| 1 | /* |
| 2 | * C port of the snappy compressor from Google. |
| 3 | * This is a very fast compressor with comparable compression to lzo. |
| 4 | * Works best on 64bit little-endian, but should be good on others too. |
| 5 | * Ported by Andi Kleen. |
| 6 | * Uptodate with snappy 1.1.0 |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * Copyright 2005 Google Inc. All Rights Reserved. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms, with or without |
| 13 | * modification, are permitted provided that the following conditions are |
| 14 | * met: |
| 15 | * |
| 16 | * * Redistributions of source code must retain the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer. |
| 18 | * * Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following disclaimer |
| 20 | * in the documentation and/or other materials provided with the |
| 21 | * distribution. |
| 22 | * * Neither the name of Google Inc. nor the names of its |
| 23 | * contributors may be used to endorse or promote products derived from |
| 24 | * this software without specific prior written permission. |
| 25 | * |
| 26 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 27 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 28 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 29 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 30 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 31 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 32 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 33 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 34 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 35 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 36 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 37 | */ |
| 38 | |
| 39 | #ifdef __GNUC__ |
| 40 | #pragma GCC diagnostic push |
| 41 | #pragma GCC diagnostic ignored "-Wcast-align" |
| 42 | #endif |
| 43 | |
| 44 | #ifndef SG |
| 45 | #define SG /* Scatter-Gather / iovec support in Snappy */ |
| 46 | #endif |
| 47 | |
| 48 | #ifdef __KERNEL__ |
| 49 | #include <linux/kernel.h> |
| 50 | #ifdef SG |
| 51 | #include <linux/uio.h> |
| 52 | #endif |
| 53 | #include <linux/module.h> |
| 54 | #include <linux/slab.h> |
| 55 | #include <linux/string.h> |
| 56 | #include <linux/snappy.h> |
| 57 | #include <linux/vmalloc.h> |
| 58 | #include <asm/unaligned.h> |
| 59 | #else |
| 60 | #include "snappy.h" |
| 61 | #include "snappy_compat.h" |
| 62 | #endif |
| 63 | |
| 64 | #include "rd.h" |
| 65 | |
| 66 | #ifdef _MSC_VER |
| 67 | #define inline __inline |
| 68 | #endif |
| 69 | |
| 70 | #define CRASH_UNLESS(x) BUG_ON(!(x)) |
| 71 | #define CHECK(cond) CRASH_UNLESS(cond) |
| 72 | #define CHECK_LE(a, b) CRASH_UNLESS((a) <= (b)) |
| 73 | #define CHECK_GE(a, b) CRASH_UNLESS((a) >= (b)) |
| 74 | #define CHECK_EQ(a, b) CRASH_UNLESS((a) == (b)) |
| 75 | #define CHECK_NE(a, b) CRASH_UNLESS((a) != (b)) |
| 76 | #define CHECK_LT(a, b) CRASH_UNLESS((a) < (b)) |
| 77 | #define CHECK_GT(a, b) CRASH_UNLESS((a) > (b)) |
| 78 | |
| 79 | #define UNALIGNED_LOAD16(_p) get_unaligned((u16 *)(_p)) |
| 80 | #define UNALIGNED_LOAD32(_p) get_unaligned((u32 *)(_p)) |
| 81 | #define UNALIGNED_LOAD64(_p) get_unaligned64((u64 *)(_p)) |
| 82 | |
| 83 | #define UNALIGNED_STORE16(_p, _val) put_unaligned(_val, (u16 *)(_p)) |
| 84 | #define UNALIGNED_STORE32(_p, _val) put_unaligned(_val, (u32 *)(_p)) |
| 85 | #define UNALIGNED_STORE64(_p, _val) put_unaligned64(_val, (u64 *)(_p)) |
| 86 | |
| 87 | /* |
| 88 | * This can be more efficient than UNALIGNED_LOAD64 + UNALIGNED_STORE64 |
| 89 | * on some platforms, in particular ARM. |
| 90 | */ |
| 91 | static inline void unaligned_copy64(const void *src, void *dst) |
| 92 | { |
| 93 | if (sizeof(void *) == 8) { |
| 94 | UNALIGNED_STORE64(dst, UNALIGNED_LOAD64(src)); |
| 95 | } else { |
| 96 | const char *src_char = (const char *)(src); |
| 97 | char *dst_char = (char *)(dst); |
| 98 | |
| 99 | UNALIGNED_STORE32(dst_char, UNALIGNED_LOAD32(src_char)); |
| 100 | UNALIGNED_STORE32(dst_char + 4, UNALIGNED_LOAD32(src_char + 4)); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | #ifdef NDEBUG |
| 105 | |
| 106 | #define DCHECK(cond) do {} while(0) |
| 107 | #define DCHECK_LE(a, b) do {} while(0) |
| 108 | #define DCHECK_GE(a, b) do {} while(0) |
| 109 | #define DCHECK_EQ(a, b) do {} while(0) |
| 110 | #define DCHECK_NE(a, b) do {} while(0) |
| 111 | #define DCHECK_LT(a, b) do {} while(0) |
| 112 | #define DCHECK_GT(a, b) do {} while(0) |
| 113 | |
| 114 | #else |
| 115 | |
| 116 | #define DCHECK(cond) CHECK(cond) |
| 117 | #define DCHECK_LE(a, b) CHECK_LE(a, b) |
| 118 | #define DCHECK_GE(a, b) CHECK_GE(a, b) |
| 119 | #define DCHECK_EQ(a, b) CHECK_EQ(a, b) |
| 120 | #define DCHECK_NE(a, b) CHECK_NE(a, b) |
| 121 | #define DCHECK_LT(a, b) CHECK_LT(a, b) |
| 122 | #define DCHECK_GT(a, b) CHECK_GT(a, b) |
| 123 | |
| 124 | #endif |
| 125 | |
| 126 | static inline bool is_little_endian(void) |
| 127 | { |
| 128 | #ifdef __LITTLE_ENDIAN__ |
| 129 | return true; |
| 130 | #endif |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | #if defined(__xlc__) // xlc compiler on AIX |
| 135 | #define rd_clz(n) __cntlz4(n) |
| 136 | #define rd_ctz(n) __cnttz4(n) |
| 137 | #define rd_ctz64(n) __cnttz8(n) |
| 138 | |
| 139 | #elif defined(__SUNPRO_C) // Solaris Studio compiler on sun |
| 140 | /* |
| 141 | * Source for following definitions is Hacker’s Delight, Second Edition by Henry S. Warren |
| 142 | * http://www.hackersdelight.org/permissions.htm |
| 143 | */ |
| 144 | u32 rd_clz(u32 x) { |
| 145 | u32 n; |
| 146 | |
| 147 | if (x == 0) return(32); |
| 148 | n = 1; |
| 149 | if ((x >> 16) == 0) {n = n +16; x = x <<16;} |
| 150 | if ((x >> 24) == 0) {n = n + 8; x = x << 8;} |
| 151 | if ((x >> 28) == 0) {n = n + 4; x = x << 4;} |
| 152 | if ((x >> 30) == 0) {n = n + 2; x = x << 2;} |
| 153 | n = n - (x >> 31); |
| 154 | return n; |
| 155 | } |
| 156 | |
| 157 | u32 rd_ctz(u32 x) { |
| 158 | u32 y; |
| 159 | u32 n; |
| 160 | |
| 161 | if (x == 0) return 32; |
| 162 | n = 31; |
| 163 | y = x <<16; if (y != 0) {n = n -16; x = y;} |
| 164 | y = x << 8; if (y != 0) {n = n - 8; x = y;} |
| 165 | y = x << 4; if (y != 0) {n = n - 4; x = y;} |
| 166 | y = x << 2; if (y != 0) {n = n - 2; x = y;} |
| 167 | y = x << 1; if (y != 0) {n = n - 1;} |
| 168 | return n; |
| 169 | } |
| 170 | |
| 171 | u64 rd_ctz64(u64 x) { |
| 172 | u64 y; |
| 173 | u64 n; |
| 174 | |
| 175 | if (x == 0) return 64; |
| 176 | n = 63; |
| 177 | y = x <<32; if (y != 0) {n = n -32; x = y;} |
| 178 | y = x <<16; if (y != 0) {n = n -16; x = y;} |
| 179 | y = x << 8; if (y != 0) {n = n - 8; x = y;} |
| 180 | y = x << 4; if (y != 0) {n = n - 4; x = y;} |
| 181 | y = x << 2; if (y != 0) {n = n - 2; x = y;} |
| 182 | y = x << 1; if (y != 0) {n = n - 1;} |
| 183 | return n; |
| 184 | } |
| 185 | #elif !defined(_MSC_VER) |
| 186 | #define rd_clz(n) __builtin_clz(n) |
| 187 | #define rd_ctz(n) __builtin_ctz(n) |
| 188 | #define rd_ctz64(n) __builtin_ctzll(n) |
| 189 | #else |
| 190 | #include <intrin.h> |
| 191 | static int inline rd_clz(u32 x) { |
| 192 | int r = 0; |
| 193 | if (_BitScanForward(&r, x)) |
| 194 | return 31 - r; |
| 195 | else |
| 196 | return 32; |
| 197 | } |
| 198 | |
| 199 | static int inline rd_ctz(u32 x) { |
| 200 | int r = 0; |
| 201 | if (_BitScanForward(&r, x)) |
| 202 | return r; |
| 203 | else |
| 204 | return 32; |
| 205 | } |
| 206 | |
| 207 | static int inline rd_ctz64(u64 x) { |
| 208 | #ifdef _M_X64 |
| 209 | int r = 0; |
| 210 | if (_BitScanReverse64(&r, x)) |
| 211 | return r; |
| 212 | else |
| 213 | return 64; |
| 214 | #else |
| 215 | int r; |
| 216 | if ((r = rd_ctz(x & 0xffffffff)) < 32) |
| 217 | return r; |
| 218 | return 32 + rd_ctz(x >> 32); |
| 219 | #endif |
| 220 | } |
| 221 | #endif |
| 222 | |
| 223 | |
| 224 | static inline int log2_floor(u32 n) |
| 225 | { |
| 226 | return n == 0 ? -1 : 31 ^ rd_clz(n); |
| 227 | } |
| 228 | |
| 229 | static inline RD_UNUSED int find_lsb_set_non_zero(u32 n) |
| 230 | { |
| 231 | return rd_ctz(n); |
| 232 | } |
| 233 | |
| 234 | static inline RD_UNUSED int find_lsb_set_non_zero64(u64 n) |
| 235 | { |
| 236 | return rd_ctz64(n); |
| 237 | } |
| 238 | |
| 239 | #define kmax32 5 |
| 240 | |
| 241 | /* |
| 242 | * Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1]. |
