 175 | * for writing and the position will be updated to point to the |
| 176 | * start of this contiguous block. |
| 177 | */ |
| 178 | void rd_buf_write_ensure_contig (rd_buf_t *rbuf, size_t size) { |
| 179 | rd_segment_t *seg = rbuf->rbuf_wpos; |
| 180 | |
| 181 | if (seg) { |
| 182 | void *p; |
| 183 | size_t remains = rd_segment_write_remains(seg, &p); |
| 184 | |
| 185 | if (remains >= size) |
| 186 | return; /* Existing segment has enough space. */ |
| 187 | |
| 188 | /* Future optimization: |
| 189 | * If existing segment has enough remaining space to warrant |
| 190 | * a split, do it, before allocating a new one. */ |
| 191 | } |
| 192 | |
| 193 | /* Allocate new segment */ |
| 194 | rbuf->rbuf_wpos = rd_buf_alloc_segment(rbuf, size, size); |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | * @brief Ensures that at least \p size bytes will be available for |
| 199 | * a future write. |
| 200 | * |
| 201 | * Typically used prior to a call to rd_buf_get_write_iov() |
| 202 | */ |
| 203 | void rd_buf_write_ensure (rd_buf_t *rbuf, size_t min_size, size_t max_size) { |
| 204 | size_t remains; |
| 205 | while ((remains = rd_buf_write_remains(rbuf)) < min_size) |
| 206 | rd_buf_alloc_segment(rbuf, |
| 207 | min_size - remains, |
| 208 | max_size ? max_size - remains : 0); |
| 209 | } |
| 210 | |
| 211 | |
| 212 | /** |
| 213 | * @returns the segment at absolute offset \p absof, or NULL if out of range. |
| 214 | * |
| 215 | * @remark \p hint is an optional segment where to start looking, such as |
| 216 | * the current write or read position. |
| 217 | */ |
| 218 | rd_segment_t * |
| 219 | rd_buf_get_segment_at_offset (const rd_buf_t *rbuf, const rd_segment_t *hint, |
| 220 | size_t absof) { |
| 221 | const rd_segment_t *seg = hint; |
| 222 | |
| 223 | if (unlikely(absof > rbuf->rbuf_len)) |
| 224 | return NULL; |
| 225 | |
| 226 | /* Only use current write position if possible and if it helps */ |
| 227 | if (!seg || absof < seg->seg_absof) |
| 228 | seg = TAILQ_FIRST(&rbuf->rbuf_segments); |
| 229 | |
| 230 | do { |
| 231 | if (absof >= seg->seg_absof && |
| 232 | absof < seg->seg_absof + seg->seg_of) { |
| 233 | rd_dassert(seg->seg_absof <= rd_buf_len(rbuf)); |
| 234 | return (rd_segment_t *)seg; |
| 235 | } |
| 236 | } while ((seg = TAILQ_NEXT(seg, seg_link))); |
| 237 | |
| 238 | return NULL; |
| 239 | } |
| 240 | |
| 241 | |
| 242 | /** |
| 243 | * @brief Split segment \p seg at absolute offset \p absof, appending |
| 244 | * a new segment after \p seg with its memory pointing to the |
| 245 | * memory starting at \p absof. |
| 246 | * \p seg 's memory will be shorted to the \p absof. |
| 247 | * |
| 248 | * The new segment is NOT appended to the buffer. |
| 249 | * |
| 250 | * @warning MUST ONLY be used on the LAST segment |
| 251 | * |
| 252 | * @warning if a segment is inserted between these two splitted parts |
| 253 | * it is imperative that the later segment's absof is corrected. |
| 254 | * |
| 255 | * @remark The seg_free callback is retained on the original \p seg |
| 256 | * and is not copied to the new segment, but flags are copied. |
| 257 | */ |
| 258 | static rd_segment_t *rd_segment_split (rd_buf_t *rbuf, rd_segment_t *seg, |
| 259 | size_t absof) { |
| 260 | rd_segment_t *newseg; |
| 261 | size_t relof; |
| 262 | |
| 263 | rd_assert(seg == rbuf->rbuf_wpos); |
| 264 | rd_assert(absof >= seg->seg_absof && |
| 265 | absof <= seg->seg_absof + seg->seg_of); |
| 266 | |
| 267 | relof = absof - seg->seg_absof; |
| 268 | |
| 269 | newseg = rd_buf_alloc_segment0(rbuf, 0); |
| 270 | |
| 271 | /* Add later part of split bytes to new segment */ |
| 272 | newseg->seg_p = seg->seg_p+relof; |
| 273 | newseg->seg_of = seg->seg_of-relof; |
| 274 | newseg->seg_size = seg->seg_size-relof; |
| 275 | newseg->seg_absof = SIZE_MAX; /* Invalid */ |
| 276 | newseg->seg_flags |= seg->seg_flags; |
| 277 | |
| 278 | /* Remove earlier part of split bytes from previous segment */ |
| 279 | seg->seg_of = relof; |
| 280 | seg->seg_size = relof; |
| 281 | |
| 282 | /* newseg's length will be added to rbuf_len in append_segment(), |
| 283 | * so shave it off here from seg's perspective. */ |
| 284 | rbuf->rbuf_len -= newseg->seg_of; |
| 285 | rbuf->rbuf_size -= newseg->seg_size; |
| 286 | |
| 287 | return newseg; |
| 288 | } |
| 289 | |
| 290 | |
| 291 | |
| 292 | |
| 293 | /** |
| 294 | * @brief Unlink and destroy a segment, updating the \p rbuf |
| 295 | * with the decrease in length and capacity. |
| 296 | */ |
| 297 | static void rd_buf_destroy_segment (rd_buf_t *rbuf, rd_segment_t *seg) { |
| 298 | rd_assert(rbuf->rbuf_segment_cnt > 0 && |
| 299 | rbuf->rbuf_len >= seg->seg_of && |
| 300 | rbuf->rbuf_size >= seg->seg_size); |
| 301 | |
| 302 | TAILQ_REMOVE(&rbuf->rbuf_segments, seg, seg_link); |
| 303 | rbuf->rbuf_segment_cnt--; |
| 304 | rbuf->rbuf_len -= seg->seg_of; |
| 305 | rbuf->rbuf_size -= seg->seg_size; |
| 306 | rd_dassert(rbuf->rbuf_len <= seg->seg_absof); |
| 307 | if (rbuf->rbuf_wpos == seg) |
| 308 | rbuf->rbuf_wpos = NULL; |
| 309 | |
| 310 | rd_segment_destroy(seg); |
| 311 | } |
| 312 | |
| 313 | |
| 314 | /** |
| 315 | * @brief Free memory associated with the \p rbuf, but not the rbuf itself. |
| 316 | * Segments will be destroyed. |
| 317 | */ |
| 318 | void rd_buf_destroy (rd_buf_t *rbuf) { |
| 319 | rd_segment_t *seg, *tmp; |
| 320 | |
| 321 | #if ENABLE_DEVEL |
| 322 | /* FIXME */ |
| 323 | if (rbuf->rbuf_len > 0 && 0) { |
| 324 | size_t overalloc = rbuf->rbuf_size - rbuf->rbuf_len; |
| 325 | float fill_grade = (float)rbuf->rbuf_len / |
| 326 | (float)rbuf->rbuf_size; |
| 327 | |
| 328 | printf("fill grade: %.2f%% (%zu bytes over-allocated)\n" , |
| 329 | fill_grade * 100.0f, overalloc); |
| 330 | } |
| 331 | #endif |
| 332 | |
| 333 | |
| 334 | TAILQ_FOREACH_SAFE(seg, &rbuf->rbuf_segments, seg_link, tmp) { |
| 335 | rd_segment_destroy(seg); |
| 336 | |
| 337 | } |
| 338 | |
| 339 | if (rbuf->rbuf_extra) |
