1 | /* |
2 | * regexp.c: generic and extensible Regular Expression engine |
3 | * |
4 | * Basically designed with the purpose of compiling regexps for |
5 | * the variety of validation/shemas mechanisms now available in |
6 | * XML related specifications these include: |
7 | * - XML-1.0 DTD validation |
8 | * - XML Schemas structure part 1 |
9 | * - XML Schemas Datatypes part 2 especially Appendix F |
10 | * - RELAX-NG/TREX i.e. the counter proposal |
11 | * |
12 | * See Copyright for the status of this software. |
13 | * |
14 | * Daniel Veillard <veillard@redhat.com> |
15 | */ |
16 | |
17 | #define IN_LIBXML |
18 | #include "libxml.h" |
19 | |
20 | #ifdef LIBXML_REGEXP_ENABLED |
21 | |
22 | /* #define DEBUG_ERR */ |
23 | |
24 | #include <stdio.h> |
25 | #include <string.h> |
26 | #ifdef HAVE_LIMITS_H |
27 | #include <limits.h> |
28 | #endif |
29 | |
30 | #include <libxml/tree.h> |
31 | #include <libxml/parserInternals.h> |
32 | #include <libxml/xmlregexp.h> |
33 | #include <libxml/xmlautomata.h> |
34 | #include <libxml/xmlunicode.h> |
35 | |
36 | #ifndef INT_MAX |
37 | #define INT_MAX 123456789 /* easy to flag and big enough for our needs */ |
38 | #endif |
39 | |
40 | /* #define DEBUG_REGEXP_GRAPH */ |
41 | /* #define DEBUG_REGEXP_EXEC */ |
42 | /* #define DEBUG_PUSH */ |
43 | /* #define DEBUG_COMPACTION */ |
44 | |
45 | #define MAX_PUSH 10000000 |
46 | |
47 | #ifdef ERROR |
48 | #undef ERROR |
49 | #endif |
50 | #define ERROR(str) \ |
51 | ctxt->error = XML_REGEXP_COMPILE_ERROR; \ |
52 | xmlRegexpErrCompile(ctxt, str); |
53 | #define NEXT ctxt->cur++ |
54 | #define CUR (*(ctxt->cur)) |
55 | #define NXT(index) (ctxt->cur[index]) |
56 | |
57 | #define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l) |
58 | #define NEXTL(l) ctxt->cur += l; |
59 | #define XML_REG_STRING_SEPARATOR '|' |
60 | /* |
61 | * Need PREV to check on a '-' within a Character Group. May only be used |
62 | * when it's guaranteed that cur is not at the beginning of ctxt->string! |
63 | */ |
64 | #define PREV (ctxt->cur[-1]) |
65 | |
66 | /** |
67 | * TODO: |
68 | * |
69 | * macro to flag unimplemented blocks |
70 | */ |
71 | #define TODO \ |
72 | xmlGenericError(xmlGenericErrorContext, \ |
73 | "Unimplemented block at %s:%d\n", \ |
74 | __FILE__, __LINE__); |
75 | |
76 | /************************************************************************ |
77 | * * |
78 | * Datatypes and structures * |
79 | * * |
80 | ************************************************************************/ |
81 | |
82 | /* |
83 | * Note: the order of the enums below is significant, do not shuffle |
84 | */ |
85 | typedef enum { |
86 | XML_REGEXP_EPSILON = 1, |
87 | XML_REGEXP_CHARVAL, |
88 | XML_REGEXP_RANGES, |
89 | XML_REGEXP_SUBREG, /* used for () sub regexps */ |
90 | XML_REGEXP_STRING, |
91 | XML_REGEXP_ANYCHAR, /* . */ |
92 | XML_REGEXP_ANYSPACE, /* \s */ |
93 | XML_REGEXP_NOTSPACE, /* \S */ |
94 | XML_REGEXP_INITNAME, /* \l */ |
95 | XML_REGEXP_NOTINITNAME, /* \L */ |
96 | XML_REGEXP_NAMECHAR, /* \c */ |
97 | XML_REGEXP_NOTNAMECHAR, /* \C */ |
98 | XML_REGEXP_DECIMAL, /* \d */ |
99 | XML_REGEXP_NOTDECIMAL, /* \D */ |
100 | XML_REGEXP_REALCHAR, /* \w */ |
101 | XML_REGEXP_NOTREALCHAR, /* \W */ |
102 | XML_REGEXP_LETTER = 100, |
103 | XML_REGEXP_LETTER_UPPERCASE, |
104 | XML_REGEXP_LETTER_LOWERCASE, |
105 | XML_REGEXP_LETTER_TITLECASE, |
106 | XML_REGEXP_LETTER_MODIFIER, |
107 | XML_REGEXP_LETTER_OTHERS, |
108 | XML_REGEXP_MARK, |
109 | XML_REGEXP_MARK_NONSPACING, |
110 | XML_REGEXP_MARK_SPACECOMBINING, |
111 | XML_REGEXP_MARK_ENCLOSING, |
112 | XML_REGEXP_NUMBER, |
113 | XML_REGEXP_NUMBER_DECIMAL, |
114 | XML_REGEXP_NUMBER_LETTER, |
115 | XML_REGEXP_NUMBER_OTHERS, |
116 | XML_REGEXP_PUNCT, |
117 | XML_REGEXP_PUNCT_CONNECTOR, |
118 | XML_REGEXP_PUNCT_DASH, |
119 | XML_REGEXP_PUNCT_OPEN, |
120 | XML_REGEXP_PUNCT_CLOSE, |
121 | XML_REGEXP_PUNCT_INITQUOTE, |
122 | XML_REGEXP_PUNCT_FINQUOTE, |
123 | XML_REGEXP_PUNCT_OTHERS, |
124 | XML_REGEXP_SEPAR, |
125 | XML_REGEXP_SEPAR_SPACE, |
126 | XML_REGEXP_SEPAR_LINE, |
127 | XML_REGEXP_SEPAR_PARA, |
128 | XML_REGEXP_SYMBOL, |
129 | XML_REGEXP_SYMBOL_MATH, |
130 | XML_REGEXP_SYMBOL_CURRENCY, |
131 | XML_REGEXP_SYMBOL_MODIFIER, |
132 | XML_REGEXP_SYMBOL_OTHERS, |
133 | XML_REGEXP_OTHER, |
134 | XML_REGEXP_OTHER_CONTROL, |
135 | XML_REGEXP_OTHER_FORMAT, |
136 | XML_REGEXP_OTHER_PRIVATE, |
137 | XML_REGEXP_OTHER_NA, |
138 | XML_REGEXP_BLOCK_NAME |
139 | } xmlRegAtomType; |
140 | |
141 | typedef enum { |
142 | XML_REGEXP_QUANT_EPSILON = 1, |
143 | XML_REGEXP_QUANT_ONCE, |
144 | XML_REGEXP_QUANT_OPT, |
145 | XML_REGEXP_QUANT_MULT, |
146 | XML_REGEXP_QUANT_PLUS, |
147 | XML_REGEXP_QUANT_ONCEONLY, |
148 | XML_REGEXP_QUANT_ALL, |
149 | XML_REGEXP_QUANT_RANGE |
150 | } xmlRegQuantType; |
151 | |
152 | typedef enum { |
153 | XML_REGEXP_START_STATE = 1, |
154 | XML_REGEXP_FINAL_STATE, |
155 | XML_REGEXP_TRANS_STATE, |
156 | XML_REGEXP_SINK_STATE, |
157 | XML_REGEXP_UNREACH_STATE |
158 | } xmlRegStateType; |
159 | |
160 | typedef enum { |
161 | XML_REGEXP_MARK_NORMAL = 0, |
162 | XML_REGEXP_MARK_START, |
163 | XML_REGEXP_MARK_VISITED |
164 | } xmlRegMarkedType; |
165 | |
166 | typedef struct _xmlRegRange xmlRegRange; |
167 | typedef xmlRegRange *xmlRegRangePtr; |
168 | |
169 | struct _xmlRegRange { |
170 | int neg; /* 0 normal, 1 not, 2 exclude */ |
171 | xmlRegAtomType type; |
172 | int start; |
173 | int end; |
174 | xmlChar *blockName; |
175 | }; |
176 | |
177 | typedef struct _xmlRegAtom xmlRegAtom; |
178 | typedef xmlRegAtom *xmlRegAtomPtr; |
179 | |
180 | typedef struct _xmlAutomataState xmlRegState; |
181 | typedef xmlRegState *xmlRegStatePtr; |
182 | |
183 | struct _xmlRegAtom { |
184 | int no; |
185 | xmlRegAtomType type; |
186 | xmlRegQuantType quant; |
187 | int min; |
188 | int max; |
189 | |
190 | void *valuep; |
191 | void *valuep2; |
192 | int neg; |
193 | int codepoint; |
194 | xmlRegStatePtr start; |
195 | xmlRegStatePtr start0; |
196 | xmlRegStatePtr stop; |
197 | int maxRanges; |
198 | int nbRanges; |
199 | xmlRegRangePtr *ranges; |
200 | void *data; |
201 | }; |
202 | |
203 | typedef struct _xmlRegCounter xmlRegCounter; |
204 | typedef xmlRegCounter *xmlRegCounterPtr; |
205 | |
206 | struct _xmlRegCounter { |
207 | int min; |
208 | int max; |
209 | }; |
210 | |
211 | typedef struct _xmlRegTrans xmlRegTrans; |
212 | typedef xmlRegTrans *xmlRegTransPtr; |
213 | |
214 | struct _xmlRegTrans { |
215 | xmlRegAtomPtr atom; |
216 | int to; |
217 | int counter; |
218 | int count; |
219 | int nd; |
220 | }; |
221 | |
222 | struct _xmlAutomataState { |
223 | xmlRegStateType type; |
224 | xmlRegMarkedType mark; |
225 | xmlRegMarkedType markd; |
226 | xmlRegMarkedType reached; |
227 | int no; |
228 | int maxTrans; |
229 | int nbTrans; |
230 | xmlRegTrans *trans; |
231 | /* knowing states ponting to us can speed things up */ |
232 | int maxTransTo; |
233 | int nbTransTo; |
234 | int *transTo; |
235 | }; |
236 | |
237 | typedef struct _xmlAutomata xmlRegParserCtxt; |
238 | typedef xmlRegParserCtxt *xmlRegParserCtxtPtr; |
239 | |
240 | #define AM_AUTOMATA_RNG 1 |
241 | |
242 | struct _xmlAutomata { |
243 | xmlChar *string; |
244 | xmlChar *cur; |
245 | |
246 | int error; |
247 | int neg; |
248 | |
249 | xmlRegStatePtr start; |
250 | xmlRegStatePtr end; |
251 | xmlRegStatePtr state; |
252 | |
253 | xmlRegAtomPtr atom; |
254 | |
255 | int maxAtoms; |
256 | int nbAtoms; |
257 | xmlRegAtomPtr *atoms; |
258 | |
259 | int maxStates; |
260 | int nbStates; |
261 | xmlRegStatePtr *states; |
262 | |
263 | int maxCounters; |
264 | int nbCounters; |
265 | xmlRegCounter *counters; |
266 | |
267 | int determinist; |
268 | int negs; |
269 | int flags; |
270 | }; |
271 | |
272 | struct _xmlRegexp { |
273 | xmlChar *string; |
274 | int nbStates; |
275 | xmlRegStatePtr *states; |
276 | int nbAtoms; |
277 | xmlRegAtomPtr *atoms; |
278 | int nbCounters; |
279 | xmlRegCounter *counters; |
280 | int determinist; |
281 | int flags; |
282 | /* |
283 | * That's the compact form for determinists automatas |
284 | */ |
285 | int nbstates; |
286 | int *compact; |
287 | void **transdata; |
288 | int nbstrings; |
289 | xmlChar **stringMap; |
290 | }; |
291 | |
292 | typedef struct _xmlRegExecRollback xmlRegExecRollback; |
293 | typedef xmlRegExecRollback *xmlRegExecRollbackPtr; |
294 | |
295 | struct _xmlRegExecRollback { |
296 | xmlRegStatePtr state;/* the current state */ |
297 | int index; /* the index in the input stack */ |
298 | int nextbranch; /* the next transition to explore in that state */ |
299 | int *counts; /* save the automata state if it has some */ |
300 | }; |
301 | |
302 | typedef struct _xmlRegInputToken xmlRegInputToken; |
303 | typedef xmlRegInputToken *xmlRegInputTokenPtr; |
304 | |
305 | struct _xmlRegInputToken { |
306 | xmlChar *value; |
307 | void *data; |
308 | }; |
309 | |
310 | struct _xmlRegExecCtxt { |
311 | int status; /* execution status != 0 indicate an error */ |
312 | int determinist; /* did we find an indeterministic behaviour */ |
313 | xmlRegexpPtr comp; /* the compiled regexp */ |
314 | xmlRegExecCallbacks callback; |
315 | void *data; |
316 | |
317 | xmlRegStatePtr state;/* the current state */ |
318 | int transno; /* the current transition on that state */ |
319 | int transcount; /* the number of chars in char counted transitions */ |
320 | |
321 | /* |
322 | * A stack of rollback states |
323 | */ |
324 | int maxRollbacks; |
325 | int nbRollbacks; |
326 | xmlRegExecRollback *rollbacks; |
327 | |
328 | /* |
329 | * The state of the automata if any |
330 | */ |
331 | int *counts; |
332 | |
333 | /* |
334 | * The input stack |
335 | */ |
336 | int inputStackMax; |
337 | int inputStackNr; |
338 | int index; |
339 | int *charStack; |
340 | const xmlChar *inputString; /* when operating on characters */ |
341 | xmlRegInputTokenPtr inputStack;/* when operating on strings */ |
342 | |
343 | /* |
344 | * error handling |
345 | */ |
346 | int errStateNo; /* the error state number */ |
347 | xmlRegStatePtr errState; /* the error state */ |
348 | xmlChar *errString; /* the string raising the error */ |
349 | int *errCounts; /* counters at the error state */ |
350 | int nbPush; |
351 | }; |
352 | |
353 | #define REGEXP_ALL_COUNTER 0x123456 |
354 | #define REGEXP_ALL_LAX_COUNTER 0x123457 |
355 | |
356 | static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top); |
357 | static void xmlRegFreeState(xmlRegStatePtr state); |
358 | static void xmlRegFreeAtom(xmlRegAtomPtr atom); |
359 | static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr); |
360 | static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint); |
361 | static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, |
362 | int neg, int start, int end, const xmlChar *blockName); |
363 | |
364 | void xmlAutomataSetFlags(xmlAutomataPtr am, int flags); |
365 | |
366 | /************************************************************************ |
367 | * * |
368 | * Regexp memory error handler * |
369 | * * |
370 | ************************************************************************/ |
371 | /** |
372 | * xmlRegexpErrMemory: |
373 | * @extra: extra information |
374 | * |
375 | * Handle an out of memory condition |
376 | */ |
377 | static void |
378 | xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *) |
379 | { |
380 | const char *regexp = NULL; |
381 | if (ctxt != NULL) { |
382 | regexp = (const char *) ctxt->string; |
383 | ctxt->error = XML_ERR_NO_MEMORY; |
384 | } |
385 | __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP, |
386 | XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra, |
387 | regexp, NULL, 0, 0, |
388 | "Memory allocation failed : %s\n" , extra); |
389 | } |
390 | |
391 | /** |
392 | * xmlRegexpErrCompile: |
393 | * @extra: extra information |
394 | * |
395 | * Handle a compilation failure |
396 | */ |
397 | static void |
398 | xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *) |
399 | { |
400 | const char *regexp = NULL; |
401 | int idx = 0; |
402 | |
403 | if (ctxt != NULL) { |
404 | regexp = (const char *) ctxt->string; |
405 | idx = ctxt->cur - ctxt->string; |
406 | ctxt->error = XML_REGEXP_COMPILE_ERROR; |
407 | } |
408 | __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP, |
409 | XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra, |
410 | regexp, NULL, idx, 0, |
411 | "failed to compile: %s\n" , extra); |
412 | } |
413 | |
414 | /************************************************************************ |
415 | * * |
416 | * Allocation/Deallocation * |
417 | * * |
418 | ************************************************************************/ |
419 | |
420 | static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt); |
421 | /** |
422 | * xmlRegEpxFromParse: |
423 | * @ctxt: the parser context used to build it |
424 | * |
425 | * Allocate a new regexp and fill it with the result from the parser |
426 | * |
427 | * Returns the new regexp or NULL in case of error |
428 | */ |
429 | static xmlRegexpPtr |
430 | xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) { |
431 | xmlRegexpPtr ret; |
432 | |
433 | ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp)); |
434 | if (ret == NULL) { |
435 | xmlRegexpErrMemory(ctxt, "compiling regexp" ); |
436 | return(NULL); |
437 | } |
438 | memset(ret, 0, sizeof(xmlRegexp)); |
439 | ret->string = ctxt->string; |
440 | ret->nbStates = ctxt->nbStates; |
441 | ret->states = ctxt->states; |
442 | ret->nbAtoms = ctxt->nbAtoms; |
443 | ret->atoms = ctxt->atoms; |
444 | ret->nbCounters = ctxt->nbCounters; |
445 | ret->counters = ctxt->counters; |
446 | ret->determinist = ctxt->determinist; |
447 | ret->flags = ctxt->flags; |
448 | if (ret->determinist == -1) { |
449 | xmlRegexpIsDeterminist(ret); |
450 | } |
451 | |
452 | if ((ret->determinist != 0) && |
453 | (ret->nbCounters == 0) && |
454 | (ctxt->negs == 0) && |
455 | (ret->atoms != NULL) && |
456 | (ret->atoms[0] != NULL) && |
457 | (ret->atoms[0]->type == XML_REGEXP_STRING)) { |
458 | int i, j, nbstates = 0, nbatoms = 0; |
459 | int *stateRemap; |
460 | int *stringRemap; |
461 | int *transitions; |
462 | void **transdata; |
463 | xmlChar **stringMap; |
464 | xmlChar *value; |
465 | |
466 | /* |
467 | * Switch to a compact representation |
468 | * 1/ counting the effective number of states left |
469 | * 2/ counting the unique number of atoms, and check that |
470 | * they are all of the string type |
471 | * 3/ build a table state x atom for the transitions |
472 | */ |
473 | |
474 | stateRemap = xmlMalloc(ret->nbStates * sizeof(int)); |
475 | if (stateRemap == NULL) { |
476 | xmlRegexpErrMemory(ctxt, "compiling regexp" ); |
477 | xmlFree(ret); |
478 | return(NULL); |
479 | } |
480 | for (i = 0;i < ret->nbStates;i++) { |
481 | if (ret->states[i] != NULL) { |
482 | stateRemap[i] = nbstates; |
483 | nbstates++; |
484 | } else { |
485 | stateRemap[i] = -1; |
486 | } |
487 | } |
488 | #ifdef DEBUG_COMPACTION |
489 | printf("Final: %d states\n" , nbstates); |
490 | #endif |
491 | stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *)); |
492 | if (stringMap == NULL) { |
493 | xmlRegexpErrMemory(ctxt, "compiling regexp" ); |
494 | xmlFree(stateRemap); |
495 | xmlFree(ret); |
496 | return(NULL); |
497 | } |
498 | stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int)); |
499 | if (stringRemap == NULL) { |
500 | xmlRegexpErrMemory(ctxt, "compiling regexp" ); |
501 | xmlFree(stringMap); |
502 | xmlFree(stateRemap); |
503 | xmlFree(ret); |
504 | return(NULL); |
505 | } |
506 | for (i = 0;i < ret->nbAtoms;i++) { |
507 | if ((ret->atoms[i]->type == XML_REGEXP_STRING) && |
508 | (ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) { |
509 | value = ret->atoms[i]->valuep; |
510 | for (j = 0;j < nbatoms;j++) { |
511 | if (xmlStrEqual(stringMap[j], value)) { |
512 | stringRemap[i] = j; |
513 | break; |
514 | } |
515 | } |
516 | if (j >= nbatoms) { |
517 | stringRemap[i] = nbatoms; |
518 | stringMap[nbatoms] = xmlStrdup(value); |
519 | if (stringMap[nbatoms] == NULL) { |
520 | for (i = 0;i < nbatoms;i++) |
521 | xmlFree(stringMap[i]); |
522 | xmlFree(stringRemap); |
523 | xmlFree(stringMap); |
524 | xmlFree(stateRemap); |
525 | xmlFree(ret); |
526 | return(NULL); |
527 | } |
528 | nbatoms++; |
529 | } |
530 | } else { |
531 | xmlFree(stateRemap); |
532 | xmlFree(stringRemap); |
533 | for (i = 0;i < nbatoms;i++) |
534 | xmlFree(stringMap[i]); |
535 | xmlFree(stringMap); |
536 | xmlFree(ret); |
537 | return(NULL); |
538 | } |
539 | } |
540 | #ifdef DEBUG_COMPACTION |
541 | printf("Final: %d atoms\n" , nbatoms); |
542 | #endif |
543 | transitions = (int *) xmlMalloc((nbstates + 1) * |
544 | (nbatoms + 1) * sizeof(int)); |
545 | if (transitions == NULL) { |
546 | xmlFree(stateRemap); |
547 | xmlFree(stringRemap); |
548 | xmlFree(stringMap); |
549 | xmlFree(ret); |
550 | return(NULL); |
551 | } |
552 | memset(transitions, 0, (nbstates + 1) * (nbatoms + 1) * sizeof(int)); |
553 | |
554 | /* |
555 | * Allocate the transition table. The first entry for each |
556 | * state corresponds to the state type. |
557 | */ |
558 | transdata = NULL; |
559 | |
560 | for (i = 0;i < ret->nbStates;i++) { |
561 | int stateno, atomno, targetno, prev; |
562 | xmlRegStatePtr state; |
563 | xmlRegTransPtr trans; |
564 | |
565 | stateno = stateRemap[i]; |
566 | if (stateno == -1) |
567 | continue; |
568 | state = ret->states[i]; |
569 | |
570 | transitions[stateno * (nbatoms + 1)] = state->type; |
571 | |
572 | for (j = 0;j < state->nbTrans;j++) { |
573 | trans = &(state->trans[j]); |
574 | if ((trans->to == -1) || (trans->atom == NULL)) |
575 | continue; |
576 | atomno = stringRemap[trans->atom->no]; |
577 | if ((trans->atom->data != NULL) && (transdata == NULL)) { |
578 | transdata = (void **) xmlMalloc(nbstates * nbatoms * |
579 | sizeof(void *)); |
580 | if (transdata != NULL) |
581 | memset(transdata, 0, |
582 | nbstates * nbatoms * sizeof(void *)); |
583 | else { |
584 | xmlRegexpErrMemory(ctxt, "compiling regexp" ); |
585 | break; |
586 | } |
587 | } |
588 | targetno = stateRemap[trans->to]; |
589 | /* |
590 | * if the same atom can generate transitions to 2 different |
591 | * states then it means the automata is not determinist and |
592 | * the compact form can't be used ! |
593 | */ |
594 | prev = transitions[stateno * (nbatoms + 1) + atomno + 1]; |
595 | if (prev != 0) { |
596 | if (prev != targetno + 1) { |
597 | ret->determinist = 0; |
598 | #ifdef DEBUG_COMPACTION |
599 | printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n" , |
600 | i, j, trans->atom->no, trans->to, atomno, targetno); |
601 | printf(" previous to is %d\n" , prev); |
602 | #endif |
603 | if (transdata != NULL) |
604 | xmlFree(transdata); |
605 | xmlFree(transitions); |
606 | xmlFree(stateRemap); |
607 | xmlFree(stringRemap); |
608 | for (i = 0;i < nbatoms;i++) |
609 | xmlFree(stringMap[i]); |
610 | xmlFree(stringMap); |
611 | goto not_determ; |
612 | } |
613 | } else { |
614 | #if 0 |
615 | printf("State %d trans %d: atom %d to %d : %d to %d\n" , |
616 | i, j, trans->atom->no, trans->to, atomno, targetno); |
617 | #endif |
