| 1 | /* -*- mode: c; tab-width: 2; indent-tabs-mode: nil; -*- |
| 2 | Copyright (c) 2012 Marcus Geelnard |
| 3 | Copyright (c) 2013-2014 Evan Nemerson |
| 4 | |
| 5 | This software is provided 'as-is', without any express or implied |
| 6 | warranty. In no event will the authors be held liable for any damages |
| 7 | arising from the use of this software. |
| 8 | |
| 9 | Permission is granted to anyone to use this software for any purpose, |
| 10 | including commercial applications, and to alter it and redistribute it |
| 11 | freely, subject to the following restrictions: |
| 12 | |
| 13 | 1. The origin of this software must not be misrepresented; you must not |
| 14 | claim that you wrote the original software. If you use this software |
| 15 | in a product, an acknowledgment in the product documentation would be |
| 16 | appreciated but is not required. |
| 17 | |
| 18 | 2. Altered source versions must be plainly marked as such, and must not be |
| 19 | misrepresented as being the original software. |
| 20 | |
| 21 | 3. This notice may not be removed or altered from any source |
| 22 | distribution. |
| 23 | */ |
| 24 | |
| 25 | #include "rd.h" |
| 26 | #include <stdlib.h> |
| 27 | |
| 28 | #if !WITH_C11THREADS |
| 29 | |
| 30 | /* Platform specific includes */ |
| 31 | #if defined(_TTHREAD_POSIX_) |
| 32 | #include <signal.h> |
| 33 | #include <sched.h> |
| 34 | #include <unistd.h> |
| 35 | #include <sys/time.h> |
| 36 | #include <errno.h> |
| 37 | #elif defined(_TTHREAD_WIN32_) |
| 38 | #include <process.h> |
| 39 | #include <sys/timeb.h> |
| 40 | #endif |
| 41 | |
| 42 | |
| 43 | /* Standard, good-to-have defines */ |
| 44 | #ifndef NULL |
| 45 | #define NULL (void*)0 |
| 46 | #endif |
| 47 | #ifndef TRUE |
| 48 | #define TRUE 1 |
| 49 | #endif |
| 50 | #ifndef FALSE |
| 51 | #define FALSE 0 |
| 52 | #endif |
| 53 | |
| 54 | #ifdef __cplusplus |
| 55 | extern "C" { |
| 56 | #endif |
| 57 | |
| 58 | static RD_TLS int thrd_is_detached; |
| 59 | |
| 60 | |
| 61 | int mtx_init(mtx_t *mtx, int type) |
| 62 | { |
| 63 | #if defined(_TTHREAD_WIN32_) |
| 64 | mtx->mAlreadyLocked = FALSE; |
| 65 | mtx->mRecursive = type & mtx_recursive; |
| 66 | mtx->mTimed = type & mtx_timed; |
| 67 | if (!mtx->mTimed) |
| 68 | { |
| 69 | InitializeCriticalSection(&(mtx->mHandle.cs)); |
| 70 | } |
| 71 | else |
| 72 | { |
| 73 | mtx->mHandle.mut = CreateMutex(NULL, FALSE, NULL); |
| 74 | if (mtx->mHandle.mut == NULL) |
| 75 | { |
| 76 | return thrd_error; |
| 77 | } |
| 78 | } |
| 79 | return thrd_success; |
| 80 | #else |
| 81 | int ret; |
| 82 | pthread_mutexattr_t attr; |
| 83 | pthread_mutexattr_init(&attr); |
| 84 | if (type & mtx_recursive) |
| 85 | { |
| 86 | pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); |
| 87 | } |
| 88 | ret = pthread_mutex_init(mtx, &attr); |
| 89 | pthread_mutexattr_destroy(&attr); |
| 90 | return ret == 0 ? thrd_success : thrd_error; |
| 91 | #endif |
| 92 | } |
| 93 | |
| 94 | void mtx_destroy(mtx_t *mtx) |
| 95 | { |
| 96 | #if defined(_TTHREAD_WIN32_) |
| 97 | if (!mtx->mTimed) |
| 98 | { |
| 99 | DeleteCriticalSection(&(mtx->mHandle.cs)); |
| 100 | } |
| 101 | else |
| 102 | { |
| 103 | CloseHandle(mtx->mHandle.mut); |
| 104 | } |
| 105 | #else |
| 106 | pthread_mutex_destroy(mtx); |
| 107 | #endif |
| 108 | } |
| 109 | |
| 110 | int mtx_lock(mtx_t *mtx) |
| 111 | { |
| 112 | #if defined(_TTHREAD_WIN32_) |
| 113 | if (!mtx->mTimed) |
| 114 | { |
| 115 | EnterCriticalSection(&(mtx->mHandle.cs)); |