| 340 | rd_free(rbuf->rbuf_extra); |
| 341 | } |
| 342 | |
| 343 | |
| 344 | /** |
| 345 | * @brief Initialize buffer, pre-allocating \p fixed_seg_cnt segments |
| 346 | * where the first segment will have a \p buf_size of backing memory. |
| 347 | * |
| 348 | * The caller may rearrange the backing memory as it see fits. |
| 349 | */ |
| 350 | void rd_buf_init (rd_buf_t *rbuf, size_t fixed_seg_cnt, size_t buf_size) { |
| 351 | size_t totalloc = 0; |
| 352 | |
| 353 | memset(rbuf, 0, sizeof(*rbuf)); |
| 354 | TAILQ_INIT(&rbuf->rbuf_segments); |
| 355 | |
| 356 | if (!fixed_seg_cnt) { |
| 357 | assert(!buf_size); |
| 358 | return; |
| 359 | } |
| 360 | |
| 361 | /* Pre-allocate memory for a fixed set of segments that are known |
| 362 | * before-hand, to minimize the number of extra allocations |
| 363 | * needed for well-known layouts (such as headers, etc) */ |
| 364 | totalloc += RD_ROUNDUP(sizeof(rd_segment_t), 8) * fixed_seg_cnt; |
| 365 | |
| 366 | /* Pre-allocate extra space for the backing buffer. */ |
| 367 | totalloc += buf_size; |
| 368 | |
| 369 | rbuf->rbuf_extra_size = totalloc; |
| 370 | rbuf->rbuf_extra = rd_malloc(rbuf->rbuf_extra_size); |
| 371 | } |
| 372 | |
| 373 | |
| 374 | |
| 375 | |
| 376 | /** |
| 377 | * @brief Convenience writer iterator interface. |
| 378 | * |
| 379 | * After writing to \p p the caller must update the written length |
| 380 | * by calling rd_buf_write(rbuf, NULL, written_length) |
| 381 | * |
| 382 | * @returns the number of contiguous writable bytes in segment |
| 383 | * and sets \p *p to point to the start of the memory region. |
| 384 | */ |
| 385 | static size_t |
| 386 | rd_buf_get_writable0 (rd_buf_t *rbuf, rd_segment_t **segp, void **p) { |
| 387 | rd_segment_t *seg; |
| 388 | |
| 389 | for (seg = rbuf->rbuf_wpos ; seg ; seg = TAILQ_NEXT(seg, seg_link)) { |
| 390 | size_t len = rd_segment_write_remains(seg, p); |
| 391 | |
| 392 | /* Even though the write offset hasn't changed we |
| 393 | * avoid future segment scans by adjusting the |
| 394 | * wpos here to the first writable segment. */ |
| 395 | rbuf->rbuf_wpos = seg; |
| 396 | if (segp) |
| 397 | *segp = seg; |
| 398 | |
| 399 | if (unlikely(len == 0)) |
| 400 | continue; |
| 401 | |
| 402 | /* Also adjust absof if the segment was allocated |
| 403 | * before the previous segment's memory was exhausted |
| 404 | * and thus now might have a lower absolute offset |
| 405 | * than the previos segment's now higher relative offset. */ |
| 406 | if (seg->seg_of == 0 && seg->seg_absof < rbuf->rbuf_len) |
| 407 | seg->seg_absof = rbuf->rbuf_len; |
| 408 | |
| 409 | return len; |
| 410 | } |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | size_t rd_buf_get_writable (rd_buf_t *rbuf, void **p) { |
| 416 | rd_segment_t *seg; |
| 417 | return rd_buf_get_writable0(rbuf, &seg, p); |
| 418 | } |
| 419 | |
| 420 | |
| 421 | |
| 422 | |
| 423 | /** |
| 424 | * @brief Write \p payload of \p size bytes to current position |
| 425 | * in buffer. A new segment will be allocated and appended |
| 426 | * if needed. |
| 427 | * |
| 428 | * @returns the write position where payload was written (pre-write). |
| 429 | * Returning the pre-positition allows write_update() to later |
| 430 | * update the same location, effectively making write()s |
| 431 | * also a place-holder mechanism. |
| 432 | * |
| 433 | * @remark If \p payload is NULL only the write position is updated, |
| 434 | * in this mode it is required for the buffer to have enough |
| 435 | * memory for the NULL write (as it would otherwise cause |
| 436 | * uninitialized memory in any new segments allocated from this |
| 437 | * function). |
| 438 | */ |
| 439 | size_t rd_buf_write (rd_buf_t *rbuf, const void *payload, size_t size) { |
| 440 | size_t remains = size; |
| 441 | size_t initial_absof; |
| 442 | const char *psrc = (const char *)payload; |
| 443 | |
| 444 | initial_absof = rbuf->rbuf_len; |
| 445 | |
| 446 | /* Ensure enough space by pre-allocating segments. */ |
| 447 | rd_buf_write_ensure(rbuf, size, 0); |
| 448 | |
| 449 | while (remains > 0) { |
| 450 | void *p; |
| 451 | rd_segment_t *seg = NULL; |
| 452 | size_t segremains = rd_buf_get_writable0(rbuf, &seg, &p); |
| 453 | size_t wlen = RD_MIN(remains, segremains); |
| 454 | |
| 455 | rd_dassert(seg == rbuf->rbuf_wpos); |
| 456 | rd_dassert(wlen > 0); |
| 457 | rd_dassert(seg->seg_p+seg->seg_of <= (char *)p && |
| 458 | (char *)p < seg->seg_p+seg->seg_size); |
| 459 | |
| 460 | if (payload) { |
| 461 | memcpy(p, psrc, wlen); |
| 462 | psrc += wlen; |
| 463 | } |
| 464 | |
| 465 | seg->seg_of += wlen; |
| 466 | rbuf->rbuf_len += wlen; |
| 467 | remains -= wlen; |
| 468 | } |
| 469 | |
| 470 | rd_assert(remains == 0); |
| 471 | |
| 472 | return initial_absof; |
| 473 | } |
| 474 | |
| 475 | |
| 476 | |
| 477 | /** |
| 478 | * @brief Write \p slice to \p rbuf |
| 479 | * |
| 480 | * @remark The slice position will be updated. |
| 481 | * |
| 482 | * @returns the number of bytes witten (always slice length) |
| 483 | */ |
| 484 | size_t rd_buf_write_slice (rd_buf_t *rbuf, rd_slice_t *slice) { |
| 485 | const void *p; |
| 486 | size_t rlen; |
| 487 | size_t sum = 0; |
| 488 | |
| 489 | while ((rlen = rd_slice_reader(slice, &p))) { |
| 490 | size_t r; |
| 491 | r = rd_buf_write(rbuf, p, rlen); |
| 492 | rd_dassert(r != 0); |
| 493 | sum += r; |
| 494 | } |
| 495 | |
| 496 | return sum; |
| 497 | } |
| 498 | |
| 499 | |
| 500 | |
| 501 | /** |
| 502 | * @brief Write \p payload of \p size at absolute offset \p absof |
| 503 | * WITHOUT updating the total buffer length. |
| 504 | * |
| 505 | * This is used to update a previously written region, such |
| 506 | * as updating the header length. |
| 507 | * |
| 508 | * @returns the number of bytes written, which may be less than \p size |
| 509 | * if the update spans multiple segments. |
| 510 | */ |
| 511 | static size_t rd_segment_write_update (rd_segment_t *seg, size_t absof, |