618 | transitions[stateno * (nbatoms + 1) + atomno + 1] = |
619 | targetno + 1; /* to avoid 0 */ |
620 | if (transdata != NULL) |
621 | transdata[stateno * nbatoms + atomno] = |
622 | trans->atom->data; |
623 | } |
624 | } |
625 | } |
626 | ret->determinist = 1; |
627 | #ifdef DEBUG_COMPACTION |
628 | /* |
629 | * Debug |
630 | */ |
631 | for (i = 0;i < nbstates;i++) { |
632 | for (j = 0;j < nbatoms + 1;j++) { |
633 | printf("%02d " , transitions[i * (nbatoms + 1) + j]); |
634 | } |
635 | printf("\n" ); |
636 | } |
637 | printf("\n" ); |
638 | #endif |
639 | /* |
640 | * Cleanup of the old data |
641 | */ |
642 | if (ret->states != NULL) { |
643 | for (i = 0;i < ret->nbStates;i++) |
644 | xmlRegFreeState(ret->states[i]); |
645 | xmlFree(ret->states); |
646 | } |
647 | ret->states = NULL; |
648 | ret->nbStates = 0; |
649 | if (ret->atoms != NULL) { |
650 | for (i = 0;i < ret->nbAtoms;i++) |
651 | xmlRegFreeAtom(ret->atoms[i]); |
652 | xmlFree(ret->atoms); |
653 | } |
654 | ret->atoms = NULL; |
655 | ret->nbAtoms = 0; |
656 | |
657 | ret->compact = transitions; |
658 | ret->transdata = transdata; |
659 | ret->stringMap = stringMap; |
660 | ret->nbstrings = nbatoms; |
661 | ret->nbstates = nbstates; |
662 | xmlFree(stateRemap); |
663 | xmlFree(stringRemap); |
664 | } |
665 | not_determ: |
666 | ctxt->string = NULL; |
667 | ctxt->nbStates = 0; |
668 | ctxt->states = NULL; |
669 | ctxt->nbAtoms = 0; |
670 | ctxt->atoms = NULL; |
671 | ctxt->nbCounters = 0; |
672 | ctxt->counters = NULL; |
673 | return(ret); |
674 | } |
675 | |
676 | /** |
677 | * xmlRegNewParserCtxt: |
678 | * @string: the string to parse |
679 | * |
680 | * Allocate a new regexp parser context |
681 | * |
682 | * Returns the new context or NULL in case of error |
683 | */ |
684 | static xmlRegParserCtxtPtr |
685 | xmlRegNewParserCtxt(const xmlChar *string) { |
686 | xmlRegParserCtxtPtr ret; |
687 | |
688 | ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt)); |
689 | if (ret == NULL) |
690 | return(NULL); |
691 | memset(ret, 0, sizeof(xmlRegParserCtxt)); |
692 | if (string != NULL) |
693 | ret->string = xmlStrdup(string); |
694 | ret->cur = ret->string; |
695 | ret->neg = 0; |
696 | ret->negs = 0; |
697 | ret->error = 0; |
698 | ret->determinist = -1; |
699 | return(ret); |
700 | } |
701 | |
702 | /** |
703 | * xmlRegNewRange: |
704 | * @ctxt: the regexp parser context |
705 | * @neg: is that negative |
706 | * @type: the type of range |
707 | * @start: the start codepoint |
708 | * @end: the end codepoint |
709 | * |
710 | * Allocate a new regexp range |
711 | * |
712 | * Returns the new range or NULL in case of error |
713 | */ |
714 | static xmlRegRangePtr |
715 | xmlRegNewRange(xmlRegParserCtxtPtr ctxt, |
716 | int neg, xmlRegAtomType type, int start, int end) { |
717 | xmlRegRangePtr ret; |
718 | |
719 | ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange)); |
720 | if (ret == NULL) { |
721 | xmlRegexpErrMemory(ctxt, "allocating range" ); |
722 | return(NULL); |
723 | } |
724 | ret->neg = neg; |
725 | ret->type = type; |
726 | ret->start = start; |
727 | ret->end = end; |
728 | return(ret); |
729 | } |
730 | |
731 | /** |
732 | * xmlRegFreeRange: |
733 | * @range: the regexp range |
734 | * |
735 | * Free a regexp range |
736 | */ |
737 | static void |
738 | xmlRegFreeRange(xmlRegRangePtr range) { |
739 | if (range == NULL) |
740 | return; |
741 | |
742 | if (range->blockName != NULL) |
743 | xmlFree(range->blockName); |
744 | xmlFree(range); |
745 | } |
746 | |
747 | /** |
748 | * xmlRegCopyRange: |
749 | * @range: the regexp range |
750 | * |
751 | * Copy a regexp range |
752 | * |
753 | * Returns the new copy or NULL in case of error. |
754 | */ |
755 | static xmlRegRangePtr |
756 | xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) { |
757 | xmlRegRangePtr ret; |
758 | |
759 | if (range == NULL) |
760 | return(NULL); |
761 | |
762 | ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start, |
763 | range->end); |
764 | if (ret == NULL) |
765 | return(NULL); |
766 | if (range->blockName != NULL) { |
767 | ret->blockName = xmlStrdup(range->blockName); |
768 | if (ret->blockName == NULL) { |
769 | xmlRegexpErrMemory(ctxt, "allocating range" ); |
770 | xmlRegFreeRange(ret); |
771 | return(NULL); |
772 | } |
773 | } |
774 | return(ret); |
775 | } |
776 | |
777 | /** |
778 | * xmlRegNewAtom: |
779 | * @ctxt: the regexp parser context |
780 | * @type: the type of atom |
781 | * |
782 | * Allocate a new atom |
783 | * |
784 | * Returns the new atom or NULL in case of error |
785 | */ |
786 | static xmlRegAtomPtr |
787 | xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) { |
788 | xmlRegAtomPtr ret; |
789 | |
790 | ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom)); |
791 | if (ret == NULL) { |
792 | xmlRegexpErrMemory(ctxt, "allocating atom" ); |
793 | return(NULL); |
794 | } |
795 | memset(ret, 0, sizeof(xmlRegAtom)); |
796 | ret->type = type; |
797 | ret->quant = XML_REGEXP_QUANT_ONCE; |
798 | ret->min = 0; |
799 | ret->max = 0; |
800 | return(ret); |
801 | } |
802 | |
803 | /** |
804 | * xmlRegFreeAtom: |
805 | * @atom: the regexp atom |
806 | * |
807 | * Free a regexp atom |
808 | */ |
809 | static void |
810 | xmlRegFreeAtom(xmlRegAtomPtr atom) { |
811 | int i; |
812 | |
813 | if (atom == NULL) |
814 | return; |
815 | |
816 | for (i = 0;i < atom->nbRanges;i++) |
817 | xmlRegFreeRange(atom->ranges[i]); |
818 | if (atom->ranges != NULL) |
819 | xmlFree(atom->ranges); |
820 | if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL)) |
821 | xmlFree(atom->valuep); |
822 | if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL)) |
823 | xmlFree(atom->valuep2); |
824 | if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL)) |
825 | xmlFree(atom->valuep); |
826 | xmlFree(atom); |
827 | } |
828 | |
829 | /** |
830 | * xmlRegCopyAtom: |
831 | * @ctxt: the regexp parser context |
832 | * @atom: the oiginal atom |
833 | * |
834 | * Allocate a new regexp range |
835 | * |
836 | * Returns the new atom or NULL in case of error |
837 | */ |
838 | static xmlRegAtomPtr |
839 | xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) { |
840 | xmlRegAtomPtr ret; |
841 | |
842 | ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom)); |
843 | if (ret == NULL) { |
844 | xmlRegexpErrMemory(ctxt, "copying atom" ); |
845 | return(NULL); |
846 | } |
847 | memset(ret, 0, sizeof(xmlRegAtom)); |
848 | ret->type = atom->type; |
849 | ret->quant = atom->quant; |
850 | ret->min = atom->min; |
851 | ret->max = atom->max; |
852 | if (atom->nbRanges > 0) { |
853 | int i; |
854 | |
855 | ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) * |
856 | atom->nbRanges); |
857 | if (ret->ranges == NULL) { |
858 | xmlRegexpErrMemory(ctxt, "copying atom" ); |
859 | goto error; |
860 | } |
861 | for (i = 0;i < atom->nbRanges;i++) { |
862 | ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]); |
863 | if (ret->ranges[i] == NULL) |
864 | goto error; |
865 | ret->nbRanges = i + 1; |
866 | } |
867 | } |
868 | return(ret); |
869 | |
870 | error: |
871 | xmlRegFreeAtom(ret); |
872 | return(NULL); |
873 | } |
874 | |
875 | static xmlRegStatePtr |
876 | xmlRegNewState(xmlRegParserCtxtPtr ctxt) { |
877 | xmlRegStatePtr ret; |
878 | |
879 | ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState)); |
880 | if (ret == NULL) { |
881 | xmlRegexpErrMemory(ctxt, "allocating state" ); |
882 | return(NULL); |
883 | } |
884 | memset(ret, 0, sizeof(xmlRegState)); |
885 | ret->type = XML_REGEXP_TRANS_STATE; |
886 | ret->mark = XML_REGEXP_MARK_NORMAL; |
887 | return(ret); |
888 | } |
889 | |
890 | /** |
891 | * xmlRegFreeState: |
892 | * @state: the regexp state |
893 | * |
894 | * Free a regexp state |
895 | */ |
896 | static void |
897 | xmlRegFreeState(xmlRegStatePtr state) { |
898 | if (state == NULL) |
899 | return; |
900 | |
901 | if (state->trans != NULL) |
902 | xmlFree(state->trans); |
903 | if (state->transTo != NULL) |
904 | xmlFree(state->transTo); |
905 | xmlFree(state); |
906 | } |
907 | |
908 | /** |
909 | * xmlRegFreeParserCtxt: |
910 | * @ctxt: the regexp parser context |
911 | * |
912 | * Free a regexp parser context |
913 | */ |
914 | static void |
915 | xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) { |
916 | int i; |
917 | if (ctxt == NULL) |
918 | return; |
919 | |
920 | if (ctxt->string != NULL) |
921 | xmlFree(ctxt->string); |
922 | if (ctxt->states != NULL) { |
923 | for (i = 0;i < ctxt->nbStates;i++) |
924 | xmlRegFreeState(ctxt->states[i]); |
925 | xmlFree(ctxt->states); |
926 | } |
927 | if (ctxt->atoms != NULL) { |
928 | for (i = 0;i < ctxt->nbAtoms;i++) |
929 | xmlRegFreeAtom(ctxt->atoms[i]); |
930 | xmlFree(ctxt->atoms); |
931 | } |
932 | if (ctxt->counters != NULL) |
933 | xmlFree(ctxt->counters); |
934 | xmlFree(ctxt); |
935 | } |
936 | |
937 | /************************************************************************ |
938 | * * |
939 | * Display of Data structures * |
940 | * * |
941 | ************************************************************************/ |
942 | |
943 | static void |
944 | xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) { |
945 | switch (type) { |
946 | case XML_REGEXP_EPSILON: |
947 | fprintf(output, "epsilon " ); break; |
948 | case XML_REGEXP_CHARVAL: |
949 | fprintf(output, "charval " ); break; |
950 | case XML_REGEXP_RANGES: |
951 | fprintf(output, "ranges " ); break; |
952 | case XML_REGEXP_SUBREG: |
953 | fprintf(output, "subexpr " ); break; |
954 | case XML_REGEXP_STRING: |
955 | fprintf(output, "string " ); break; |
956 | case XML_REGEXP_ANYCHAR: |
957 | fprintf(output, "anychar " ); break; |
958 | case XML_REGEXP_ANYSPACE: |
959 | fprintf(output, "anyspace " ); break; |
960 | case XML_REGEXP_NOTSPACE: |
961 | fprintf(output, "notspace " ); break; |
962 | case XML_REGEXP_INITNAME: |
963 | fprintf(output, "initname " ); break; |
964 | case XML_REGEXP_NOTINITNAME: |
965 | fprintf(output, "notinitname " ); break; |
966 | case XML_REGEXP_NAMECHAR: |
967 | fprintf(output, "namechar " ); break; |
968 | case XML_REGEXP_NOTNAMECHAR: |
969 | fprintf(output, "notnamechar " ); break; |
970 | case XML_REGEXP_DECIMAL: |
971 | fprintf(output, "decimal " ); break; |
972 | case XML_REGEXP_NOTDECIMAL: |
973 | fprintf(output, "notdecimal " ); break; |
974 | case XML_REGEXP_REALCHAR: |
975 | fprintf(output, "realchar " ); break; |
976 | case XML_REGEXP_NOTREALCHAR: |
977 | fprintf(output, "notrealchar " ); break; |
978 | case XML_REGEXP_LETTER: |
979 | fprintf(output, "LETTER " ); break; |
980 | case XML_REGEXP_LETTER_UPPERCASE: |
981 | fprintf(output, "LETTER_UPPERCASE " ); break; |
982 | case XML_REGEXP_LETTER_LOWERCASE: |
983 | fprintf(output, "LETTER_LOWERCASE " ); break; |
984 | case XML_REGEXP_LETTER_TITLECASE: |
985 | fprintf(output, "LETTER_TITLECASE " ); break; |
986 | case XML_REGEXP_LETTER_MODIFIER: |
987 | fprintf(output, "LETTER_MODIFIER " ); break; |
988 | case XML_REGEXP_LETTER_OTHERS: |
989 | fprintf(output, "LETTER_OTHERS " ); break; |
990 | case XML_REGEXP_MARK: |
991 | fprintf(output, "MARK " ); break; |
992 | case XML_REGEXP_MARK_NONSPACING: |
993 | fprintf(output, "MARK_NONSPACING " ); break; |
994 | case XML_REGEXP_MARK_SPACECOMBINING: |
995 | fprintf(output, "MARK_SPACECOMBINING " ); break; |
996 | case XML_REGEXP_MARK_ENCLOSING: |
997 | fprintf(output, "MARK_ENCLOSING " ); break; |
998 | case XML_REGEXP_NUMBER: |
999 | fprintf(output, "NUMBER " ); break; |
1000 | case XML_REGEXP_NUMBER_DECIMAL: |
1001 | fprintf(output, "NUMBER_DECIMAL " ); break; |
1002 | case XML_REGEXP_NUMBER_LETTER: |
1003 | fprintf(output, "NUMBER_LETTER " ); break; |
1004 | case XML_REGEXP_NUMBER_OTHERS: |
1005 | fprintf(output, "NUMBER_OTHERS " ); break; |
1006 | case XML_REGEXP_PUNCT: |
1007 | fprintf(output, "PUNCT " ); break; |
1008 | case XML_REGEXP_PUNCT_CONNECTOR: |
1009 | fprintf(output, "PUNCT_CONNECTOR " ); break; |
1010 | case XML_REGEXP_PUNCT_DASH: |
1011 | fprintf(output, "PUNCT_DASH " ); break; |
1012 | case XML_REGEXP_PUNCT_OPEN: |
1013 | fprintf(output, "PUNCT_OPEN " ); break; |
1014 | case XML_REGEXP_PUNCT_CLOSE: |
1015 | fprintf(output, "PUNCT_CLOSE " ); break; |
1016 | case XML_REGEXP_PUNCT_INITQUOTE: |
1017 | fprintf(output, "PUNCT_INITQUOTE " ); break; |
1018 | case XML_REGEXP_PUNCT_FINQUOTE: |
1019 | fprintf(output, "PUNCT_FINQUOTE " ); break; |
1020 | case XML_REGEXP_PUNCT_OTHERS: |
1021 | fprintf(output, "PUNCT_OTHERS " ); break; |
1022 | case XML_REGEXP_SEPAR: |
1023 | fprintf(output, "SEPAR " ); break; |
1024 | case XML_REGEXP_SEPAR_SPACE: |
1025 | fprintf(output, "SEPAR_SPACE " ); break; |
1026 | case XML_REGEXP_SEPAR_LINE: |
1027 | fprintf(output, "SEPAR_LINE " ); break; |
1028 | case XML_REGEXP_SEPAR_PARA: |
1029 | fprintf(output, "SEPAR_PARA " ); break; |
1030 | case XML_REGEXP_SYMBOL: |
1031 | fprintf(output, "SYMBOL " ); break; |
1032 | case XML_REGEXP_SYMBOL_MATH: |
1033 | fprintf(output, "SYMBOL_MATH " ); break; |
1034 | case XML_REGEXP_SYMBOL_CURRENCY: |
1035 | fprintf(output, "SYMBOL_CURRENCY " ); break; |
1036 | case XML_REGEXP_SYMBOL_MODIFIER: |
1037 | fprintf(output, "SYMBOL_MODIFIER " ); break; |
1038 | case XML_REGEXP_SYMBOL_OTHERS: |
1039 | fprintf(output, "SYMBOL_OTHERS " ); break; |
1040 | case XML_REGEXP_OTHER: |
1041 | fprintf(output, "OTHER " ); break; |
1042 | case XML_REGEXP_OTHER_CONTROL: |
1043 | fprintf(output, "OTHER_CONTROL " ); break; |
1044 | case XML_REGEXP_OTHER_FORMAT: |
1045 | fprintf(output, "OTHER_FORMAT " ); break; |
1046 | case XML_REGEXP_OTHER_PRIVATE: |
1047 | fprintf(output, "OTHER_PRIVATE " ); break; |
1048 | case XML_REGEXP_OTHER_NA: |
1049 | fprintf(output, "OTHER_NA " ); break; |
1050 | case XML_REGEXP_BLOCK_NAME: |
1051 | fprintf(output, "BLOCK " ); break; |
1052 | } |
1053 | } |
1054 | |
1055 | static void |
1056 | xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) { |
1057 | switch (type) { |
1058 | case XML_REGEXP_QUANT_EPSILON: |
1059 | fprintf(output, "epsilon " ); break; |
1060 | case XML_REGEXP_QUANT_ONCE: |
1061 | fprintf(output, "once " ); break; |
1062 | case XML_REGEXP_QUANT_OPT: |
1063 | fprintf(output, "? " ); break; |
1064 | case XML_REGEXP_QUANT_MULT: |
1065 | fprintf(output, "* " ); break; |
1066 | case XML_REGEXP_QUANT_PLUS: |
1067 | fprintf(output, "+ " ); break; |
1068 | case XML_REGEXP_QUANT_RANGE: |
1069 | fprintf(output, "range " ); break; |
1070 | case XML_REGEXP_QUANT_ONCEONLY: |
1071 | fprintf(output, "onceonly " ); break; |
1072 | case XML_REGEXP_QUANT_ALL: |
1073 | fprintf(output, "all " ); break; |
1074 | } |
1075 | } |
1076 | static void |
1077 | xmlRegPrintRange(FILE *output, xmlRegRangePtr range) { |
1078 | fprintf(output, " range: " ); |
1079 | if (range->neg) |
1080 | fprintf(output, "negative " ); |
1081 | xmlRegPrintAtomType(output, range->type); |
1082 | fprintf(output, "%c - %c\n" , range->start, range->end); |
1083 | } |
1084 | |
1085 | static void |
1086 | xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) { |
1087 | fprintf(output, " atom: " ); |
1088 | if (atom == NULL) { |
1089 | fprintf(output, "NULL\n" ); |
1090 | return; |
1091 | } |
1092 | if (atom->neg) |
1093 | fprintf(output, "not " ); |
1094 | xmlRegPrintAtomType(output, atom->type); |
1095 | xmlRegPrintQuantType(output, atom->quant); |
1096 | if (atom->quant == XML_REGEXP_QUANT_RANGE) |
1097 | fprintf(output, "%d-%d " , atom->min, atom->max); |
1098 | if (atom->type == XML_REGEXP_STRING) |
1099 | fprintf(output, "'%s' " , (char *) atom->valuep); |
1100 | if (atom->type == XML_REGEXP_CHARVAL) |
1101 | fprintf(output, "char %c\n" , atom->codepoint); |
1102 | else if (atom->type == XML_REGEXP_RANGES) { |
1103 | int i; |
1104 | fprintf(output, "%d entries\n" , atom->nbRanges); |
1105 | for (i = 0; i < atom->nbRanges;i++) |
1106 | xmlRegPrintRange(output, atom->ranges[i]); |
1107 | } else if (atom->type == XML_REGEXP_SUBREG) { |
1108 | fprintf(output, "start %d end %d\n" , atom->start->no, atom->stop->no); |
1109 | } else { |
1110 | fprintf(output, "\n" ); |
1111 | } |
1112 | } |
1113 | |
1114 | static void |
1115 | xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) { |
1116 | fprintf(output, " trans: " ); |
1117 | if (trans == NULL) { |
1118 | fprintf(output, "NULL\n" ); |
1119 | return; |
1120 | } |
1121 | if (trans->to < 0) { |
1122 | fprintf(output, "removed\n" ); |
1123 | return; |
1124 | } |
1125 | if (trans->nd != 0) { |
1126 | if (trans->nd == 2) |
1127 | fprintf(output, "last not determinist, " ); |
1128 | else |
1129 | fprintf(output, "not determinist, " ); |
1130 | } |
1131 | if (trans->counter >= 0) { |
1132 | fprintf(output, "counted %d, " , trans->counter); |
1133 | } |
1134 | if (trans->count == REGEXP_ALL_COUNTER) { |
1135 | fprintf(output, "all transition, " ); |
1136 | } else if (trans->count >= 0) { |
1137 | fprintf(output, "count based %d, " , trans->count); |
1138 | } |
1139 | if (trans->atom == NULL) { |
1140 | fprintf(output, "epsilon to %d\n" , trans->to); |
1141 | return; |
1142 | } |
1143 | if (trans->atom->type == XML_REGEXP_CHARVAL) |
1144 | fprintf(output, "char %c " , trans->atom->codepoint); |
1145 | fprintf(output, "atom %d, to %d\n" , trans->atom->no, trans->to); |
1146 | } |
1147 | |
1148 | static void |
1149 | xmlRegPrintState(FILE *output, xmlRegStatePtr state) { |
1150 | int i; |
1151 | |
1152 | fprintf(output, " state: " ); |
1153 | if (state == NULL) { |
1154 | fprintf(output, "NULL\n" ); |
1155 | return; |
1156 | } |
1157 | if (state->type == XML_REGEXP_START_STATE) |
1158 | fprintf(output, "START " ); |
1159 | if (state->type == XML_REGEXP_FINAL_STATE) |
1160 | fprintf(output, "FINAL " ); |
1161 | |
1162 | fprintf(output, "%d, %d transitions:\n" , state->no, state->nbTrans); |
1163 | for (i = 0;i < state->nbTrans; i++) { |
1164 | xmlRegPrintTrans(output, &(state->trans[i])); |
1165 | } |
1166 | } |
1167 | |
1168 | #ifdef DEBUG_REGEXP_GRAPH |
1169 | static void |
1170 | xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) { |
1171 | int i; |
1172 | |
1173 | fprintf(output, " ctxt: " ); |
1174 | if (ctxt == NULL) { |
1175 | fprintf(output, "NULL\n" ); |
1176 | return; |
1177 | } |
1178 | fprintf(output, "'%s' " , ctxt->string); |
1179 | if (ctxt->error) |
1180 | fprintf(output, "error " ); |
1181 | if (ctxt->neg) |
1182 | fprintf(output, "neg " ); |
1183 | fprintf(output, "\n" ); |
1184 | fprintf(output, "%d atoms:\n" , ctxt->nbAtoms); |
1185 | for (i = 0;i < ctxt->nbAtoms; i++) { |
1186 | fprintf(output, " %02d " , i); |
1187 | xmlRegPrintAtom(output, ctxt->atoms[i]); |
1188 | } |
1189 | if (ctxt->atom != NULL) { |
1190 | fprintf(output, "current atom:\n" ); |
1191 | xmlRegPrintAtom(output, ctxt->atom); |
1192 | } |
1193 | fprintf(output, "%d states:" , ctxt->nbStates); |
1194 | if (ctxt->start != NULL) |
1195 | fprintf(output, " start: %d" , ctxt->start->no); |
1196 | if (ctxt->end != NULL) |
1197 | fprintf(output, " end: %d" , ctxt->end->no); |
1198 | fprintf(output, "\n" ); |
1199 | for (i = 0;i < ctxt->nbStates; i++) { |
1200 | xmlRegPrintState(output, ctxt->states[i]); |
1201 | } |
1202 | fprintf(output, "%d counters:\n" , ctxt->nbCounters); |