| 243 | * Never reads a character at or beyond limit. If a valid/terminated varint32 |
| 244 | * was found in the range, stores it in *OUTPUT and returns a pointer just |
| 245 | * past the last byte of the varint32. Else returns NULL. On success, |
| 246 | * "result <= limit". |
| 247 | */ |
| 248 | static inline const char *varint_parse32_with_limit(const char *p, |
| 249 | const char *l, |
| 250 | u32 * OUTPUT) |
| 251 | { |
| 252 | const unsigned char *ptr = (const unsigned char *)(p); |
| 253 | const unsigned char *limit = (const unsigned char *)(l); |
| 254 | u32 b, result; |
| 255 | |
| 256 | if (ptr >= limit) |
| 257 | return NULL; |
| 258 | b = *(ptr++); |
| 259 | result = b & 127; |
| 260 | if (b < 128) |
| 261 | goto done; |
| 262 | if (ptr >= limit) |
| 263 | return NULL; |
| 264 | b = *(ptr++); |
| 265 | result |= (b & 127) << 7; |
| 266 | if (b < 128) |
| 267 | goto done; |
| 268 | if (ptr >= limit) |
| 269 | return NULL; |
| 270 | b = *(ptr++); |
| 271 | result |= (b & 127) << 14; |
| 272 | if (b < 128) |
| 273 | goto done; |
| 274 | if (ptr >= limit) |
| 275 | return NULL; |
| 276 | b = *(ptr++); |
| 277 | result |= (b & 127) << 21; |
| 278 | if (b < 128) |
| 279 | goto done; |
| 280 | if (ptr >= limit) |
| 281 | return NULL; |
| 282 | b = *(ptr++); |
| 283 | result |= (b & 127) << 28; |
| 284 | if (b < 16) |
| 285 | goto done; |
| 286 | return NULL; /* Value is too long to be a varint32 */ |
| 287 | done: |
| 288 | *OUTPUT = result; |
| 289 | return (const char *)(ptr); |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * REQUIRES "ptr" points to a buffer of length sufficient to hold "v". |
| 294 | * EFFECTS Encodes "v" into "ptr" and returns a pointer to the |
| 295 | * byte just past the last encoded byte. |
| 296 | */ |
| 297 | static inline char *varint_encode32(char *sptr, u32 v) |
| 298 | { |
| 299 | /* Operate on characters as unsigneds */ |
| 300 | unsigned char *ptr = (unsigned char *)(sptr); |
| 301 | static const int B = 128; |
| 302 | |
| 303 | if (v < (1 << 7)) { |
| 304 | *(ptr++) = v; |
| 305 | } else if (v < (1 << 14)) { |
| 306 | *(ptr++) = v | B; |
| 307 | *(ptr++) = v >> 7; |
| 308 | } else if (v < (1 << 21)) { |
| 309 | *(ptr++) = v | B; |
| 310 | *(ptr++) = (v >> 7) | B; |
| 311 | *(ptr++) = v >> 14; |
| 312 | } else if (v < (1 << 28)) { |
| 313 | *(ptr++) = v | B; |
| 314 | *(ptr++) = (v >> 7) | B; |
| 315 | *(ptr++) = (v >> 14) | B; |
| 316 | *(ptr++) = v >> 21; |
| 317 | } else { |
| 318 | *(ptr++) = v | B; |
| 319 | *(ptr++) = (v >> 7) | B; |
| 320 | *(ptr++) = (v >> 14) | B; |
| 321 | *(ptr++) = (v >> 21) | B; |
| 322 | *(ptr++) = v >> 28; |
| 323 | } |
| 324 | return (char *)(ptr); |
| 325 | } |
| 326 | |
| 327 | #ifdef SG |
| 328 | |
| 329 | static inline void *n_bytes_after_addr(void *addr, size_t n_bytes) |
| 330 | { |
| 331 | return (void *) ((char *)addr + n_bytes); |
| 332 | } |
| 333 | |
| 334 | struct source { |
| 335 | struct iovec *iov; |
| 336 | int iovlen; |
| 337 | int curvec; |
| 338 | int curoff; |
| 339 | size_t total; |
| 340 | }; |
| 341 | |
| 342 | /* Only valid at beginning when nothing is consumed */ |
| 343 | static inline int available(struct source *s) |
| 344 | { |
| 345 | return (int) s->total; |
| 346 | } |
| 347 | |
| 348 | static inline const char *peek(struct source *s, size_t *len) |
| 349 | { |
| 350 | if (likely(s->curvec < s->iovlen)) { |
| 351 | struct iovec *iv = &s->iov[s->curvec]; |
| 352 | if ((unsigned)s->curoff < (size_t)iv->iov_len) { |
| 353 | *len = iv->iov_len - s->curoff; |
| 354 | return n_bytes_after_addr(iv->iov_base, s->curoff); |
| 355 | } |
| 356 | } |
| 357 | *len = 0; |
| 358 | return NULL; |
| 359 | } |
| 360 | |
| 361 | static inline void skip(struct source *s, size_t n) |
| 362 | { |
| 363 | struct iovec *iv = &s->iov[s->curvec]; |
| 364 | s->curoff += (int) n; |
| 365 | DCHECK_LE((unsigned)s->curoff, (size_t)iv->iov_len); |
| 366 | if ((unsigned)s->curoff >= (size_t)iv->iov_len && |
| 367 | s->curvec + 1 < s->iovlen) { |
| 368 | s->curoff = 0; |
| 369 | s->curvec++; |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | struct sink { |
| 374 | struct iovec *iov; |
| 375 | int iovlen; |
| 376 | unsigned curvec; |
| 377 | unsigned curoff; |
| 378 | unsigned written; |
| 379 | }; |
| 380 | |
| 381 | static inline void append(struct sink *s, const char *data, size_t n) |
| 382 | { |
| 383 | struct iovec *iov = &s->iov[s->curvec]; |
| 384 | char *dst = n_bytes_after_addr(iov->iov_base, s->curoff); |
| 385 | size_t nlen = min_t(size_t, iov->iov_len - s->curoff, n); |
| 386 | if (data != dst) |
| 387 | memcpy(dst, data, nlen); |
| 388 | s->written += (int) n; |
| 389 | s->curoff += (int) nlen; |
| 390 | while ((n -= nlen) > 0) { |
| 391 | data += nlen; |
| 392 | s->curvec++; |
| 393 | DCHECK_LT((signed)s->curvec, s->iovlen); |
| 394 | iov++; |
| 395 | nlen = min_t(size_t, (size_t)iov->iov_len, n); |
| 396 | memcpy(iov->iov_base, data, nlen); |
| 397 | s->curoff = (int) nlen; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | static inline void *sink_peek(struct sink *s, size_t n) |
| 402 | { |
| 403 | struct iovec *iov = &s->iov[s->curvec]; |
| 404 | if (s->curvec < (size_t)iov->iov_len && iov->iov_len - s->curoff >= n) |
| 405 | return n_bytes_after_addr(iov->iov_base, s->curoff); |
| 406 | return NULL; |
| 407 | } |
| 408 | |
| 409 | #else |
| 410 | |
| 411 | struct source { |
| 412 | const char *ptr; |
| 413 | size_t left; |
| 414 | }; |
| 415 | |
| 416 | static inline int available(struct source *s) |
| 417 | { |
| 418 | return s->left; |
| 419 | } |
| 420 | |
| 421 | static inline const char *peek(struct source *s, size_t * len) |
| 422 | { |
| 423 | *len = s->left; |
| 424 | return s->ptr; |
| 425 | } |
| 426 | |
| 427 | static inline void skip(struct source *s, size_t n) |
| 428 | { |
| 429 | s->left -= n; |
| 430 | s->ptr += n; |
| 431 | } |
| 432 | |
| 433 | struct sink { |
| 434 | char *dest; |
| 435 | }; |
| 436 | |
| 437 | static inline void append(struct sink *s, const char *data, size_t n) |
| 438 | { |
| 439 | if (data != s->dest) |
| 440 | memcpy(s->dest, data, n); |
| 441 | s->dest += n; |
| 442 | } |
| 443 | |
| 444 | #define sink_peek(s, n) sink_peek_no_sg(s) |
| 445 | |
| 446 | static inline void *sink_peek_no_sg(const struct sink *s) |
| 447 | { |
| 448 | return s->dest; |
| 449 | } |
| 450 | |
| 451 | #endif |
| 452 | |
| 453 | struct writer { |
| 454 | char *base; |
| 455 | char *op; |
| 456 | char *op_limit; |
| 457 | }; |
| 458 | |
| 459 | /* Called before decompression */ |
| 460 | static inline void writer_set_expected_length(struct writer *w, size_t len) |
| 461 | { |
| 462 | w->op_limit = w->op + len; |
| 463 | } |
| 464 | |
| 465 | /* Called after decompression */ |
| 466 | static inline bool writer_check_length(struct writer *w) |
| 467 | { |
| 468 | return w->op == w->op_limit; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Copy "len" bytes from "src" to "op", one byte at a time. Used for |
| 473 | * handling COPY operations where the input and output regions may |
| 474 | * overlap. For example, suppose: |
| 475 | * src == "ab" |
| 476 | * op == src + 2 |
| 477 | * len == 20 |
| 478 | * After IncrementalCopy(src, op, len), the result will have |
| 479 | * eleven copies of "ab" |
| 480 | * ababababababababababab |
| 481 | * Note that this does not match the semantics of either memcpy() |
| 482 | * or memmove(). |
| 483 | */ |
| 484 | static inline void incremental_copy(const char *src, char *op, ssize_t len) |
| 485 | { |
| 486 | DCHECK_GT(len, 0); |
| 487 | do { |
| 488 | *op++ = *src++; |
| 489 | } while (--len > 0); |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Equivalent to IncrementalCopy except that it can write up to ten extra |
| 494 | * bytes after the end of the copy, and that it is faster. |
| 495 | * |
| 496 | * The main part of this loop is a simple copy of eight bytes at a time until |
| 497 | * we've copied (at least) the requested amount of bytes. However, if op and |
| 498 | * src are less than eight bytes apart (indicating a repeating pattern of |
| 499 | * length < 8), we first need to expand the pattern in order to get the correct |
| 500 | * results. For instance, if the buffer looks like this, with the eight-byte |
| 501 | * <src> and <op> patterns marked as intervals: |