| 512 | const void *payload, size_t size) { |
| 513 | size_t relof; |
| 514 | size_t wlen; |
| 515 | |
| 516 | rd_dassert(absof >= seg->seg_absof); |
| 517 | relof = absof - seg->seg_absof; |
| 518 | rd_assert(relof <= seg->seg_of); |
| 519 | wlen = RD_MIN(size, seg->seg_of - relof); |
| 520 | rd_dassert(relof + wlen <= seg->seg_of); |
| 521 | |
| 522 | memcpy(seg->seg_p+relof, payload, wlen); |
| 523 | |
| 524 | return wlen; |
| 525 | } |
| 526 | |
| 527 | |
| 528 | |
| 529 | /** |
| 530 | * @brief Write \p payload of \p size at absolute offset \p absof |
| 531 | * WITHOUT updating the total buffer length. |
| 532 | * |
| 533 | * This is used to update a previously written region, such |
| 534 | * as updating the header length. |
| 535 | */ |
| 536 | size_t rd_buf_write_update (rd_buf_t *rbuf, size_t absof, |
| 537 | const void *payload, size_t size) { |
| 538 | rd_segment_t *seg; |
| 539 | const char *psrc = (const char *)payload; |
| 540 | size_t of; |
| 541 | |
| 542 | /* Find segment for offset */ |
| 543 | seg = rd_buf_get_segment_at_offset(rbuf, rbuf->rbuf_wpos, absof); |
| 544 | rd_assert(seg && *"invalid absolute offset" ); |
| 545 | |
| 546 | for (of = 0 ; of < size ; seg = TAILQ_NEXT(seg, seg_link)) { |
| 547 | rd_assert(seg->seg_absof <= rd_buf_len(rbuf)); |
| 548 | size_t wlen = rd_segment_write_update(seg, absof+of, |
| 549 | psrc+of, size-of); |
| 550 | of += wlen; |
| 551 | } |
| 552 | |
| 553 | rd_dassert(of == size); |
| 554 | |
| 555 | return of; |
| 556 | } |
| 557 | |
| 558 | |
| 559 | |
| 560 | /** |
| 561 | * @brief Push reference memory segment to current write position. |
| 562 | */ |
| 563 | void rd_buf_push (rd_buf_t *rbuf, const void *payload, size_t size, |
| 564 | void (*free_cb)(void *)) { |
| 565 | rd_segment_t *prevseg, *seg, *tailseg = NULL; |
| 566 | |
| 567 | if ((prevseg = rbuf->rbuf_wpos) && |
| 568 | rd_segment_write_remains(prevseg, NULL) > 0) { |
| 569 | /* If the current segment still has room in it split it |
| 570 | * and insert the pushed segment in the middle (below). */ |
| 571 | tailseg = rd_segment_split(rbuf, prevseg, |
| 572 | prevseg->seg_absof + |
| 573 | prevseg->seg_of); |
| 574 | } |
| 575 | |
| 576 | seg = rd_buf_alloc_segment0(rbuf, 0); |
| 577 | seg->seg_p = (char *)payload; |
| 578 | seg->seg_size = size; |
| 579 | seg->seg_of = size; |
| 580 | seg->seg_free = free_cb; |
| 581 | seg->seg_flags |= RD_SEGMENT_F_RDONLY; |
| 582 | |
| 583 | rd_buf_append_segment(rbuf, seg); |
| 584 | |
| 585 | if (tailseg) |
| 586 | rd_buf_append_segment(rbuf, tailseg); |
| 587 | } |
| 588 | |
| 589 | |
| 590 | |
| 591 | |
| 592 | |
| 593 | |
| 594 | |
| 595 | /** |
| 596 | * @brief Do a write-seek, updating the write position to the given |
| 597 | * absolute \p absof. |
| 598 | * |
| 599 | * @warning Any sub-sequent segments will be destroyed. |
| 600 | * |
| 601 | * @returns -1 if the offset is out of bounds, else 0. |
| 602 | */ |
| 603 | int rd_buf_write_seek (rd_buf_t *rbuf, size_t absof) { |
| 604 | rd_segment_t *seg, *next; |
| 605 | size_t relof; |
| 606 | |
| 607 | seg = rd_buf_get_segment_at_offset(rbuf, rbuf->rbuf_wpos, absof); |
| 608 | if (unlikely(!seg)) |
| 609 | return -1; |
| 610 | |
| 611 | relof = absof - seg->seg_absof; |
| 612 | if (unlikely(relof > seg->seg_of)) |
| 613 | return -1; |
| 614 | |
| 615 | /* Destroy sub-sequent segments in reverse order so that |
| 616 | * destroy_segment() length checks are correct. |
| 617 | * Will decrement rbuf_len et.al. */ |
| 618 | for (next = TAILQ_LAST(&rbuf->rbuf_segments, rd_segment_head) ; |
| 619 | next != seg ; ) { |
| 620 | rd_segment_t *this = next; |
| 621 | next = TAILQ_PREV(this, rd_segment_head, seg_link); |
| 622 | rd_buf_destroy_segment(rbuf, this); |
| 623 | } |
| 624 | |
| 625 | /* Update relative write offset */ |
| 626 | seg->seg_of = relof; |
| 627 | rbuf->rbuf_wpos = seg; |
| 628 | rbuf->rbuf_len = seg->seg_absof + seg->seg_of; |
| 629 | |
| 630 | rd_assert(rbuf->rbuf_len == absof); |
| 631 | |
| 632 | return 0; |
| 633 | } |
| 634 | |
| 635 | |
| 636 | /** |
| 637 | * @brief Set up the iovecs in \p iovs (of size \p iov_max) with the writable |
| 638 | * segments from the buffer's current write position. |
| 639 | * |
| 640 | * @param iovcntp will be set to the number of populated \p iovs[] |
| 641 | * @param size_max limits the total number of bytes made available. |
| 642 | * Note: this value may be overshot with the size of one |
| 643 | * segment. |
| 644 | * |
| 645 | * @returns the total number of bytes in the represented segments. |
| 646 | * |
| 647 | * @remark the write position will NOT be updated. |
| 648 | */ |
| 649 | size_t rd_buf_get_write_iov (const rd_buf_t *rbuf, |
| 650 | struct iovec *iovs, size_t *iovcntp, |
| 651 | size_t iov_max, size_t size_max) { |
| 652 | const rd_segment_t *seg; |
| 653 | size_t iovcnt = 0; |
| 654 | size_t sum = 0; |
| 655 | |
| 656 | for (seg = rbuf->rbuf_wpos ; |
| 657 | seg && iovcnt < iov_max && sum < size_max ; |
| 658 | seg = TAILQ_NEXT(seg, seg_link)) { |
| 659 | size_t len; |
| 660 | void *p; |
| 661 | |
| 662 | len = rd_segment_write_remains(seg, &p); |
| 663 | if (unlikely(len == 0)) |
| 664 | continue; |
| 665 | |
| 666 | iovs[iovcnt].iov_base = p; |
| 667 | iovs[iovcnt++].iov_len = len; |
| 668 | |
| 669 | sum += len; |
| 670 | } |
| 671 | |
| 672 | *iovcntp = iovcnt; |
| 673 | |
| 674 | return sum; |
| 675 | } |
| 676 | |
| 677 | |
| 678 | |
| 679 | |
| 680 | |
| 681 | |
| 682 | |
| 683 | |
| 684 | |
| 685 | |
| 686 | |
| 687 | /** |
| 688 | * @name Slice reader interface |
| 689 | * |
| 690 | * @{ |
| 691 | */ |
| 692 | |
| 693 | /** |
| 694 | * @brief Initialize a new slice of \p size bytes starting at \p seg with |
| 695 | * relative offset \p rof. |
| 696 | * |
| 697 | * @returns 0 on success or -1 if there is not at least \p size bytes available |
| 698 | * in the buffer. |
| 699 | */ |
| 700 | int rd_slice_init_seg (rd_slice_t *slice, const rd_buf_t *rbuf, |