| 116 | } |
| 117 | else |
| 118 | { |
| 119 | switch (WaitForSingleObject(mtx->mHandle.mut, INFINITE)) |
| 120 | { |
| 121 | case WAIT_OBJECT_0: |
| 122 | break; |
| 123 | case WAIT_ABANDONED: |
| 124 | default: |
| 125 | return thrd_error; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | if (!mtx->mRecursive) |
| 130 | { |
| 131 | while(mtx->mAlreadyLocked) Sleep(1); /* Simulate deadlock... */ |
| 132 | mtx->mAlreadyLocked = TRUE; |
| 133 | } |
| 134 | return thrd_success; |
| 135 | #else |
| 136 | return pthread_mutex_lock(mtx) == 0 ? thrd_success : thrd_error; |
| 137 | #endif |
| 138 | } |
| 139 | |
| 140 | int mtx_timedlock(mtx_t *mtx, const struct timespec *ts) |
| 141 | { |
| 142 | #if defined(_TTHREAD_WIN32_) |
| 143 | struct timespec current_ts; |
| 144 | DWORD timeoutMs; |
| 145 | |
| 146 | if (!mtx->mTimed) |
| 147 | { |
| 148 | return thrd_error; |
| 149 | } |
| 150 | |
| 151 | timespec_get(¤t_ts, TIME_UTC); |
| 152 | |
| 153 | if ((current_ts.tv_sec > ts->tv_sec) || ((current_ts.tv_sec == ts->tv_sec) && (current_ts.tv_nsec >= ts->tv_nsec))) |
| 154 | { |
| 155 | timeoutMs = 0; |
| 156 | } |
| 157 | else |
| 158 | { |
| 159 | timeoutMs = (DWORD)(ts->tv_sec - current_ts.tv_sec) * 1000; |
| 160 | timeoutMs += (ts->tv_nsec - current_ts.tv_nsec) / 1000000; |
| 161 | timeoutMs += 1; |
| 162 | } |
| 163 | |
| 164 | /* TODO: the timeout for WaitForSingleObject doesn't include time |
| 165 | while the computer is asleep. */ |
| 166 | switch (WaitForSingleObject(mtx->mHandle.mut, timeoutMs)) |
| 167 | { |
| 168 | case WAIT_OBJECT_0: |
| 169 | break; |
| 170 | case WAIT_TIMEOUT: |
| 171 | return thrd_timedout; |
| 172 | case WAIT_ABANDONED: |
| 173 | default: |
| 174 | return thrd_error; |
| 175 | } |
| 176 | |
| 177 | if (!mtx->mRecursive) |
| 178 | { |
| 179 | while(mtx->mAlreadyLocked) Sleep(1); /* Simulate deadlock... */ |
| 180 | mtx->mAlreadyLocked = TRUE; |
| 181 | } |
| 182 | |
| 183 | return thrd_success; |
| 184 | #elif defined(_POSIX_TIMEOUTS) && (_POSIX_TIMEOUTS >= 200112L) && defined(_POSIX_THREADS) && (_POSIX_THREADS >= 200112L) |
| 185 | switch (pthread_mutex_timedlock(mtx, ts)) { |
| 186 | case 0: |
| 187 | return thrd_success; |
| 188 | case ETIMEDOUT: |
| 189 | return thrd_timedout; |
| 190 | default: |
| 191 | return thrd_error; |
| 192 | } |
| 193 | #else |
| 194 | int rc; |
| 195 | struct timespec cur, dur; |
| 196 | |
| 197 | /* Try to acquire the lock and, if we fail, sleep for 5ms. */ |
| 198 | while ((rc = pthread_mutex_trylock (mtx)) == EBUSY) { |
| 199 | timespec_get(&cur, TIME_UTC); |
| 200 | |
| 201 | if ((cur.tv_sec > ts->tv_sec) || ((cur.tv_sec == ts->tv_sec) && (cur.tv_nsec >= ts->tv_nsec))) |
| 202 | { |
| 203 | break; |
| 204 | } |
| 205 | |
| 206 | dur.tv_sec = ts->tv_sec - cur.tv_sec; |
| 207 | dur.tv_nsec = ts->tv_nsec - cur.tv_nsec; |
| 208 | if (dur.tv_nsec < 0) |
| 209 | { |
| 210 | dur.tv_sec--; |
| 211 | dur.tv_nsec += 1000000000; |
| 212 | } |
| 213 | |
| 214 | if ((dur.tv_sec != 0) || (dur.tv_nsec > 5000000)) |
| 215 | { |
| 216 | dur.tv_sec = 0; |
| 217 | dur.tv_nsec = 5000000; |
| 218 | } |
| 219 | |
| 220 | nanosleep(&dur, NULL); |
| 221 | } |
| 222 | |
| 223 | switch (rc) { |
| 224 | case 0: |
| 225 | return thrd_success; |
| 226 | case ETIMEDOUT: |
| 227 | case EBUSY: |
| 228 | return thrd_timedout; |
| 229 | default: |
| 230 | return thrd_error; |
| 231 | } |
| 232 | #endif |
| 233 | } |
| 234 | |
| 235 | int mtx_trylock(mtx_t *mtx) |