| 502 | * |
| 503 | * abxxxxxxxxxxxx |
| 504 | * [------] src |
| 505 | * [------] op |
| 506 | * |
| 507 | * a single eight-byte copy from <src> to <op> will repeat the pattern once, |
| 508 | * after which we can move <op> two bytes without moving <src>: |
| 509 | * |
| 510 | * ababxxxxxxxxxx |
| 511 | * [------] src |
| 512 | * [------] op |
| 513 | * |
| 514 | * and repeat the exercise until the two no longer overlap. |
| 515 | * |
| 516 | * This allows us to do very well in the special case of one single byte |
| 517 | * repeated many times, without taking a big hit for more general cases. |
| 518 | * |
| 519 | * The worst case of extra writing past the end of the match occurs when |
| 520 | * op - src == 1 and len == 1; the last copy will read from byte positions |
| 521 | * [0..7] and write to [4..11], whereas it was only supposed to write to |
| 522 | * position 1. Thus, ten excess bytes. |
| 523 | */ |
| 524 | |
| 525 | #define kmax_increment_copy_overflow 10 |
| 526 | |
| 527 | static inline void incremental_copy_fast_path(const char *src, char *op, |
| 528 | ssize_t len) |
| 529 | { |
| 530 | while (op - src < 8) { |
| 531 | unaligned_copy64(src, op); |
| 532 | len -= op - src; |
| 533 | op += op - src; |
| 534 | } |
| 535 | while (len > 0) { |
| 536 | unaligned_copy64(src, op); |
| 537 | src += 8; |
| 538 | op += 8; |
| 539 | len -= 8; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | static inline bool writer_append_from_self(struct writer *w, u32 offset, |
| 544 | u32 len) |
| 545 | { |
| 546 | char *const op = w->op; |
| 547 | CHECK_LE(op, w->op_limit); |
| 548 | const u32 space_left = (u32) (w->op_limit - op); |
| 549 | |
| 550 | if ((unsigned)(op - w->base) <= offset - 1u) /* -1u catches offset==0 */ |
| 551 | return false; |
| 552 | if (len <= 16 && offset >= 8 && space_left >= 16) { |
| 553 | /* Fast path, used for the majority (70-80%) of dynamic |
| 554 | * invocations. */ |
| 555 | unaligned_copy64(op - offset, op); |
| 556 | unaligned_copy64(op - offset + 8, op + 8); |
| 557 | } else { |
| 558 | if (space_left >= len + kmax_increment_copy_overflow) { |
| 559 | incremental_copy_fast_path(op - offset, op, len); |
| 560 | } else { |
| 561 | if (space_left < len) { |
| 562 | return false; |
| 563 | } |
| 564 | incremental_copy(op - offset, op, len); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | w->op = op + len; |
| 569 | return true; |
| 570 | } |
| 571 | |
| 572 | static inline bool writer_append(struct writer *w, const char *ip, u32 len) |
| 573 | { |
| 574 | char *const op = w->op; |
| 575 | CHECK_LE(op, w->op_limit); |
| 576 | const u32 space_left = (u32) (w->op_limit - op); |
| 577 | if (space_left < len) |
| 578 | return false; |
| 579 | memcpy(op, ip, len); |
| 580 | w->op = op + len; |
| 581 | return true; |
| 582 | } |
| 583 | |
| 584 | static inline bool writer_try_fast_append(struct writer *w, const char *ip, |
| 585 | u32 available_bytes, u32 len) |
| 586 | { |
| 587 | char *const op = w->op; |
| 588 | const int space_left = (int) (w->op_limit - op); |
| 589 | if (len <= 16 && available_bytes >= 16 && space_left >= 16) { |
| 590 | /* Fast path, used for the majority (~95%) of invocations */ |
| 591 | unaligned_copy64(ip, op); |
| 592 | unaligned_copy64(ip + 8, op + 8); |
| 593 | w->op = op + len; |
| 594 | return true; |
| 595 | } |
| 596 | return false; |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * Any hash function will produce a valid compressed bitstream, but a good |
| 601 | * hash function reduces the number of collisions and thus yields better |
| 602 | * compression for compressible input, and more speed for incompressible |
| 603 | * input. Of course, it doesn't hurt if the hash function is reasonably fast |
| 604 | * either, as it gets called a lot. |
| 605 | */ |
| 606 | static inline u32 hash_bytes(u32 bytes, int shift) |
| 607 | { |
| 608 | u32 kmul = 0x1e35a7bd; |
| 609 | return (bytes * kmul) >> shift; |
| 610 | } |
| 611 | |
| 612 | static inline u32 hash(const char *p, int shift) |
| 613 | { |
| 614 | return hash_bytes(UNALIGNED_LOAD32(p), shift); |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * Compressed data can be defined as: |
| 619 | * compressed := item* literal* |
| 620 | * item := literal* copy |
| 621 | * |
| 622 | * The trailing literal sequence has a space blowup of at most 62/60 |
| 623 | * since a literal of length 60 needs one tag byte + one extra byte |
| 624 | * for length information. |
| 625 | * |
| 626 | * Item blowup is trickier to measure. Suppose the "copy" op copies |
| 627 | * 4 bytes of data. Because of a special check in the encoding code, |
| 628 | * we produce a 4-byte copy only if the offset is < 65536. Therefore |
| 629 | * the copy op takes 3 bytes to encode, and this type of item leads |
| 630 | * to at most the 62/60 blowup for representing literals. |
| 631 | * |
| 632 | * Suppose the "copy" op copies 5 bytes of data. If the offset is big |
| 633 | * enough, it will take 5 bytes to encode the copy op. Therefore the |
| 634 | * worst case here is a one-byte literal followed by a five-byte copy. |
| 635 | * I.e., 6 bytes of input turn into 7 bytes of "compressed" data. |
| 636 | * |
| 637 | * This last factor dominates the blowup, so the final estimate is: |
| 638 | */ |
| 639 | size_t rd_kafka_snappy_max_compressed_length(size_t source_len) |
| 640 | { |
| 641 | return 32 + source_len + source_len / 6; |
| 642 | } |
| 643 | EXPORT_SYMBOL(rd_kafka_snappy_max_compressed_length); |
| 644 | |
| 645 | enum { |
| 646 | LITERAL = 0, |
| 647 | COPY_1_BYTE_OFFSET = 1, /* 3 bit length + 3 bits of offset in opcode */ |
| 648 | COPY_2_BYTE_OFFSET = 2, |
| 649 | COPY_4_BYTE_OFFSET = 3 |
| 650 | }; |
| 651 | |
| 652 | static inline char *emit_literal(char *op, |
| 653 | const char *literal, |
| 654 | int len, bool allow_fast_path) |
| 655 | { |
| 656 | int n = len - 1; /* Zero-length literals are disallowed */ |
| 657 | |
| 658 | if (n < 60) { |
| 659 | /* Fits in tag byte */ |
| 660 | *op++ = LITERAL | (n << 2); |
| 661 | |
| 662 | /* |
| 663 | * The vast majority of copies are below 16 bytes, for which a |
| 664 | * call to memcpy is overkill. This fast path can sometimes |
| 665 | * copy up to 15 bytes too much, but that is okay in the |
| 666 | * main loop, since we have a bit to go on for both sides: |
| 667 | * |
| 668 | * - The input will always have kInputMarginBytes = 15 extra |
| 669 | * available bytes, as long as we're in the main loop, and |
| 670 | * if not, allow_fast_path = false. |
| 671 | * - The output will always have 32 spare bytes (see |
| 672 | * MaxCompressedLength). |
| 673 | */ |
| 674 | if (allow_fast_path && len <= 16) { |
| 675 | unaligned_copy64(literal, op); |
| 676 | unaligned_copy64(literal + 8, op + 8); |
| 677 | return op + len; |
| 678 | } |
| 679 | } else { |
| 680 | /* Encode in upcoming bytes */ |
| 681 | char *base = op; |
| 682 | int count = 0; |
| 683 | op++; |
| 684 | while (n > 0) { |
| 685 | *op++ = n & 0xff; |
| 686 | n >>= 8; |
| 687 | count++; |
| 688 | } |
| 689 | DCHECK(count >= 1); |
| 690 | DCHECK(count <= 4); |
| 691 | *base = LITERAL | ((59 + count) << 2); |
| 692 | } |
| 693 | memcpy(op, literal, len); |
| 694 | return op + len; |
| 695 | } |
| 696 | |
| 697 | static inline char *emit_copy_less_than64(char *op, int offset, int len) |
| 698 | { |
| 699 | DCHECK_LE(len, 64); |
| 700 | DCHECK_GE(len, 4); |
| 701 | DCHECK_LT(offset, 65536); |
| 702 | |
| 703 | if ((len < 12) && (offset < 2048)) { |
| 704 | int len_minus_4 = len - 4; |
| 705 | DCHECK(len_minus_4 < 8); /* Must fit in 3 bits */ |
| 706 | *op++ = |
| 707 | COPY_1_BYTE_OFFSET + ((len_minus_4) << 2) + ((offset >> 8) |
| 708 | << 5); |
| 709 | *op++ = offset & 0xff; |
| 710 | } else { |
| 711 | *op++ = COPY_2_BYTE_OFFSET + ((len - 1) << 2); |
| 712 | put_unaligned_le16(offset, op); |
| 713 | op += 2; |
| 714 | } |
| 715 | return op; |
| 716 | } |
| 717 | |
| 718 | static inline char *emit_copy(char *op, int offset, int len) |
| 719 | { |
| 720 | /* |
| 721 | * Emit 64 byte copies but make sure to keep at least four bytes |
| 722 | * reserved |
| 723 | */ |
| 724 | while (len >= 68) { |
| 725 | op = emit_copy_less_than64(op, offset, 64); |
| 726 | len -= 64; |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * Emit an extra 60 byte copy if have too much data to fit in |