1203 | for (i = 0;i < ctxt->nbCounters; i++) { |
1204 | fprintf(output, " %d: min %d max %d\n" , i, ctxt->counters[i].min, |
1205 | ctxt->counters[i].max); |
1206 | } |
1207 | } |
1208 | #endif |
1209 | |
1210 | /************************************************************************ |
1211 | * * |
1212 | * Finite Automata structures manipulations * |
1213 | * * |
1214 | ************************************************************************/ |
1215 | |
1216 | static void |
1217 | xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom, |
1218 | int neg, xmlRegAtomType type, int start, int end, |
1219 | xmlChar *blockName) { |
1220 | xmlRegRangePtr range; |
1221 | |
1222 | if (atom == NULL) { |
1223 | ERROR("add range: atom is NULL" ); |
1224 | return; |
1225 | } |
1226 | if (atom->type != XML_REGEXP_RANGES) { |
1227 | ERROR("add range: atom is not ranges" ); |
1228 | return; |
1229 | } |
1230 | if (atom->maxRanges == 0) { |
1231 | atom->maxRanges = 4; |
1232 | atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges * |
1233 | sizeof(xmlRegRangePtr)); |
1234 | if (atom->ranges == NULL) { |
1235 | xmlRegexpErrMemory(ctxt, "adding ranges" ); |
1236 | atom->maxRanges = 0; |
1237 | return; |
1238 | } |
1239 | } else if (atom->nbRanges >= atom->maxRanges) { |
1240 | xmlRegRangePtr *tmp; |
1241 | atom->maxRanges *= 2; |
1242 | tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges * |
1243 | sizeof(xmlRegRangePtr)); |
1244 | if (tmp == NULL) { |
1245 | xmlRegexpErrMemory(ctxt, "adding ranges" ); |
1246 | atom->maxRanges /= 2; |
1247 | return; |
1248 | } |
1249 | atom->ranges = tmp; |
1250 | } |
1251 | range = xmlRegNewRange(ctxt, neg, type, start, end); |
1252 | if (range == NULL) |
1253 | return; |
1254 | range->blockName = blockName; |
1255 | atom->ranges[atom->nbRanges++] = range; |
1256 | |
1257 | } |
1258 | |
1259 | static int |
1260 | xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) { |
1261 | if (ctxt->maxCounters == 0) { |
1262 | ctxt->maxCounters = 4; |
1263 | ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters * |
1264 | sizeof(xmlRegCounter)); |
1265 | if (ctxt->counters == NULL) { |
1266 | xmlRegexpErrMemory(ctxt, "allocating counter" ); |
1267 | ctxt->maxCounters = 0; |
1268 | return(-1); |
1269 | } |
1270 | } else if (ctxt->nbCounters >= ctxt->maxCounters) { |
1271 | xmlRegCounter *tmp; |
1272 | ctxt->maxCounters *= 2; |
1273 | tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters * |
1274 | sizeof(xmlRegCounter)); |
1275 | if (tmp == NULL) { |
1276 | xmlRegexpErrMemory(ctxt, "allocating counter" ); |
1277 | ctxt->maxCounters /= 2; |
1278 | return(-1); |
1279 | } |
1280 | ctxt->counters = tmp; |
1281 | } |
1282 | ctxt->counters[ctxt->nbCounters].min = -1; |
1283 | ctxt->counters[ctxt->nbCounters].max = -1; |
1284 | return(ctxt->nbCounters++); |
1285 | } |
1286 | |
1287 | static int |
1288 | xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) { |
1289 | if (atom == NULL) { |
1290 | ERROR("atom push: atom is NULL" ); |
1291 | return(-1); |
1292 | } |
1293 | if (ctxt->maxAtoms == 0) { |
1294 | ctxt->maxAtoms = 4; |
1295 | ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms * |
1296 | sizeof(xmlRegAtomPtr)); |
1297 | if (ctxt->atoms == NULL) { |
1298 | xmlRegexpErrMemory(ctxt, "pushing atom" ); |
1299 | ctxt->maxAtoms = 0; |
1300 | return(-1); |
1301 | } |
1302 | } else if (ctxt->nbAtoms >= ctxt->maxAtoms) { |
1303 | xmlRegAtomPtr *tmp; |
1304 | ctxt->maxAtoms *= 2; |
1305 | tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms * |
1306 | sizeof(xmlRegAtomPtr)); |
1307 | if (tmp == NULL) { |
1308 | xmlRegexpErrMemory(ctxt, "allocating counter" ); |
1309 | ctxt->maxAtoms /= 2; |
1310 | return(-1); |
1311 | } |
1312 | ctxt->atoms = tmp; |
1313 | } |
1314 | atom->no = ctxt->nbAtoms; |
1315 | ctxt->atoms[ctxt->nbAtoms++] = atom; |
1316 | return(0); |
1317 | } |
1318 | |
1319 | static void |
1320 | xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target, |
1321 | int from) { |
1322 | if (target->maxTransTo == 0) { |
1323 | target->maxTransTo = 8; |
1324 | target->transTo = (int *) xmlMalloc(target->maxTransTo * |
1325 | sizeof(int)); |
1326 | if (target->transTo == NULL) { |
1327 | xmlRegexpErrMemory(ctxt, "adding transition" ); |
1328 | target->maxTransTo = 0; |
1329 | return; |
1330 | } |
1331 | } else if (target->nbTransTo >= target->maxTransTo) { |
1332 | int *tmp; |
1333 | target->maxTransTo *= 2; |
1334 | tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo * |
1335 | sizeof(int)); |
1336 | if (tmp == NULL) { |
1337 | xmlRegexpErrMemory(ctxt, "adding transition" ); |
1338 | target->maxTransTo /= 2; |
1339 | return; |
1340 | } |
1341 | target->transTo = tmp; |
1342 | } |
1343 | target->transTo[target->nbTransTo] = from; |
1344 | target->nbTransTo++; |
1345 | } |
1346 | |
1347 | static void |
1348 | xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state, |
1349 | xmlRegAtomPtr atom, xmlRegStatePtr target, |
1350 | int counter, int count) { |
1351 | |
1352 | int nrtrans; |
1353 | |
1354 | if (state == NULL) { |
1355 | ERROR("add state: state is NULL" ); |
1356 | return; |
1357 | } |
1358 | if (target == NULL) { |
1359 | ERROR("add state: target is NULL" ); |
1360 | return; |
1361 | } |
1362 | /* |
1363 | * Other routines follow the philosophy 'When in doubt, add a transition' |
1364 | * so we check here whether such a transition is already present and, if |
1365 | * so, silently ignore this request. |
1366 | */ |
1367 | |
1368 | for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) { |
1369 | xmlRegTransPtr trans = &(state->trans[nrtrans]); |
1370 | if ((trans->atom == atom) && |
1371 | (trans->to == target->no) && |
1372 | (trans->counter == counter) && |
1373 | (trans->count == count)) { |
1374 | #ifdef DEBUG_REGEXP_GRAPH |
1375 | printf("Ignoring duplicate transition from %d to %d\n" , |
1376 | state->no, target->no); |
1377 | #endif |
1378 | return; |
1379 | } |
1380 | } |
1381 | |
1382 | if (state->maxTrans == 0) { |
1383 | state->maxTrans = 8; |
1384 | state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans * |
1385 | sizeof(xmlRegTrans)); |
1386 | if (state->trans == NULL) { |
1387 | xmlRegexpErrMemory(ctxt, "adding transition" ); |
1388 | state->maxTrans = 0; |
1389 | return; |
1390 | } |
1391 | } else if (state->nbTrans >= state->maxTrans) { |
1392 | xmlRegTrans *tmp; |
1393 | state->maxTrans *= 2; |
1394 | tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans * |
1395 | sizeof(xmlRegTrans)); |
1396 | if (tmp == NULL) { |
1397 | xmlRegexpErrMemory(ctxt, "adding transition" ); |
1398 | state->maxTrans /= 2; |
1399 | return; |
1400 | } |
1401 | state->trans = tmp; |
1402 | } |
1403 | #ifdef DEBUG_REGEXP_GRAPH |
1404 | printf("Add trans from %d to %d " , state->no, target->no); |
1405 | if (count == REGEXP_ALL_COUNTER) |
1406 | printf("all transition\n" ); |
1407 | else if (count >= 0) |
1408 | printf("count based %d\n" , count); |
1409 | else if (counter >= 0) |
1410 | printf("counted %d\n" , counter); |
1411 | else if (atom == NULL) |
1412 | printf("epsilon transition\n" ); |
1413 | else if (atom != NULL) |
1414 | xmlRegPrintAtom(stdout, atom); |
1415 | #endif |
1416 | |
1417 | state->trans[state->nbTrans].atom = atom; |
1418 | state->trans[state->nbTrans].to = target->no; |
1419 | state->trans[state->nbTrans].counter = counter; |
1420 | state->trans[state->nbTrans].count = count; |
1421 | state->trans[state->nbTrans].nd = 0; |
1422 | state->nbTrans++; |
1423 | xmlRegStateAddTransTo(ctxt, target, state->no); |
1424 | } |
1425 | |
1426 | static int |
1427 | xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) { |
1428 | if (state == NULL) return(-1); |
1429 | if (ctxt->maxStates == 0) { |
1430 | ctxt->maxStates = 4; |
1431 | ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates * |
1432 | sizeof(xmlRegStatePtr)); |
1433 | if (ctxt->states == NULL) { |
1434 | xmlRegexpErrMemory(ctxt, "adding state" ); |
1435 | ctxt->maxStates = 0; |
1436 | return(-1); |
1437 | } |
1438 | } else if (ctxt->nbStates >= ctxt->maxStates) { |
1439 | xmlRegStatePtr *tmp; |
1440 | ctxt->maxStates *= 2; |
1441 | tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates * |
1442 | sizeof(xmlRegStatePtr)); |
1443 | if (tmp == NULL) { |
1444 | xmlRegexpErrMemory(ctxt, "adding state" ); |
1445 | ctxt->maxStates /= 2; |
1446 | return(-1); |
1447 | } |
1448 | ctxt->states = tmp; |
1449 | } |
1450 | state->no = ctxt->nbStates; |
1451 | ctxt->states[ctxt->nbStates++] = state; |
1452 | return(0); |
1453 | } |
1454 | |
1455 | /** |
1456 | * xmlFAGenerateAllTransition: |
1457 | * @ctxt: a regexp parser context |
1458 | * @from: the from state |
1459 | * @to: the target state or NULL for building a new one |
1460 | * @lax: |
1461 | * |
1462 | */ |
1463 | static void |
1464 | xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt, |
1465 | xmlRegStatePtr from, xmlRegStatePtr to, |
1466 | int lax) { |
1467 | if (to == NULL) { |
1468 | to = xmlRegNewState(ctxt); |
1469 | xmlRegStatePush(ctxt, to); |
1470 | ctxt->state = to; |
1471 | } |
1472 | if (lax) |
1473 | xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER); |
1474 | else |
1475 | xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER); |
1476 | } |
1477 | |
1478 | /** |
1479 | * xmlFAGenerateEpsilonTransition: |
1480 | * @ctxt: a regexp parser context |
1481 | * @from: the from state |
1482 | * @to: the target state or NULL for building a new one |
1483 | * |
1484 | */ |
1485 | static void |
1486 | xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt, |
1487 | xmlRegStatePtr from, xmlRegStatePtr to) { |
1488 | if (to == NULL) { |
1489 | to = xmlRegNewState(ctxt); |
1490 | xmlRegStatePush(ctxt, to); |
1491 | ctxt->state = to; |
1492 | } |
1493 | xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1); |
1494 | } |
1495 | |
1496 | /** |
1497 | * xmlFAGenerateCountedEpsilonTransition: |
1498 | * @ctxt: a regexp parser context |
1499 | * @from: the from state |
1500 | * @to: the target state or NULL for building a new one |
1501 | * counter: the counter for that transition |
1502 | * |
1503 | */ |
1504 | static void |
1505 | xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt, |
1506 | xmlRegStatePtr from, xmlRegStatePtr to, int counter) { |
1507 | if (to == NULL) { |
1508 | to = xmlRegNewState(ctxt); |
1509 | xmlRegStatePush(ctxt, to); |
1510 | ctxt->state = to; |
1511 | } |
1512 | xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1); |
1513 | } |
1514 | |
1515 | /** |
1516 | * xmlFAGenerateCountedTransition: |
1517 | * @ctxt: a regexp parser context |
1518 | * @from: the from state |
1519 | * @to: the target state or NULL for building a new one |
1520 | * counter: the counter for that transition |
1521 | * |
1522 | */ |
1523 | static void |
1524 | xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt, |
1525 | xmlRegStatePtr from, xmlRegStatePtr to, int counter) { |
1526 | if (to == NULL) { |
1527 | to = xmlRegNewState(ctxt); |
1528 | xmlRegStatePush(ctxt, to); |
1529 | ctxt->state = to; |
1530 | } |
1531 | xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter); |
1532 | } |
1533 | |
1534 | /** |
1535 | * xmlFAGenerateTransitions: |
1536 | * @ctxt: a regexp parser context |
1537 | * @from: the from state |
1538 | * @to: the target state or NULL for building a new one |
1539 | * @atom: the atom generating the transition |
1540 | * |
1541 | * Returns 0 if success and -1 in case of error. |
1542 | */ |
1543 | static int |
1544 | xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from, |
1545 | xmlRegStatePtr to, xmlRegAtomPtr atom) { |
1546 | xmlRegStatePtr end; |
1547 | int nullable = 0; |
1548 | |
1549 | if (atom == NULL) { |
1550 | ERROR("genrate transition: atom == NULL" ); |
1551 | return(-1); |
1552 | } |
1553 | if (atom->type == XML_REGEXP_SUBREG) { |
1554 | /* |
1555 | * this is a subexpression handling one should not need to |
1556 | * create a new node except for XML_REGEXP_QUANT_RANGE. |
1557 | */ |
1558 | if (xmlRegAtomPush(ctxt, atom) < 0) { |
1559 | return(-1); |
1560 | } |
1561 | if ((to != NULL) && (atom->stop != to) && |
1562 | (atom->quant != XML_REGEXP_QUANT_RANGE)) { |
1563 | /* |
1564 | * Generate an epsilon transition to link to the target |
1565 | */ |
1566 | xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to); |
1567 | #ifdef DV |
1568 | } else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) && |
1569 | (atom->quant != XML_REGEXP_QUANT_ONCE)) { |
1570 | to = xmlRegNewState(ctxt); |
1571 | xmlRegStatePush(ctxt, to); |
1572 | ctxt->state = to; |
1573 | xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to); |
1574 | #endif |
1575 | } |
1576 | switch (atom->quant) { |
1577 | case XML_REGEXP_QUANT_OPT: |
1578 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1579 | /* |
1580 | * transition done to the state after end of atom. |
1581 | * 1. set transition from atom start to new state |
1582 | * 2. set transition from atom end to this state. |
1583 | */ |
1584 | if (to == NULL) { |
1585 | xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0); |
1586 | xmlFAGenerateEpsilonTransition(ctxt, atom->stop, |
1587 | ctxt->state); |
1588 | } else { |
1589 | xmlFAGenerateEpsilonTransition(ctxt, atom->start, to); |
1590 | } |
1591 | break; |
1592 | case XML_REGEXP_QUANT_MULT: |
1593 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1594 | xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop); |
1595 | xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start); |
1596 | break; |
1597 | case XML_REGEXP_QUANT_PLUS: |
1598 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1599 | xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start); |
1600 | break; |
1601 | case XML_REGEXP_QUANT_RANGE: { |
1602 | int counter; |
1603 | xmlRegStatePtr inter, newstate; |
1604 | |
1605 | /* |
1606 | * create the final state now if needed |
1607 | */ |
1608 | if (to != NULL) { |
1609 | newstate = to; |
1610 | } else { |
1611 | newstate = xmlRegNewState(ctxt); |
1612 | xmlRegStatePush(ctxt, newstate); |
1613 | } |
1614 | |
1615 | /* |
1616 | * The principle here is to use counted transition |
1617 | * to avoid explosion in the number of states in the |
1618 | * graph. This is clearly more complex but should not |
1619 | * be exploitable at runtime. |
1620 | */ |
1621 | if ((atom->min == 0) && (atom->start0 == NULL)) { |
1622 | xmlRegAtomPtr copy; |
1623 | /* |
1624 | * duplicate a transition based on atom to count next |
1625 | * occurences after 1. We cannot loop to atom->start |
1626 | * directly because we need an epsilon transition to |
1627 | * newstate. |
1628 | */ |
1629 | /* ???? For some reason it seems we never reach that |
1630 | case, I suppose this got optimized out before when |
1631 | building the automata */ |
1632 | copy = xmlRegCopyAtom(ctxt, atom); |
1633 | if (copy == NULL) |
1634 | return(-1); |
1635 | copy->quant = XML_REGEXP_QUANT_ONCE; |
1636 | copy->min = 0; |
1637 | copy->max = 0; |
1638 | |
1639 | if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy) |
1640 | < 0) |
1641 | return(-1); |
1642 | inter = ctxt->state; |
1643 | counter = xmlRegGetCounter(ctxt); |
1644 | ctxt->counters[counter].min = atom->min - 1; |
1645 | ctxt->counters[counter].max = atom->max - 1; |
1646 | /* count the number of times we see it again */ |
1647 | xmlFAGenerateCountedEpsilonTransition(ctxt, inter, |
1648 | atom->stop, counter); |
1649 | /* allow a way out based on the count */ |
1650 | xmlFAGenerateCountedTransition(ctxt, inter, |
1651 | newstate, counter); |
1652 | /* and also allow a direct exit for 0 */ |
1653 | xmlFAGenerateEpsilonTransition(ctxt, atom->start, |
1654 | newstate); |
1655 | } else { |
1656 | /* |
1657 | * either we need the atom at least once or there |
1658 | * is an atom->start0 allowing to easilly plug the |
1659 | * epsilon transition. |
1660 | */ |
1661 | counter = xmlRegGetCounter(ctxt); |
1662 | ctxt->counters[counter].min = atom->min - 1; |
1663 | ctxt->counters[counter].max = atom->max - 1; |
1664 | /* count the number of times we see it again */ |
1665 | xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop, |
1666 | atom->start, counter); |
1667 | /* allow a way out based on the count */ |
1668 | xmlFAGenerateCountedTransition(ctxt, atom->stop, |
1669 | newstate, counter); |
1670 | /* and if needed allow a direct exit for 0 */ |
1671 | if (atom->min == 0) |
1672 | xmlFAGenerateEpsilonTransition(ctxt, atom->start0, |
1673 | newstate); |
1674 | |
1675 | } |
1676 | atom->min = 0; |
1677 | atom->max = 0; |
1678 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1679 | ctxt->state = newstate; |
1680 | } |
1681 | default: |
1682 | break; |
1683 | } |
1684 | return(0); |
1685 | } |
1686 | if ((atom->min == 0) && (atom->max == 0) && |
1687 | (atom->quant == XML_REGEXP_QUANT_RANGE)) { |
1688 | /* |
1689 | * we can discard the atom and generate an epsilon transition instead |
1690 | */ |
1691 | if (to == NULL) { |
1692 | to = xmlRegNewState(ctxt); |
1693 | if (to != NULL) |
1694 | xmlRegStatePush(ctxt, to); |
1695 | else { |
1696 | return(-1); |
1697 | } |
1698 | } |
1699 | xmlFAGenerateEpsilonTransition(ctxt, from, to); |
1700 | ctxt->state = to; |
1701 | xmlRegFreeAtom(atom); |
1702 | return(0); |
1703 | } |
1704 | if (to == NULL) { |
1705 | to = xmlRegNewState(ctxt); |
1706 | if (to != NULL) |
1707 | xmlRegStatePush(ctxt, to); |
1708 | else { |
1709 | return(-1); |
1710 | } |
1711 | } |
1712 | end = to; |
1713 | if ((atom->quant == XML_REGEXP_QUANT_MULT) || |
1714 | (atom->quant == XML_REGEXP_QUANT_PLUS)) { |
1715 | /* |
1716 | * Do not pollute the target state by adding transitions from |
1717 | * it as it is likely to be the shared target of multiple branches. |
1718 | * So isolate with an epsilon transition. |
1719 | */ |
1720 | xmlRegStatePtr tmp; |
1721 | |
1722 | tmp = xmlRegNewState(ctxt); |
1723 | if (tmp != NULL) |
1724 | xmlRegStatePush(ctxt, tmp); |
1725 | else { |
1726 | return(-1); |
1727 | } |
1728 | xmlFAGenerateEpsilonTransition(ctxt, tmp, to); |
1729 | to = tmp; |
1730 | } |
1731 | if (xmlRegAtomPush(ctxt, atom) < 0) { |
1732 | return(-1); |
1733 | } |
1734 | if ((atom->quant == XML_REGEXP_QUANT_RANGE) && |
1735 | (atom->min == 0) && (atom->max > 0)) { |
1736 | nullable = 1; |
1737 | atom->min = 1; |
1738 | if (atom->max == 1) |
1739 | atom->quant = XML_REGEXP_QUANT_OPT; |
1740 | } |
1741 | xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1); |
1742 | ctxt->state = end; |
1743 | switch (atom->quant) { |
1744 | case XML_REGEXP_QUANT_OPT: |
1745 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1746 | xmlFAGenerateEpsilonTransition(ctxt, from, to); |
1747 | break; |
1748 | case XML_REGEXP_QUANT_MULT: |
1749 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1750 | xmlFAGenerateEpsilonTransition(ctxt, from, to); |
1751 | xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1); |
1752 | break; |
1753 | case XML_REGEXP_QUANT_PLUS: |
1754 | atom->quant = XML_REGEXP_QUANT_ONCE; |
1755 | xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1); |
1756 | break; |
1757 | case XML_REGEXP_QUANT_RANGE: |