| 236 | { |
| 237 | #if defined(_TTHREAD_WIN32_) |
| 238 | int ret; |
| 239 | |
| 240 | if (!mtx->mTimed) |
| 241 | { |
| 242 | ret = TryEnterCriticalSection(&(mtx->mHandle.cs)) ? thrd_success : thrd_busy; |
| 243 | } |
| 244 | else |
| 245 | { |
| 246 | ret = (WaitForSingleObject(mtx->mHandle.mut, 0) == WAIT_OBJECT_0) ? thrd_success : thrd_busy; |
| 247 | } |
| 248 | |
| 249 | if ((!mtx->mRecursive) && (ret == thrd_success)) |
| 250 | { |
| 251 | if (mtx->mAlreadyLocked) |
| 252 | { |
| 253 | LeaveCriticalSection(&(mtx->mHandle.cs)); |
| 254 | ret = thrd_busy; |
| 255 | } |
| 256 | else |
| 257 | { |
| 258 | mtx->mAlreadyLocked = TRUE; |
| 259 | } |
| 260 | } |
| 261 | return ret; |
| 262 | #else |
| 263 | return (pthread_mutex_trylock(mtx) == 0) ? thrd_success : thrd_busy; |
| 264 | #endif |
| 265 | } |
| 266 | |
| 267 | int mtx_unlock(mtx_t *mtx) |
| 268 | { |
| 269 | #if defined(_TTHREAD_WIN32_) |
| 270 | mtx->mAlreadyLocked = FALSE; |
| 271 | if (!mtx->mTimed) |
| 272 | { |
| 273 | LeaveCriticalSection(&(mtx->mHandle.cs)); |
| 274 | } |
| 275 | else |
| 276 | { |
| 277 | if (!ReleaseMutex(mtx->mHandle.mut)) |
| 278 | { |
| 279 | return thrd_error; |
| 280 | } |
| 281 | } |
| 282 | return thrd_success; |
| 283 | #else |
| 284 | return pthread_mutex_unlock(mtx) == 0 ? thrd_success : thrd_error;; |
| 285 | #endif |
| 286 | } |
| 287 | |
| 288 | #if defined(_TTHREAD_WIN32_) |
| 289 | #define _CONDITION_EVENT_ONE 0 |
| 290 | #define _CONDITION_EVENT_ALL 1 |
| 291 | #endif |
| 292 | |
| 293 | int cnd_init(cnd_t *cond) |
| 294 | { |
| 295 | #if defined(_TTHREAD_WIN32_) |
| 296 | cond->mWaitersCount = 0; |
| 297 | |
| 298 | /* Init critical section */ |
| 299 | InitializeCriticalSection(&cond->mWaitersCountLock); |
| 300 | |
| 301 | /* Init events */ |
| 302 | cond->mEvents[_CONDITION_EVENT_ONE] = CreateEvent(NULL, FALSE, FALSE, NULL); |
| 303 | if (cond->mEvents[_CONDITION_EVENT_ONE] == NULL) |
| 304 | { |
| 305 | cond->mEvents[_CONDITION_EVENT_ALL] = NULL; |
| 306 | return thrd_error; |
| 307 | } |
| 308 | cond->mEvents[_CONDITION_EVENT_ALL] = CreateEvent(NULL, TRUE, FALSE, NULL); |
| 309 | if (cond->mEvents[_CONDITION_EVENT_ALL] == NULL) |
| 310 | { |
| 311 | CloseHandle(cond->mEvents[_CONDITION_EVENT_ONE]); |
| 312 | cond->mEvents[_CONDITION_EVENT_ONE] = NULL; |
| 313 | return thrd_error; |
| 314 | } |
| 315 | |
| 316 | return thrd_success; |
| 317 | #else |
| 318 | return pthread_cond_init(cond, NULL) == 0 ? thrd_success : thrd_error; |
| 319 | #endif |
| 320 | } |
| 321 | |
| 322 | void cnd_destroy(cnd_t *cond) |
| 323 | { |
| 324 | #if defined(_TTHREAD_WIN32_) |
| 325 | if (cond->mEvents[_CONDITION_EVENT_ONE] != NULL) |
| 326 | { |
| 327 | CloseHandle(cond->mEvents[_CONDITION_EVENT_ONE]); |
| 328 | } |
| 329 | if (cond->mEvents[_CONDITION_EVENT_ALL] != NULL) |
| 330 | { |
| 331 | CloseHandle(cond->mEvents[_CONDITION_EVENT_ALL]); |
| 332 | } |
| 333 | DeleteCriticalSection(&cond->mWaitersCountLock); |
| 334 | #else |
| 335 | pthread_cond_destroy(cond); |
| 336 | #endif |
| 337 | } |
| 338 | |
| 339 | int cnd_signal(cnd_t *cond) |
| 340 | { |
| 341 | #if defined(_TTHREAD_WIN32_) |
| 342 | int haveWaiters; |
| 343 | |
| 344 | /* Are there any waiters? */ |
| 345 | EnterCriticalSection(&cond->mWaitersCountLock); |
| 346 | haveWaiters = (cond->mWaitersCount > 0); |
| 347 | LeaveCriticalSection(&cond->mWaitersCountLock); |
| 348 | |
| 349 | /* If we have any waiting threads, send them a signal */ |