| 701 | const rd_segment_t *seg, size_t rof, size_t size) { |
| 702 | /* Verify that \p size bytes are indeed available in the buffer. */ |
| 703 | if (unlikely(rbuf->rbuf_len < (seg->seg_absof + rof + size))) |
| 704 | return -1; |
| 705 | |
| 706 | slice->buf = rbuf; |
| 707 | slice->seg = seg; |
| 708 | slice->rof = rof; |
| 709 | slice->start = seg->seg_absof + rof; |
| 710 | slice->end = slice->start + size; |
| 711 | |
| 712 | rd_assert(seg->seg_absof+rof >= slice->start && |
| 713 | seg->seg_absof+rof <= slice->end); |
| 714 | |
| 715 | rd_assert(slice->end <= rd_buf_len(rbuf)); |
| 716 | |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | /** |
| 721 | * @brief Initialize new slice of \p size bytes starting at offset \p absof |
| 722 | * |
| 723 | * @returns 0 on success or -1 if there is not at least \p size bytes available |
| 724 | * in the buffer. |
| 725 | */ |
| 726 | int rd_slice_init (rd_slice_t *slice, const rd_buf_t *rbuf, |
| 727 | size_t absof, size_t size) { |
| 728 | const rd_segment_t *seg = rd_buf_get_segment_at_offset(rbuf, NULL, |
| 729 | absof); |
| 730 | if (unlikely(!seg)) |
| 731 | return -1; |
| 732 | |
| 733 | return rd_slice_init_seg(slice, rbuf, seg, |
| 734 | absof - seg->seg_absof, size); |
| 735 | } |
| 736 | |
| 737 | /** |
| 738 | * @brief Initialize new slice covering the full buffer \p rbuf |
| 739 | */ |
| 740 | void rd_slice_init_full (rd_slice_t *slice, const rd_buf_t *rbuf) { |
| 741 | int r = rd_slice_init(slice, rbuf, 0, rd_buf_len(rbuf)); |
| 742 | rd_assert(r == 0); |
| 743 | } |
| 744 | |
| 745 | |
| 746 | |
| 747 | /** |
| 748 | * @sa rd_slice_reader() rd_slice_peeker() |
| 749 | */ |
| 750 | size_t rd_slice_reader0 (rd_slice_t *slice, const void **p, int update_pos) { |
| 751 | size_t rof = slice->rof; |
| 752 | size_t rlen; |
| 753 | const rd_segment_t *seg; |
| 754 | |
| 755 | /* Find segment with non-zero payload */ |
| 756 | for (seg = slice->seg ; |
| 757 | seg && seg->seg_absof+rof < slice->end && seg->seg_of == rof ; |
| 758 | seg = TAILQ_NEXT(seg, seg_link)) |
| 759 | rof = 0; |
| 760 | |
| 761 | if (unlikely(!seg || seg->seg_absof+rof >= slice->end)) |
| 762 | return 0; |
| 763 | |
| 764 | rd_assert(seg->seg_absof+rof <= slice->end); |
| 765 | |
| 766 | |
| 767 | *p = (const void *)(seg->seg_p + rof); |
| 768 | rlen = RD_MIN(seg->seg_of - rof, rd_slice_remains(slice)); |
| 769 | |
| 770 | if (update_pos) { |
| 771 | if (slice->seg != seg) { |
| 772 | rd_assert(seg->seg_absof + rof >= slice->start && |
| 773 | seg->seg_absof + rof+rlen <= slice->end); |
| 774 | slice->seg = seg; |
| 775 | slice->rof = rlen; |
| 776 | } else { |
| 777 | slice->rof += rlen; |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | return rlen; |
| 782 | } |
| 783 | |
| 784 | |
| 785 | /** |
| 786 | * @brief Convenience reader iterator interface. |
| 787 | * |
| 788 | * Call repeatedly from while loop until it returns 0. |
| 789 | * |
| 790 | * @param slice slice to read from, position will be updated. |
| 791 | * @param p will be set to the start of \p *rlenp contiguous bytes of memory |
| 792 | * @param rlenp will be set to the number of bytes available in \p p |
| 793 | * |
| 794 | * @returns the number of bytes read, or 0 if slice is empty. |
| 795 | */ |
| 796 | size_t rd_slice_reader (rd_slice_t *slice, const void **p) { |
| 797 | return rd_slice_reader0(slice, p, 1/*update_pos*/); |
| 798 | } |
| 799 | |
| 800 | /** |
| 801 | * @brief Identical to rd_slice_reader() but does NOT update the read position |
| 802 | */ |
| 803 | size_t rd_slice_peeker (const rd_slice_t *slice, const void **p) { |
| 804 | return rd_slice_reader0((rd_slice_t *)slice, p, 0/*dont update_pos*/); |
| 805 | } |
| 806 | |
| 807 | |
| 808 | |
| 809 | |
| 810 | |
| 811 | /** |
| 812 | * @brief Read \p size bytes from current read position, |
| 813 | * advancing the read offset by the number of bytes copied to \p dst. |
| 814 | * |
| 815 | * If there are less than \p size remaining in the buffer |
| 816 | * then 0 is returned and no bytes are copied. |
| 817 | * |
| 818 | * @returns \p size, or 0 if \p size bytes are not available in buffer. |
| 819 | * |
| 820 | * @remark This performs a complete read, no partitial reads. |
| 821 | * |
| 822 | * @remark If \p dst is NULL only the read position is updated. |
| 823 | */ |
| 824 | size_t rd_slice_read (rd_slice_t *slice, void *dst, size_t size) { |
| 825 | size_t remains = size; |
| 826 | char *d = (char *)dst; /* Possibly NULL */ |
| 827 | size_t rlen; |
| 828 | const void *p; |
| 829 | size_t orig_end = slice->end; |
| 830 | |
| 831 | if (unlikely(rd_slice_remains(slice) < size)) |
| 832 | return 0; |
| 833 | |
| 834 | /* Temporarily shrink slice to offset + \p size */ |
| 835 | slice->end = rd_slice_abs_offset(slice) + size; |
| 836 | |
| 837 | while ((rlen = rd_slice_reader(slice, &p))) { |
| 838 | rd_dassert(remains >= rlen); |
| 839 | if (dst) { |
| 840 | memcpy(d, p, rlen); |
| 841 | d += rlen; |
| 842 | } |
| 843 | remains -= rlen; |
| 844 | } |
| 845 | |
| 846 | rd_dassert(remains == 0); |
| 847 | |
| 848 | /* Restore original size */ |
| 849 | slice->end = orig_end; |
| 850 | |
| 851 | return size; |
| 852 | } |
| 853 | |
| 854 | |
| 855 | /** |
| 856 | * @brief Read \p size bytes from absolute slice offset \p offset |
| 857 | * and store in \p dst, without updating the slice read position. |
| 858 | * |
| 859 | * @returns \p size if the offset and size was within the slice, else 0. |
| 860 | */ |
| 861 | size_t rd_slice_peek (const rd_slice_t *slice, size_t offset, |
| 862 | void *dst, size_t size) { |
| 863 | rd_slice_t sub = *slice; |
| 864 | |
| 865 | if (unlikely(rd_slice_seek(&sub, offset) == -1)) |
| 866 | return 0; |
| 867 | |
| 868 | return rd_slice_read(&sub, dst, size); |
| 869 | |
| 870 | } |
| 871 | |
| 872 | |
| 873 | |
| 874 | /** |
| 875 | * @returns a pointer to \p size contiguous bytes at the current read offset. |