1758 | if (nullable) |
1759 | xmlFAGenerateEpsilonTransition(ctxt, from, to); |
1760 | break; |
1761 | default: |
1762 | break; |
1763 | } |
1764 | return(0); |
1765 | } |
1766 | |
1767 | /** |
1768 | * xmlFAReduceEpsilonTransitions: |
1769 | * @ctxt: a regexp parser context |
1770 | * @fromnr: the from state |
1771 | * @tonr: the to state |
1772 | * @counter: should that transition be associated to a counted |
1773 | * |
1774 | */ |
1775 | static void |
1776 | xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr, |
1777 | int tonr, int counter) { |
1778 | int transnr; |
1779 | xmlRegStatePtr from; |
1780 | xmlRegStatePtr to; |
1781 | |
1782 | #ifdef DEBUG_REGEXP_GRAPH |
1783 | printf("xmlFAReduceEpsilonTransitions(%d, %d)\n" , fromnr, tonr); |
1784 | #endif |
1785 | from = ctxt->states[fromnr]; |
1786 | if (from == NULL) |
1787 | return; |
1788 | to = ctxt->states[tonr]; |
1789 | if (to == NULL) |
1790 | return; |
1791 | if ((to->mark == XML_REGEXP_MARK_START) || |
1792 | (to->mark == XML_REGEXP_MARK_VISITED)) |
1793 | return; |
1794 | |
1795 | to->mark = XML_REGEXP_MARK_VISITED; |
1796 | if (to->type == XML_REGEXP_FINAL_STATE) { |
1797 | #ifdef DEBUG_REGEXP_GRAPH |
1798 | printf("State %d is final, so %d becomes final\n" , tonr, fromnr); |
1799 | #endif |
1800 | from->type = XML_REGEXP_FINAL_STATE; |
1801 | } |
1802 | for (transnr = 0;transnr < to->nbTrans;transnr++) { |
1803 | if (to->trans[transnr].to < 0) |
1804 | continue; |
1805 | if (to->trans[transnr].atom == NULL) { |
1806 | /* |
1807 | * Don't remove counted transitions |
1808 | * Don't loop either |
1809 | */ |
1810 | if (to->trans[transnr].to != fromnr) { |
1811 | if (to->trans[transnr].count >= 0) { |
1812 | int newto = to->trans[transnr].to; |
1813 | |
1814 | xmlRegStateAddTrans(ctxt, from, NULL, |
1815 | ctxt->states[newto], |
1816 | -1, to->trans[transnr].count); |
1817 | } else { |
1818 | #ifdef DEBUG_REGEXP_GRAPH |
1819 | printf("Found epsilon trans %d from %d to %d\n" , |
1820 | transnr, tonr, to->trans[transnr].to); |
1821 | #endif |
1822 | if (to->trans[transnr].counter >= 0) { |
1823 | xmlFAReduceEpsilonTransitions(ctxt, fromnr, |
1824 | to->trans[transnr].to, |
1825 | to->trans[transnr].counter); |
1826 | } else { |
1827 | xmlFAReduceEpsilonTransitions(ctxt, fromnr, |
1828 | to->trans[transnr].to, |
1829 | counter); |
1830 | } |
1831 | } |
1832 | } |
1833 | } else { |
1834 | int newto = to->trans[transnr].to; |
1835 | |
1836 | if (to->trans[transnr].counter >= 0) { |
1837 | xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom, |
1838 | ctxt->states[newto], |
1839 | to->trans[transnr].counter, -1); |
1840 | } else { |
1841 | xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom, |
1842 | ctxt->states[newto], counter, -1); |
1843 | } |
1844 | } |
1845 | } |
1846 | to->mark = XML_REGEXP_MARK_NORMAL; |
1847 | } |
1848 | |
1849 | /** |
1850 | * xmlFAEliminateSimpleEpsilonTransitions: |
1851 | * @ctxt: a regexp parser context |
1852 | * |
1853 | * Eliminating general epsilon transitions can get costly in the general |
1854 | * algorithm due to the large amount of generated new transitions and |
1855 | * associated comparisons. However for simple epsilon transition used just |
1856 | * to separate building blocks when generating the automata this can be |
1857 | * reduced to state elimination: |
1858 | * - if there exists an epsilon from X to Y |
1859 | * - if there is no other transition from X |
1860 | * then X and Y are semantically equivalent and X can be eliminated |
1861 | * If X is the start state then make Y the start state, else replace the |
1862 | * target of all transitions to X by transitions to Y. |
1863 | */ |
1864 | static void |
1865 | xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) { |
1866 | int statenr, i, j, newto; |
1867 | xmlRegStatePtr state, tmp; |
1868 | |
1869 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
1870 | state = ctxt->states[statenr]; |
1871 | if (state == NULL) |
1872 | continue; |
1873 | if (state->nbTrans != 1) |
1874 | continue; |
1875 | if (state->type == XML_REGEXP_UNREACH_STATE) |
1876 | continue; |
1877 | /* is the only transition out a basic transition */ |
1878 | if ((state->trans[0].atom == NULL) && |
1879 | (state->trans[0].to >= 0) && |
1880 | (state->trans[0].to != statenr) && |
1881 | (state->trans[0].counter < 0) && |
1882 | (state->trans[0].count < 0)) { |
1883 | newto = state->trans[0].to; |
1884 | |
1885 | if (state->type == XML_REGEXP_START_STATE) { |
1886 | #ifdef DEBUG_REGEXP_GRAPH |
1887 | printf("Found simple epsilon trans from start %d to %d\n" , |
1888 | statenr, newto); |
1889 | #endif |
1890 | } else { |
1891 | #ifdef DEBUG_REGEXP_GRAPH |
1892 | printf("Found simple epsilon trans from %d to %d\n" , |
1893 | statenr, newto); |
1894 | #endif |
1895 | for (i = 0;i < state->nbTransTo;i++) { |
1896 | tmp = ctxt->states[state->transTo[i]]; |
1897 | for (j = 0;j < tmp->nbTrans;j++) { |
1898 | if (tmp->trans[j].to == statenr) { |
1899 | #ifdef DEBUG_REGEXP_GRAPH |
1900 | printf("Changed transition %d on %d to go to %d\n" , |
1901 | j, tmp->no, newto); |
1902 | #endif |
1903 | tmp->trans[j].to = -1; |
1904 | xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom, |
1905 | ctxt->states[newto], |
1906 | tmp->trans[j].counter, |
1907 | tmp->trans[j].count); |
1908 | } |
1909 | } |
1910 | } |
1911 | if (state->type == XML_REGEXP_FINAL_STATE) |
1912 | ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE; |
1913 | /* eliminate the transition completely */ |
1914 | state->nbTrans = 0; |
1915 | |
1916 | state->type = XML_REGEXP_UNREACH_STATE; |
1917 | |
1918 | } |
1919 | |
1920 | } |
1921 | } |
1922 | } |
1923 | /** |
1924 | * xmlFAEliminateEpsilonTransitions: |
1925 | * @ctxt: a regexp parser context |
1926 | * |
1927 | */ |
1928 | static void |
1929 | xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) { |
1930 | int statenr, transnr; |
1931 | xmlRegStatePtr state; |
1932 | int has_epsilon; |
1933 | |
1934 | if (ctxt->states == NULL) return; |
1935 | |
1936 | /* |
1937 | * Eliminate simple epsilon transition and the associated unreachable |
1938 | * states. |
1939 | */ |
1940 | xmlFAEliminateSimpleEpsilonTransitions(ctxt); |
1941 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
1942 | state = ctxt->states[statenr]; |
1943 | if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) { |
1944 | #ifdef DEBUG_REGEXP_GRAPH |
1945 | printf("Removed unreachable state %d\n" , statenr); |
1946 | #endif |
1947 | xmlRegFreeState(state); |
1948 | ctxt->states[statenr] = NULL; |
1949 | } |
1950 | } |
1951 | |
1952 | has_epsilon = 0; |
1953 | |
1954 | /* |
1955 | * Build the completed transitions bypassing the epsilons |
1956 | * Use a marking algorithm to avoid loops |
1957 | * Mark sink states too. |
1958 | * Process from the latests states backward to the start when |
1959 | * there is long cascading epsilon chains this minimize the |
1960 | * recursions and transition compares when adding the new ones |
1961 | */ |
1962 | for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) { |
1963 | state = ctxt->states[statenr]; |
1964 | if (state == NULL) |
1965 | continue; |
1966 | if ((state->nbTrans == 0) && |
1967 | (state->type != XML_REGEXP_FINAL_STATE)) { |
1968 | state->type = XML_REGEXP_SINK_STATE; |
1969 | } |
1970 | for (transnr = 0;transnr < state->nbTrans;transnr++) { |
1971 | if ((state->trans[transnr].atom == NULL) && |
1972 | (state->trans[transnr].to >= 0)) { |
1973 | if (state->trans[transnr].to == statenr) { |
1974 | state->trans[transnr].to = -1; |
1975 | #ifdef DEBUG_REGEXP_GRAPH |
1976 | printf("Removed loopback epsilon trans %d on %d\n" , |
1977 | transnr, statenr); |
1978 | #endif |
1979 | } else if (state->trans[transnr].count < 0) { |
1980 | int newto = state->trans[transnr].to; |
1981 | |
1982 | #ifdef DEBUG_REGEXP_GRAPH |
1983 | printf("Found epsilon trans %d from %d to %d\n" , |
1984 | transnr, statenr, newto); |
1985 | #endif |
1986 | has_epsilon = 1; |
1987 | state->trans[transnr].to = -2; |
1988 | state->mark = XML_REGEXP_MARK_START; |
1989 | xmlFAReduceEpsilonTransitions(ctxt, statenr, |
1990 | newto, state->trans[transnr].counter); |
1991 | state->mark = XML_REGEXP_MARK_NORMAL; |
1992 | #ifdef DEBUG_REGEXP_GRAPH |
1993 | } else { |
1994 | printf("Found counted transition %d on %d\n" , |
1995 | transnr, statenr); |
1996 | #endif |
1997 | } |
1998 | } |
1999 | } |
2000 | } |
2001 | /* |
2002 | * Eliminate the epsilon transitions |
2003 | */ |
2004 | if (has_epsilon) { |
2005 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
2006 | state = ctxt->states[statenr]; |
2007 | if (state == NULL) |
2008 | continue; |
2009 | for (transnr = 0;transnr < state->nbTrans;transnr++) { |
2010 | xmlRegTransPtr trans = &(state->trans[transnr]); |
2011 | if ((trans->atom == NULL) && |
2012 | (trans->count < 0) && |
2013 | (trans->to >= 0)) { |
2014 | trans->to = -1; |
2015 | } |
2016 | } |
2017 | } |
2018 | } |
2019 | |
2020 | /* |
2021 | * Use this pass to detect unreachable states too |
2022 | */ |
2023 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
2024 | state = ctxt->states[statenr]; |
2025 | if (state != NULL) |
2026 | state->reached = XML_REGEXP_MARK_NORMAL; |
2027 | } |
2028 | state = ctxt->states[0]; |
2029 | if (state != NULL) |
2030 | state->reached = XML_REGEXP_MARK_START; |
2031 | while (state != NULL) { |
2032 | xmlRegStatePtr target = NULL; |
2033 | state->reached = XML_REGEXP_MARK_VISITED; |
2034 | /* |
2035 | * Mark all states reachable from the current reachable state |
2036 | */ |
2037 | for (transnr = 0;transnr < state->nbTrans;transnr++) { |
2038 | if ((state->trans[transnr].to >= 0) && |
2039 | ((state->trans[transnr].atom != NULL) || |
2040 | (state->trans[transnr].count >= 0))) { |
2041 | int newto = state->trans[transnr].to; |
2042 | |
2043 | if (ctxt->states[newto] == NULL) |
2044 | continue; |
2045 | if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) { |
2046 | ctxt->states[newto]->reached = XML_REGEXP_MARK_START; |
2047 | target = ctxt->states[newto]; |
2048 | } |
2049 | } |
2050 | } |
2051 | |
2052 | /* |
2053 | * find the next accessible state not explored |
2054 | */ |
2055 | if (target == NULL) { |
2056 | for (statenr = 1;statenr < ctxt->nbStates;statenr++) { |
2057 | state = ctxt->states[statenr]; |
2058 | if ((state != NULL) && (state->reached == |
2059 | XML_REGEXP_MARK_START)) { |
2060 | target = state; |
2061 | break; |
2062 | } |
2063 | } |
2064 | } |
2065 | state = target; |
2066 | } |
2067 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
2068 | state = ctxt->states[statenr]; |
2069 | if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) { |
2070 | #ifdef DEBUG_REGEXP_GRAPH |
2071 | printf("Removed unreachable state %d\n" , statenr); |
2072 | #endif |
2073 | xmlRegFreeState(state); |
2074 | ctxt->states[statenr] = NULL; |
2075 | } |
2076 | } |
2077 | |
2078 | } |
2079 | |
2080 | static int |
2081 | xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) { |
2082 | int ret = 0; |
2083 | |
2084 | if ((range1->type == XML_REGEXP_RANGES) || |
2085 | (range2->type == XML_REGEXP_RANGES) || |
2086 | (range2->type == XML_REGEXP_SUBREG) || |
2087 | (range1->type == XML_REGEXP_SUBREG) || |
2088 | (range1->type == XML_REGEXP_STRING) || |
2089 | (range2->type == XML_REGEXP_STRING)) |
2090 | return(-1); |
2091 | |
2092 | /* put them in order */ |
2093 | if (range1->type > range2->type) { |
2094 | xmlRegRangePtr tmp; |
2095 | |
2096 | tmp = range1; |
2097 | range1 = range2; |
2098 | range2 = tmp; |
2099 | } |
2100 | if ((range1->type == XML_REGEXP_ANYCHAR) || |
2101 | (range2->type == XML_REGEXP_ANYCHAR)) { |
2102 | ret = 1; |
2103 | } else if ((range1->type == XML_REGEXP_EPSILON) || |
2104 | (range2->type == XML_REGEXP_EPSILON)) { |
2105 | return(0); |
2106 | } else if (range1->type == range2->type) { |
2107 | if (range1->type != XML_REGEXP_CHARVAL) |
2108 | ret = 1; |
2109 | else if ((range1->end < range2->start) || |
2110 | (range2->end < range1->start)) |
2111 | ret = 0; |
2112 | else |
2113 | ret = 1; |
2114 | } else if (range1->type == XML_REGEXP_CHARVAL) { |
2115 | int codepoint; |
2116 | int neg = 0; |
2117 | |
2118 | /* |
2119 | * just check all codepoints in the range for acceptance, |
2120 | * this is usually way cheaper since done only once at |
2121 | * compilation than testing over and over at runtime or |
2122 | * pushing too many states when evaluating. |
2123 | */ |
2124 | if (((range1->neg == 0) && (range2->neg != 0)) || |
2125 | ((range1->neg != 0) && (range2->neg == 0))) |
2126 | neg = 1; |
2127 | |
2128 | for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) { |
2129 | ret = xmlRegCheckCharacterRange(range2->type, codepoint, |
2130 | 0, range2->start, range2->end, |
2131 | range2->blockName); |
2132 | if (ret < 0) |
2133 | return(-1); |
2134 | if (((neg == 1) && (ret == 0)) || |
2135 | ((neg == 0) && (ret == 1))) |
2136 | return(1); |
2137 | } |
2138 | return(0); |
2139 | } else if ((range1->type == XML_REGEXP_BLOCK_NAME) || |
2140 | (range2->type == XML_REGEXP_BLOCK_NAME)) { |
2141 | if (range1->type == range2->type) { |
2142 | ret = xmlStrEqual(range1->blockName, range2->blockName); |
2143 | } else { |
2144 | /* |
2145 | * comparing a block range with anything else is way |
2146 | * too costly, and maintining the table is like too much |
2147 | * memory too, so let's force the automata to save state |
2148 | * here. |
2149 | */ |
2150 | return(1); |
2151 | } |
2152 | } else if ((range1->type < XML_REGEXP_LETTER) || |
2153 | (range2->type < XML_REGEXP_LETTER)) { |
2154 | if ((range1->type == XML_REGEXP_ANYSPACE) && |
2155 | (range2->type == XML_REGEXP_NOTSPACE)) |
2156 | ret = 0; |
2157 | else if ((range1->type == XML_REGEXP_INITNAME) && |
2158 | (range2->type == XML_REGEXP_NOTINITNAME)) |
2159 | ret = 0; |
2160 | else if ((range1->type == XML_REGEXP_NAMECHAR) && |
2161 | (range2->type == XML_REGEXP_NOTNAMECHAR)) |
2162 | ret = 0; |
2163 | else if ((range1->type == XML_REGEXP_DECIMAL) && |
2164 | (range2->type == XML_REGEXP_NOTDECIMAL)) |
2165 | ret = 0; |
2166 | else if ((range1->type == XML_REGEXP_REALCHAR) && |
2167 | (range2->type == XML_REGEXP_NOTREALCHAR)) |
2168 | ret = 0; |
2169 | else { |
2170 | /* same thing to limit complexity */ |
2171 | return(1); |
2172 | } |
2173 | } else { |
2174 | ret = 0; |
2175 | /* range1->type < range2->type here */ |
2176 | switch (range1->type) { |
2177 | case XML_REGEXP_LETTER: |
2178 | /* all disjoint except in the subgroups */ |
2179 | if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) || |
2180 | (range2->type == XML_REGEXP_LETTER_LOWERCASE) || |
2181 | (range2->type == XML_REGEXP_LETTER_TITLECASE) || |
2182 | (range2->type == XML_REGEXP_LETTER_MODIFIER) || |
2183 | (range2->type == XML_REGEXP_LETTER_OTHERS)) |
2184 | ret = 1; |
2185 | break; |
2186 | case XML_REGEXP_MARK: |
2187 | if ((range2->type == XML_REGEXP_MARK_NONSPACING) || |
2188 | (range2->type == XML_REGEXP_MARK_SPACECOMBINING) || |
2189 | (range2->type == XML_REGEXP_MARK_ENCLOSING)) |
2190 | ret = 1; |
2191 | break; |
2192 | case XML_REGEXP_NUMBER: |
2193 | if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) || |
2194 | (range2->type == XML_REGEXP_NUMBER_LETTER) || |
2195 | (range2->type == XML_REGEXP_NUMBER_OTHERS)) |
2196 | ret = 1; |
2197 | break; |
2198 | case XML_REGEXP_PUNCT: |
2199 | if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) || |
2200 | (range2->type == XML_REGEXP_PUNCT_DASH) || |
2201 | (range2->type == XML_REGEXP_PUNCT_OPEN) || |
2202 | (range2->type == XML_REGEXP_PUNCT_CLOSE) || |
2203 | (range2->type == XML_REGEXP_PUNCT_INITQUOTE) || |
2204 | (range2->type == XML_REGEXP_PUNCT_FINQUOTE) || |
2205 | (range2->type == XML_REGEXP_PUNCT_OTHERS)) |
2206 | ret = 1; |
2207 | break; |
2208 | case XML_REGEXP_SEPAR: |
2209 | if ((range2->type == XML_REGEXP_SEPAR_SPACE) || |
2210 | (range2->type == XML_REGEXP_SEPAR_LINE) || |
2211 | (range2->type == XML_REGEXP_SEPAR_PARA)) |
2212 | ret = 1; |
2213 | break; |
2214 | case XML_REGEXP_SYMBOL: |
2215 | if ((range2->type == XML_REGEXP_SYMBOL_MATH) || |
2216 | (range2->type == XML_REGEXP_SYMBOL_CURRENCY) || |
2217 | (range2->type == XML_REGEXP_SYMBOL_MODIFIER) || |
2218 | (range2->type == XML_REGEXP_SYMBOL_OTHERS)) |
2219 | ret = 1; |
2220 | break; |
2221 | case XML_REGEXP_OTHER: |
2222 | if ((range2->type == XML_REGEXP_OTHER_CONTROL) || |
2223 | (range2->type == XML_REGEXP_OTHER_FORMAT) || |
2224 | (range2->type == XML_REGEXP_OTHER_PRIVATE)) |
2225 | ret = 1; |
2226 | break; |
2227 | default: |
2228 | if ((range2->type >= XML_REGEXP_LETTER) && |
2229 | (range2->type < XML_REGEXP_BLOCK_NAME)) |
2230 | ret = 0; |
2231 | else { |
2232 | /* safety net ! */ |
2233 | return(1); |
2234 | } |
2235 | } |
2236 | } |
2237 | if (((range1->neg == 0) && (range2->neg != 0)) || |
2238 | ((range1->neg != 0) && (range2->neg == 0))) |
2239 | ret = !ret; |
2240 | return(ret); |
2241 | } |
2242 | |
2243 | /** |
2244 | * xmlFACompareAtomTypes: |
2245 | * @type1: an atom type |
2246 | * @type2: an atom type |
2247 | * |
2248 | * Compares two atoms type to check whether they intersect in some ways, |
2249 | * this is used by xmlFACompareAtoms only |
2250 | * |
2251 | * Returns 1 if they may intersect and 0 otherwise |
2252 | */ |
2253 | static int |
2254 | xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) { |
2255 | if ((type1 == XML_REGEXP_EPSILON) || |
2256 | (type1 == XML_REGEXP_CHARVAL) || |
2257 | (type1 == XML_REGEXP_RANGES) || |
2258 | (type1 == XML_REGEXP_SUBREG) || |
2259 | (type1 == XML_REGEXP_STRING) || |
2260 | (type1 == XML_REGEXP_ANYCHAR)) |
2261 | return(1); |
2262 | if ((type2 == XML_REGEXP_EPSILON) || |
2263 | (type2 == XML_REGEXP_CHARVAL) || |
2264 | (type2 == XML_REGEXP_RANGES) || |
2265 | (type2 == XML_REGEXP_SUBREG) || |
2266 | (type2 == XML_REGEXP_STRING) || |
2267 | (type2 == XML_REGEXP_ANYCHAR)) |
2268 | return(1); |
2269 | |
2270 | if (type1 == type2) return(1); |
2271 | |
2272 | /* simplify subsequent compares by making sure type1 < type2 */ |
2273 | if (type1 > type2) { |
2274 | xmlRegAtomType tmp = type1; |
2275 | type1 = type2; |
2276 | type2 = tmp; |
2277 | } |
2278 | switch (type1) { |
2279 | case XML_REGEXP_ANYSPACE: /* \s */ |
2280 | /* can't be a letter, number, mark, pontuation, symbol */ |
2281 | if ((type2 == XML_REGEXP_NOTSPACE) || |
2282 | ((type2 >= XML_REGEXP_LETTER) && |
2283 | (type2 <= XML_REGEXP_LETTER_OTHERS)) || |
2284 | ((type2 >= XML_REGEXP_NUMBER) && |
2285 | (type2 <= XML_REGEXP_NUMBER_OTHERS)) || |
2286 | ((type2 >= XML_REGEXP_MARK) && |
2287 | (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
2288 | ((type2 >= XML_REGEXP_PUNCT) && |
2289 | (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
2290 | ((type2 >= XML_REGEXP_SYMBOL) && |
2291 | (type2 <= XML_REGEXP_SYMBOL_OTHERS)) |
2292 | ) return(0); |
2293 | break; |
2294 | case XML_REGEXP_NOTSPACE: /* \S */ |
2295 | break; |
2296 | case XML_REGEXP_INITNAME: /* \l */ |
2297 | /* can't be a number, mark, separator, pontuation, symbol or other */ |
2298 | if ((type2 == XML_REGEXP_NOTINITNAME) || |