| 350 | if(haveWaiters) |
| 351 | { |
| 352 | if (SetEvent(cond->mEvents[_CONDITION_EVENT_ONE]) == 0) |
| 353 | { |
| 354 | return thrd_error; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | return thrd_success; |
| 359 | #else |
| 360 | return pthread_cond_signal(cond) == 0 ? thrd_success : thrd_error; |
| 361 | #endif |
| 362 | } |
| 363 | |
| 364 | int cnd_broadcast(cnd_t *cond) |
| 365 | { |
| 366 | #if defined(_TTHREAD_WIN32_) |
| 367 | int haveWaiters; |
| 368 | |
| 369 | /* Are there any waiters? */ |
| 370 | EnterCriticalSection(&cond->mWaitersCountLock); |
| 371 | haveWaiters = (cond->mWaitersCount > 0); |
| 372 | LeaveCriticalSection(&cond->mWaitersCountLock); |
| 373 | |
| 374 | /* If we have any waiting threads, send them a signal */ |
| 375 | if(haveWaiters) |
| 376 | { |
| 377 | if (SetEvent(cond->mEvents[_CONDITION_EVENT_ALL]) == 0) |
| 378 | { |
| 379 | return thrd_error; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | return thrd_success; |
| 384 | #else |
| 385 | return pthread_cond_broadcast(cond) == 0 ? thrd_success : thrd_error; |
| 386 | #endif |
| 387 | } |
| 388 | |
| 389 | #if defined(_TTHREAD_WIN32_) |
| 390 | int _cnd_timedwait_win32(cnd_t *cond, mtx_t *mtx, DWORD timeout) |
| 391 | { |
| 392 | int result, lastWaiter; |
| 393 | |
| 394 | /* Increment number of waiters */ |
| 395 | EnterCriticalSection(&cond->mWaitersCountLock); |
| 396 | ++ cond->mWaitersCount; |
| 397 | LeaveCriticalSection(&cond->mWaitersCountLock); |
| 398 | |
| 399 | /* Release the mutex while waiting for the condition (will decrease |
| 400 | the number of waiters when done)... */ |
| 401 | mtx_unlock(mtx); |
| 402 | |
| 403 | /* Wait for either event to become signaled due to cnd_signal() or |
| 404 | cnd_broadcast() being called */ |
| 405 | result = WaitForMultipleObjects(2, cond->mEvents, FALSE, timeout); |
| 406 | |
| 407 | /* Check if we are the last waiter */ |
| 408 | EnterCriticalSection(&cond->mWaitersCountLock); |
| 409 | -- cond->mWaitersCount; |
| 410 | lastWaiter = (result == (WAIT_OBJECT_0 + _CONDITION_EVENT_ALL)) && |
| 411 | (cond->mWaitersCount == 0); |
| 412 | LeaveCriticalSection(&cond->mWaitersCountLock); |
| 413 | |
| 414 | /* If we are the last waiter to be notified to stop waiting, reset the event */ |
| 415 | if (lastWaiter) |
| 416 | { |
| 417 | if (ResetEvent(cond->mEvents[_CONDITION_EVENT_ALL]) == 0) |
| 418 | { |
| 419 | /* The mutex is locked again before the function returns, even if an error occurred */ |
| 420 | mtx_lock(mtx); |
| 421 | return thrd_error; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /* The mutex is locked again before the function returns, even if an error occurred */ |
| 426 | mtx_lock(mtx); |
| 427 | |
| 428 | if (result == WAIT_TIMEOUT) |
| 429 | return thrd_timedout; |
| 430 | else if (result == (int)WAIT_FAILED) |
| 431 | return thrd_error; |
| 432 | |
| 433 | return thrd_success; |
| 434 | } |
| 435 | #endif |
| 436 | |
| 437 | int cnd_wait(cnd_t *cond, mtx_t *mtx) |
| 438 | { |
| 439 | #if defined(_TTHREAD_WIN32_) |
| 440 | return _cnd_timedwait_win32(cond, mtx, INFINITE); |
| 441 | #else |
| 442 | return pthread_cond_wait(cond, mtx) == 0 ? thrd_success : thrd_error; |
| 443 | #endif |
| 444 | } |
| 445 | |
| 446 | int cnd_timedwait(cnd_t *cond, mtx_t *mtx, const struct timespec *ts) |
| 447 | { |
| 448 | #if defined(_TTHREAD_WIN32_) |
| 449 | struct timespec now; |
| 450 | if (timespec_get(&now, TIME_UTC) == TIME_UTC) |
| 451 | { |