| 731 | * one copy |
| 732 | */ |
| 733 | if (len > 64) { |
| 734 | op = emit_copy_less_than64(op, offset, 60); |
| 735 | len -= 60; |
| 736 | } |
| 737 | |
| 738 | /* Emit remainder */ |
| 739 | op = emit_copy_less_than64(op, offset, len); |
| 740 | return op; |
| 741 | } |
| 742 | |
| 743 | /** |
| 744 | * rd_kafka_snappy_uncompressed_length - return length of uncompressed output. |
| 745 | * @start: compressed buffer |
| 746 | * @n: length of compressed buffer. |
| 747 | * @result: Write the length of the uncompressed output here. |
| 748 | * |
| 749 | * Returns true when successfull, otherwise false. |
| 750 | */ |
| 751 | bool rd_kafka_snappy_uncompressed_length(const char *start, size_t n, size_t * result) |
| 752 | { |
| 753 | u32 v = 0; |
| 754 | const char *limit = start + n; |
| 755 | if (varint_parse32_with_limit(start, limit, &v) != NULL) { |
| 756 | *result = v; |
| 757 | return true; |
| 758 | } else { |
| 759 | return false; |
| 760 | } |
| 761 | } |
| 762 | EXPORT_SYMBOL(rd_kafka_snappy_uncompressed_length); |
| 763 | |
| 764 | /* |
| 765 | * The size of a compression block. Note that many parts of the compression |
| 766 | * code assumes that kBlockSize <= 65536; in particular, the hash table |
| 767 | * can only store 16-bit offsets, and EmitCopy() also assumes the offset |
| 768 | * is 65535 bytes or less. Note also that if you change this, it will |
| 769 | * affect the framing format |
| 770 | * Note that there might be older data around that is compressed with larger |
| 771 | * block sizes, so the decompression code should not rely on the |
| 772 | * non-existence of long backreferences. |
| 773 | */ |
| 774 | #define kblock_log 16 |
| 775 | #define kblock_size (1 << kblock_log) |
| 776 | |
| 777 | /* |
| 778 | * This value could be halfed or quartered to save memory |
| 779 | * at the cost of slightly worse compression. |
| 780 | */ |
| 781 | #define kmax_hash_table_bits 14 |
| 782 | #define kmax_hash_table_size (1U << kmax_hash_table_bits) |
| 783 | |
| 784 | /* |
| 785 | * Use smaller hash table when input.size() is smaller, since we |
| 786 | * fill the table, incurring O(hash table size) overhead for |
| 787 | * compression, and if the input is short, we won't need that |
| 788 | * many hash table entries anyway. |
| 789 | */ |
| 790 | static u16 *get_hash_table(struct snappy_env *env, size_t input_size, |
| 791 | int *table_size) |
| 792 | { |
| 793 | unsigned htsize = 256; |
| 794 | |
| 795 | DCHECK(kmax_hash_table_size >= 256); |
| 796 | while (htsize < kmax_hash_table_size && htsize < input_size) |
| 797 | htsize <<= 1; |
| 798 | CHECK_EQ(0, htsize & (htsize - 1)); |
| 799 | CHECK_LE(htsize, kmax_hash_table_size); |
| 800 | |
| 801 | u16 *table; |
| 802 | table = env->hash_table; |
| 803 | |
| 804 | *table_size = htsize; |
| 805 | memset(table, 0, htsize * sizeof(*table)); |
| 806 | return table; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * Return the largest n such that |
| 811 | * |
| 812 | * s1[0,n-1] == s2[0,n-1] |
| 813 | * and n <= (s2_limit - s2). |
| 814 | * |
| 815 | * Does not read *s2_limit or beyond. |
| 816 | * Does not read *(s1 + (s2_limit - s2)) or beyond. |
| 817 | * Requires that s2_limit >= s2. |
| 818 | * |
| 819 | * Separate implementation for x86_64, for speed. Uses the fact that |
| 820 | * x86_64 is little endian. |
| 821 | */ |
| 822 | #if defined(__LITTLE_ENDIAN__) && BITS_PER_LONG == 64 |
| 823 | static inline int find_match_length(const char *s1, |
| 824 | const char *s2, const char *s2_limit) |
| 825 | { |
| 826 | int matched = 0; |
| 827 | |
| 828 | DCHECK_GE(s2_limit, s2); |
| 829 | /* |
| 830 | * Find out how long the match is. We loop over the data 64 bits at a |
| 831 | * time until we find a 64-bit block that doesn't match; then we find |
| 832 | * the first non-matching bit and use that to calculate the total |
| 833 | * length of the match. |
| 834 | */ |
| 835 | while (likely(s2 <= s2_limit - 8)) { |
| 836 | if (unlikely |
| 837 | (UNALIGNED_LOAD64(s2) == UNALIGNED_LOAD64(s1 + matched))) { |
| 838 | s2 += 8; |
| 839 | matched += 8; |
| 840 | } else { |
| 841 | /* |
| 842 | * On current (mid-2008) Opteron models there |
| 843 | * is a 3% more efficient code sequence to |
| 844 | * find the first non-matching byte. However, |
| 845 | * what follows is ~10% better on Intel Core 2 |
| 846 | * and newer, and we expect AMD's bsf |
| 847 | * instruction to improve. |
| 848 | */ |
| 849 | u64 x = |
| 850 | UNALIGNED_LOAD64(s2) ^ UNALIGNED_LOAD64(s1 + |
| 851 | matched); |
| 852 | int matching_bits = find_lsb_set_non_zero64(x); |
| 853 | matched += matching_bits >> 3; |
| 854 | return matched; |
| 855 | } |
| 856 | } |
| 857 | while (likely(s2 < s2_limit)) { |
| 858 | if (likely(s1[matched] == *s2)) { |
| 859 | ++s2; |
| 860 | ++matched; |
| 861 | } else { |
| 862 | return matched; |
| 863 | } |
| 864 | } |
| 865 | return matched; |
| 866 | } |
| 867 | #else |
| 868 | static inline int find_match_length(const char *s1, |
| 869 | const char *s2, const char *s2_limit) |
| 870 | { |
| 871 | /* Implementation based on the x86-64 version, above. */ |
| 872 | DCHECK_GE(s2_limit, s2); |
| 873 | int matched = 0; |
| 874 | |
| 875 | while (s2 <= s2_limit - 4 && |
| 876 | UNALIGNED_LOAD32(s2) == UNALIGNED_LOAD32(s1 + matched)) { |
| 877 | s2 += 4; |
| 878 | matched += 4; |
| 879 | } |
| 880 | if (is_little_endian() && s2 <= s2_limit - 4) { |
| 881 | u32 x = |
| 882 | UNALIGNED_LOAD32(s2) ^ UNALIGNED_LOAD32(s1 + matched); |
| 883 | int matching_bits = find_lsb_set_non_zero(x); |
| 884 | matched += matching_bits >> 3; |
| 885 | } else { |
| 886 | while ((s2 < s2_limit) && (s1[matched] == *s2)) { |
| 887 | ++s2; |
| 888 | ++matched; |
| 889 | } |
| 890 | } |
| 891 | return matched; |
| 892 | } |
| 893 | #endif |
| 894 | |
| 895 | /* |
| 896 | * For 0 <= offset <= 4, GetU32AtOffset(GetEightBytesAt(p), offset) will |
| 897 | * equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have |
| 898 | * empirically found that overlapping loads such as |
| 899 | * UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) |
| 900 | * are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to u32. |
| 901 | * |
| 902 | * We have different versions for 64- and 32-bit; ideally we would avoid the |
| 903 | * two functions and just inline the UNALIGNED_LOAD64 call into |
| 904 | * GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever |
| 905 | * enough to avoid loading the value multiple times then. For 64-bit, the load |
| 906 | * is done when GetEightBytesAt() is called, whereas for 32-bit, the load is |
| 907 | * done at GetUint32AtOffset() time. |
| 908 | */ |
| 909 | |
| 910 | #if BITS_PER_LONG == 64 |
| 911 | |
| 912 | typedef u64 eight_bytes_reference; |
| 913 | |
| 914 | static inline eight_bytes_reference get_eight_bytes_at(const char* ptr) |
| 915 | { |
| 916 | return UNALIGNED_LOAD64(ptr); |
| 917 | } |
| 918 | |
| 919 | static inline u32 get_u32_at_offset(u64 v, int offset) |
| 920 | { |
| 921 | DCHECK_GE(offset, 0); |
| 922 | DCHECK_LE(offset, 4); |
| 923 | return v >> (is_little_endian()? 8 * offset : 32 - 8 * offset); |
| 924 | } |
| 925 | |
| 926 | #else |
| 927 | |
| 928 | typedef const char *eight_bytes_reference; |
| 929 | |
| 930 | static inline eight_bytes_reference get_eight_bytes_at(const char* ptr) |
| 931 | { |
| 932 | return ptr; |
| 933 | } |
| 934 | |
| 935 | static inline u32 get_u32_at_offset(const char *v, int offset) |
| 936 | { |
| 937 | DCHECK_GE(offset, 0); |
| 938 | DCHECK_LE(offset, 4); |
| 939 | return UNALIGNED_LOAD32(v + offset); |
| 940 | } |
| 941 | #endif |
| 942 | |
| 943 | /* |
| 944 | * Flat array compression that does not emit the "uncompressed length" |
| 945 | * prefix. Compresses "input" string to the "*op" buffer. |
| 946 | * |
| 947 | * REQUIRES: "input" is at most "kBlockSize" bytes long. |
| 948 | * REQUIRES: "op" points to an array of memory that is at least |
| 949 | * "MaxCompressedLength(input.size())" in size. |
| 950 | * REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
| 951 | * REQUIRES: "table_size" is a power of two |
| 952 | * |
| 953 | * Returns an "end" pointer into "op" buffer. |
| 954 | * "end - op" is the compressed size of "input". |
| 955 | */ |