2299 | ((type2 >= XML_REGEXP_NUMBER) && |
2300 | (type2 <= XML_REGEXP_NUMBER_OTHERS)) || |
2301 | ((type2 >= XML_REGEXP_MARK) && |
2302 | (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
2303 | ((type2 >= XML_REGEXP_SEPAR) && |
2304 | (type2 <= XML_REGEXP_SEPAR_PARA)) || |
2305 | ((type2 >= XML_REGEXP_PUNCT) && |
2306 | (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
2307 | ((type2 >= XML_REGEXP_SYMBOL) && |
2308 | (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
2309 | ((type2 >= XML_REGEXP_OTHER) && |
2310 | (type2 <= XML_REGEXP_OTHER_NA)) |
2311 | ) return(0); |
2312 | break; |
2313 | case XML_REGEXP_NOTINITNAME: /* \L */ |
2314 | break; |
2315 | case XML_REGEXP_NAMECHAR: /* \c */ |
2316 | /* can't be a mark, separator, pontuation, symbol or other */ |
2317 | if ((type2 == XML_REGEXP_NOTNAMECHAR) || |
2318 | ((type2 >= XML_REGEXP_MARK) && |
2319 | (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
2320 | ((type2 >= XML_REGEXP_PUNCT) && |
2321 | (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
2322 | ((type2 >= XML_REGEXP_SEPAR) && |
2323 | (type2 <= XML_REGEXP_SEPAR_PARA)) || |
2324 | ((type2 >= XML_REGEXP_SYMBOL) && |
2325 | (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
2326 | ((type2 >= XML_REGEXP_OTHER) && |
2327 | (type2 <= XML_REGEXP_OTHER_NA)) |
2328 | ) return(0); |
2329 | break; |
2330 | case XML_REGEXP_NOTNAMECHAR: /* \C */ |
2331 | break; |
2332 | case XML_REGEXP_DECIMAL: /* \d */ |
2333 | /* can't be a letter, mark, separator, pontuation, symbol or other */ |
2334 | if ((type2 == XML_REGEXP_NOTDECIMAL) || |
2335 | (type2 == XML_REGEXP_REALCHAR) || |
2336 | ((type2 >= XML_REGEXP_LETTER) && |
2337 | (type2 <= XML_REGEXP_LETTER_OTHERS)) || |
2338 | ((type2 >= XML_REGEXP_MARK) && |
2339 | (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
2340 | ((type2 >= XML_REGEXP_PUNCT) && |
2341 | (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
2342 | ((type2 >= XML_REGEXP_SEPAR) && |
2343 | (type2 <= XML_REGEXP_SEPAR_PARA)) || |
2344 | ((type2 >= XML_REGEXP_SYMBOL) && |
2345 | (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
2346 | ((type2 >= XML_REGEXP_OTHER) && |
2347 | (type2 <= XML_REGEXP_OTHER_NA)) |
2348 | )return(0); |
2349 | break; |
2350 | case XML_REGEXP_NOTDECIMAL: /* \D */ |
2351 | break; |
2352 | case XML_REGEXP_REALCHAR: /* \w */ |
2353 | /* can't be a mark, separator, pontuation, symbol or other */ |
2354 | if ((type2 == XML_REGEXP_NOTDECIMAL) || |
2355 | ((type2 >= XML_REGEXP_MARK) && |
2356 | (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
2357 | ((type2 >= XML_REGEXP_PUNCT) && |
2358 | (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
2359 | ((type2 >= XML_REGEXP_SEPAR) && |
2360 | (type2 <= XML_REGEXP_SEPAR_PARA)) || |
2361 | ((type2 >= XML_REGEXP_SYMBOL) && |
2362 | (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
2363 | ((type2 >= XML_REGEXP_OTHER) && |
2364 | (type2 <= XML_REGEXP_OTHER_NA)) |
2365 | )return(0); |
2366 | break; |
2367 | case XML_REGEXP_NOTREALCHAR: /* \W */ |
2368 | break; |
2369 | /* |
2370 | * at that point we know both type 1 and type2 are from |
2371 | * character categories are ordered and are different, |
2372 | * it becomes simple because this is a partition |
2373 | */ |
2374 | case XML_REGEXP_LETTER: |
2375 | if (type2 <= XML_REGEXP_LETTER_OTHERS) |
2376 | return(1); |
2377 | return(0); |
2378 | case XML_REGEXP_LETTER_UPPERCASE: |
2379 | case XML_REGEXP_LETTER_LOWERCASE: |
2380 | case XML_REGEXP_LETTER_TITLECASE: |
2381 | case XML_REGEXP_LETTER_MODIFIER: |
2382 | case XML_REGEXP_LETTER_OTHERS: |
2383 | return(0); |
2384 | case XML_REGEXP_MARK: |
2385 | if (type2 <= XML_REGEXP_MARK_ENCLOSING) |
2386 | return(1); |
2387 | return(0); |
2388 | case XML_REGEXP_MARK_NONSPACING: |
2389 | case XML_REGEXP_MARK_SPACECOMBINING: |
2390 | case XML_REGEXP_MARK_ENCLOSING: |
2391 | return(0); |
2392 | case XML_REGEXP_NUMBER: |
2393 | if (type2 <= XML_REGEXP_NUMBER_OTHERS) |
2394 | return(1); |
2395 | return(0); |
2396 | case XML_REGEXP_NUMBER_DECIMAL: |
2397 | case XML_REGEXP_NUMBER_LETTER: |
2398 | case XML_REGEXP_NUMBER_OTHERS: |
2399 | return(0); |
2400 | case XML_REGEXP_PUNCT: |
2401 | if (type2 <= XML_REGEXP_PUNCT_OTHERS) |
2402 | return(1); |
2403 | return(0); |
2404 | case XML_REGEXP_PUNCT_CONNECTOR: |
2405 | case XML_REGEXP_PUNCT_DASH: |
2406 | case XML_REGEXP_PUNCT_OPEN: |
2407 | case XML_REGEXP_PUNCT_CLOSE: |
2408 | case XML_REGEXP_PUNCT_INITQUOTE: |
2409 | case XML_REGEXP_PUNCT_FINQUOTE: |
2410 | case XML_REGEXP_PUNCT_OTHERS: |
2411 | return(0); |
2412 | case XML_REGEXP_SEPAR: |
2413 | if (type2 <= XML_REGEXP_SEPAR_PARA) |
2414 | return(1); |
2415 | return(0); |
2416 | case XML_REGEXP_SEPAR_SPACE: |
2417 | case XML_REGEXP_SEPAR_LINE: |
2418 | case XML_REGEXP_SEPAR_PARA: |
2419 | return(0); |
2420 | case XML_REGEXP_SYMBOL: |
2421 | if (type2 <= XML_REGEXP_SYMBOL_OTHERS) |
2422 | return(1); |
2423 | return(0); |
2424 | case XML_REGEXP_SYMBOL_MATH: |
2425 | case XML_REGEXP_SYMBOL_CURRENCY: |
2426 | case XML_REGEXP_SYMBOL_MODIFIER: |
2427 | case XML_REGEXP_SYMBOL_OTHERS: |
2428 | return(0); |
2429 | case XML_REGEXP_OTHER: |
2430 | if (type2 <= XML_REGEXP_OTHER_NA) |
2431 | return(1); |
2432 | return(0); |
2433 | case XML_REGEXP_OTHER_CONTROL: |
2434 | case XML_REGEXP_OTHER_FORMAT: |
2435 | case XML_REGEXP_OTHER_PRIVATE: |
2436 | case XML_REGEXP_OTHER_NA: |
2437 | return(0); |
2438 | default: |
2439 | break; |
2440 | } |
2441 | return(1); |
2442 | } |
2443 | |
2444 | /** |
2445 | * xmlFAEqualAtoms: |
2446 | * @atom1: an atom |
2447 | * @atom2: an atom |
2448 | * @deep: if not set only compare string pointers |
2449 | * |
2450 | * Compares two atoms to check whether they are the same exactly |
2451 | * this is used to remove equivalent transitions |
2452 | * |
2453 | * Returns 1 if same and 0 otherwise |
2454 | */ |
2455 | static int |
2456 | xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) { |
2457 | int ret = 0; |
2458 | |
2459 | if (atom1 == atom2) |
2460 | return(1); |
2461 | if ((atom1 == NULL) || (atom2 == NULL)) |
2462 | return(0); |
2463 | |
2464 | if (atom1->type != atom2->type) |
2465 | return(0); |
2466 | switch (atom1->type) { |
2467 | case XML_REGEXP_EPSILON: |
2468 | ret = 0; |
2469 | break; |
2470 | case XML_REGEXP_STRING: |
2471 | if (!deep) |
2472 | ret = (atom1->valuep == atom2->valuep); |
2473 | else |
2474 | ret = xmlStrEqual((xmlChar *)atom1->valuep, |
2475 | (xmlChar *)atom2->valuep); |
2476 | break; |
2477 | case XML_REGEXP_CHARVAL: |
2478 | ret = (atom1->codepoint == atom2->codepoint); |
2479 | break; |
2480 | case XML_REGEXP_RANGES: |
2481 | /* too hard to do in the general case */ |
2482 | ret = 0; |
2483 | default: |
2484 | break; |
2485 | } |
2486 | return(ret); |
2487 | } |
2488 | |
2489 | /** |
2490 | * xmlFACompareAtoms: |
2491 | * @atom1: an atom |
2492 | * @atom2: an atom |
2493 | * @deep: if not set only compare string pointers |
2494 | * |
2495 | * Compares two atoms to check whether they intersect in some ways, |
2496 | * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only |
2497 | * |
2498 | * Returns 1 if yes and 0 otherwise |
2499 | */ |
2500 | static int |
2501 | xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) { |
2502 | int ret = 1; |
2503 | |
2504 | if (atom1 == atom2) |
2505 | return(1); |
2506 | if ((atom1 == NULL) || (atom2 == NULL)) |
2507 | return(0); |
2508 | |
2509 | if ((atom1->type == XML_REGEXP_ANYCHAR) || |
2510 | (atom2->type == XML_REGEXP_ANYCHAR)) |
2511 | return(1); |
2512 | |
2513 | if (atom1->type > atom2->type) { |
2514 | xmlRegAtomPtr tmp; |
2515 | tmp = atom1; |
2516 | atom1 = atom2; |
2517 | atom2 = tmp; |
2518 | } |
2519 | if (atom1->type != atom2->type) { |
2520 | ret = xmlFACompareAtomTypes(atom1->type, atom2->type); |
2521 | /* if they can't intersect at the type level break now */ |
2522 | if (ret == 0) |
2523 | return(0); |
2524 | } |
2525 | switch (atom1->type) { |
2526 | case XML_REGEXP_STRING: |
2527 | if (!deep) |
2528 | ret = (atom1->valuep != atom2->valuep); |
2529 | else |
2530 | ret = xmlRegStrEqualWildcard((xmlChar *)atom1->valuep, |
2531 | (xmlChar *)atom2->valuep); |
2532 | break; |
2533 | case XML_REGEXP_EPSILON: |
2534 | goto not_determinist; |
2535 | case XML_REGEXP_CHARVAL: |
2536 | if (atom2->type == XML_REGEXP_CHARVAL) { |
2537 | ret = (atom1->codepoint == atom2->codepoint); |
2538 | } else { |
2539 | ret = xmlRegCheckCharacter(atom2, atom1->codepoint); |
2540 | if (ret < 0) |
2541 | ret = 1; |
2542 | } |
2543 | break; |
2544 | case XML_REGEXP_RANGES: |
2545 | if (atom2->type == XML_REGEXP_RANGES) { |
2546 | int i, j, res; |
2547 | xmlRegRangePtr r1, r2; |
2548 | |
2549 | /* |
2550 | * need to check that none of the ranges eventually matches |
2551 | */ |
2552 | for (i = 0;i < atom1->nbRanges;i++) { |
2553 | for (j = 0;j < atom2->nbRanges;j++) { |
2554 | r1 = atom1->ranges[i]; |
2555 | r2 = atom2->ranges[j]; |
2556 | res = xmlFACompareRanges(r1, r2); |
2557 | if (res == 1) { |
2558 | ret = 1; |
2559 | goto done; |
2560 | } |
2561 | } |
2562 | } |
2563 | ret = 0; |
2564 | } |
2565 | break; |
2566 | default: |
2567 | goto not_determinist; |
2568 | } |
2569 | done: |
2570 | if (atom1->neg != atom2->neg) { |
2571 | ret = !ret; |
2572 | } |
2573 | if (ret == 0) |
2574 | return(0); |
2575 | not_determinist: |
2576 | return(1); |
2577 | } |
2578 | |
2579 | /** |
2580 | * xmlFARecurseDeterminism: |
2581 | * @ctxt: a regexp parser context |
2582 | * |
2583 | * Check whether the associated regexp is determinist, |
2584 | * should be called after xmlFAEliminateEpsilonTransitions() |
2585 | * |
2586 | */ |
2587 | static int |
2588 | xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state, |
2589 | int to, xmlRegAtomPtr atom) { |
2590 | int ret = 1; |
2591 | int res; |
2592 | int transnr, nbTrans; |
2593 | xmlRegTransPtr t1; |
2594 | int deep = 1; |
2595 | |
2596 | if (state == NULL) |
2597 | return(ret); |
2598 | if (state->markd == XML_REGEXP_MARK_VISITED) |
2599 | return(ret); |
2600 | |
2601 | if (ctxt->flags & AM_AUTOMATA_RNG) |
2602 | deep = 0; |
2603 | |
2604 | /* |
2605 | * don't recurse on transitions potentially added in the course of |
2606 | * the elimination. |
2607 | */ |
2608 | nbTrans = state->nbTrans; |
2609 | for (transnr = 0;transnr < nbTrans;transnr++) { |
2610 | t1 = &(state->trans[transnr]); |
2611 | /* |
2612 | * check transitions conflicting with the one looked at |
2613 | */ |
2614 | if (t1->atom == NULL) { |
2615 | if (t1->to < 0) |
2616 | continue; |
2617 | state->markd = XML_REGEXP_MARK_VISITED; |
2618 | res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to], |
2619 | to, atom); |
2620 | state->markd = 0; |
2621 | if (res == 0) { |
2622 | ret = 0; |
2623 | /* t1->nd = 1; */ |
2624 | } |
2625 | continue; |
2626 | } |
2627 | if (t1->to != to) |
2628 | continue; |
2629 | if (xmlFACompareAtoms(t1->atom, atom, deep)) { |
2630 | ret = 0; |
2631 | /* mark the transition as non-deterministic */ |
2632 | t1->nd = 1; |
2633 | } |
2634 | } |
2635 | return(ret); |
2636 | } |
2637 | |
2638 | /** |
2639 | * xmlFAComputesDeterminism: |
2640 | * @ctxt: a regexp parser context |
2641 | * |
2642 | * Check whether the associated regexp is determinist, |
2643 | * should be called after xmlFAEliminateEpsilonTransitions() |
2644 | * |
2645 | */ |
2646 | static int |
2647 | xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) { |
2648 | int statenr, transnr; |
2649 | xmlRegStatePtr state; |
2650 | xmlRegTransPtr t1, t2, last; |
2651 | int i; |
2652 | int ret = 1; |
2653 | int deep = 1; |
2654 | |
2655 | #ifdef DEBUG_REGEXP_GRAPH |
2656 | printf("xmlFAComputesDeterminism\n" ); |
2657 | xmlRegPrintCtxt(stdout, ctxt); |
2658 | #endif |
2659 | if (ctxt->determinist != -1) |
2660 | return(ctxt->determinist); |
2661 | |
2662 | if (ctxt->flags & AM_AUTOMATA_RNG) |
2663 | deep = 0; |
2664 | |
2665 | /* |
2666 | * First cleanup the automata removing cancelled transitions |
2667 | */ |
2668 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
2669 | state = ctxt->states[statenr]; |
2670 | if (state == NULL) |
2671 | continue; |
2672 | if (state->nbTrans < 2) |
2673 | continue; |
2674 | for (transnr = 0;transnr < state->nbTrans;transnr++) { |
2675 | t1 = &(state->trans[transnr]); |
2676 | /* |
2677 | * Determinism checks in case of counted or all transitions |
2678 | * will have to be handled separately |
2679 | */ |
2680 | if (t1->atom == NULL) { |
2681 | /* t1->nd = 1; */ |
2682 | continue; |
2683 | } |
2684 | if (t1->to == -1) /* eliminated */ |
2685 | continue; |
2686 | for (i = 0;i < transnr;i++) { |
2687 | t2 = &(state->trans[i]); |
2688 | if (t2->to == -1) /* eliminated */ |
2689 | continue; |
2690 | if (t2->atom != NULL) { |
2691 | if (t1->to == t2->to) { |
2692 | /* |
2693 | * Here we use deep because we want to keep the |
2694 | * transitions which indicate a conflict |
2695 | */ |
2696 | if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) && |
2697 | (t1->counter == t2->counter) && |
2698 | (t1->count == t2->count)) |
2699 | t2->to = -1; /* eliminated */ |
2700 | } |
2701 | } |
2702 | } |
2703 | } |
2704 | } |
2705 | |
2706 | /* |
2707 | * Check for all states that there aren't 2 transitions |
2708 | * with the same atom and a different target. |
2709 | */ |
2710 | for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
2711 | state = ctxt->states[statenr]; |
2712 | if (state == NULL) |
2713 | continue; |
2714 | if (state->nbTrans < 2) |
2715 | continue; |
2716 | last = NULL; |
2717 | for (transnr = 0;transnr < state->nbTrans;transnr++) { |
2718 | t1 = &(state->trans[transnr]); |
2719 | /* |
2720 | * Determinism checks in case of counted or all transitions |
2721 | * will have to be handled separately |
2722 | */ |
2723 | if (t1->atom == NULL) { |
2724 | continue; |
2725 | } |
2726 | if (t1->to == -1) /* eliminated */ |
2727 | continue; |
2728 | for (i = 0;i < transnr;i++) { |
2729 | t2 = &(state->trans[i]); |
2730 | if (t2->to == -1) /* eliminated */ |
2731 | continue; |
2732 | if (t2->atom != NULL) { |
2733 | /* |
2734 | * But here we don't use deep because we want to |
2735 | * find transitions which indicate a conflict |
2736 | */ |
2737 | if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) { |
2738 | ret = 0; |
2739 | /* mark the transitions as non-deterministic ones */ |
2740 | t1->nd = 1; |
2741 | t2->nd = 1; |
2742 | last = t1; |
2743 | } |
2744 | } else if (t1->to != -1) { |
2745 | /* |
2746 | * do the closure in case of remaining specific |
2747 | * epsilon transitions like choices or all |
2748 | */ |
2749 | ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to], |
2750 | t2->to, t2->atom); |
2751 | /* don't shortcut the computation so all non deterministic |
2752 | transition get marked down |
2753 | if (ret == 0) |
2754 | return(0); |
2755 | */ |
2756 | if (ret == 0) { |
2757 | t1->nd = 1; |
2758 | /* t2->nd = 1; */ |
2759 | last = t1; |
2760 | } |
2761 | } |
2762 | } |
2763 | /* don't shortcut the computation so all non deterministic |
2764 | transition get marked down |
2765 | if (ret == 0) |
2766 | break; */ |
2767 | } |
2768 | |
2769 | /* |
2770 | * mark specifically the last non-deterministic transition |
2771 | * from a state since there is no need to set-up rollback |
2772 | * from it |
2773 | */ |
2774 | if (last != NULL) { |
2775 | last->nd = 2; |
2776 | } |
2777 | |
2778 | /* don't shortcut the computation so all non deterministic |
2779 | transition get marked down |
2780 | if (ret == 0) |
2781 | break; */ |
2782 | } |
2783 | |
2784 | ctxt->determinist = ret; |
2785 | return(ret); |
2786 | } |
2787 | |
2788 | /************************************************************************ |
2789 | * * |
2790 | * Routines to check input against transition atoms * |
2791 | * * |
2792 | ************************************************************************/ |
2793 | |
2794 | static int |
2795 | xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg, |
2796 | int start, int end, const xmlChar *blockName) { |
2797 | int ret = 0; |
2798 | |
2799 | switch (type) { |
2800 | case XML_REGEXP_STRING: |
2801 | case XML_REGEXP_SUBREG: |
2802 | case XML_REGEXP_RANGES: |
2803 | case XML_REGEXP_EPSILON: |
2804 | return(-1); |
2805 | case XML_REGEXP_ANYCHAR: |
2806 | ret = ((codepoint != '\n') && (codepoint != '\r')); |
2807 | break; |
2808 | case XML_REGEXP_CHARVAL: |
2809 | ret = ((codepoint >= start) && (codepoint <= end)); |
2810 | break; |
2811 | case XML_REGEXP_NOTSPACE: |
2812 | neg = !neg; |
2813 | /* Falls through. */ |
2814 | case XML_REGEXP_ANYSPACE: |
2815 | ret = ((codepoint == '\n') || (codepoint == '\r') || |
2816 | (codepoint == '\t') || (codepoint == ' ')); |
2817 | break; |
2818 | case XML_REGEXP_NOTINITNAME: |
2819 | neg = !neg; |
2820 | /* Falls through. */ |
2821 | case XML_REGEXP_INITNAME: |
2822 | ret = (IS_LETTER(codepoint) || |
2823 | (codepoint == '_') || (codepoint == ':')); |
2824 | break; |
2825 | case XML_REGEXP_NOTNAMECHAR: |
2826 | neg = !neg; |
2827 | /* Falls through. */ |
2828 | case XML_REGEXP_NAMECHAR: |
2829 | ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) || |
2830 | (codepoint == '.') || (codepoint == '-') || |
2831 | (codepoint == '_') || (codepoint == ':') || |
2832 | IS_COMBINING(codepoint) || IS_EXTENDER(codepoint)); |
2833 | break; |
2834 | case XML_REGEXP_NOTDECIMAL: |
2835 | neg = !neg; |
2836 | /* Falls through. */ |
2837 | case XML_REGEXP_DECIMAL: |
2838 | ret = xmlUCSIsCatNd(codepoint); |
2839 | break; |
2840 | case XML_REGEXP_REALCHAR: |
2841 | neg = !neg; |
2842 | /* Falls through. */ |
2843 | case XML_REGEXP_NOTREALCHAR: |
2844 | ret = xmlUCSIsCatP(codepoint); |
2845 | if (ret == 0) |
2846 | ret = xmlUCSIsCatZ(codepoint); |
2847 | if (ret == 0) |
2848 | ret = xmlUCSIsCatC(codepoint); |
2849 | break; |
2850 | case XML_REGEXP_LETTER: |
2851 | ret = xmlUCSIsCatL(codepoint); |
2852 | break; |
2853 | case XML_REGEXP_LETTER_UPPERCASE: |
2854 | ret = xmlUCSIsCatLu(codepoint); |
2855 | break; |
2856 | case XML_REGEXP_LETTER_LOWERCASE: |
2857 | ret = xmlUCSIsCatLl(codepoint); |
2858 | break; |
2859 | case XML_REGEXP_LETTER_TITLECASE: |
2860 | ret = xmlUCSIsCatLt(codepoint); |
2861 | break; |
2862 | case XML_REGEXP_LETTER_MODIFIER: |
2863 | ret = xmlUCSIsCatLm(codepoint); |
2864 | break; |
2865 | case XML_REGEXP_LETTER_OTHERS: |
2866 | ret = xmlUCSIsCatLo(codepoint); |
2867 | break; |
2868 | case XML_REGEXP_MARK: |
2869 | ret = xmlUCSIsCatM(codepoint); |
2870 | break; |
2871 | case XML_REGEXP_MARK_NONSPACING: |
2872 | ret = xmlUCSIsCatMn(codepoint); |
2873 | break; |
2874 | case XML_REGEXP_MARK_SPACECOMBINING: |
2875 | ret = xmlUCSIsCatMc(codepoint); |
2876 | break; |
2877 | case XML_REGEXP_MARK_ENCLOSING: |
2878 | ret = xmlUCSIsCatMe(codepoint); |
2879 | break; |
2880 | case XML_REGEXP_NUMBER: |
2881 | ret = xmlUCSIsCatN(codepoint); |
2882 | break; |
2883 | case XML_REGEXP_NUMBER_DECIMAL: |
2884 | ret = xmlUCSIsCatNd(codepoint); |
2885 | break; |
2886 | case XML_REGEXP_NUMBER_LETTER: |
2887 | ret = xmlUCSIsCatNl(codepoint); |
2888 | break; |
2889 | case XML_REGEXP_NUMBER_OTHERS: |