| 452 | unsigned long long nowInMilliseconds = now.tv_sec * 1000 + now.tv_nsec / 1000000; |
| 453 | unsigned long long tsInMilliseconds = ts->tv_sec * 1000 + ts->tv_nsec / 1000000; |
| 454 | DWORD delta = (tsInMilliseconds > nowInMilliseconds) ? |
| 455 | (DWORD)(tsInMilliseconds - nowInMilliseconds) : 0; |
| 456 | return _cnd_timedwait_win32(cond, mtx, delta); |
| 457 | } |
| 458 | else |
| 459 | return thrd_error; |
| 460 | #else |
| 461 | int ret; |
| 462 | ret = pthread_cond_timedwait(cond, mtx, ts); |
| 463 | if (ret == ETIMEDOUT) |
| 464 | { |
| 465 | return thrd_timedout; |
| 466 | } |
| 467 | return ret == 0 ? thrd_success : thrd_error; |
| 468 | #endif |
| 469 | } |
| 470 | |
| 471 | |
| 472 | |
| 473 | #if defined(_TTHREAD_WIN32_) |
| 474 | struct TinyCThreadTSSData { |
| 475 | void* value; |
| 476 | tss_t key; |
| 477 | struct TinyCThreadTSSData* next; |
| 478 | }; |
| 479 | |
| 480 | static tss_dtor_t _tinycthread_tss_dtors[1088] = { NULL, }; |
| 481 | |
| 482 | static _Thread_local struct TinyCThreadTSSData* _tinycthread_tss_head = NULL; |
| 483 | static _Thread_local struct TinyCThreadTSSData* _tinycthread_tss_tail = NULL; |
| 484 | |
| 485 | static void _tinycthread_tss_cleanup (void); |
| 486 | |
| 487 | static void _tinycthread_tss_cleanup (void) { |
| 488 | struct TinyCThreadTSSData* data; |
| 489 | int iteration; |
| 490 | unsigned int again = 1; |
| 491 | void* value; |
| 492 | |
| 493 | for (iteration = 0 ; iteration < TSS_DTOR_ITERATIONS && again > 0 ; iteration++) |
| 494 | { |
| 495 | again = 0; |
| 496 | for (data = _tinycthread_tss_head ; data != NULL ; data = data->next) |
| 497 | { |
| 498 | if (data->value != NULL) |
| 499 | { |
| 500 | value = data->value; |
| 501 | data->value = NULL; |
| 502 | |
| 503 | if (_tinycthread_tss_dtors[data->key] != NULL) |
| 504 | { |
| 505 | again = 1; |
| 506 | _tinycthread_tss_dtors[data->key](value); |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | while (_tinycthread_tss_head != NULL) { |
| 513 | data = _tinycthread_tss_head->next; |
| 514 | free (_tinycthread_tss_head); |
| 515 | _tinycthread_tss_head = data; |
| 516 | } |
| 517 | _tinycthread_tss_head = NULL; |
| 518 | _tinycthread_tss_tail = NULL; |
| 519 | } |
| 520 | |
| 521 | static void NTAPI _tinycthread_tss_callback(PVOID h, DWORD dwReason, PVOID pv) |
| 522 | { |
| 523 | (void)h; |
| 524 | (void)pv; |
| 525 | |
| 526 | if (_tinycthread_tss_head != NULL && (dwReason == DLL_THREAD_DETACH || dwReason == DLL_PROCESS_DETACH)) |
| 527 | { |
| 528 | _tinycthread_tss_cleanup(); |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | #if defined(_MSC_VER) |
| 533 | #ifdef _M_X64 |
| 534 | #pragma const_seg(".CRT$XLB") |
| 535 | #else |
| 536 | #pragma data_seg(".CRT$XLB") |
| 537 | #endif |
| 538 | PIMAGE_TLS_CALLBACK p_thread_callback = _tinycthread_tss_callback; |
| 539 | #ifdef _M_X64 |
| 540 | #pragma const_seg() |
| 541 | #else |
| 542 | #pragma data_seg() |
| 543 | #endif |
| 544 | #else |
| 545 | PIMAGE_TLS_CALLBACK p_thread_callback __attribute__((section(".CRT$XLB" ))) = _tinycthread_tss_callback; |
| 546 | #endif |
| 547 | |
| 548 | #endif /* defined(_TTHREAD_WIN32_) */ |
| 549 | |
| 550 | /** Information to pass to the new thread (what to run). */ |
| 551 | typedef struct { |
| 552 | thrd_start_t mFunction; /**< Pointer to the function to be executed. */ |
| 553 | void * mArg; /**< Function argument for the thread function. */ |
| 554 | } _thread_start_info; |
| 555 | |