| 956 | |
| 957 | static char *compress_fragment(const char *const input, |
| 958 | const size_t input_size, |
| 959 | char *op, u16 * table, const unsigned table_size) |
| 960 | { |
| 961 | /* "ip" is the input pointer, and "op" is the output pointer. */ |
| 962 | const char *ip = input; |
| 963 | CHECK_LE(input_size, kblock_size); |
| 964 | CHECK_EQ(table_size & (table_size - 1), 0); |
| 965 | const int shift = 32 - log2_floor(table_size); |
| 966 | DCHECK_EQ(UINT_MAX >> shift, table_size - 1); |
| 967 | const char *ip_end = input + input_size; |
| 968 | const char *baseip = ip; |
| 969 | /* |
| 970 | * Bytes in [next_emit, ip) will be emitted as literal bytes. Or |
| 971 | * [next_emit, ip_end) after the main loop. |
| 972 | */ |
| 973 | const char *next_emit = ip; |
| 974 | |
| 975 | const unsigned kinput_margin_bytes = 15; |
| 976 | |
| 977 | if (likely(input_size >= kinput_margin_bytes)) { |
| 978 | const char *const ip_limit = input + input_size - |
| 979 | kinput_margin_bytes; |
| 980 | |
| 981 | u32 next_hash; |
| 982 | for (next_hash = hash(++ip, shift);;) { |
| 983 | DCHECK_LT(next_emit, ip); |
| 984 | /* |
| 985 | * The body of this loop calls EmitLiteral once and then EmitCopy one or |
| 986 | * more times. (The exception is that when we're close to exhausting |
| 987 | * the input we goto emit_remainder.) |
| 988 | * |
| 989 | * In the first iteration of this loop we're just starting, so |
| 990 | * there's nothing to copy, so calling EmitLiteral once is |
| 991 | * necessary. And we only start a new iteration when the |
| 992 | * current iteration has determined that a call to EmitLiteral will |
| 993 | * precede the next call to EmitCopy (if any). |
| 994 | * |
| 995 | * Step 1: Scan forward in the input looking for a 4-byte-long match. |
| 996 | * If we get close to exhausting the input then goto emit_remainder. |
| 997 | * |
| 998 | * Heuristic match skipping: If 32 bytes are scanned with no matches |
| 999 | * found, start looking only at every other byte. If 32 more bytes are |
| 1000 | * scanned, look at every third byte, etc.. When a match is found, |
| 1001 | * immediately go back to looking at every byte. This is a small loss |
| 1002 | * (~5% performance, ~0.1% density) for lcompressible data due to more |
| 1003 | * bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
| 1004 | * win since the compressor quickly "realizes" the data is incompressible |
| 1005 | * and doesn't bother looking for matches everywhere. |
| 1006 | * |
| 1007 | * The "skip" variable keeps track of how many bytes there are since the |
| 1008 | * last match; dividing it by 32 (ie. right-shifting by five) gives the |
| 1009 | * number of bytes to move ahead for each iteration. |
| 1010 | */ |
| 1011 | u32 skip_bytes = 32; |
| 1012 | |
| 1013 | const char *next_ip = ip; |
| 1014 | const char *candidate; |
| 1015 | do { |
| 1016 | ip = next_ip; |
| 1017 | u32 hval = next_hash; |
| 1018 | DCHECK_EQ(hval, hash(ip, shift)); |
| 1019 | u32 bytes_between_hash_lookups = skip_bytes++ >> 5; |
| 1020 | next_ip = ip + bytes_between_hash_lookups; |
| 1021 | if (unlikely(next_ip > ip_limit)) { |
| 1022 | goto emit_remainder; |
| 1023 | } |
| 1024 | next_hash = hash(next_ip, shift); |
| 1025 | candidate = baseip + table[hval]; |
| 1026 | DCHECK_GE(candidate, baseip); |
| 1027 | DCHECK_LT(candidate, ip); |
| 1028 | |
| 1029 | table[hval] = (u16) (ip - baseip); |
| 1030 | } while (likely(UNALIGNED_LOAD32(ip) != |
| 1031 | UNALIGNED_LOAD32(candidate))); |
| 1032 | |
| 1033 | /* |
| 1034 | * Step 2: A 4-byte match has been found. We'll later see if more |
| 1035 | * than 4 bytes match. But, prior to the match, input |
| 1036 | * bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." |
| 1037 | */ |
| 1038 | DCHECK_LE(next_emit + 16, ip_end); |
| 1039 | op = emit_literal(op, next_emit, (int) (ip - next_emit), true); |
| 1040 | |
| 1041 | /* |
| 1042 | * Step 3: Call EmitCopy, and then see if another EmitCopy could |
| 1043 | * be our next move. Repeat until we find no match for the |
| 1044 | * input immediately after what was consumed by the last EmitCopy call. |
| 1045 | * |
| 1046 | * If we exit this loop normally then we need to call EmitLiteral next, |
| 1047 | * though we don't yet know how big the literal will be. We handle that |
| 1048 | * by proceeding to the next iteration of the main loop. We also can exit |
| 1049 | * this loop via goto if we get close to exhausting the input. |
| 1050 | */ |
| 1051 | eight_bytes_reference input_bytes; |
| 1052 | u32 candidate_bytes = 0; |
| 1053 | |
| 1054 | do { |
| 1055 | /* |
| 1056 | * We have a 4-byte match at ip, and no need to emit any |
| 1057 | * "literal bytes" prior to ip. |
| 1058 | */ |
| 1059 | const char *base = ip; |
| 1060 | int matched = 4 + |
| 1061 | find_match_length(candidate + 4, ip + 4, |
| 1062 | ip_end); |
| 1063 | ip += matched; |
| 1064 | int offset = (int) (base - candidate); |
| 1065 | DCHECK_EQ(0, memcmp(base, candidate, matched)); |
| 1066 | op = emit_copy(op, offset, matched); |
| 1067 | /* |
| 1068 | * We could immediately start working at ip now, but to improve |
| 1069 | * compression we first update table[Hash(ip - 1, ...)]. |
| 1070 | */ |
| 1071 | const char *insert_tail = ip - 1; |
| 1072 | next_emit = ip; |
| 1073 | if (unlikely(ip >= ip_limit)) { |
| 1074 | goto emit_remainder; |
| 1075 | } |
| 1076 | input_bytes = get_eight_bytes_at(insert_tail); |
| 1077 | u32 prev_hash = |
| 1078 | hash_bytes(get_u32_at_offset |
| 1079 | (input_bytes, 0), shift); |
| 1080 | table[prev_hash] = (u16) (ip - baseip - 1); |
| 1081 | u32 cur_hash = |
| 1082 | hash_bytes(get_u32_at_offset |
| 1083 | (input_bytes, 1), shift); |
| 1084 | candidate = baseip + table[cur_hash]; |
| 1085 | candidate_bytes = UNALIGNED_LOAD32(candidate); |
| 1086 | table[cur_hash] = (u16) (ip - baseip); |
| 1087 | } while (get_u32_at_offset(input_bytes, 1) == |
| 1088 | candidate_bytes); |
| 1089 | |
| 1090 | next_hash = |
| 1091 | hash_bytes(get_u32_at_offset(input_bytes, 2), |
| 1092 | shift); |
| 1093 | ++ip; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | emit_remainder: |
| 1098 | /* Emit the remaining bytes as a literal */ |
| 1099 | if (next_emit < ip_end) |
| 1100 | op = emit_literal(op, next_emit, (int) (ip_end - next_emit), false); |
| 1101 | |
| 1102 | return op; |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * ----------------------------------------------------------------------- |
| 1107 | * Lookup table for decompression code. Generated by ComputeTable() below. |
| 1108 | * ----------------------------------------------------------------------- |
| 1109 | */ |
| 1110 | |
| 1111 | /* Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits */ |
| 1112 | static const u32 wordmask[] = { |
| 1113 | 0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu |
| 1114 | }; |
| 1115 | |
| 1116 | /* |
| 1117 | * Data stored per entry in lookup table: |
| 1118 | * Range Bits-used Description |
| 1119 | * ------------------------------------ |
| 1120 | * 1..64 0..7 Literal/copy length encoded in opcode byte |
| 1121 | * 0..7 8..10 Copy offset encoded in opcode byte / 256 |
| 1122 | * 0..4 11..13 Extra bytes after opcode |
| 1123 | * |
| 1124 | * We use eight bits for the length even though 7 would have sufficed |
| 1125 | * because of efficiency reasons: |
| 1126 | * (1) Extracting a byte is faster than a bit-field |
| 1127 | * (2) It properly aligns copy offset so we do not need a <<8 |
| 1128 | */ |
| 1129 | static const u16 char_table[256] = { |
| 1130 | 0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002, |
| 1131 | 0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004, |
| 1132 | 0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006, |
| 1133 | 0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008, |
| 1134 | 0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a, |
| 1135 | 0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c, |
| 1136 | 0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e, |
| 1137 | 0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010, |
| 1138 | 0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012, |
| 1139 | 0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014, |
| 1140 | 0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016, |