2890 | ret = xmlUCSIsCatNo(codepoint); |
2891 | break; |
2892 | case XML_REGEXP_PUNCT: |
2893 | ret = xmlUCSIsCatP(codepoint); |
2894 | break; |
2895 | case XML_REGEXP_PUNCT_CONNECTOR: |
2896 | ret = xmlUCSIsCatPc(codepoint); |
2897 | break; |
2898 | case XML_REGEXP_PUNCT_DASH: |
2899 | ret = xmlUCSIsCatPd(codepoint); |
2900 | break; |
2901 | case XML_REGEXP_PUNCT_OPEN: |
2902 | ret = xmlUCSIsCatPs(codepoint); |
2903 | break; |
2904 | case XML_REGEXP_PUNCT_CLOSE: |
2905 | ret = xmlUCSIsCatPe(codepoint); |
2906 | break; |
2907 | case XML_REGEXP_PUNCT_INITQUOTE: |
2908 | ret = xmlUCSIsCatPi(codepoint); |
2909 | break; |
2910 | case XML_REGEXP_PUNCT_FINQUOTE: |
2911 | ret = xmlUCSIsCatPf(codepoint); |
2912 | break; |
2913 | case XML_REGEXP_PUNCT_OTHERS: |
2914 | ret = xmlUCSIsCatPo(codepoint); |
2915 | break; |
2916 | case XML_REGEXP_SEPAR: |
2917 | ret = xmlUCSIsCatZ(codepoint); |
2918 | break; |
2919 | case XML_REGEXP_SEPAR_SPACE: |
2920 | ret = xmlUCSIsCatZs(codepoint); |
2921 | break; |
2922 | case XML_REGEXP_SEPAR_LINE: |
2923 | ret = xmlUCSIsCatZl(codepoint); |
2924 | break; |
2925 | case XML_REGEXP_SEPAR_PARA: |
2926 | ret = xmlUCSIsCatZp(codepoint); |
2927 | break; |
2928 | case XML_REGEXP_SYMBOL: |
2929 | ret = xmlUCSIsCatS(codepoint); |
2930 | break; |
2931 | case XML_REGEXP_SYMBOL_MATH: |
2932 | ret = xmlUCSIsCatSm(codepoint); |
2933 | break; |
2934 | case XML_REGEXP_SYMBOL_CURRENCY: |
2935 | ret = xmlUCSIsCatSc(codepoint); |
2936 | break; |
2937 | case XML_REGEXP_SYMBOL_MODIFIER: |
2938 | ret = xmlUCSIsCatSk(codepoint); |
2939 | break; |
2940 | case XML_REGEXP_SYMBOL_OTHERS: |
2941 | ret = xmlUCSIsCatSo(codepoint); |
2942 | break; |
2943 | case XML_REGEXP_OTHER: |
2944 | ret = xmlUCSIsCatC(codepoint); |
2945 | break; |
2946 | case XML_REGEXP_OTHER_CONTROL: |
2947 | ret = xmlUCSIsCatCc(codepoint); |
2948 | break; |
2949 | case XML_REGEXP_OTHER_FORMAT: |
2950 | ret = xmlUCSIsCatCf(codepoint); |
2951 | break; |
2952 | case XML_REGEXP_OTHER_PRIVATE: |
2953 | ret = xmlUCSIsCatCo(codepoint); |
2954 | break; |
2955 | case XML_REGEXP_OTHER_NA: |
2956 | /* ret = xmlUCSIsCatCn(codepoint); */ |
2957 | /* Seems it doesn't exist anymore in recent Unicode releases */ |
2958 | ret = 0; |
2959 | break; |
2960 | case XML_REGEXP_BLOCK_NAME: |
2961 | ret = xmlUCSIsBlock(codepoint, (const char *) blockName); |
2962 | break; |
2963 | } |
2964 | if (neg) |
2965 | return(!ret); |
2966 | return(ret); |
2967 | } |
2968 | |
2969 | static int |
2970 | xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) { |
2971 | int i, ret = 0; |
2972 | xmlRegRangePtr range; |
2973 | |
2974 | if ((atom == NULL) || (!IS_CHAR(codepoint))) |
2975 | return(-1); |
2976 | |
2977 | switch (atom->type) { |
2978 | case XML_REGEXP_SUBREG: |
2979 | case XML_REGEXP_EPSILON: |
2980 | return(-1); |
2981 | case XML_REGEXP_CHARVAL: |
2982 | return(codepoint == atom->codepoint); |
2983 | case XML_REGEXP_RANGES: { |
2984 | int accept = 0; |
2985 | |
2986 | for (i = 0;i < atom->nbRanges;i++) { |
2987 | range = atom->ranges[i]; |
2988 | if (range->neg == 2) { |
2989 | ret = xmlRegCheckCharacterRange(range->type, codepoint, |
2990 | 0, range->start, range->end, |
2991 | range->blockName); |
2992 | if (ret != 0) |
2993 | return(0); /* excluded char */ |
2994 | } else if (range->neg) { |
2995 | ret = xmlRegCheckCharacterRange(range->type, codepoint, |
2996 | 0, range->start, range->end, |
2997 | range->blockName); |
2998 | if (ret == 0) |
2999 | accept = 1; |
3000 | else |
3001 | return(0); |
3002 | } else { |
3003 | ret = xmlRegCheckCharacterRange(range->type, codepoint, |
3004 | 0, range->start, range->end, |
3005 | range->blockName); |
3006 | if (ret != 0) |
3007 | accept = 1; /* might still be excluded */ |
3008 | } |
3009 | } |
3010 | return(accept); |
3011 | } |
3012 | case XML_REGEXP_STRING: |
3013 | printf("TODO: XML_REGEXP_STRING\n" ); |
3014 | return(-1); |
3015 | case XML_REGEXP_ANYCHAR: |
3016 | case XML_REGEXP_ANYSPACE: |
3017 | case XML_REGEXP_NOTSPACE: |
3018 | case XML_REGEXP_INITNAME: |
3019 | case XML_REGEXP_NOTINITNAME: |
3020 | case XML_REGEXP_NAMECHAR: |
3021 | case XML_REGEXP_NOTNAMECHAR: |
3022 | case XML_REGEXP_DECIMAL: |
3023 | case XML_REGEXP_NOTDECIMAL: |
3024 | case XML_REGEXP_REALCHAR: |
3025 | case XML_REGEXP_NOTREALCHAR: |
3026 | case XML_REGEXP_LETTER: |
3027 | case XML_REGEXP_LETTER_UPPERCASE: |
3028 | case XML_REGEXP_LETTER_LOWERCASE: |
3029 | case XML_REGEXP_LETTER_TITLECASE: |
3030 | case XML_REGEXP_LETTER_MODIFIER: |
3031 | case XML_REGEXP_LETTER_OTHERS: |
3032 | case XML_REGEXP_MARK: |
3033 | case XML_REGEXP_MARK_NONSPACING: |
3034 | case XML_REGEXP_MARK_SPACECOMBINING: |
3035 | case XML_REGEXP_MARK_ENCLOSING: |
3036 | case XML_REGEXP_NUMBER: |
3037 | case XML_REGEXP_NUMBER_DECIMAL: |
3038 | case XML_REGEXP_NUMBER_LETTER: |
3039 | case XML_REGEXP_NUMBER_OTHERS: |
3040 | case XML_REGEXP_PUNCT: |
3041 | case XML_REGEXP_PUNCT_CONNECTOR: |
3042 | case XML_REGEXP_PUNCT_DASH: |
3043 | case XML_REGEXP_PUNCT_OPEN: |
3044 | case XML_REGEXP_PUNCT_CLOSE: |
3045 | case XML_REGEXP_PUNCT_INITQUOTE: |
3046 | case XML_REGEXP_PUNCT_FINQUOTE: |
3047 | case XML_REGEXP_PUNCT_OTHERS: |
3048 | case XML_REGEXP_SEPAR: |
3049 | case XML_REGEXP_SEPAR_SPACE: |
3050 | case XML_REGEXP_SEPAR_LINE: |
3051 | case XML_REGEXP_SEPAR_PARA: |
3052 | case XML_REGEXP_SYMBOL: |
3053 | case XML_REGEXP_SYMBOL_MATH: |
3054 | case XML_REGEXP_SYMBOL_CURRENCY: |
3055 | case XML_REGEXP_SYMBOL_MODIFIER: |
3056 | case XML_REGEXP_SYMBOL_OTHERS: |
3057 | case XML_REGEXP_OTHER: |
3058 | case XML_REGEXP_OTHER_CONTROL: |
3059 | case XML_REGEXP_OTHER_FORMAT: |
3060 | case XML_REGEXP_OTHER_PRIVATE: |
3061 | case XML_REGEXP_OTHER_NA: |
3062 | case XML_REGEXP_BLOCK_NAME: |
3063 | ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0, |
3064 | (const xmlChar *)atom->valuep); |
3065 | if (atom->neg) |
3066 | ret = !ret; |
3067 | break; |
3068 | } |
3069 | return(ret); |
3070 | } |
3071 | |
3072 | /************************************************************************ |
3073 | * * |
3074 | * Saving and restoring state of an execution context * |
3075 | * * |
3076 | ************************************************************************/ |
3077 | |
3078 | #ifdef DEBUG_REGEXP_EXEC |
3079 | static void |
3080 | xmlFARegDebugExec(xmlRegExecCtxtPtr exec) { |
3081 | printf("state: %d:%d:idx %d" , exec->state->no, exec->transno, exec->index); |
3082 | if (exec->inputStack != NULL) { |
3083 | int i; |
3084 | printf(": " ); |
3085 | for (i = 0;(i < 3) && (i < exec->inputStackNr);i++) |
3086 | printf("%s " , (const char *) |
3087 | exec->inputStack[exec->inputStackNr - (i + 1)].value); |
3088 | } else { |
3089 | printf(": %s" , &(exec->inputString[exec->index])); |
3090 | } |
3091 | printf("\n" ); |
3092 | } |
3093 | #endif |
3094 | |
3095 | static void |
3096 | xmlFARegExecSave(xmlRegExecCtxtPtr exec) { |
3097 | #ifdef DEBUG_REGEXP_EXEC |
3098 | printf("saving " ); |
3099 | exec->transno++; |
3100 | xmlFARegDebugExec(exec); |
3101 | exec->transno--; |
3102 | #endif |
3103 | #ifdef MAX_PUSH |
3104 | if (exec->nbPush > MAX_PUSH) { |
3105 | return; |
3106 | } |
3107 | exec->nbPush++; |
3108 | #endif |
3109 | |
3110 | if (exec->maxRollbacks == 0) { |
3111 | exec->maxRollbacks = 4; |
3112 | exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks * |
3113 | sizeof(xmlRegExecRollback)); |
3114 | if (exec->rollbacks == NULL) { |
3115 | xmlRegexpErrMemory(NULL, "saving regexp" ); |
3116 | exec->maxRollbacks = 0; |
3117 | return; |
3118 | } |
3119 | memset(exec->rollbacks, 0, |
3120 | exec->maxRollbacks * sizeof(xmlRegExecRollback)); |
3121 | } else if (exec->nbRollbacks >= exec->maxRollbacks) { |
3122 | xmlRegExecRollback *tmp; |
3123 | int len = exec->maxRollbacks; |
3124 | |
3125 | exec->maxRollbacks *= 2; |
3126 | tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks, |
3127 | exec->maxRollbacks * sizeof(xmlRegExecRollback)); |
3128 | if (tmp == NULL) { |
3129 | xmlRegexpErrMemory(NULL, "saving regexp" ); |
3130 | exec->maxRollbacks /= 2; |
3131 | return; |
3132 | } |
3133 | exec->rollbacks = tmp; |
3134 | tmp = &exec->rollbacks[len]; |
3135 | memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback)); |
3136 | } |
3137 | exec->rollbacks[exec->nbRollbacks].state = exec->state; |
3138 | exec->rollbacks[exec->nbRollbacks].index = exec->index; |
3139 | exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1; |
3140 | if (exec->comp->nbCounters > 0) { |
3141 | if (exec->rollbacks[exec->nbRollbacks].counts == NULL) { |
3142 | exec->rollbacks[exec->nbRollbacks].counts = (int *) |
3143 | xmlMalloc(exec->comp->nbCounters * sizeof(int)); |
3144 | if (exec->rollbacks[exec->nbRollbacks].counts == NULL) { |
3145 | xmlRegexpErrMemory(NULL, "saving regexp" ); |
3146 | exec->status = -5; |
3147 | return; |
3148 | } |
3149 | } |
3150 | memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts, |
3151 | exec->comp->nbCounters * sizeof(int)); |
3152 | } |
3153 | exec->nbRollbacks++; |
3154 | } |
3155 | |
3156 | static void |
3157 | xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) { |
3158 | if (exec->nbRollbacks <= 0) { |
3159 | exec->status = -1; |
3160 | #ifdef DEBUG_REGEXP_EXEC |
3161 | printf("rollback failed on empty stack\n" ); |
3162 | #endif |
3163 | return; |
3164 | } |
3165 | exec->nbRollbacks--; |
3166 | exec->state = exec->rollbacks[exec->nbRollbacks].state; |
3167 | exec->index = exec->rollbacks[exec->nbRollbacks].index; |
3168 | exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch; |
3169 | if (exec->comp->nbCounters > 0) { |
3170 | if (exec->rollbacks[exec->nbRollbacks].counts == NULL) { |
3171 | fprintf(stderr, "exec save: allocation failed" ); |
3172 | exec->status = -6; |
3173 | return; |
3174 | } |
3175 | if (exec->counts) { |
3176 | memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts, |
3177 | exec->comp->nbCounters * sizeof(int)); |
3178 | } |
3179 | } |
3180 | |
3181 | #ifdef DEBUG_REGEXP_EXEC |
3182 | printf("restored " ); |
3183 | xmlFARegDebugExec(exec); |
3184 | #endif |
3185 | } |
3186 | |
3187 | /************************************************************************ |
3188 | * * |
3189 | * Verifier, running an input against a compiled regexp * |
3190 | * * |
3191 | ************************************************************************/ |
3192 | |
3193 | static int |
3194 | xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) { |
3195 | xmlRegExecCtxt execval; |
3196 | xmlRegExecCtxtPtr exec = &execval; |
3197 | int ret, codepoint = 0, len, deter; |
3198 | |
3199 | exec->inputString = content; |
3200 | exec->index = 0; |
3201 | exec->nbPush = 0; |
3202 | exec->determinist = 1; |
3203 | exec->maxRollbacks = 0; |
3204 | exec->nbRollbacks = 0; |
3205 | exec->rollbacks = NULL; |
3206 | exec->status = 0; |
3207 | exec->comp = comp; |
3208 | exec->state = comp->states[0]; |
3209 | exec->transno = 0; |
3210 | exec->transcount = 0; |
3211 | exec->inputStack = NULL; |
3212 | exec->inputStackMax = 0; |
3213 | if (comp->nbCounters > 0) { |
3214 | exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)); |
3215 | if (exec->counts == NULL) { |
3216 | xmlRegexpErrMemory(NULL, "running regexp" ); |
3217 | return(-1); |
3218 | } |
3219 | memset(exec->counts, 0, comp->nbCounters * sizeof(int)); |
3220 | } else |
3221 | exec->counts = NULL; |
3222 | while ((exec->status == 0) && (exec->state != NULL) && |
3223 | ((exec->inputString[exec->index] != 0) || |
3224 | ((exec->state != NULL) && |
3225 | (exec->state->type != XML_REGEXP_FINAL_STATE)))) { |
3226 | xmlRegTransPtr trans; |
3227 | xmlRegAtomPtr atom; |
3228 | |
3229 | /* |
3230 | * If end of input on non-terminal state, rollback, however we may |
3231 | * still have epsilon like transition for counted transitions |
3232 | * on counters, in that case don't break too early. Additionally, |
3233 | * if we are working on a range like "AB{0,2}", where B is not present, |
3234 | * we don't want to break. |
3235 | */ |
3236 | len = 1; |
3237 | if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) { |
3238 | /* |
3239 | * if there is a transition, we must check if |
3240 | * atom allows minOccurs of 0 |
3241 | */ |
3242 | if (exec->transno < exec->state->nbTrans) { |
3243 | trans = &exec->state->trans[exec->transno]; |
3244 | if (trans->to >=0) { |
3245 | atom = trans->atom; |
3246 | if (!((atom->min == 0) && (atom->max > 0))) |
3247 | goto rollback; |
3248 | } |
3249 | } else |
3250 | goto rollback; |
3251 | } |
3252 | |
3253 | exec->transcount = 0; |
3254 | for (;exec->transno < exec->state->nbTrans;exec->transno++) { |
3255 | trans = &exec->state->trans[exec->transno]; |
3256 | if (trans->to < 0) |
3257 | continue; |
3258 | atom = trans->atom; |
3259 | ret = 0; |
3260 | deter = 1; |
3261 | if (trans->count >= 0) { |
3262 | int count; |
3263 | xmlRegCounterPtr counter; |
3264 | |
3265 | if (exec->counts == NULL) { |
3266 | exec->status = -1; |
3267 | goto error; |
3268 | } |
3269 | /* |
3270 | * A counted transition. |
3271 | */ |
3272 | |
3273 | count = exec->counts[trans->count]; |
3274 | counter = &exec->comp->counters[trans->count]; |
3275 | #ifdef DEBUG_REGEXP_EXEC |
3276 | printf("testing count %d: val %d, min %d, max %d\n" , |
3277 | trans->count, count, counter->min, counter->max); |
3278 | #endif |
3279 | ret = ((count >= counter->min) && (count <= counter->max)); |
3280 | if ((ret) && (counter->min != counter->max)) |
3281 | deter = 0; |
3282 | } else if (atom == NULL) { |
3283 | fprintf(stderr, "epsilon transition left at runtime\n" ); |
3284 | exec->status = -2; |
3285 | break; |
3286 | } else if (exec->inputString[exec->index] != 0) { |
3287 | codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len); |
3288 | ret = xmlRegCheckCharacter(atom, codepoint); |
3289 | if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) { |
3290 | xmlRegStatePtr to = comp->states[trans->to]; |
3291 | |
3292 | /* |
3293 | * this is a multiple input sequence |
3294 | * If there is a counter associated increment it now. |
3295 | * before potentially saving and rollback |
3296 | * do not increment if the counter is already over the |
3297 | * maximum limit in which case get to next transition |
3298 | */ |
3299 | if (trans->counter >= 0) { |
3300 | xmlRegCounterPtr counter; |
3301 | |
3302 | if ((exec->counts == NULL) || |
3303 | (exec->comp == NULL) || |
3304 | (exec->comp->counters == NULL)) { |
3305 | exec->status = -1; |
3306 | goto error; |
3307 | } |
3308 | counter = &exec->comp->counters[trans->counter]; |
3309 | if (exec->counts[trans->counter] >= counter->max) |
3310 | continue; /* for loop on transitions */ |
3311 | |
3312 | #ifdef DEBUG_REGEXP_EXEC |
3313 | printf("Increasing count %d\n" , trans->counter); |
3314 | #endif |
3315 | exec->counts[trans->counter]++; |
3316 | } |
3317 | if (exec->state->nbTrans > exec->transno + 1) { |
3318 | xmlFARegExecSave(exec); |
3319 | } |
3320 | exec->transcount = 1; |
3321 | do { |
3322 | /* |
3323 | * Try to progress as much as possible on the input |
3324 | */ |
3325 | if (exec->transcount == atom->max) { |
3326 | break; |
3327 | } |
3328 | exec->index += len; |
3329 | /* |
3330 | * End of input: stop here |
3331 | */ |
3332 | if (exec->inputString[exec->index] == 0) { |
3333 | exec->index -= len; |
3334 | break; |
3335 | } |
3336 | if (exec->transcount >= atom->min) { |
3337 | int transno = exec->transno; |
3338 | xmlRegStatePtr state = exec->state; |
3339 | |
3340 | /* |
3341 | * The transition is acceptable save it |
3342 | */ |
3343 | exec->transno = -1; /* trick */ |
3344 | exec->state = to; |
3345 | xmlFARegExecSave(exec); |
3346 | exec->transno = transno; |
3347 | exec->state = state; |
3348 | } |
3349 | codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), |
3350 | len); |
3351 | ret = xmlRegCheckCharacter(atom, codepoint); |
3352 | exec->transcount++; |
3353 | } while (ret == 1); |
3354 | if (exec->transcount < atom->min) |
3355 | ret = 0; |
3356 | |
3357 | /* |
3358 | * If the last check failed but one transition was found |
3359 | * possible, rollback |
3360 | */ |
3361 | if (ret < 0) |
3362 | ret = 0; |
3363 | if (ret == 0) { |
3364 | goto rollback; |
3365 | } |
3366 | if (trans->counter >= 0) { |
3367 | if (exec->counts == NULL) { |
3368 | exec->status = -1; |
3369 | goto error; |
3370 | } |
3371 | #ifdef DEBUG_REGEXP_EXEC |
3372 | printf("Decreasing count %d\n" , trans->counter); |
3373 | #endif |
3374 | exec->counts[trans->counter]--; |
3375 | } |
3376 | } else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) { |
3377 | /* |
3378 | * we don't match on the codepoint, but minOccurs of 0 |
3379 | * says that's ok. Setting len to 0 inhibits stepping |
3380 | * over the codepoint. |
3381 | */ |
3382 | exec->transcount = 1; |
3383 | len = 0; |
3384 | ret = 1; |
3385 | } |
3386 | } else if ((atom->min == 0) && (atom->max > 0)) { |
3387 | /* another spot to match when minOccurs is 0 */ |
3388 | exec->transcount = 1; |
3389 | len = 0; |
3390 | ret = 1; |
3391 | } |
3392 | if (ret == 1) { |
3393 | if ((trans->nd == 1) || |
3394 | ((trans->count >= 0) && (deter == 0) && |
3395 | (exec->state->nbTrans > exec->transno + 1))) { |
3396 | #ifdef DEBUG_REGEXP_EXEC |
3397 | if (trans->nd == 1) |
3398 | printf("Saving on nd transition atom %d for %c at %d\n" , |
3399 | trans->atom->no, codepoint, exec->index); |
3400 | else |
3401 | printf("Saving on counted transition count %d for %c at %d\n" , |
3402 | trans->count, codepoint, exec->index); |
3403 | #endif |
3404 | xmlFARegExecSave(exec); |
3405 | } |
3406 | if (trans->counter >= 0) { |
3407 | xmlRegCounterPtr counter; |
3408 | |
3409 | /* make sure we don't go over the counter maximum value */ |
3410 | if ((exec->counts == NULL) || |
3411 | (exec->comp == NULL) || |
3412 | (exec->comp->counters == NULL)) { |
3413 | exec->status = -1; |
3414 | goto error; |
3415 | } |
3416 | counter = &exec->comp->counters[trans->counter]; |
3417 | if (exec->counts[trans->counter] >= counter->max) |
3418 | continue; /* for loop on transitions */ |
3419 | #ifdef DEBUG_REGEXP_EXEC |
3420 | printf("Increasing count %d\n" , trans->counter); |
3421 | #endif |
3422 | exec->counts[trans->counter]++; |
3423 | } |
3424 | if ((trans->count >= 0) && |
3425 | (trans->count < REGEXP_ALL_COUNTER)) { |
3426 | if (exec->counts == NULL) { |
3427 | exec->status = -1; |
3428 | goto error; |
3429 | } |
3430 | #ifdef DEBUG_REGEXP_EXEC |
3431 | printf("resetting count %d on transition\n" , |
3432 | trans->count); |
3433 | #endif |
3434 | exec->counts[trans->count] = 0; |
3435 | } |
3436 | #ifdef DEBUG_REGEXP_EXEC |
3437 | printf("entering state %d\n" , trans->to); |
3438 | #endif |
3439 | exec->state = comp->states[trans->to]; |
3440 | exec->transno = 0; |
3441 | if (trans->atom != NULL) { |
3442 | exec->index += len; |
3443 | } |
3444 | goto progress; |
3445 | } else if (ret < 0) { |
3446 | exec->status = -4; |
3447 | break; |
3448 | } |
3449 | } |
3450 | if ((exec->transno != 0) || (exec->state->nbTrans == 0)) { |
3451 | rollback: |
3452 | /* |
3453 | * Failed to find a way out |
3454 | */ |
3455 | exec->determinist = 0; |