| 556 | /* Thread wrapper function. */ |
| 557 | #if defined(_TTHREAD_WIN32_) |
| 558 | static DWORD WINAPI _thrd_wrapper_function(LPVOID aArg) |
| 559 | #elif defined(_TTHREAD_POSIX_) |
| 560 | static void * _thrd_wrapper_function(void * aArg) |
| 561 | #endif |
| 562 | { |
| 563 | thrd_start_t fun; |
| 564 | void *arg; |
| 565 | int res; |
| 566 | |
| 567 | /* Get thread startup information */ |
| 568 | _thread_start_info *ti = (_thread_start_info *) aArg; |
| 569 | fun = ti->mFunction; |
| 570 | arg = ti->mArg; |
| 571 | |
| 572 | /* The thread is responsible for freeing the startup information */ |
| 573 | free((void *)ti); |
| 574 | |
| 575 | /* Call the actual client thread function */ |
| 576 | res = fun(arg); |
| 577 | |
| 578 | #if defined(_TTHREAD_WIN32_) |
| 579 | if (_tinycthread_tss_head != NULL) |
| 580 | { |
| 581 | _tinycthread_tss_cleanup(); |
| 582 | } |
| 583 | |
| 584 | return (DWORD)res; |
| 585 | #else |
| 586 | return (void*)(intptr_t)res; |
| 587 | #endif |
| 588 | } |
| 589 | |
| 590 | int thrd_create(thrd_t *thr, thrd_start_t func, void *arg) |
| 591 | { |
| 592 | /* Fill out the thread startup information (passed to the thread wrapper, |
| 593 | which will eventually free it) */ |
| 594 | _thread_start_info* ti = (_thread_start_info*)malloc(sizeof(_thread_start_info)); |
| 595 | if (ti == NULL) |
| 596 | { |
| 597 | return thrd_nomem; |
| 598 | } |
| 599 | ti->mFunction = func; |
| 600 | ti->mArg = arg; |
| 601 | |
| 602 | /* Create the thread */ |
| 603 | #if defined(_TTHREAD_WIN32_) |
| 604 | *thr = CreateThread(NULL, 0, _thrd_wrapper_function, (LPVOID) ti, 0, NULL); |
| 605 | #elif defined(_TTHREAD_POSIX_) |
| 606 | { |
| 607 | int err; |
| 608 | if((err = pthread_create(thr, NULL, _thrd_wrapper_function, |
| 609 | (void *)ti)) != 0) { |
| 610 | errno = err; |
| 611 | *thr = 0; |
| 612 | } |
| 613 | } |
| 614 | #endif |
| 615 | |
| 616 | /* Did we fail to create the thread? */ |
| 617 | if(!*thr) |
| 618 | { |
| 619 | free(ti); |
| 620 | return thrd_error; |
| 621 | } |
| 622 | |
| 623 | return thrd_success; |
| 624 | } |
| 625 | |
| 626 | thrd_t thrd_current(void) |
| 627 | { |
| 628 | #if defined(_TTHREAD_WIN32_) |
| 629 | return GetCurrentThread(); |
| 630 | #else |
| 631 | return pthread_self(); |
| 632 | #endif |
| 633 | } |
| 634 | |
| 635 | int thrd_detach(thrd_t thr) |
| 636 | { |
| 637 | thrd_is_detached = 1; |
| 638 | #if defined(_TTHREAD_WIN32_) |
| 639 | /* https://stackoverflow.com/questions/12744324/how-to-detach-a-thread-on-windows-c#answer-12746081 */ |
| 640 | return CloseHandle(thr) != 0 ? thrd_success : thrd_error; |
| 641 | #else |
| 642 | return pthread_detach(thr) == 0 ? thrd_success : thrd_error; |
| 643 | #endif |
| 644 | } |
| 645 | |
| 646 | int thrd_equal(thrd_t thr0, thrd_t thr1) |
| 647 | { |
| 648 | #if defined(_TTHREAD_WIN32_) |
| 649 | return thr0 == thr1; |
| 650 | #else |
| 651 | return pthread_equal(thr0, thr1); |
| 652 | #endif |
| 653 | } |
| 654 | |
| 655 | void thrd_exit(int res) |
| 656 | { |
| 657 | #if defined(_TTHREAD_WIN32_) |
| 658 | if (_tinycthread_tss_head != NULL) |
| 659 | { |
| 660 | _tinycthread_tss_cleanup(); |
| 661 | } |
| 662 | |
| 663 | ExitThread(res); |
| 664 | #else |
| 665 | pthread_exit((void*)(intptr_t)res); |
| 666 | #endif |
| 667 | } |
| 668 | |
| 669 | int thrd_join(thrd_t thr, int *res) |
| 670 | { |
| 671 | #if defined(_TTHREAD_WIN32_) |
| 672 | DWORD dwRes; |
| 673 | |
| 674 | if (WaitForSingleObject(thr, INFINITE) == WAIT_FAILED) |