| 1141 | 0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018, |
| 1142 | 0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a, |
| 1143 | 0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c, |
| 1144 | 0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e, |
| 1145 | 0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020, |
| 1146 | 0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022, |
| 1147 | 0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024, |
| 1148 | 0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026, |
| 1149 | 0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028, |
| 1150 | 0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a, |
| 1151 | 0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c, |
| 1152 | 0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e, |
| 1153 | 0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030, |
| 1154 | 0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032, |
| 1155 | 0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034, |
| 1156 | 0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036, |
| 1157 | 0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038, |
| 1158 | 0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a, |
| 1159 | 0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c, |
| 1160 | 0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e, |
| 1161 | 0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040 |
| 1162 | }; |
| 1163 | |
| 1164 | struct snappy_decompressor { |
| 1165 | struct source *reader; /* Underlying source of bytes to decompress */ |
| 1166 | const char *ip; /* Points to next buffered byte */ |
| 1167 | const char *ip_limit; /* Points just past buffered bytes */ |
| 1168 | u32 peeked; /* Bytes peeked from reader (need to skip) */ |
| 1169 | bool eof; /* Hit end of input without an error? */ |
| 1170 | char scratch[5]; /* Temporary buffer for peekfast boundaries */ |
| 1171 | }; |
| 1172 | |
| 1173 | static void |
| 1174 | init_snappy_decompressor(struct snappy_decompressor *d, struct source *reader) |
| 1175 | { |
| 1176 | d->reader = reader; |
| 1177 | d->ip = NULL; |
| 1178 | d->ip_limit = NULL; |
| 1179 | d->peeked = 0; |
| 1180 | d->eof = false; |
| 1181 | } |
| 1182 | |
| 1183 | static void exit_snappy_decompressor(struct snappy_decompressor *d) |
| 1184 | { |
| 1185 | skip(d->reader, d->peeked); |
| 1186 | } |
| 1187 | |
| 1188 | /* |
| 1189 | * Read the uncompressed length stored at the start of the compressed data. |
| 1190 | * On succcess, stores the length in *result and returns true. |
| 1191 | * On failure, returns false. |
| 1192 | */ |
| 1193 | static bool read_uncompressed_length(struct snappy_decompressor *d, |
| 1194 | u32 * result) |
| 1195 | { |
| 1196 | DCHECK(d->ip == NULL); /* |
| 1197 | * Must not have read anything yet |
| 1198 | * Length is encoded in 1..5 bytes |
| 1199 | */ |
| 1200 | *result = 0; |
| 1201 | u32 shift = 0; |
| 1202 | while (true) { |
| 1203 | if (shift >= 32) |
| 1204 | return false; |
| 1205 | size_t n; |
| 1206 | const char *ip = peek(d->reader, &n); |
| 1207 | if (n == 0) |
| 1208 | return false; |
| 1209 | const unsigned char c = *(const unsigned char *)(ip); |
| 1210 | skip(d->reader, 1); |
| 1211 | *result |= (u32) (c & 0x7f) << shift; |
| 1212 | if (c < 128) { |
| 1213 | break; |
| 1214 | } |
| 1215 | shift += 7; |
| 1216 | } |
| 1217 | return true; |
| 1218 | } |
| 1219 | |
| 1220 | static bool refill_tag(struct snappy_decompressor *d); |
| 1221 | |
| 1222 | /* |
| 1223 | * Process the next item found in the input. |
| 1224 | * Returns true if successful, false on error or end of input. |
| 1225 | */ |
| 1226 | static void decompress_all_tags(struct snappy_decompressor *d, |
| 1227 | struct writer *writer) |
| 1228 | { |
| 1229 | const char *ip = d->ip; |
| 1230 | |
| 1231 | /* |
| 1232 | * We could have put this refill fragment only at the beginning of the loop. |
| 1233 | * However, duplicating it at the end of each branch gives the compiler more |
| 1234 | * scope to optimize the <ip_limit_ - ip> expression based on the local |
| 1235 | * context, which overall increases speed. |
| 1236 | */ |
| 1237 | #define MAYBE_REFILL() \ |
| 1238 | if (d->ip_limit - ip < 5) { \ |
| 1239 | d->ip = ip; \ |
| 1240 | if (!refill_tag(d)) return; \ |
| 1241 | ip = d->ip; \ |
| 1242 | } |
| 1243 | |
| 1244 | |
| 1245 | MAYBE_REFILL(); |
| 1246 | for (;;) { |
| 1247 | if (d->ip_limit - ip < 5) { |
| 1248 | d->ip = ip; |
| 1249 | if (!refill_tag(d)) |
| 1250 | return; |
| 1251 | ip = d->ip; |
| 1252 | } |
| 1253 | |
| 1254 | const unsigned char c = *(const unsigned char *)(ip++); |
| 1255 | |
| 1256 | if ((c & 0x3) == LITERAL) { |
| 1257 | u32 literal_length = (c >> 2) + 1; |
| 1258 | if (writer_try_fast_append(writer, ip, (u32) (d->ip_limit - ip), |
| 1259 | literal_length)) { |
| 1260 | DCHECK_LT(literal_length, 61); |
| 1261 | ip += literal_length; |
| 1262 | MAYBE_REFILL(); |
| 1263 | continue; |
| 1264 | } |
| 1265 | if (unlikely(literal_length >= 61)) { |
| 1266 | /* Long literal */ |
| 1267 | const u32 literal_ll = literal_length - 60; |
| 1268 | literal_length = (get_unaligned_le32(ip) & |
| 1269 | wordmask[literal_ll]) + 1; |
| 1270 | ip += literal_ll; |
| 1271 | } |
| 1272 | |
| 1273 | u32 avail = (u32) (d->ip_limit - ip); |
| 1274 | while (avail < literal_length) { |
| 1275 | if (!writer_append(writer, ip, avail)) |
| 1276 | return; |
| 1277 | literal_length -= avail; |
| 1278 | skip(d->reader, d->peeked); |
| 1279 | size_t n; |
| 1280 | ip = peek(d->reader, &n); |
| 1281 | avail = (u32) n; |
| 1282 | d->peeked = avail; |
| 1283 | if (avail == 0) |
| 1284 | return; /* Premature end of input */ |
| 1285 | d->ip_limit = ip + avail; |
| 1286 | } |
| 1287 | if (!writer_append(writer, ip, literal_length)) |
| 1288 | return; |
| 1289 | ip += literal_length; |
| 1290 | MAYBE_REFILL(); |
| 1291 | } else { |
| 1292 | const u32 entry = char_table[c]; |
| 1293 | const u32 trailer = get_unaligned_le32(ip) & |
| 1294 | wordmask[entry >> 11]; |
| 1295 | const u32 length = entry & 0xff; |
| 1296 | ip += entry >> 11; |
| 1297 | |
| 1298 | /* |
| 1299 | * copy_offset/256 is encoded in bits 8..10. |
| 1300 | * By just fetching those bits, we get |
| 1301 | * copy_offset (since the bit-field starts at |
| 1302 | * bit 8). |
| 1303 | */ |
| 1304 | const u32 copy_offset = entry & 0x700; |
| 1305 | if (!writer_append_from_self(writer, |
| 1306 | copy_offset + trailer, |
| 1307 | length)) |
| 1308 | return; |
| 1309 | MAYBE_REFILL(); |
| 1310 | } |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | #undef MAYBE_REFILL |
| 1315 | |
| 1316 | static bool refill_tag(struct snappy_decompressor *d) |
| 1317 | { |
| 1318 | const char *ip = d->ip; |
| 1319 | |
| 1320 | if (ip == d->ip_limit) { |
| 1321 | size_t n; |
| 1322 | /* Fetch a new fragment from the reader */ |
| 1323 | skip(d->reader, d->peeked); /* All peeked bytes are used up */ |
| 1324 | ip = peek(d->reader, &n); |
| 1325 | d->peeked = (u32) n; |
| 1326 | if (n == 0) { |
| 1327 | d->eof = true; |
| 1328 | return false; |
| 1329 | } |
| 1330 | d->ip_limit = ip + n; |
| 1331 | } |
| 1332 | |
| 1333 | /* Read the tag character */ |
| 1334 | DCHECK_LT(ip, d->ip_limit); |
| 1335 | const unsigned char c = *(const unsigned char *)(ip); |
| 1336 | const u32 entry = char_table[c]; |
| 1337 | const u32 needed = (entry >> 11) + 1; /* +1 byte for 'c' */ |
| 1338 | DCHECK_LE(needed, sizeof(d->scratch)); |
| 1339 | |
| 1340 | /* Read more bytes from reader if needed */ |
| 1341 | u32 nbuf = (u32) (d->ip_limit - ip); |
| 1342 | |
| 1343 | if (nbuf < needed) { |
| 1344 | /* |
| 1345 | * Stitch together bytes from ip and reader to form the word |
| 1346 | * contents. We store the needed bytes in "scratch". They |
| 1347 | * will be consumed immediately by the caller since we do not |
| 1348 | * read more than we need. |
| 1349 | */ |
| 1350 | memmove(d->scratch, ip, nbuf); |
| 1351 | skip(d->reader, d->peeked); /* All peeked bytes are used up */ |
| 1352 | d->peeked = 0; |
| 1353 | while (nbuf < needed) { |
| 1354 | size_t length; |
| 1355 | const char *src = peek(d->reader, &length); |
| 1356 | if (length == 0) |
| 1357 | return false; |
| 1358 | u32 to_add = min_t(u32, needed - nbuf, (u32) length); |
| 1359 | memcpy(d->scratch + nbuf, src, to_add); |