3456 | #ifdef DEBUG_REGEXP_EXEC |
3457 | printf("rollback from state %d on %d:%c\n" , exec->state->no, |
3458 | codepoint,codepoint); |
3459 | #endif |
3460 | xmlFARegExecRollBack(exec); |
3461 | } |
3462 | progress: |
3463 | continue; |
3464 | } |
3465 | error: |
3466 | if (exec->rollbacks != NULL) { |
3467 | if (exec->counts != NULL) { |
3468 | int i; |
3469 | |
3470 | for (i = 0;i < exec->maxRollbacks;i++) |
3471 | if (exec->rollbacks[i].counts != NULL) |
3472 | xmlFree(exec->rollbacks[i].counts); |
3473 | } |
3474 | xmlFree(exec->rollbacks); |
3475 | } |
3476 | if (exec->state == NULL) |
3477 | return(-1); |
3478 | if (exec->counts != NULL) |
3479 | xmlFree(exec->counts); |
3480 | if (exec->status == 0) |
3481 | return(1); |
3482 | if (exec->status == -1) { |
3483 | if (exec->nbPush > MAX_PUSH) |
3484 | return(-1); |
3485 | return(0); |
3486 | } |
3487 | return(exec->status); |
3488 | } |
3489 | |
3490 | /************************************************************************ |
3491 | * * |
3492 | * Progressive interface to the verifier one atom at a time * |
3493 | * * |
3494 | ************************************************************************/ |
3495 | #ifdef DEBUG_ERR |
3496 | static void testerr(xmlRegExecCtxtPtr exec); |
3497 | #endif |
3498 | |
3499 | /** |
3500 | * xmlRegNewExecCtxt: |
3501 | * @comp: a precompiled regular expression |
3502 | * @callback: a callback function used for handling progresses in the |
3503 | * automata matching phase |
3504 | * @data: the context data associated to the callback in this context |
3505 | * |
3506 | * Build a context used for progressive evaluation of a regexp. |
3507 | * |
3508 | * Returns the new context |
3509 | */ |
3510 | xmlRegExecCtxtPtr |
3511 | xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) { |
3512 | xmlRegExecCtxtPtr exec; |
3513 | |
3514 | if (comp == NULL) |
3515 | return(NULL); |
3516 | if ((comp->compact == NULL) && (comp->states == NULL)) |
3517 | return(NULL); |
3518 | exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt)); |
3519 | if (exec == NULL) { |
3520 | xmlRegexpErrMemory(NULL, "creating execution context" ); |
3521 | return(NULL); |
3522 | } |
3523 | memset(exec, 0, sizeof(xmlRegExecCtxt)); |
3524 | exec->inputString = NULL; |
3525 | exec->index = 0; |
3526 | exec->determinist = 1; |
3527 | exec->maxRollbacks = 0; |
3528 | exec->nbRollbacks = 0; |
3529 | exec->rollbacks = NULL; |
3530 | exec->status = 0; |
3531 | exec->comp = comp; |
3532 | if (comp->compact == NULL) |
3533 | exec->state = comp->states[0]; |
3534 | exec->transno = 0; |
3535 | exec->transcount = 0; |
3536 | exec->callback = callback; |
3537 | exec->data = data; |
3538 | if (comp->nbCounters > 0) { |
3539 | /* |
3540 | * For error handling, exec->counts is allocated twice the size |
3541 | * the second half is used to store the data in case of rollback |
3542 | */ |
3543 | exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int) |
3544 | * 2); |
3545 | if (exec->counts == NULL) { |
3546 | xmlRegexpErrMemory(NULL, "creating execution context" ); |
3547 | xmlFree(exec); |
3548 | return(NULL); |
3549 | } |
3550 | memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2); |
3551 | exec->errCounts = &exec->counts[comp->nbCounters]; |
3552 | } else { |
3553 | exec->counts = NULL; |
3554 | exec->errCounts = NULL; |
3555 | } |
3556 | exec->inputStackMax = 0; |
3557 | exec->inputStackNr = 0; |
3558 | exec->inputStack = NULL; |
3559 | exec->errStateNo = -1; |
3560 | exec->errString = NULL; |
3561 | exec->nbPush = 0; |
3562 | return(exec); |
3563 | } |
3564 | |
3565 | /** |
3566 | * xmlRegFreeExecCtxt: |
3567 | * @exec: a regular expression evaulation context |
3568 | * |
3569 | * Free the structures associated to a regular expression evaulation context. |
3570 | */ |
3571 | void |
3572 | xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) { |
3573 | if (exec == NULL) |
3574 | return; |
3575 | |
3576 | if (exec->rollbacks != NULL) { |
3577 | if (exec->counts != NULL) { |
3578 | int i; |
3579 | |
3580 | for (i = 0;i < exec->maxRollbacks;i++) |
3581 | if (exec->rollbacks[i].counts != NULL) |
3582 | xmlFree(exec->rollbacks[i].counts); |
3583 | } |
3584 | xmlFree(exec->rollbacks); |
3585 | } |
3586 | if (exec->counts != NULL) |
3587 | xmlFree(exec->counts); |
3588 | if (exec->inputStack != NULL) { |
3589 | int i; |
3590 | |
3591 | for (i = 0;i < exec->inputStackNr;i++) { |
3592 | if (exec->inputStack[i].value != NULL) |
3593 | xmlFree(exec->inputStack[i].value); |
3594 | } |
3595 | xmlFree(exec->inputStack); |
3596 | } |
3597 | if (exec->errString != NULL) |
3598 | xmlFree(exec->errString); |
3599 | xmlFree(exec); |
3600 | } |
3601 | |
3602 | static void |
3603 | xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value, |
3604 | void *data) { |
3605 | #ifdef DEBUG_PUSH |
3606 | printf("saving value: %d:%s\n" , exec->inputStackNr, value); |
3607 | #endif |
3608 | if (exec->inputStackMax == 0) { |
3609 | exec->inputStackMax = 4; |
3610 | exec->inputStack = (xmlRegInputTokenPtr) |
3611 | xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken)); |
3612 | if (exec->inputStack == NULL) { |
3613 | xmlRegexpErrMemory(NULL, "pushing input string" ); |
3614 | exec->inputStackMax = 0; |
3615 | return; |
3616 | } |
3617 | } else if (exec->inputStackNr + 1 >= exec->inputStackMax) { |
3618 | xmlRegInputTokenPtr tmp; |
3619 | |
3620 | exec->inputStackMax *= 2; |
3621 | tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack, |
3622 | exec->inputStackMax * sizeof(xmlRegInputToken)); |
3623 | if (tmp == NULL) { |
3624 | xmlRegexpErrMemory(NULL, "pushing input string" ); |
3625 | exec->inputStackMax /= 2; |
3626 | return; |
3627 | } |
3628 | exec->inputStack = tmp; |
3629 | } |
3630 | exec->inputStack[exec->inputStackNr].value = xmlStrdup(value); |
3631 | exec->inputStack[exec->inputStackNr].data = data; |
3632 | exec->inputStackNr++; |
3633 | exec->inputStack[exec->inputStackNr].value = NULL; |
3634 | exec->inputStack[exec->inputStackNr].data = NULL; |
3635 | } |
3636 | |
3637 | /** |
3638 | * xmlRegStrEqualWildcard: |
3639 | * @expStr: the string to be evaluated |
3640 | * @valStr: the validation string |
3641 | * |
3642 | * Checks if both strings are equal or have the same content. "*" |
3643 | * can be used as a wildcard in @valStr; "|" is used as a seperator of |
3644 | * substrings in both @expStr and @valStr. |
3645 | * |
3646 | * Returns 1 if the comparison is satisfied and the number of substrings |
3647 | * is equal, 0 otherwise. |
3648 | */ |
3649 | |
3650 | static int |
3651 | xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) { |
3652 | if (expStr == valStr) return(1); |
3653 | if (expStr == NULL) return(0); |
3654 | if (valStr == NULL) return(0); |
3655 | do { |
3656 | /* |
3657 | * Eval if we have a wildcard for the current item. |
3658 | */ |
3659 | if (*expStr != *valStr) { |
3660 | /* if one of them starts with a wildcard make valStr be it */ |
3661 | if (*valStr == '*') { |
3662 | const xmlChar *tmp; |
3663 | |
3664 | tmp = valStr; |
3665 | valStr = expStr; |
3666 | expStr = tmp; |
3667 | } |
3668 | if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) { |
3669 | do { |
3670 | if (*valStr == XML_REG_STRING_SEPARATOR) |
3671 | break; |
3672 | valStr++; |
3673 | } while (*valStr != 0); |
3674 | continue; |
3675 | } else |
3676 | return(0); |
3677 | } |
3678 | expStr++; |
3679 | valStr++; |
3680 | } while (*valStr != 0); |
3681 | if (*expStr != 0) |
3682 | return (0); |
3683 | else |
3684 | return (1); |
3685 | } |
3686 | |
3687 | /** |
3688 | * xmlRegCompactPushString: |
3689 | * @exec: a regexp execution context |
3690 | * @comp: the precompiled exec with a compact table |
3691 | * @value: a string token input |
3692 | * @data: data associated to the token to reuse in callbacks |
3693 | * |
3694 | * Push one input token in the execution context |
3695 | * |
3696 | * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
3697 | * a negative value in case of error. |
3698 | */ |
3699 | static int |
3700 | xmlRegCompactPushString(xmlRegExecCtxtPtr exec, |
3701 | xmlRegexpPtr comp, |
3702 | const xmlChar *value, |
3703 | void *data) { |
3704 | int state = exec->index; |
3705 | int i, target; |
3706 | |
3707 | if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL)) |
3708 | return(-1); |
3709 | |
3710 | if (value == NULL) { |
3711 | /* |
3712 | * are we at a final state ? |
3713 | */ |
3714 | if (comp->compact[state * (comp->nbstrings + 1)] == |
3715 | XML_REGEXP_FINAL_STATE) |
3716 | return(1); |
3717 | return(0); |
3718 | } |
3719 | |
3720 | #ifdef DEBUG_PUSH |
3721 | printf("value pushed: %s\n" , value); |
3722 | #endif |
3723 | |
3724 | /* |
3725 | * Examine all outside transitions from current state |
3726 | */ |
3727 | for (i = 0;i < comp->nbstrings;i++) { |
3728 | target = comp->compact[state * (comp->nbstrings + 1) + i + 1]; |
3729 | if ((target > 0) && (target <= comp->nbstates)) { |
3730 | target--; /* to avoid 0 */ |
3731 | if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) { |
3732 | exec->index = target; |
3733 | if ((exec->callback != NULL) && (comp->transdata != NULL)) { |
3734 | exec->callback(exec->data, value, |
3735 | comp->transdata[state * comp->nbstrings + i], data); |
3736 | } |
3737 | #ifdef DEBUG_PUSH |
3738 | printf("entering state %d\n" , target); |
3739 | #endif |
3740 | if (comp->compact[target * (comp->nbstrings + 1)] == |
3741 | XML_REGEXP_SINK_STATE) |
3742 | goto error; |
3743 | |
3744 | if (comp->compact[target * (comp->nbstrings + 1)] == |
3745 | XML_REGEXP_FINAL_STATE) |
3746 | return(1); |
3747 | return(0); |
3748 | } |
3749 | } |
3750 | } |
3751 | /* |
3752 | * Failed to find an exit transition out from current state for the |
3753 | * current token |
3754 | */ |
3755 | #ifdef DEBUG_PUSH |
3756 | printf("failed to find a transition for %s on state %d\n" , value, state); |
3757 | #endif |
3758 | error: |
3759 | if (exec->errString != NULL) |
3760 | xmlFree(exec->errString); |
3761 | exec->errString = xmlStrdup(value); |
3762 | exec->errStateNo = state; |
3763 | exec->status = -1; |
3764 | #ifdef DEBUG_ERR |
3765 | testerr(exec); |
3766 | #endif |
3767 | return(-1); |
3768 | } |
3769 | |
3770 | /** |
3771 | * xmlRegExecPushStringInternal: |
3772 | * @exec: a regexp execution context or NULL to indicate the end |
3773 | * @value: a string token input |
3774 | * @data: data associated to the token to reuse in callbacks |
3775 | * @compound: value was assembled from 2 strings |
3776 | * |
3777 | * Push one input token in the execution context |
3778 | * |
3779 | * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
3780 | * a negative value in case of error. |
3781 | */ |
3782 | static int |
3783 | xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value, |
3784 | void *data, int compound) { |
3785 | xmlRegTransPtr trans; |
3786 | xmlRegAtomPtr atom; |
3787 | int ret; |
3788 | int final = 0; |
3789 | int progress = 1; |
3790 | |
3791 | if (exec == NULL) |
3792 | return(-1); |
3793 | if (exec->comp == NULL) |
3794 | return(-1); |
3795 | if (exec->status != 0) |
3796 | return(exec->status); |
3797 | |
3798 | if (exec->comp->compact != NULL) |
3799 | return(xmlRegCompactPushString(exec, exec->comp, value, data)); |
3800 | |
3801 | if (value == NULL) { |
3802 | if (exec->state->type == XML_REGEXP_FINAL_STATE) |
3803 | return(1); |
3804 | final = 1; |
3805 | } |
3806 | |
3807 | #ifdef DEBUG_PUSH |
3808 | printf("value pushed: %s\n" , value); |
3809 | #endif |
3810 | /* |
3811 | * If we have an active rollback stack push the new value there |
3812 | * and get back to where we were left |
3813 | */ |
3814 | if ((value != NULL) && (exec->inputStackNr > 0)) { |
3815 | xmlFARegExecSaveInputString(exec, value, data); |
3816 | value = exec->inputStack[exec->index].value; |
3817 | data = exec->inputStack[exec->index].data; |
3818 | #ifdef DEBUG_PUSH |
3819 | printf("value loaded: %s\n" , value); |
3820 | #endif |
3821 | } |
3822 | |
3823 | while ((exec->status == 0) && |
3824 | ((value != NULL) || |
3825 | ((final == 1) && |
3826 | (exec->state->type != XML_REGEXP_FINAL_STATE)))) { |
3827 | |
3828 | /* |
3829 | * End of input on non-terminal state, rollback, however we may |
3830 | * still have epsilon like transition for counted transitions |
3831 | * on counters, in that case don't break too early. |
3832 | */ |
3833 | if ((value == NULL) && (exec->counts == NULL)) |
3834 | goto rollback; |
3835 | |
3836 | exec->transcount = 0; |
3837 | for (;exec->transno < exec->state->nbTrans;exec->transno++) { |
3838 | trans = &exec->state->trans[exec->transno]; |
3839 | if (trans->to < 0) |
3840 | continue; |
3841 | atom = trans->atom; |
3842 | ret = 0; |
3843 | if (trans->count == REGEXP_ALL_LAX_COUNTER) { |
3844 | int i; |
3845 | int count; |
3846 | xmlRegTransPtr t; |
3847 | xmlRegCounterPtr counter; |
3848 | |
3849 | ret = 0; |
3850 | |
3851 | #ifdef DEBUG_PUSH |
3852 | printf("testing all lax %d\n" , trans->count); |
3853 | #endif |
3854 | /* |
3855 | * Check all counted transitions from the current state |
3856 | */ |
3857 | if ((value == NULL) && (final)) { |
3858 | ret = 1; |
3859 | } else if (value != NULL) { |
3860 | for (i = 0;i < exec->state->nbTrans;i++) { |
3861 | t = &exec->state->trans[i]; |
3862 | if ((t->counter < 0) || (t == trans)) |
3863 | continue; |
3864 | counter = &exec->comp->counters[t->counter]; |
3865 | count = exec->counts[t->counter]; |
3866 | if ((count < counter->max) && |
3867 | (t->atom != NULL) && |
3868 | (xmlStrEqual(value, t->atom->valuep))) { |
3869 | ret = 0; |
3870 | break; |
3871 | } |
3872 | if ((count >= counter->min) && |
3873 | (count < counter->max) && |
3874 | (t->atom != NULL) && |
3875 | (xmlStrEqual(value, t->atom->valuep))) { |
3876 | ret = 1; |
3877 | break; |
3878 | } |
3879 | } |
3880 | } |
3881 | } else if (trans->count == REGEXP_ALL_COUNTER) { |
3882 | int i; |
3883 | int count; |
3884 | xmlRegTransPtr t; |
3885 | xmlRegCounterPtr counter; |
3886 | |
3887 | ret = 1; |
3888 | |
3889 | #ifdef DEBUG_PUSH |
3890 | printf("testing all %d\n" , trans->count); |
3891 | #endif |
3892 | /* |
3893 | * Check all counted transitions from the current state |
3894 | */ |
3895 | for (i = 0;i < exec->state->nbTrans;i++) { |
3896 | t = &exec->state->trans[i]; |
3897 | if ((t->counter < 0) || (t == trans)) |
3898 | continue; |
3899 | counter = &exec->comp->counters[t->counter]; |
3900 | count = exec->counts[t->counter]; |
3901 | if ((count < counter->min) || (count > counter->max)) { |
3902 | ret = 0; |
3903 | break; |
3904 | } |
3905 | } |
3906 | } else if (trans->count >= 0) { |
3907 | int count; |
3908 | xmlRegCounterPtr counter; |
3909 | |
3910 | /* |
3911 | * A counted transition. |
3912 | */ |
3913 | |
3914 | count = exec->counts[trans->count]; |
3915 | counter = &exec->comp->counters[trans->count]; |
3916 | #ifdef DEBUG_PUSH |
3917 | printf("testing count %d: val %d, min %d, max %d\n" , |
3918 | trans->count, count, counter->min, counter->max); |
3919 | #endif |
3920 | ret = ((count >= counter->min) && (count <= counter->max)); |
3921 | } else if (atom == NULL) { |
3922 | fprintf(stderr, "epsilon transition left at runtime\n" ); |
3923 | exec->status = -2; |
3924 | break; |
3925 | } else if (value != NULL) { |
3926 | ret = xmlRegStrEqualWildcard(atom->valuep, value); |
3927 | if (atom->neg) { |
3928 | ret = !ret; |
3929 | if (!compound) |
3930 | ret = 0; |
3931 | } |
3932 | if ((ret == 1) && (trans->counter >= 0)) { |
3933 | xmlRegCounterPtr counter; |
3934 | int count; |
3935 | |
3936 | count = exec->counts[trans->counter]; |
3937 | counter = &exec->comp->counters[trans->counter]; |
3938 | if (count >= counter->max) |
3939 | ret = 0; |
3940 | } |
3941 | |
3942 | if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) { |
3943 | xmlRegStatePtr to = exec->comp->states[trans->to]; |
3944 | |
3945 | /* |
3946 | * this is a multiple input sequence |
3947 | */ |
3948 | if (exec->state->nbTrans > exec->transno + 1) { |
3949 | if (exec->inputStackNr <= 0) { |
3950 | xmlFARegExecSaveInputString(exec, value, data); |
3951 | } |
3952 | xmlFARegExecSave(exec); |
3953 | } |
3954 | exec->transcount = 1; |
3955 | do { |
3956 | /* |
3957 | * Try to progress as much as possible on the input |
3958 | */ |
3959 | if (exec->transcount == atom->max) { |
3960 | break; |
3961 | } |
3962 | exec->index++; |
3963 | value = exec->inputStack[exec->index].value; |
3964 | data = exec->inputStack[exec->index].data; |
3965 | #ifdef DEBUG_PUSH |
3966 | printf("value loaded: %s\n" , value); |
3967 | #endif |
3968 | |
3969 | /* |
3970 | * End of input: stop here |
3971 | */ |
3972 | if (value == NULL) { |
3973 | exec->index --; |
3974 | break; |
3975 | } |
3976 | if (exec->transcount >= atom->min) { |
3977 | int transno = exec->transno; |
3978 | xmlRegStatePtr state = exec->state; |
3979 | |
3980 | /* |
3981 | * The transition is acceptable save it |
3982 | */ |
3983 | exec->transno = -1; /* trick */ |
3984 | exec->state = to; |
3985 | if (exec->inputStackNr <= 0) { |
3986 | xmlFARegExecSaveInputString(exec, value, data); |
3987 | } |
3988 | xmlFARegExecSave(exec); |
3989 | exec->transno = transno; |
3990 | exec->state = state; |
3991 | } |
3992 | ret = xmlStrEqual(value, atom->valuep); |
3993 | exec->transcount++; |
3994 | } while (ret == 1); |
3995 | if (exec->transcount < atom->min) |
3996 | ret = 0; |
3997 | |
3998 | /* |
3999 | * If the last check failed but one transition was found |
4000 | * possible, rollback |
4001 | */ |
4002 | if (ret < 0) |
4003 | ret = 0; |
4004 | if (ret == 0) { |
4005 | goto rollback; |
4006 | } |
4007 | } |
4008 | } |
4009 | if (ret == 1) { |
4010 | if ((exec->callback != NULL) && (atom != NULL) && |
4011 | (data != NULL)) { |
4012 | exec->callback(exec->data, atom->valuep, |
4013 | atom->data, data); |
4014 | } |
4015 | if (exec->state->nbTrans > exec->transno + 1) { |
4016 | if (exec->inputStackNr <= 0) { |
4017 | xmlFARegExecSaveInputString(exec, value, data); |
4018 | } |
4019 | xmlFARegExecSave(exec); |
4020 | } |
4021 | if (trans->counter >= 0) { |
4022 | #ifdef DEBUG_PUSH |
4023 | printf("Increasing count %d\n" , trans->counter); |
4024 | #endif |
4025 | exec->counts[trans->counter]++; |
4026 | } |
4027 | if ((trans->count >= 0) && |
4028 | (trans->count < REGEXP_ALL_COUNTER)) { |
4029 | #ifdef DEBUG_REGEXP_EXEC |
4030 | printf("resetting count %d on transition\n" , |
4031 | trans->count); |
4032 | #endif |
4033 | exec->counts[trans->count] = 0; |
4034 | } |
4035 | #ifdef DEBUG_PUSH |
4036 | printf("entering state %d\n" , trans->to); |
4037 | #endif |
4038 | if ((exec->comp->states[trans->to] != NULL) && |
4039 | (exec->comp->states[trans->to]->type == |
4040 | XML_REGEXP_SINK_STATE)) { |
4041 | /* |
4042 | * entering a sink state, save the current state as error |
4043 | * state. |
4044 | */ |
4045 | if (exec->errString != NULL) |
4046 | xmlFree(exec->errString); |
4047 | exec->errString = xmlStrdup(value); |
4048 | exec->errState = exec->state; |
4049 | memcpy(exec->errCounts, exec->counts, |
4050 | exec->comp->nbCounters * sizeof(int)); |
4051 | } |