| 675 | { |
| 676 | return thrd_error; |
| 677 | } |
| 678 | if (res != NULL) |
| 679 | { |
| 680 | if (GetExitCodeThread(thr, &dwRes) != 0) |
| 681 | { |
| 682 | *res = dwRes; |
| 683 | } |
| 684 | else |
| 685 | { |
| 686 | return thrd_error; |
| 687 | } |
| 688 | } |
| 689 | CloseHandle(thr); |
| 690 | #elif defined(_TTHREAD_POSIX_) |
| 691 | void *pres; |
| 692 | if (pthread_join(thr, &pres) != 0) |
| 693 | { |
| 694 | return thrd_error; |
| 695 | } |
| 696 | if (res != NULL) |
| 697 | { |
| 698 | *res = (int)(intptr_t)pres; |
| 699 | } |
| 700 | #endif |
| 701 | return thrd_success; |
| 702 | } |
| 703 | |
| 704 | int thrd_sleep(const struct timespec *duration, struct timespec *remaining) |
| 705 | { |
| 706 | #if !defined(_TTHREAD_WIN32_) |
| 707 | return nanosleep(duration, remaining); |
| 708 | #else |
| 709 | struct timespec start; |
| 710 | DWORD t; |
| 711 | |
| 712 | timespec_get(&start, TIME_UTC); |
| 713 | |
| 714 | t = SleepEx((DWORD)(duration->tv_sec * 1000 + |
| 715 | duration->tv_nsec / 1000000 + |
| 716 | (((duration->tv_nsec % 1000000) == 0) ? 0 : 1)), |
| 717 | TRUE); |
| 718 | |
| 719 | if (t == 0) { |
| 720 | return 0; |
| 721 | } else if (remaining != NULL) { |
| 722 | timespec_get(remaining, TIME_UTC); |
| 723 | remaining->tv_sec -= start.tv_sec; |
| 724 | remaining->tv_nsec -= start.tv_nsec; |
| 725 | if (remaining->tv_nsec < 0) |
| 726 | { |
| 727 | remaining->tv_nsec += 1000000000; |
| 728 | remaining->tv_sec -= 1; |
| 729 | } |
| 730 | } else { |
| 731 | return -1; |
| 732 | } |
| 733 | |
| 734 | return 0; |
| 735 | #endif |
| 736 | } |
| 737 | |
| 738 | void thrd_yield(void) |
| 739 | { |
| 740 | #if defined(_TTHREAD_WIN32_) |
| 741 | Sleep(0); |
| 742 | #else |
| 743 | sched_yield(); |
| 744 | #endif |
| 745 | } |
| 746 | |
| 747 | int tss_create(tss_t *key, tss_dtor_t dtor) |
| 748 | { |
| 749 | #if defined(_TTHREAD_WIN32_) |
| 750 | *key = TlsAlloc(); |
| 751 | if (*key == TLS_OUT_OF_INDEXES) |
| 752 | { |
| 753 | return thrd_error; |
| 754 | } |
| 755 | _tinycthread_tss_dtors[*key] = dtor; |
| 756 | #else |
| 757 | if (pthread_key_create(key, dtor) != 0) |
| 758 | { |
| 759 | return thrd_error; |
| 760 | } |
| 761 | #endif |
| 762 | return thrd_success; |
| 763 | } |
| 764 | |
| 765 | void tss_delete(tss_t key) |
| 766 | { |
| 767 | #if defined(_TTHREAD_WIN32_) |
| 768 | struct TinyCThreadTSSData* data = (struct TinyCThreadTSSData*) TlsGetValue (key); |
| 769 | struct TinyCThreadTSSData* prev = NULL; |
| 770 | if (data != NULL) |
| 771 | { |
| 772 | if (data == _tinycthread_tss_head) |
| 773 | { |
| 774 | _tinycthread_tss_head = data->next; |
| 775 | } |
| 776 | else |
| 777 | { |
| 778 | prev = _tinycthread_tss_head; |
| 779 | if (prev != NULL) |
| 780 | { |
| 781 | while (prev->next != data) |
| 782 | { |
| 783 | prev = prev->next; |
| 784 | } |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | if (data == _tinycthread_tss_tail) |
| 789 | { |
| 790 | _tinycthread_tss_tail = prev; |
| 791 | } |
| 792 | |
| 793 | free (data); |
| 794 | } |
| 795 | _tinycthread_tss_dtors[key] = NULL; |
| 796 | TlsFree(key); |
| 797 | #else |
| 798 | pthread_key_delete(key); |
| 799 | #endif |
| 800 | } |
| 801 | |
| 802 | void *tss_get(tss_t key) |
| 803 | { |
| 804 | #if defined(_TTHREAD_WIN32_) |
| 805 | struct TinyCThreadTSSData* data = (struct TinyCThreadTSSData*)TlsGetValue(key); |
| 806 | if (data == NULL) |
| 807 | { |
| 808 | return NULL; |
| 809 | } |