| 876 | * If there isn't \p size contiguous bytes available NULL will |
| 877 | * be returned. |
| 878 | * |
| 879 | * @remark The read position is updated to point past \p size. |
| 880 | */ |
| 881 | const void *rd_slice_ensure_contig (rd_slice_t *slice, size_t size) { |
| 882 | void *p; |
| 883 | |
| 884 | if (unlikely(rd_slice_remains(slice) < size || |
| 885 | slice->rof + size > slice->seg->seg_of)) |
| 886 | return NULL; |
| 887 | |
| 888 | p = slice->seg->seg_p + slice->rof; |
| 889 | |
| 890 | rd_slice_read(slice, NULL, size); |
| 891 | |
| 892 | return p; |
| 893 | } |
| 894 | |
| 895 | |
| 896 | |
| 897 | /** |
| 898 | * @brief Sets the slice's read position. The offset is the slice offset, |
| 899 | * not buffer offset. |
| 900 | * |
| 901 | * @returns 0 if offset was within range, else -1 in which case the position |
| 902 | * is not changed. |
| 903 | */ |
| 904 | int rd_slice_seek (rd_slice_t *slice, size_t offset) { |
| 905 | const rd_segment_t *seg; |
| 906 | size_t absof = slice->start + offset; |
| 907 | |
| 908 | if (unlikely(absof >= slice->end)) |
| 909 | return -1; |
| 910 | |
| 911 | seg = rd_buf_get_segment_at_offset(slice->buf, slice->seg, absof); |
| 912 | rd_assert(seg); |
| 913 | |
| 914 | slice->seg = seg; |
| 915 | slice->rof = absof - seg->seg_absof; |
| 916 | rd_assert(seg->seg_absof + slice->rof >= slice->start && |
| 917 | seg->seg_absof + slice->rof <= slice->end); |
| 918 | |
| 919 | return 0; |
| 920 | } |
| 921 | |
| 922 | |
| 923 | /** |
| 924 | * @brief Narrow the current slice to \p size, saving |
| 925 | * the original slice state info \p save_slice. |
| 926 | * |
| 927 | * Use rd_slice_widen() to restore the saved slice |
| 928 | * with the read count updated from the narrowed slice. |
| 929 | * |
| 930 | * This is useful for reading a sub-slice of a larger slice |
| 931 | * without having to pass the lesser length around. |
| 932 | * |
| 933 | * @returns 1 if enough underlying slice buffer memory is available, else 0. |
| 934 | */ |
| 935 | int rd_slice_narrow (rd_slice_t *slice, rd_slice_t *save_slice, size_t size) { |
| 936 | if (unlikely(slice->start + size > slice->end)) |
| 937 | return 0; |
| 938 | *save_slice = *slice; |
| 939 | slice->end = slice->start + size; |
| 940 | rd_assert(rd_slice_abs_offset(slice) <= slice->end); |
| 941 | return 1; |
| 942 | } |
| 943 | |
| 944 | /** |
| 945 | * @brief Same as rd_slice_narrow() but using a relative size \p relsize |
| 946 | * from the current read position. |
| 947 | */ |
| 948 | int rd_slice_narrow_relative (rd_slice_t *slice, rd_slice_t *save_slice, |
| 949 | size_t relsize) { |
| 950 | return rd_slice_narrow(slice, save_slice, |
| 951 | rd_slice_offset(slice) + relsize); |
| 952 | } |
| 953 | |
| 954 | |
| 955 | /** |
| 956 | * @brief Restore the original \p save_slice size from a previous call to |
| 957 | * rd_slice_narrow(), while keeping the updated read pointer from |
| 958 | * \p slice. |
| 959 | */ |
| 960 | void rd_slice_widen (rd_slice_t *slice, const rd_slice_t *save_slice) { |
| 961 | slice->end = save_slice->end; |
| 962 | } |
| 963 | |
| 964 | |
| 965 | /** |
| 966 | * @brief Copy the original slice \p orig to \p new_slice and adjust |
| 967 | * the new slice length to \p size. |
| 968 | * |
| 969 | * This is a side-effect free form of rd_slice_narrow() which is not to |
| 970 | * be used with rd_slice_widen(). |
| 971 | * |
| 972 | * @returns 1 if enough underlying slice buffer memory is available, else 0. |
| 973 | */ |
| 974 | int rd_slice_narrow_copy (const rd_slice_t *orig, rd_slice_t *new_slice, |
| 975 | size_t size) { |
| 976 | if (unlikely(orig->start + size > orig->end)) |
| 977 | return 0; |
| 978 | *new_slice = *orig; |
| 979 | new_slice->end = orig->start + size; |
| 980 | rd_assert(rd_slice_abs_offset(new_slice) <= new_slice->end); |
| 981 | return 1; |
| 982 | } |
| 983 | |
| 984 | /** |
| 985 | * @brief Same as rd_slice_narrow_copy() but with a relative size from |
| 986 | * the current read position. |
| 987 | */ |
| 988 | int rd_slice_narrow_copy_relative (const rd_slice_t *orig, |
| 989 | rd_slice_t *new_slice, |
| 990 | size_t relsize) { |
| 991 | return rd_slice_narrow_copy(orig, new_slice, |
| 992 | rd_slice_offset(orig) + relsize); |
| 993 | } |
| 994 | |
| 995 | |
| 996 | |
| 997 | |
| 998 | |
| 999 | /** |
| 1000 | * @brief Set up the iovec \p iovs (of size \p iov_max) with the readable |
| 1001 | * segments from the slice's current read position. |
| 1002 | * |
| 1003 | * @param iovcntp will be set to the number of populated \p iovs[] |
| 1004 | * @param size_max limits the total number of bytes made available. |
| 1005 | * Note: this value may be overshot with the size of one |
| 1006 | * segment. |
| 1007 | * |
| 1008 | * @returns the total number of bytes in the represented segments. |
| 1009 | * |
| 1010 | * @remark will NOT update the read position. |
| 1011 | */ |
| 1012 | size_t rd_slice_get_iov (const rd_slice_t *slice, |
| 1013 | struct iovec *iovs, size_t *iovcntp, |
| 1014 | size_t iov_max, size_t size_max) { |
| 1015 | const void *p; |
| 1016 | size_t rlen; |
| 1017 | size_t iovcnt = 0; |
| 1018 | size_t sum = 0; |
| 1019 | rd_slice_t copy = *slice; /* Use a copy of the slice so we dont |
| 1020 | * update the position for the caller. */ |
| 1021 | |
| 1022 | while (sum < size_max && iovcnt < iov_max && |
| 1023 | (rlen = rd_slice_reader(©, &p))) { |
| 1024 | iovs[iovcnt].iov_base = (void *)p; |
| 1025 | iovs[iovcnt++].iov_len = rlen; |
| 1026 | |
| 1027 | sum += rlen; |
| 1028 | } |
| 1029 | |
| 1030 | *iovcntp = iovcnt; |
| 1031 | |
| 1032 | return sum; |
| 1033 | } |
| 1034 | |
| 1035 | |
| 1036 | |
| 1037 | |
| 1038 | |
| 1039 | /** |
| 1040 | * @brief CRC32 calculation of slice. |
| 1041 | * |
| 1042 | * @returns the calculated CRC |
| 1043 | * |
| 1044 | * @remark the slice's position is updated. |
| 1045 | */ |
| 1046 | uint32_t rd_slice_crc32 (rd_slice_t *slice) { |
| 1047 | rd_crc32_t crc; |
| 1048 | const void *p; |