| 1360 | nbuf += to_add; |
| 1361 | skip(d->reader, to_add); |
| 1362 | } |
| 1363 | DCHECK_EQ(nbuf, needed); |
| 1364 | d->ip = d->scratch; |
| 1365 | d->ip_limit = d->scratch + needed; |
| 1366 | } else if (nbuf < 5) { |
| 1367 | /* |
| 1368 | * Have enough bytes, but move into scratch so that we do not |
| 1369 | * read past end of input |
| 1370 | */ |
| 1371 | memmove(d->scratch, ip, nbuf); |
| 1372 | skip(d->reader, d->peeked); /* All peeked bytes are used up */ |
| 1373 | d->peeked = 0; |
| 1374 | d->ip = d->scratch; |
| 1375 | d->ip_limit = d->scratch + nbuf; |
| 1376 | } else { |
| 1377 | /* Pass pointer to buffer returned by reader. */ |
| 1378 | d->ip = ip; |
| 1379 | } |
| 1380 | return true; |
| 1381 | } |
| 1382 | |
| 1383 | static int internal_uncompress(struct source *r, |
| 1384 | struct writer *writer, u32 max_len) |
| 1385 | { |
| 1386 | struct snappy_decompressor decompressor; |
| 1387 | u32 uncompressed_len = 0; |
| 1388 | |
| 1389 | init_snappy_decompressor(&decompressor, r); |
| 1390 | |
| 1391 | if (!read_uncompressed_length(&decompressor, &uncompressed_len)) |
| 1392 | return -EIO; |
| 1393 | /* Protect against possible DoS attack */ |
| 1394 | if ((u64) (uncompressed_len) > max_len) |
| 1395 | return -EIO; |
| 1396 | |
| 1397 | writer_set_expected_length(writer, uncompressed_len); |
| 1398 | |
| 1399 | /* Process the entire input */ |
| 1400 | decompress_all_tags(&decompressor, writer); |
| 1401 | |
| 1402 | exit_snappy_decompressor(&decompressor); |
| 1403 | if (decompressor.eof && writer_check_length(writer)) |
| 1404 | return 0; |
| 1405 | return -EIO; |
| 1406 | } |
| 1407 | |
| 1408 | static inline int sn_compress(struct snappy_env *env, struct source *reader, |
| 1409 | struct sink *writer) |
| 1410 | { |
| 1411 | int err; |
| 1412 | size_t written = 0; |
| 1413 | int N = available(reader); |
| 1414 | char ulength[kmax32]; |
| 1415 | char *p = varint_encode32(ulength, N); |
| 1416 | |
| 1417 | append(writer, ulength, p - ulength); |
| 1418 | written += (p - ulength); |
| 1419 | |
| 1420 | while (N > 0) { |
| 1421 | /* Get next block to compress (without copying if possible) */ |
| 1422 | size_t fragment_size; |
| 1423 | const char *fragment = peek(reader, &fragment_size); |
| 1424 | if (fragment_size == 0) { |
| 1425 | err = -EIO; |
| 1426 | goto out; |
| 1427 | } |
| 1428 | const unsigned num_to_read = min_t(int, N, kblock_size); |
| 1429 | size_t bytes_read = fragment_size; |
| 1430 | |
| 1431 | int pending_advance = 0; |
| 1432 | if (bytes_read >= num_to_read) { |
| 1433 | /* Buffer returned by reader is large enough */ |
| 1434 | pending_advance = num_to_read; |
| 1435 | fragment_size = num_to_read; |
| 1436 | } |
| 1437 | else { |
| 1438 | memcpy(env->scratch, fragment, bytes_read); |
| 1439 | skip(reader, bytes_read); |
| 1440 | |
| 1441 | while (bytes_read < num_to_read) { |
| 1442 | fragment = peek(reader, &fragment_size); |
| 1443 | size_t n = |
| 1444 | min_t(size_t, fragment_size, |
| 1445 | num_to_read - bytes_read); |
| 1446 | memcpy((char *)(env->scratch) + bytes_read, fragment, n); |
| 1447 | bytes_read += n; |
| 1448 | skip(reader, n); |
| 1449 | } |
| 1450 | DCHECK_EQ(bytes_read, num_to_read); |
| 1451 | fragment = env->scratch; |
| 1452 | fragment_size = num_to_read; |
| 1453 | } |
| 1454 | if (fragment_size < num_to_read) |
| 1455 | return -EIO; |
| 1456 | |
| 1457 | /* Get encoding table for compression */ |
| 1458 | int table_size; |
| 1459 | u16 *table = get_hash_table(env, num_to_read, &table_size); |
| 1460 | |
| 1461 | /* Compress input_fragment and append to dest */ |
| 1462 | char *dest; |
| 1463 | dest = sink_peek(writer, rd_kafka_snappy_max_compressed_length(num_to_read)); |
| 1464 | if (!dest) { |
| 1465 | /* |
| 1466 | * Need a scratch buffer for the output, |
| 1467 | * because the byte sink doesn't have enough |
| 1468 | * in one piece. |
| 1469 | */ |
| 1470 | dest = env->scratch_output; |
| 1471 | } |
| 1472 | char *end = compress_fragment(fragment, fragment_size, |
| 1473 | dest, table, table_size); |
| 1474 | append(writer, dest, end - dest); |
| 1475 | written += (end - dest); |
| 1476 | |
| 1477 | N -= num_to_read; |
| 1478 | skip(reader, pending_advance); |
| 1479 | } |
| 1480 | |
| 1481 | err = 0; |
| 1482 | out: |
| 1483 | return err; |
| 1484 | } |
| 1485 | |
| 1486 | #ifdef SG |
| 1487 | |
| 1488 | int rd_kafka_snappy_compress_iov(struct snappy_env *env, |
| 1489 | const struct iovec *iov_in, size_t iov_in_cnt, |
| 1490 | size_t input_length, |
| 1491 | struct iovec *iov_out) { |
| 1492 | struct source reader = { |
| 1493 | .iov = (struct iovec *)iov_in, |
| 1494 | .iovlen = (int)iov_in_cnt, |
| 1495 | .total = input_length |
| 1496 | }; |
| 1497 | struct sink writer = { |
| 1498 | .iov = iov_out, |
| 1499 | .iovlen = 1 |
| 1500 | }; |
| 1501 | int err = sn_compress(env, &reader, &writer); |
| 1502 | |
| 1503 | iov_out->iov_len = writer.written; |
| 1504 | |
| 1505 | return err; |
| 1506 | } |
| 1507 | EXPORT_SYMBOL(rd_kafka_snappy_compress_iov); |
| 1508 | |
| 1509 | /** |
| 1510 | * rd_kafka_snappy_compress - Compress a buffer using the snappy compressor. |
| 1511 | * @env: Preallocated environment |
| 1512 | * @input: Input buffer |
| 1513 | * @input_length: Length of input_buffer |
| 1514 | * @compressed: Output buffer for compressed data |
| 1515 | * @compressed_length: The real length of the output written here. |
| 1516 | * |
| 1517 | * Return 0 on success, otherwise an negative error code. |
| 1518 | * |
| 1519 | * The output buffer must be at least |
| 1520 | * rd_kafka_snappy_max_compressed_length(input_length) bytes long. |
| 1521 | * |
| 1522 | * Requires a preallocated environment from rd_kafka_snappy_init_env. |
| 1523 | * The environment does not keep state over individual calls |
| 1524 | * of this function, just preallocates the memory. |
| 1525 | */ |
| 1526 | int rd_kafka_snappy_compress(struct snappy_env *env, |
| 1527 | const char *input, |
| 1528 | size_t input_length, |
| 1529 | char *compressed, size_t *compressed_length) |
| 1530 | { |
| 1531 | struct iovec iov_in = { |
| 1532 | .iov_base = (char *)input, |
| 1533 | .iov_len = input_length, |
| 1534 | }; |
| 1535 | struct iovec iov_out = { |
| 1536 | .iov_base = compressed, |
| 1537 | .iov_len = 0xffffffff, |
| 1538 | }; |
| 1539 | return rd_kafka_snappy_compress_iov(env, |
| 1540 | &iov_in, 1, input_length, |
| 1541 | &iov_out); |
| 1542 | } |
| 1543 | EXPORT_SYMBOL(rd_kafka_snappy_compress); |
| 1544 | |
| 1545 | int rd_kafka_snappy_uncompress_iov(struct iovec *iov_in, int iov_in_len, |
| 1546 | size_t input_len, char *uncompressed) |
| 1547 | { |
| 1548 | struct source reader = { |
| 1549 | .iov = iov_in, |
| 1550 | .iovlen = iov_in_len, |
| 1551 | .total = input_len |
| 1552 | }; |
| 1553 | struct writer output = { |
| 1554 | .base = uncompressed, |
| 1555 | .op = uncompressed |
| 1556 | }; |
| 1557 | return internal_uncompress(&reader, &output, 0xffffffff); |
| 1558 | } |
| 1559 | EXPORT_SYMBOL(rd_kafka_snappy_uncompress_iov); |
| 1560 | |
| 1561 | /** |
| 1562 | * rd_kafka_snappy_uncompress - Uncompress a snappy compressed buffer |
| 1563 | * @compressed: Input buffer with compressed data |
| 1564 | * @n: length of compressed buffer |
| 1565 | * @uncompressed: buffer for uncompressed data |
| 1566 | * |
| 1567 | * The uncompressed data buffer must be at least |
| 1568 | * rd_kafka_snappy_uncompressed_length(compressed) bytes long. |
| 1569 | * |
| 1570 | * Return 0 on success, otherwise an negative error code. |
| 1571 | */ |
| 1572 | int rd_kafka_snappy_uncompress(const char *compressed, size_t n, char *uncompressed) |
| 1573 | { |
| 1574 | struct iovec iov = { |
| 1575 | .iov_base = (char *)compressed, |
| 1576 | .iov_len = n |
| 1577 | }; |
| 1578 | return rd_kafka_snappy_uncompress_iov(&iov, 1, n, uncompressed); |
| 1579 | } |
| 1580 | EXPORT_SYMBOL(rd_kafka_snappy_uncompress); |
| 1581 | |
| 1582 | |
| 1583 | /** |
| 1584 | * @brief Decompress Snappy message with Snappy-java framing. |
| 1585 | * |
| 1586 | * @returns a malloced buffer with the uncompressed data, or NULL on failure. |
| 1587 | */ |
| 1588 | char *rd_kafka_snappy_java_uncompress (const char *inbuf, size_t inlen, |
| 1589 | size_t *outlenp, |
| 1590 | char *errstr, size_t errstr_size) { |