| 810 | return data->value; |
| 811 | #else |
| 812 | return pthread_getspecific(key); |
| 813 | #endif |
| 814 | } |
| 815 | |
| 816 | int tss_set(tss_t key, void *val) |
| 817 | { |
| 818 | #if defined(_TTHREAD_WIN32_) |
| 819 | struct TinyCThreadTSSData* data = (struct TinyCThreadTSSData*)TlsGetValue(key); |
| 820 | if (data == NULL) |
| 821 | { |
| 822 | data = (struct TinyCThreadTSSData*)malloc(sizeof(struct TinyCThreadTSSData)); |
| 823 | if (data == NULL) |
| 824 | { |
| 825 | return thrd_error; |
| 826 | } |
| 827 | |
| 828 | data->value = NULL; |
| 829 | data->key = key; |
| 830 | data->next = NULL; |
| 831 | |
| 832 | if (_tinycthread_tss_tail != NULL) |
| 833 | { |
| 834 | _tinycthread_tss_tail->next = data; |
| 835 | } |
| 836 | else |
| 837 | { |
| 838 | _tinycthread_tss_tail = data; |
| 839 | } |
| 840 | |
| 841 | if (_tinycthread_tss_head == NULL) |
| 842 | { |
| 843 | _tinycthread_tss_head = data; |
| 844 | } |
| 845 | |
| 846 | if (!TlsSetValue(key, data)) |
| 847 | { |
| 848 | free (data); |
| 849 | return thrd_error; |
| 850 | } |
| 851 | } |
| 852 | data->value = val; |
| 853 | #else |
| 854 | if (pthread_setspecific(key, val) != 0) |
| 855 | { |
| 856 | return thrd_error; |
| 857 | } |
| 858 | #endif |
| 859 | return thrd_success; |
| 860 | } |
| 861 | |
| 862 | #if defined(_TTHREAD_EMULATE_TIMESPEC_GET_) |
| 863 | int _tthread_timespec_get(struct timespec *ts, int base) |
| 864 | { |
| 865 | #if defined(_TTHREAD_WIN32_) |
| 866 | struct _timeb tb; |
| 867 | #elif !defined(CLOCK_REALTIME) |
| 868 | struct timeval tv; |
| 869 | #endif |
| 870 | |
| 871 | if (base != TIME_UTC) |
| 872 | { |
| 873 | return 0; |
| 874 | } |
| 875 | |
| 876 | #if defined(_TTHREAD_WIN32_) |
| 877 | _ftime_s(&tb); |
| 878 | ts->tv_sec = (time_t)tb.time; |
| 879 | ts->tv_nsec = 1000000L * (long)tb.millitm; |
| 880 | #elif defined(CLOCK_REALTIME) |
| 881 | base = (clock_gettime(CLOCK_REALTIME, ts) == 0) ? base : 0; |
| 882 | #else |
| 883 | gettimeofday(&tv, NULL); |
| 884 | ts->tv_sec = (time_t)tv.tv_sec; |
| 885 | ts->tv_nsec = 1000L * (long)tv.tv_usec; |
| 886 | #endif |
| 887 | |
| 888 | return base; |
| 889 | } |
| 890 | #endif /* _TTHREAD_EMULATE_TIMESPEC_GET_ */ |
| 891 | |
| 892 | #if defined(_TTHREAD_WIN32_) |
| 893 | void call_once(once_flag *flag, void (*func)(void)) |
| 894 | { |
| 895 | /* The idea here is that we use a spin lock (via the |
| 896 | InterlockedCompareExchange function) to restrict access to the |
| 897 | critical section until we have initialized it, then we use the |
| 898 | critical section to block until the callback has completed |
| 899 | execution. */ |
| 900 | while (flag->status < 3) |
| 901 | { |
| 902 | switch (flag->status) |
| 903 | { |
| 904 | case 0: |
| 905 | if (InterlockedCompareExchange (&(flag->status), 1, 0) == 0) { |
| 906 | InitializeCriticalSection(&(flag->lock)); |
| 907 | EnterCriticalSection(&(flag->lock)); |
| 908 | flag->status = 2; |
| 909 | func(); |
| 910 | flag->status = 3; |
| 911 | LeaveCriticalSection(&(flag->lock)); |
| 912 | return; |
| 913 | } |
| 914 | break; |
| 915 | case 1: |
| 916 | break; |
| 917 | case 2: |
| 918 | EnterCriticalSection(&(flag->lock)); |
| 919 | LeaveCriticalSection(&(flag->lock)); |
| 920 | break; |
| 921 | } |
| 922 | } |
| 923 | } |
| 924 | #endif /* defined(_TTHREAD_WIN32_) */ |
| 925 | |
| 926 | |
| 927 | |
| 928 | #ifdef __cplusplus |
| 929 | } |
| 930 | #endif |
| 931 | |
| 932 | #endif /* !WITH_C11THREADS */ |
| 933 | |