| 1049 | size_t rlen; |
| 1050 | |
| 1051 | crc = rd_crc32_init(); |
| 1052 | |
| 1053 | while ((rlen = rd_slice_reader(slice, &p))) |
| 1054 | crc = rd_crc32_update(crc, p, rlen); |
| 1055 | |
| 1056 | return (uint32_t)rd_crc32_finalize(crc); |
| 1057 | } |
| 1058 | |
| 1059 | /** |
| 1060 | * @brief Compute CRC-32C of segments starting at at buffer position \p absof, |
| 1061 | * also supporting the case where the position/offset is not at the |
| 1062 | * start of the first segment. |
| 1063 | * |
| 1064 | * @remark the slice's position is updated. |
| 1065 | */ |
| 1066 | uint32_t rd_slice_crc32c (rd_slice_t *slice) { |
| 1067 | const void *p; |
| 1068 | size_t rlen; |
| 1069 | uint32_t crc = 0; |
| 1070 | |
| 1071 | while ((rlen = rd_slice_reader(slice, &p))) |
| 1072 | crc = crc32c(crc, (const char *)p, rlen); |
| 1073 | |
| 1074 | return crc; |
| 1075 | } |
| 1076 | |
| 1077 | |
| 1078 | |
| 1079 | |
| 1080 | |
| 1081 | /** |
| 1082 | * @name Debugging dumpers |
| 1083 | * |
| 1084 | * |
| 1085 | */ |
| 1086 | |
| 1087 | static void rd_segment_dump (const rd_segment_t *seg, const char *ind, |
| 1088 | size_t relof, int do_hexdump) { |
| 1089 | fprintf(stderr, |
| 1090 | "%s((rd_segment_t *)%p): " |
| 1091 | "p %p, of %" PRIusz", " |
| 1092 | "absof %" PRIusz", size %" PRIusz", free %p, flags 0x%x\n" , |
| 1093 | ind, seg, seg->seg_p, seg->seg_of, |
| 1094 | seg->seg_absof, seg->seg_size, seg->seg_free, seg->seg_flags); |
| 1095 | rd_assert(relof <= seg->seg_of); |
| 1096 | if (do_hexdump) |
| 1097 | rd_hexdump(stderr, "segment" , |
| 1098 | seg->seg_p+relof, seg->seg_of-relof); |
| 1099 | } |
| 1100 | |
| 1101 | void rd_buf_dump (const rd_buf_t *rbuf, int do_hexdump) { |
| 1102 | const rd_segment_t *seg; |
| 1103 | |
| 1104 | fprintf(stderr, |
| 1105 | "((rd_buf_t *)%p):\n" |
| 1106 | " len %" PRIusz" size %" PRIusz |
| 1107 | ", %" PRIusz"/%" PRIusz" extra memory used\n" , |
| 1108 | rbuf, rbuf->rbuf_len, rbuf->rbuf_size, |
| 1109 | rbuf->rbuf_extra_len, rbuf->rbuf_extra_size); |
| 1110 | |
| 1111 | if (rbuf->rbuf_wpos) { |
| 1112 | fprintf(stderr, " wpos:\n" ); |
| 1113 | rd_segment_dump(rbuf->rbuf_wpos, " " , 0, 0); |
| 1114 | } |
| 1115 | |
| 1116 | if (rbuf->rbuf_segment_cnt > 0) { |
| 1117 | size_t segcnt = 0; |
| 1118 | |
| 1119 | fprintf(stderr, " %" PRIusz" linked segments:\n" , |
| 1120 | rbuf->rbuf_segment_cnt); |
| 1121 | TAILQ_FOREACH(seg, &rbuf->rbuf_segments, seg_link) { |
| 1122 | rd_segment_dump(seg, " " , 0, do_hexdump); |
| 1123 | rd_assert(++segcnt <= rbuf->rbuf_segment_cnt); |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | void rd_slice_dump (const rd_slice_t *slice, int do_hexdump) { |
| 1129 | const rd_segment_t *seg; |
| 1130 | size_t relof; |
| 1131 | |
| 1132 | fprintf(stderr, |
| 1133 | "((rd_slice_t *)%p):\n" |
| 1134 | " buf %p (len %" PRIusz"), seg %p (absof %" PRIusz"), " |
| 1135 | "rof %" PRIusz", start %" PRIusz", end %" PRIusz", size %" PRIusz |
| 1136 | ", offset %" PRIusz"\n" , |
| 1137 | slice, slice->buf, rd_buf_len(slice->buf), |
| 1138 | slice->seg, slice->seg ? slice->seg->seg_absof : 0, |
| 1139 | slice->rof, slice->start, slice->end, |
| 1140 | rd_slice_size(slice), rd_slice_offset(slice)); |
| 1141 | relof = slice->rof; |
| 1142 | |
| 1143 | for (seg = slice->seg ; seg ; seg = TAILQ_NEXT(seg, seg_link)) { |
| 1144 | rd_segment_dump(seg, " " , relof, do_hexdump); |
| 1145 | relof = 0; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | |
| 1150 | /** |
| 1151 | * @name Unit-tests |
| 1152 | * |
| 1153 | * |
| 1154 | * |
| 1155 | */ |
| 1156 | |
| 1157 | |
| 1158 | /** |
| 1159 | * @brief Basic write+read test |
| 1160 | */ |
| 1161 | static int do_unittest_write_read (void) { |
| 1162 | rd_buf_t b; |
| 1163 | char ones[1024]; |
| 1164 | char twos[1024]; |
| 1165 | char threes[1024]; |
| 1166 | char fiftyfives[100]; /* 0x55 indicates "untouched" memory */ |
| 1167 | char buf[1024*3]; |
| 1168 | rd_slice_t slice; |
| 1169 | size_t r, pos; |
| 1170 | |
| 1171 | memset(ones, 0x1, sizeof(ones)); |
| 1172 | memset(twos, 0x2, sizeof(twos)); |
| 1173 | memset(threes, 0x3, sizeof(threes)); |
| 1174 | memset(fiftyfives, 0x55, sizeof(fiftyfives)); |
| 1175 | memset(buf, 0x55, sizeof(buf)); |
| 1176 | |
| 1177 | rd_buf_init(&b, 2, 1000); |
| 1178 | |
| 1179 | /* |
| 1180 | * Verify write |
| 1181 | */ |
| 1182 | r = rd_buf_write(&b, ones, 200); |
| 1183 | RD_UT_ASSERT(r == 0, "write() returned position %" PRIusz, r); |
| 1184 | pos = rd_buf_write_pos(&b); |
| 1185 | RD_UT_ASSERT(pos == 200, "pos() returned position %" PRIusz, pos); |
| 1186 | |
| 1187 | r = rd_buf_write(&b, twos, 800); |
| 1188 | RD_UT_ASSERT(pos == 200, "write() returned position %" PRIusz, r); |
| 1189 | pos = rd_buf_write_pos(&b); |
| 1190 | RD_UT_ASSERT(pos == 200+800, "pos() returned position %" PRIusz, pos); |
| 1191 | |
| 1192 | /* Buffer grows here */ |
| 1193 | r = rd_buf_write(&b, threes, 1); |
| 1194 | RD_UT_ASSERT(pos == 200+800, |
| 1195 | "write() returned position %" PRIusz, r); |
| 1196 | pos = rd_buf_write_pos(&b); |
| 1197 | RD_UT_ASSERT(pos == 200+800+1, "pos() returned position %" PRIusz, pos); |
| 1198 | |
| 1199 | /* |
| 1200 | * Verify read |
| 1201 | */ |
| 1202 | /* Get full slice. */ |
| 1203 | rd_slice_init_full(&slice, &b); |
| 1204 | |
| 1205 | r = rd_slice_read(&slice, buf, 200+800+2); |
| 1206 | RD_UT_ASSERT(r == 0, |
| 1207 | "read() > remaining should have failed, gave %" PRIusz, r); |
| 1208 | r = rd_slice_read(&slice, buf, 200+800+1); |
| 1209 | RD_UT_ASSERT(r == 200+800+1, |
| 1210 | "read() returned %" PRIusz" (%" PRIusz" remains)" , |
| 1211 | r, rd_slice_remains(&slice)); |
| 1212 | |
| 1213 | RD_UT_ASSERT(!memcmp(buf, ones, 200), "verify ones" ); |
| 1214 | RD_UT_ASSERT(!memcmp(buf+200, twos, 800), "verify twos" ); |
| 1215 | RD_UT_ASSERT(!memcmp(buf+200+800, threes, 1), "verify threes" ); |
| 1216 | RD_UT_ASSERT(!memcmp(buf+200+800+1, fiftyfives, 100), "verify 55s" ); |