| 1591 | int pass; |
| 1592 | char *outbuf = NULL; |
| 1593 | |
| 1594 | /** |
| 1595 | * Traverse all chunks in two passes: |
| 1596 | * pass 1: calculate total uncompressed length |
| 1597 | * pass 2: uncompress |
| 1598 | * |
| 1599 | * Each chunk is prefixed with 4: length */ |
| 1600 | |
| 1601 | for (pass = 1 ; pass <= 2 ; pass++) { |
| 1602 | ssize_t of = 0; /* inbuf offset */ |
| 1603 | ssize_t uof = 0; /* outbuf offset */ |
| 1604 | |
| 1605 | while (of + 4 <= (ssize_t)inlen) { |
| 1606 | uint32_t clen; /* compressed length */ |
| 1607 | size_t ulen; /* uncompressed length */ |
| 1608 | int r; |
| 1609 | |
| 1610 | memcpy(&clen, inbuf+of, 4); |
| 1611 | clen = be32toh(clen); |
| 1612 | of += 4; |
| 1613 | |
| 1614 | if (unlikely(clen > inlen - of)) { |
| 1615 | rd_snprintf(errstr, errstr_size, |
| 1616 | "Invalid snappy-java chunk length " |
| 1617 | "%" PRId32" > %" PRIdsz |
| 1618 | " available bytes" , |
| 1619 | clen, (ssize_t)inlen - of); |
| 1620 | return NULL; |
| 1621 | } |
| 1622 | |
| 1623 | /* Acquire uncompressed length */ |
| 1624 | if (unlikely(!rd_kafka_snappy_uncompressed_length( |
| 1625 | inbuf+of, clen, &ulen))) { |
| 1626 | rd_snprintf(errstr, errstr_size, |
| 1627 | "Failed to get length of " |
| 1628 | "(snappy-java framed) Snappy " |
| 1629 | "compressed payload " |
| 1630 | "(clen %" PRId32")" , |
| 1631 | clen); |
| 1632 | return NULL; |
| 1633 | } |
| 1634 | |
| 1635 | if (pass == 1) { |
| 1636 | /* pass 1: calculate total length */ |
| 1637 | of += clen; |
| 1638 | uof += ulen; |
| 1639 | continue; |
| 1640 | } |
| 1641 | |
| 1642 | /* pass 2: Uncompress to outbuf */ |
| 1643 | if (unlikely((r = rd_kafka_snappy_uncompress( |
| 1644 | inbuf+of, clen, outbuf+uof)))) { |
| 1645 | rd_snprintf(errstr, errstr_size, |
| 1646 | "Failed to decompress Snappy-java " |
| 1647 | "framed payload of size %" PRId32 |
| 1648 | ": %s" , |
| 1649 | clen, |
| 1650 | rd_strerror(-r/*negative errno*/)); |
| 1651 | rd_free(outbuf); |
| 1652 | return NULL; |
| 1653 | } |
| 1654 | |
| 1655 | of += clen; |
| 1656 | uof += ulen; |
| 1657 | } |
| 1658 | |
| 1659 | if (unlikely(of != (ssize_t)inlen)) { |
| 1660 | rd_snprintf(errstr, errstr_size, |
| 1661 | "%" PRIusz" trailing bytes in Snappy-java " |
| 1662 | "framed compressed data" , |
| 1663 | inlen - of); |
| 1664 | if (outbuf) |
| 1665 | rd_free(outbuf); |
| 1666 | return NULL; |
| 1667 | } |
| 1668 | |
| 1669 | if (pass == 1) { |
| 1670 | if (uof <= 0) { |
| 1671 | rd_snprintf(errstr, errstr_size, |
| 1672 | "Empty Snappy-java framed data" ); |
| 1673 | return NULL; |
| 1674 | } |
| 1675 | |
| 1676 | /* Allocate memory for uncompressed data */ |
| 1677 | outbuf = rd_malloc(uof); |
| 1678 | if (unlikely(!outbuf)) { |
| 1679 | rd_snprintf(errstr, errstr_size, |
| 1680 | "Failed to allocate memory " |
| 1681 | "(%" PRIdsz") for " |
| 1682 | "uncompressed Snappy data: %s" , |
| 1683 | uof, rd_strerror(errno)); |
| 1684 | return NULL; |
| 1685 | } |
| 1686 | |
| 1687 | } else { |
| 1688 | /* pass 2 */ |
| 1689 | *outlenp = uof; |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | return outbuf; |
| 1694 | } |
| 1695 | |
| 1696 | |
| 1697 | |
| 1698 | #else |
| 1699 | /** |
| 1700 | * rd_kafka_snappy_compress - Compress a buffer using the snappy compressor. |
| 1701 | * @env: Preallocated environment |
| 1702 | * @input: Input buffer |
| 1703 | * @input_length: Length of input_buffer |
| 1704 | * @compressed: Output buffer for compressed data |
| 1705 | * @compressed_length: The real length of the output written here. |
| 1706 | * |
| 1707 | * Return 0 on success, otherwise an negative error code. |
| 1708 | * |
| 1709 | * The output buffer must be at least |
| 1710 | * rd_kafka_snappy_max_compressed_length(input_length) bytes long. |
| 1711 | * |
| 1712 | * Requires a preallocated environment from rd_kafka_snappy_init_env. |
| 1713 | * The environment does not keep state over individual calls |
| 1714 | * of this function, just preallocates the memory. |
| 1715 | */ |
| 1716 | int rd_kafka_snappy_compress(struct snappy_env *env, |
| 1717 | const char *input, |
| 1718 | size_t input_length, |
| 1719 | char *compressed, size_t *compressed_length) |
| 1720 | { |
| 1721 | struct source reader = { |
| 1722 | .ptr = input, |
| 1723 | .left = input_length |
| 1724 | }; |
| 1725 | struct sink writer = { |
| 1726 | .dest = compressed, |
| 1727 | }; |
| 1728 | int err = sn_compress(env, &reader, &writer); |
| 1729 | |
| 1730 | /* Compute how many bytes were added */ |
| 1731 | *compressed_length = (writer.dest - compressed); |
| 1732 | return err; |
| 1733 | } |
| 1734 | EXPORT_SYMBOL(rd_kafka_snappy_compress); |
| 1735 | |
| 1736 | /** |
| 1737 | * rd_kafka_snappy_uncompress - Uncompress a snappy compressed buffer |
| 1738 | * @compressed: Input buffer with compressed data |
| 1739 | * @n: length of compressed buffer |
| 1740 | * @uncompressed: buffer for uncompressed data |
| 1741 | * |
| 1742 | * The uncompressed data buffer must be at least |
| 1743 | * rd_kafka_snappy_uncompressed_length(compressed) bytes long. |
| 1744 | * |
| 1745 | * Return 0 on success, otherwise an negative error code. |
| 1746 | */ |
| 1747 | int rd_kafka_snappy_uncompress(const char *compressed, size_t n, char *uncompressed) |
| 1748 | { |
| 1749 | struct source reader = { |
| 1750 | .ptr = compressed, |
| 1751 | .left = n |
| 1752 | }; |
| 1753 | struct writer output = { |
| 1754 | .base = uncompressed, |
| 1755 | .op = uncompressed |
| 1756 | }; |
| 1757 | return internal_uncompress(&reader, &output, 0xffffffff); |
| 1758 | } |
| 1759 | EXPORT_SYMBOL(rd_kafka_snappy_uncompress); |
| 1760 | #endif |
| 1761 | |
| 1762 | static inline void clear_env(struct snappy_env *env) |
| 1763 | { |
| 1764 | memset(env, 0, sizeof(*env)); |
| 1765 | } |
| 1766 | |
| 1767 | #ifdef SG |
| 1768 | /** |
| 1769 | * rd_kafka_snappy_init_env_sg - Allocate snappy compression environment |
| 1770 | * @env: Environment to preallocate |
| 1771 | * @sg: Input environment ever does scather gather |
| 1772 | * |
| 1773 | * If false is passed to sg then multiple entries in an iovec |
| 1774 | * are not legal. |
| 1775 | * Returns 0 on success, otherwise negative errno. |
| 1776 | * Must run in process context. |
| 1777 | */ |
| 1778 | int rd_kafka_snappy_init_env_sg(struct snappy_env *env, bool sg) |
| 1779 | { |
| 1780 | if (rd_kafka_snappy_init_env(env) < 0) |
| 1781 | goto error; |
| 1782 | |
| 1783 | if (sg) { |
| 1784 | env->scratch = vmalloc(kblock_size); |
| 1785 | if (!env->scratch) |
| 1786 | goto error; |
| 1787 | env->scratch_output = |
| 1788 | vmalloc(rd_kafka_snappy_max_compressed_length(kblock_size)); |
| 1789 | if (!env->scratch_output) |
| 1790 | goto error; |
| 1791 | } |
| 1792 | return 0; |
| 1793 | error: |
| 1794 | rd_kafka_snappy_free_env(env); |
| 1795 | return -ENOMEM; |
| 1796 | } |
| 1797 | EXPORT_SYMBOL(rd_kafka_snappy_init_env_sg); |
| 1798 | #endif |
| 1799 | |
| 1800 | /** |
| 1801 | * rd_kafka_snappy_init_env - Allocate snappy compression environment |
| 1802 | * @env: Environment to preallocate |
| 1803 | * |
| 1804 | * Passing multiple entries in an iovec is not allowed |
| 1805 | * on the environment allocated here. |
| 1806 | * Returns 0 on success, otherwise negative errno. |
| 1807 | * Must run in process context. |
| 1808 | */ |
| 1809 | int rd_kafka_snappy_init_env(struct snappy_env *env) |
| 1810 | { |
| 1811 | clear_env(env); |
| 1812 | env->hash_table = vmalloc(sizeof(u16) * kmax_hash_table_size); |
| 1813 | if (!env->hash_table) |
| 1814 | return -ENOMEM; |
| 1815 | return 0; |
| 1816 | } |
| 1817 | EXPORT_SYMBOL(rd_kafka_snappy_init_env); |
| 1818 | |
| 1819 | /** |
| 1820 | * rd_kafka_snappy_free_env - Free an snappy compression environment |
| 1821 | * @env: Environment to free. |
| 1822 | * |
| 1823 | * Must run in process context. |
| 1824 | */ |
| 1825 | void rd_kafka_snappy_free_env(struct snappy_env *env) |
| 1826 | { |
| 1827 | vfree(env->hash_table); |
| 1828 | #ifdef SG |
| 1829 | vfree(env->scratch); |
| 1830 | vfree(env->scratch_output); |
| 1831 | #endif |
| 1832 | clear_env(env); |
| 1833 | } |
| 1834 | EXPORT_SYMBOL(rd_kafka_snappy_free_env); |
| 1835 | |
| 1836 | #ifdef __GNUC__ |
| 1837 | #pragma GCC diagnostic pop /* -Wcast-align ignore */ |
| 1838 | #endif |