| 1217 | |
| 1218 | rd_buf_destroy(&b); |
| 1219 | |
| 1220 | RD_UT_PASS(); |
| 1221 | } |
| 1222 | |
| 1223 | |
| 1224 | /** |
| 1225 | * @brief Helper read verifier, not a unit-test itself. |
| 1226 | */ |
| 1227 | #define do_unittest_read_verify(b,absof,len,verify) do { \ |
| 1228 | int __fail = do_unittest_read_verify0(b,absof,len,verify); \ |
| 1229 | RD_UT_ASSERT(!__fail, \ |
| 1230 | "read_verify(absof=%"PRIusz",len=%"PRIusz") " \ |
| 1231 | "failed", (size_t)absof, (size_t)len); \ |
| 1232 | } while (0) |
| 1233 | |
| 1234 | static int |
| 1235 | do_unittest_read_verify0 (const rd_buf_t *b, size_t absof, size_t len, |
| 1236 | const char *verify) { |
| 1237 | rd_slice_t slice, sub; |
| 1238 | char buf[1024]; |
| 1239 | size_t half; |
| 1240 | size_t r; |
| 1241 | int i; |
| 1242 | |
| 1243 | rd_assert(sizeof(buf) >= len); |
| 1244 | |
| 1245 | /* Get reader slice */ |
| 1246 | i = rd_slice_init(&slice, b, absof, len); |
| 1247 | RD_UT_ASSERT(i == 0, "slice_init() failed: %d" , i); |
| 1248 | |
| 1249 | r = rd_slice_read(&slice, buf, len); |
| 1250 | RD_UT_ASSERT(r == len, |
| 1251 | "read() returned %" PRIusz" expected %" PRIusz |
| 1252 | " (%" PRIusz" remains)" , |
| 1253 | r, len, rd_slice_remains(&slice)); |
| 1254 | |
| 1255 | RD_UT_ASSERT(!memcmp(buf, verify, len), "verify" ); |
| 1256 | |
| 1257 | r = rd_slice_offset(&slice); |
| 1258 | RD_UT_ASSERT(r == len, "offset() returned %" PRIusz", not %" PRIusz, |
| 1259 | r, len); |
| 1260 | |
| 1261 | half = len / 2; |
| 1262 | i = rd_slice_seek(&slice, half); |
| 1263 | RD_UT_ASSERT(i == 0, "seek(%" PRIusz") returned %d" , half, i); |
| 1264 | r = rd_slice_offset(&slice); |
| 1265 | RD_UT_ASSERT(r == half, "offset() returned %" PRIusz", not %" PRIusz, |
| 1266 | r, half); |
| 1267 | |
| 1268 | /* Get a sub-slice covering the later half. */ |
| 1269 | sub = rd_slice_pos(&slice); |
| 1270 | r = rd_slice_offset(&sub); |
| 1271 | RD_UT_ASSERT(r == 0, "sub: offset() returned %" PRIusz", not %" PRIusz, |
| 1272 | r, (size_t)0); |
| 1273 | r = rd_slice_size(&sub); |
| 1274 | RD_UT_ASSERT(r == half, "sub: size() returned %" PRIusz", not %" PRIusz, |
| 1275 | r, half); |
| 1276 | r = rd_slice_remains(&sub); |
| 1277 | RD_UT_ASSERT(r == half, |
| 1278 | "sub: remains() returned %" PRIusz", not %" PRIusz, |
| 1279 | r, half); |
| 1280 | |
| 1281 | /* Read half */ |
| 1282 | r = rd_slice_read(&sub, buf, half); |
| 1283 | RD_UT_ASSERT(r == half, |
| 1284 | "sub read() returned %" PRIusz" expected %" PRIusz |
| 1285 | " (%" PRIusz" remains)" , |
| 1286 | r, len, rd_slice_remains(&sub)); |
| 1287 | |
| 1288 | RD_UT_ASSERT(!memcmp(buf, verify, len), "verify" ); |
| 1289 | |
| 1290 | r = rd_slice_offset(&sub); |
| 1291 | RD_UT_ASSERT(r == rd_slice_size(&sub), |
| 1292 | "sub offset() returned %" PRIusz", not %" PRIusz, |
| 1293 | r, rd_slice_size(&sub)); |
| 1294 | r = rd_slice_remains(&sub); |
| 1295 | RD_UT_ASSERT(r == 0, |
| 1296 | "sub: remains() returned %" PRIusz", not %" PRIusz, |
| 1297 | r, (size_t)0); |
| 1298 | |
| 1299 | return 0; |
| 1300 | } |
| 1301 | |
| 1302 | |
| 1303 | /** |
| 1304 | * @brief write_seek() and split() test |
| 1305 | */ |
| 1306 | static int do_unittest_write_split_seek (void) { |
| 1307 | rd_buf_t b; |
| 1308 | char ones[1024]; |
| 1309 | char twos[1024]; |
| 1310 | char threes[1024]; |
| 1311 | char fiftyfives[100]; /* 0x55 indicates "untouched" memory */ |
| 1312 | char buf[1024*3]; |
| 1313 | size_t r, pos; |
| 1314 | rd_segment_t *seg, *newseg; |
| 1315 | |
| 1316 | memset(ones, 0x1, sizeof(ones)); |
| 1317 | memset(twos, 0x2, sizeof(twos)); |
| 1318 | memset(threes, 0x3, sizeof(threes)); |
| 1319 | memset(fiftyfives, 0x55, sizeof(fiftyfives)); |
| 1320 | memset(buf, 0x55, sizeof(buf)); |
| 1321 | |
| 1322 | rd_buf_init(&b, 0, 0); |
| 1323 | |
| 1324 | /* |
| 1325 | * Verify write |
| 1326 | */ |
| 1327 | r = rd_buf_write(&b, ones, 400); |
| 1328 | RD_UT_ASSERT(r == 0, "write() returned position %" PRIusz, r); |
| 1329 | pos = rd_buf_write_pos(&b); |
| 1330 | RD_UT_ASSERT(pos == 400, "pos() returned position %" PRIusz, pos); |
| 1331 | |
| 1332 | do_unittest_read_verify(&b, 0, 400, ones); |
| 1333 | |
| 1334 | /* |
| 1335 | * Seek and re-write |
| 1336 | */ |
| 1337 | r = rd_buf_write_seek(&b, 200); |
| 1338 | RD_UT_ASSERT(r == 0, "seek() failed" ); |
| 1339 | pos = rd_buf_write_pos(&b); |
| 1340 | RD_UT_ASSERT(pos == 200, "pos() returned position %" PRIusz, pos); |
| 1341 | |
| 1342 | r = rd_buf_write(&b, twos, 100); |
| 1343 | RD_UT_ASSERT(pos == 200, "write() returned position %" PRIusz, r); |
| 1344 | pos = rd_buf_write_pos(&b); |
| 1345 | RD_UT_ASSERT(pos == 200+100, "pos() returned position %" PRIusz, pos); |
| 1346 | |
| 1347 | do_unittest_read_verify(&b, 0, 200, ones); |
| 1348 | do_unittest_read_verify(&b, 200, 100, twos); |
| 1349 | |
| 1350 | /* Make sure read() did not modify the write position. */ |
| 1351 | pos = rd_buf_write_pos(&b); |
| 1352 | RD_UT_ASSERT(pos == 200+100, "pos() returned position %" PRIusz, pos); |
| 1353 | |
| 1354 | /* Split buffer, write position is now at split where writes |
| 1355 | * are not allowed (mid buffer). */ |
| 1356 | seg = rd_buf_get_segment_at_offset(&b, NULL, 50); |
| 1357 | RD_UT_ASSERT(seg->seg_of != 0, "assumed mid-segment" ); |
| 1358 | newseg = rd_segment_split(&b, seg, 50); |
| 1359 | rd_buf_append_segment(&b, newseg); |
| 1360 | seg = rd_buf_get_segment_at_offset(&b, NULL, 50); |
| 1361 | RD_UT_ASSERT(seg != NULL, "seg" ); |
| 1362 | RD_UT_ASSERT(seg == newseg, "newseg %p, seg %p" , newseg, seg); |
| 1363 | RD_UT_ASSERT(seg->seg_of > 0, |
| 1364 | "assumed beginning of segment, got %" PRIusz, seg->seg_of); |
| 1365 | |
| 1366 | pos = rd_buf_write_pos(&b); |
| 1367 | RD_UT_ASSERT(pos == 200+100, "pos() returned position %" PRIusz, pos); |
| 1368 | |
| 1369 | /* Re-verify that nothing changed */ |
| 1370 | do_unittest_read_verify(&b, 0, 200, ones); |
| 1371 | do_unittest_read_verify(&b, 200, 100, twos); |
| 1372 | |
| 1373 | /* Do a write seek at buffer boundary, sub-sequent buffers should |
| 1374 | * be destroyed. */ |
| 1375 | r = rd_buf_write_seek(&b, 50); |
| 1376 | RD_UT_ASSERT(r == 0, "seek() failed" ); |
| 1377 | do_unittest_read_verify(&b, 0, 50, ones); |
| 1378 | |
| 1379 | rd_buf_destroy(&b); |
| 1380 | |
| 1381 | RD_UT_PASS(); |
| 1382 | } |
| 1383 | |
| 1384 | /** |
| 1385 | * @brief Unittest to verify payload is correctly written and read. |
| 1386 | * Each written u32 word is the running CRC of the word count. |
| 1387 | */ |
| 1388 | static int do_unittest_write_read_payload_correctness (void) { |
| 1389 | uint32_t crc; |
| 1390 | uint32_t write_crc, read_crc; |
| 1391 | const int seed = 12345; |
| 1392 | rd_buf_t b; |
| 1393 | const size_t max_cnt = 20000; |
| 1394 | rd_slice_t slice; |
| 1395 | size_t r; |
| 1396 | size_t i; |
| 1397 | int pass; |
| 1398 | |
| 1399 | crc = rd_crc32_init(); |
| 1400 | crc = rd_crc32_update(crc, (void *)&seed, sizeof(seed)); |
| 1401 | |
| 1402 | rd_buf_init(&b, 0, 0); |
| 1403 | for (i = 0 ; i < max_cnt ; i++) { |
| 1404 | crc = rd_crc32_update(crc, (void *)&i, sizeof(i)); |
| 1405 | rd_buf_write(&b, &crc, sizeof(crc)); |
| 1406 | } |
| 1407 | |
| 1408 | write_crc = rd_crc32_finalize(crc); |
| 1409 | |
| 1410 | r = rd_buf_len(&b); |
| 1411 | RD_UT_ASSERT(r == max_cnt * sizeof(crc), |
| 1412 | "expected length %" PRIusz", not %" PRIusz, |
| 1413 | r, max_cnt * sizeof(crc)); |
| 1414 | |
| 1415 | /* |
| 1416 | * Now verify the contents with a reader. |
| 1417 | */ |
| 1418 | rd_slice_init_full(&slice, &b); |
| 1419 | |
| 1420 | r = rd_slice_remains(&slice); |
| 1421 | RD_UT_ASSERT(r == rd_buf_len(&b), |
| 1422 | "slice remains %" PRIusz", should be %" PRIusz, |
| 1423 | r, rd_buf_len(&b)); |
| 1424 | |
| 1425 | for (pass = 0 ; pass < 2 ; pass++) { |
| 1426 | /* Two passes: |
| 1427 | * - pass 1: using peek() |
| 1428 | * - pass 2: using read() |
| 1429 | */ |
| 1430 | const char *pass_str = pass == 0 ? "peek" :"read" ; |
| 1431 | |
| 1432 | crc = rd_crc32_init(); |
| 1433 | crc = rd_crc32_update(crc, (void *)&seed, sizeof(seed)); |
| 1434 | |
| 1435 | for (i = 0 ; i < max_cnt ; i++) { |
| 1436 | uint32_t buf_crc; |
| 1437 | |
| 1438 | crc = rd_crc32_update(crc, (void *)&i, sizeof(&i)); |
| 1439 | |
| 1440 | if (pass == 0) |
| 1441 | r = rd_slice_peek(&slice, i * sizeof(buf_crc), |
| 1442 | &buf_crc, sizeof(buf_crc)); |
| 1443 | else |
| 1444 | r = rd_slice_read(&slice, &buf_crc, |
| 1445 | sizeof(buf_crc)); |
| 1446 | RD_UT_ASSERT(r == sizeof(buf_crc), |
| 1447 | "%s() at #%" PRIusz" failed: " |
| 1448 | "r is %" PRIusz" not %" PRIusz, |
| 1449 | pass_str, i, r, sizeof(buf_crc)); |
| 1450 | RD_UT_ASSERT(buf_crc == crc, |
| 1451 | "%s: invalid crc at #%" PRIusz |
| 1452 | ": expected %" PRIu32", read %" PRIu32, |
| 1453 | pass_str, i, crc, buf_crc); |
| 1454 | } |
| 1455 | |
| 1456 | read_crc = rd_crc32_finalize(crc); |
| 1457 | |
| 1458 | RD_UT_ASSERT(read_crc == write_crc, |
| 1459 | "%s: finalized read crc %" PRIu32 |
| 1460 | " != write crc %" PRIu32, |
| 1461 | pass_str, read_crc, write_crc); |
| 1462 | |
| 1463 | } |
| 1464 | |
| 1465 | r = rd_slice_remains(&slice); |
| 1466 | RD_UT_ASSERT(r == 0, |
| 1467 | "slice remains %" PRIusz", should be %" PRIusz, |
| 1468 | r, (size_t)0); |
| 1469 | |
| 1470 | rd_buf_destroy(&b); |
| 1471 | |
| 1472 | RD_UT_PASS(); |
| 1473 | } |
| 1474 | |
| 1475 | #define do_unittest_iov_verify(...) do { \ |
| 1476 | int __fail = do_unittest_iov_verify0(__VA_ARGS__); \ |
| 1477 | RD_UT_ASSERT(!__fail, "iov_verify() failed"); \ |
| 1478 | } while (0) |
| 1479 | static int do_unittest_iov_verify0 (rd_buf_t *b, |
| 1480 | size_t exp_iovcnt, size_t exp_totsize) { |
| 1481 | #define MY_IOV_MAX 16 |
| 1482 | struct iovec iov[MY_IOV_MAX]; |
| 1483 | size_t iovcnt; |
| 1484 | size_t i; |
| 1485 | size_t totsize, sum; |
| 1486 | |
| 1487 | rd_assert(exp_iovcnt <= MY_IOV_MAX); |
| 1488 | |
| 1489 | totsize = rd_buf_get_write_iov(b, iov, &iovcnt, MY_IOV_MAX, exp_totsize); |
| 1490 | RD_UT_ASSERT(totsize >= exp_totsize, |
| 1491 | "iov total size %" PRIusz" expected >= %" PRIusz, |
| 1492 | totsize, exp_totsize); |
| 1493 | RD_UT_ASSERT(iovcnt >= exp_iovcnt && iovcnt <= MY_IOV_MAX, |
| 1494 | "iovcnt %" PRIusz |
| 1495 | ", expected %" PRIusz" < x <= MY_IOV_MAX" , |
| 1496 | iovcnt, exp_iovcnt); |
| 1497 | |
| 1498 | sum = 0; |
| 1499 | for (i = 0 ; i < iovcnt ; i++) { |
| 1500 | RD_UT_ASSERT(iov[i].iov_base, |
| 1501 | "iov #%" PRIusz" iov_base not set" , i); |
| 1502 | RD_UT_ASSERT(iov[i].iov_len, |
| 1503 | "iov #%" PRIusz" iov_len %" PRIusz" out of range" , |
| 1504 | i, iov[i].iov_len); |
| 1505 | sum += iov[i].iov_len; |
| 1506 | RD_UT_ASSERT(sum <= totsize, "sum %" PRIusz" > totsize %" PRIusz, |
| 1507 | sum, totsize); |
| 1508 | } |
| 1509 | |
| 1510 | RD_UT_ASSERT(sum == totsize, |
| 1511 | "sum %" PRIusz" != totsize %" PRIusz, |
| 1512 | sum, totsize); |
| 1513 | |
| 1514 | return 0; |
| 1515 | } |
| 1516 | |
| 1517 | |
| 1518 | /** |
| 1519 | * @brief Verify that buffer to iovec conversion works. |
| 1520 | */ |
| 1521 | static int do_unittest_write_iov (void) { |
| 1522 | rd_buf_t b; |
| 1523 | |
| 1524 | rd_buf_init(&b, 0, 0); |
| 1525 | rd_buf_write_ensure(&b, 100, 100); |
| 1526 | |
| 1527 | do_unittest_iov_verify(&b, 1, 100); |
| 1528 | |
| 1529 | /* Add a secondary buffer */ |
| 1530 | rd_buf_write_ensure(&b, 30000, 0); |
| 1531 | |
| 1532 | do_unittest_iov_verify(&b, 2, 100+30000); |
| 1533 | |
| 1534 | |
| 1535 | rd_buf_destroy(&b); |
| 1536 | |
| 1537 | RD_UT_PASS(); |
| 1538 | } |
| 1539 | |
| 1540 | |
| 1541 | int unittest_rdbuf (void) { |
| 1542 | int fails = 0; |
| 1543 | |
| 1544 | fails += do_unittest_write_read(); |
| 1545 | fails += do_unittest_write_split_seek(); |
| 1546 | fails += do_unittest_write_read_payload_correctness(); |
| 1547 | fails += do_unittest_write_iov(); |
| 1548 | |
| 1549 | return fails; |
| 1550 | } |
| 1551 | |