4052 | exec->state = exec->comp->states[trans->to]; |
4053 | exec->transno = 0; |
4054 | if (trans->atom != NULL) { |
4055 | if (exec->inputStack != NULL) { |
4056 | exec->index++; |
4057 | if (exec->index < exec->inputStackNr) { |
4058 | value = exec->inputStack[exec->index].value; |
4059 | data = exec->inputStack[exec->index].data; |
4060 | #ifdef DEBUG_PUSH |
4061 | printf("value loaded: %s\n" , value); |
4062 | #endif |
4063 | } else { |
4064 | value = NULL; |
4065 | data = NULL; |
4066 | #ifdef DEBUG_PUSH |
4067 | printf("end of input\n" ); |
4068 | #endif |
4069 | } |
4070 | } else { |
4071 | value = NULL; |
4072 | data = NULL; |
4073 | #ifdef DEBUG_PUSH |
4074 | printf("end of input\n" ); |
4075 | #endif |
4076 | } |
4077 | } |
4078 | goto progress; |
4079 | } else if (ret < 0) { |
4080 | exec->status = -4; |
4081 | break; |
4082 | } |
4083 | } |
4084 | if ((exec->transno != 0) || (exec->state->nbTrans == 0)) { |
4085 | rollback: |
4086 | /* |
4087 | * if we didn't yet rollback on the current input |
4088 | * store the current state as the error state. |
4089 | */ |
4090 | if ((progress) && (exec->state != NULL) && |
4091 | (exec->state->type != XML_REGEXP_SINK_STATE)) { |
4092 | progress = 0; |
4093 | if (exec->errString != NULL) |
4094 | xmlFree(exec->errString); |
4095 | exec->errString = xmlStrdup(value); |
4096 | exec->errState = exec->state; |
4097 | if (exec->comp->nbCounters) |
4098 | memcpy(exec->errCounts, exec->counts, |
4099 | exec->comp->nbCounters * sizeof(int)); |
4100 | } |
4101 | |
4102 | /* |
4103 | * Failed to find a way out |
4104 | */ |
4105 | exec->determinist = 0; |
4106 | xmlFARegExecRollBack(exec); |
4107 | if ((exec->inputStack != NULL ) && (exec->status == 0)) { |
4108 | value = exec->inputStack[exec->index].value; |
4109 | data = exec->inputStack[exec->index].data; |
4110 | #ifdef DEBUG_PUSH |
4111 | printf("value loaded: %s\n" , value); |
4112 | #endif |
4113 | } |
4114 | } |
4115 | continue; |
4116 | progress: |
4117 | progress = 1; |
4118 | continue; |
4119 | } |
4120 | if (exec->status == 0) { |
4121 | return(exec->state->type == XML_REGEXP_FINAL_STATE); |
4122 | } |
4123 | #ifdef DEBUG_ERR |
4124 | if (exec->status < 0) { |
4125 | testerr(exec); |
4126 | } |
4127 | #endif |
4128 | return(exec->status); |
4129 | } |
4130 | |
4131 | /** |
4132 | * xmlRegExecPushString: |
4133 | * @exec: a regexp execution context or NULL to indicate the end |
4134 | * @value: a string token input |
4135 | * @data: data associated to the token to reuse in callbacks |
4136 | * |
4137 | * Push one input token in the execution context |
4138 | * |
4139 | * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
4140 | * a negative value in case of error. |
4141 | */ |
4142 | int |
4143 | xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value, |
4144 | void *data) { |
4145 | return(xmlRegExecPushStringInternal(exec, value, data, 0)); |
4146 | } |
4147 | |
4148 | /** |
4149 | * xmlRegExecPushString2: |
4150 | * @exec: a regexp execution context or NULL to indicate the end |
4151 | * @value: the first string token input |
4152 | * @value2: the second string token input |
4153 | * @data: data associated to the token to reuse in callbacks |
4154 | * |
4155 | * Push one input token in the execution context |
4156 | * |
4157 | * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
4158 | * a negative value in case of error. |
4159 | */ |
4160 | int |
4161 | xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value, |
4162 | const xmlChar *value2, void *data) { |
4163 | xmlChar buf[150]; |
4164 | int lenn, lenp, ret; |
4165 | xmlChar *str; |
4166 | |
4167 | if (exec == NULL) |
4168 | return(-1); |
4169 | if (exec->comp == NULL) |
4170 | return(-1); |
4171 | if (exec->status != 0) |
4172 | return(exec->status); |
4173 | |
4174 | if (value2 == NULL) |
4175 | return(xmlRegExecPushString(exec, value, data)); |
4176 | |
4177 | lenn = strlen((char *) value2); |
4178 | lenp = strlen((char *) value); |
4179 | |
4180 | if (150 < lenn + lenp + 2) { |
4181 | str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
4182 | if (str == NULL) { |
4183 | exec->status = -1; |
4184 | return(-1); |
4185 | } |
4186 | } else { |
4187 | str = buf; |
4188 | } |
4189 | memcpy(&str[0], value, lenp); |
4190 | str[lenp] = XML_REG_STRING_SEPARATOR; |
4191 | memcpy(&str[lenp + 1], value2, lenn); |
4192 | str[lenn + lenp + 1] = 0; |
4193 | |
4194 | if (exec->comp->compact != NULL) |
4195 | ret = xmlRegCompactPushString(exec, exec->comp, str, data); |
4196 | else |
4197 | ret = xmlRegExecPushStringInternal(exec, str, data, 1); |
4198 | |
4199 | if (str != buf) |
4200 | xmlFree(str); |
4201 | return(ret); |
4202 | } |
4203 | |
4204 | /** |
4205 | * xmlRegExecGetValues: |
4206 | * @exec: a regexp execution context |
4207 | * @err: error extraction or normal one |
4208 | * @nbval: pointer to the number of accepted values IN/OUT |
4209 | * @nbneg: return number of negative transitions |
4210 | * @values: pointer to the array of acceptable values |
4211 | * @terminal: return value if this was a terminal state |
4212 | * |
4213 | * Extract informations from the regexp execution, internal routine to |
4214 | * implement xmlRegExecNextValues() and xmlRegExecErrInfo() |
4215 | * |
4216 | * Returns: 0 in case of success or -1 in case of error. |
4217 | */ |
4218 | static int |
4219 | xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err, |
4220 | int *nbval, int *nbneg, |
4221 | xmlChar **values, int *terminal) { |
4222 | int maxval; |
4223 | int nb = 0; |
4224 | |
4225 | if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) || |
4226 | (values == NULL) || (*nbval <= 0)) |
4227 | return(-1); |
4228 | |
4229 | maxval = *nbval; |
4230 | *nbval = 0; |
4231 | *nbneg = 0; |
4232 | if ((exec->comp != NULL) && (exec->comp->compact != NULL)) { |
4233 | xmlRegexpPtr comp; |
4234 | int target, i, state; |
4235 | |
4236 | comp = exec->comp; |
4237 | |
4238 | if (err) { |
4239 | if (exec->errStateNo == -1) return(-1); |
4240 | state = exec->errStateNo; |
4241 | } else { |
4242 | state = exec->index; |
4243 | } |
4244 | if (terminal != NULL) { |
4245 | if (comp->compact[state * (comp->nbstrings + 1)] == |
4246 | XML_REGEXP_FINAL_STATE) |
4247 | *terminal = 1; |
4248 | else |
4249 | *terminal = 0; |
4250 | } |
4251 | for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) { |
4252 | target = comp->compact[state * (comp->nbstrings + 1) + i + 1]; |
4253 | if ((target > 0) && (target <= comp->nbstates) && |
4254 | (comp->compact[(target - 1) * (comp->nbstrings + 1)] != |
4255 | XML_REGEXP_SINK_STATE)) { |
4256 | values[nb++] = comp->stringMap[i]; |
4257 | (*nbval)++; |
4258 | } |
4259 | } |
4260 | for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) { |
4261 | target = comp->compact[state * (comp->nbstrings + 1) + i + 1]; |
4262 | if ((target > 0) && (target <= comp->nbstates) && |
4263 | (comp->compact[(target - 1) * (comp->nbstrings + 1)] == |
4264 | XML_REGEXP_SINK_STATE)) { |
4265 | values[nb++] = comp->stringMap[i]; |
4266 | (*nbneg)++; |
4267 | } |
4268 | } |
4269 | } else { |
4270 | int transno; |
4271 | xmlRegTransPtr trans; |
4272 | xmlRegAtomPtr atom; |
4273 | xmlRegStatePtr state; |
4274 | |
4275 | if (terminal != NULL) { |
4276 | if (exec->state->type == XML_REGEXP_FINAL_STATE) |
4277 | *terminal = 1; |
4278 | else |
4279 | *terminal = 0; |
4280 | } |
4281 | |
4282 | if (err) { |
4283 | if (exec->errState == NULL) return(-1); |
4284 | state = exec->errState; |
4285 | } else { |
4286 | if (exec->state == NULL) return(-1); |
4287 | state = exec->state; |
4288 | } |
4289 | for (transno = 0; |
4290 | (transno < state->nbTrans) && (nb < maxval); |
4291 | transno++) { |
4292 | trans = &state->trans[transno]; |
4293 | if (trans->to < 0) |
4294 | continue; |
4295 | atom = trans->atom; |
4296 | if ((atom == NULL) || (atom->valuep == NULL)) |
4297 | continue; |
4298 | if (trans->count == REGEXP_ALL_LAX_COUNTER) { |
4299 | /* this should not be reached but ... */ |
4300 | TODO; |
4301 | } else if (trans->count == REGEXP_ALL_COUNTER) { |
4302 | /* this should not be reached but ... */ |
4303 | TODO; |
4304 | } else if (trans->counter >= 0) { |
4305 | xmlRegCounterPtr counter = NULL; |
4306 | int count; |
4307 | |
4308 | if (err) |
4309 | count = exec->errCounts[trans->counter]; |
4310 | else |
4311 | count = exec->counts[trans->counter]; |
4312 | if (exec->comp != NULL) |
4313 | counter = &exec->comp->counters[trans->counter]; |
4314 | if ((counter == NULL) || (count < counter->max)) { |
4315 | if (atom->neg) |
4316 | values[nb++] = (xmlChar *) atom->valuep2; |
4317 | else |
4318 | values[nb++] = (xmlChar *) atom->valuep; |
4319 | (*nbval)++; |
4320 | } |
4321 | } else { |
4322 | if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) && |
4323 | (exec->comp->states[trans->to]->type != |
4324 | XML_REGEXP_SINK_STATE)) { |
4325 | if (atom->neg) |
4326 | values[nb++] = (xmlChar *) atom->valuep2; |
4327 | else |
4328 | values[nb++] = (xmlChar *) atom->valuep; |
4329 | (*nbval)++; |
4330 | } |
4331 | } |
4332 | } |
4333 | for (transno = 0; |
4334 | (transno < state->nbTrans) && (nb < maxval); |
4335 | transno++) { |
4336 | trans = &state->trans[transno]; |
4337 | if (trans->to < 0) |
4338 | continue; |
4339 | atom = trans->atom; |
4340 | if ((atom == NULL) || (atom->valuep == NULL)) |
4341 | continue; |
4342 | if (trans->count == REGEXP_ALL_LAX_COUNTER) { |
4343 | continue; |
4344 | } else if (trans->count == REGEXP_ALL_COUNTER) { |
4345 | continue; |
4346 | } else if (trans->counter >= 0) { |
4347 | continue; |
4348 | } else { |
4349 | if ((exec->comp->states[trans->to] != NULL) && |
4350 | (exec->comp->states[trans->to]->type == |
4351 | XML_REGEXP_SINK_STATE)) { |
4352 | if (atom->neg) |
4353 | values[nb++] = (xmlChar *) atom->valuep2; |
4354 | else |
4355 | values[nb++] = (xmlChar *) atom->valuep; |
4356 | (*nbneg)++; |
4357 | } |
4358 | } |
4359 | } |
4360 | } |
4361 | return(0); |
4362 | } |
4363 | |
4364 | /** |
4365 | * xmlRegExecNextValues: |
4366 | * @exec: a regexp execution context |
4367 | * @nbval: pointer to the number of accepted values IN/OUT |
4368 | * @nbneg: return number of negative transitions |
4369 | * @values: pointer to the array of acceptable values |
4370 | * @terminal: return value if this was a terminal state |
4371 | * |
4372 | * Extract informations from the regexp execution, |
4373 | * the parameter @values must point to an array of @nbval string pointers |
4374 | * on return nbval will contain the number of possible strings in that |
4375 | * state and the @values array will be updated with them. The string values |
4376 | * returned will be freed with the @exec context and don't need to be |
4377 | * deallocated. |
4378 | * |
4379 | * Returns: 0 in case of success or -1 in case of error. |
4380 | */ |
4381 | int |
4382 | xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg, |
4383 | xmlChar **values, int *terminal) { |
4384 | return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal)); |
4385 | } |
4386 | |
4387 | /** |
4388 | * xmlRegExecErrInfo: |
4389 | * @exec: a regexp execution context generating an error |
4390 | * @string: return value for the error string |
4391 | * @nbval: pointer to the number of accepted values IN/OUT |
4392 | * @nbneg: return number of negative transitions |
4393 | * @values: pointer to the array of acceptable values |
4394 | * @terminal: return value if this was a terminal state |
4395 | * |
4396 | * Extract error informations from the regexp execution, the parameter |
4397 | * @string will be updated with the value pushed and not accepted, |
4398 | * the parameter @values must point to an array of @nbval string pointers |
4399 | * on return nbval will contain the number of possible strings in that |
4400 | * state and the @values array will be updated with them. The string values |
4401 | * returned will be freed with the @exec context and don't need to be |
4402 | * deallocated. |
4403 | * |
4404 | * Returns: 0 in case of success or -1 in case of error. |
4405 | */ |
4406 | int |
4407 | xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string, |
4408 | int *nbval, int *nbneg, xmlChar **values, int *terminal) { |
4409 | if (exec == NULL) |
4410 | return(-1); |
4411 | if (string != NULL) { |
4412 | if (exec->status != 0) |
4413 | *string = exec->errString; |
4414 | else |
4415 | *string = NULL; |
4416 | } |
4417 | return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal)); |
4418 | } |
4419 | |
4420 | #ifdef DEBUG_ERR |
4421 | static void testerr(xmlRegExecCtxtPtr exec) { |
4422 | const xmlChar *string; |
4423 | xmlChar *values[5]; |
4424 | int nb = 5; |
4425 | int nbneg; |
4426 | int terminal; |
4427 | xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal); |
4428 | } |
4429 | #endif |
4430 | |
4431 | #if 0 |
4432 | static int |
4433 | xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) { |
4434 | xmlRegTransPtr trans; |
4435 | xmlRegAtomPtr atom; |
4436 | int ret; |
4437 | int codepoint, len; |
4438 | |
4439 | if (exec == NULL) |
4440 | return(-1); |
4441 | if (exec->status != 0) |
4442 | return(exec->status); |
4443 | |
4444 | while ((exec->status == 0) && |
4445 | ((exec->inputString[exec->index] != 0) || |
4446 | (exec->state->type != XML_REGEXP_FINAL_STATE))) { |
4447 | |
4448 | /* |
4449 | * End of input on non-terminal state, rollback, however we may |
4450 | * still have epsilon like transition for counted transitions |
4451 | * on counters, in that case don't break too early. |
4452 | */ |
4453 | if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) |
4454 | goto rollback; |
4455 | |
4456 | exec->transcount = 0; |
4457 | for (;exec->transno < exec->state->nbTrans;exec->transno++) { |
4458 | trans = &exec->state->trans[exec->transno]; |
4459 | if (trans->to < 0) |
4460 | continue; |
4461 | atom = trans->atom; |
4462 | ret = 0; |
4463 | if (trans->count >= 0) { |
4464 | int count; |
4465 | xmlRegCounterPtr counter; |
4466 | |
4467 | /* |
4468 | * A counted transition. |
4469 | */ |
4470 | |
4471 | count = exec->counts[trans->count]; |
4472 | counter = &exec->comp->counters[trans->count]; |
4473 | #ifdef DEBUG_REGEXP_EXEC |
4474 | printf("testing count %d: val %d, min %d, max %d\n" , |
4475 | trans->count, count, counter->min, counter->max); |
4476 | #endif |
4477 | ret = ((count >= counter->min) && (count <= counter->max)); |
4478 | } else if (atom == NULL) { |
4479 | fprintf(stderr, "epsilon transition left at runtime\n" ); |
4480 | exec->status = -2; |
4481 | break; |
4482 | } else if (exec->inputString[exec->index] != 0) { |
4483 | codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len); |
4484 | ret = xmlRegCheckCharacter(atom, codepoint); |
4485 | if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) { |
4486 | xmlRegStatePtr to = exec->comp->states[trans->to]; |
4487 | |
4488 | /* |
4489 | * this is a multiple input sequence |
4490 | */ |
4491 | if (exec->state->nbTrans > exec->transno + 1) { |
4492 | xmlFARegExecSave(exec); |
4493 | } |
4494 | exec->transcount = 1; |
4495 | do { |
4496 | /* |
4497 | * Try to progress as much as possible on the input |
4498 | */ |
4499 | if (exec->transcount == atom->max) { |
4500 | break; |
4501 | } |
4502 | exec->index += len; |
4503 | /* |
4504 | * End of input: stop here |
4505 | */ |
4506 | if (exec->inputString[exec->index] == 0) { |
4507 | exec->index -= len; |
4508 | break; |
4509 | } |
4510 | if (exec->transcount >= atom->min) { |
4511 | int transno = exec->transno; |
4512 | xmlRegStatePtr state = exec->state; |
4513 | |
4514 | /* |
4515 | * The transition is acceptable save it |
4516 | */ |
4517 | exec->transno = -1; /* trick */ |
4518 | exec->state = to; |
4519 | xmlFARegExecSave(exec); |
4520 | exec->transno = transno; |
4521 | exec->state = state; |
4522 | } |
4523 | codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), |
4524 | len); |
4525 | ret = xmlRegCheckCharacter(atom, codepoint); |
4526 | exec->transcount++; |
4527 | } while (ret == 1); |
4528 | if (exec->transcount < atom->min) |
4529 | ret = 0; |
4530 | |
4531 | /* |
4532 | * If the last check failed but one transition was found |
4533 | * possible, rollback |
4534 | */ |
4535 | if (ret < 0) |
4536 | ret = 0; |
4537 | if (ret == 0) { |
4538 | goto rollback; |
4539 | } |
4540 | } |
4541 | } |
4542 | if (ret == 1) { |
4543 | if (exec->state->nbTrans > exec->transno + 1) { |
4544 | xmlFARegExecSave(exec); |
4545 | } |
4546 | /* |
4547 | * restart count for expressions like this ((abc){2})* |
4548 | */ |
4549 | if (trans->count >= 0) { |
4550 | #ifdef DEBUG_REGEXP_EXEC |
4551 | printf("Reset count %d\n" , trans->count); |
4552 | #endif |
4553 | exec->counts[trans->count] = 0; |
4554 | } |
4555 | if (trans->counter >= 0) { |
4556 | #ifdef DEBUG_REGEXP_EXEC |
4557 | printf("Increasing count %d\n" , trans->counter); |
4558 | #endif |
4559 | exec->counts[trans->counter]++; |
4560 | } |
4561 | #ifdef DEBUG_REGEXP_EXEC |
4562 | printf("entering state %d\n" , trans->to); |
4563 | #endif |
4564 | exec->state = exec->comp->states[trans->to]; |
4565 | exec->transno = 0; |
4566 | if (trans->atom != NULL) { |
4567 | exec->index += len; |
4568 | } |
4569 | goto progress; |
4570 | } else if (ret < 0) { |
4571 | exec->status = -4; |
4572 | break; |
4573 | } |
4574 | } |
4575 | if ((exec->transno != 0) || (exec->state->nbTrans == 0)) { |
4576 | rollback: |
4577 | /* |
4578 | * Failed to find a way out |
4579 | */ |
4580 | exec->determinist = 0; |
4581 | xmlFARegExecRollBack(exec); |
4582 | } |
4583 | progress: |
4584 | continue; |
4585 | } |
4586 | } |
4587 | #endif |
4588 | /************************************************************************ |
4589 | * * |
4590 | * Parser for the Schemas Datatype Regular Expressions * |
4591 | * http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs * |
4592 | * * |
4593 | ************************************************************************/ |
4594 | |
4595 | /** |
4596 | * xmlFAIsChar: |
4597 | * @ctxt: a regexp parser context |
4598 | * |
4599 | * [10] Char ::= [^.\?*+()|#x5B#x5D] |
4600 | */ |
4601 | static int |
4602 | xmlFAIsChar(xmlRegParserCtxtPtr ctxt) { |
4603 | int cur; |
4604 | int len; |
4605 | |
4606 | cur = CUR_SCHAR(ctxt->cur, len); |
4607 | if ((cur == '.') || (cur == '\\') || (cur == '?') || |
4608 | (cur == '*') || (cur == '+') || (cur == '(') || |
4609 | (cur == ')') || (cur == '|') || (cur == 0x5B) || |
4610 | (cur == 0x5D) || (cur == 0)) |
4611 | return(-1); |
4612 | return(cur); |
4613 | } |
4614 | |
4615 | /** |
4616 | * xmlFAParseCharProp: |
4617 | * @ctxt: a regexp parser context |
4618 | * |
4619 | * [27] charProp ::= IsCategory | IsBlock |
4620 | * [28] IsCategory ::= Letters | Marks | Numbers | Punctuation | |
4621 | * Separators | Symbols | Others |
4622 | * [29] Letters ::= 'L' [ultmo]? |
4623 | * [30] Marks ::= 'M' [nce]? |
4624 | * [31] Numbers ::= 'N' [dlo]? |
4625 | * [32] Punctuation ::= 'P' [cdseifo]? |
4626 | * [33] Separators ::= 'Z' [slp]? |
4627 | * [34] Symbols ::= 'S' [mcko]? |
4628 | * [35] Others ::= 'C' [cfon]? |
4629 | * [36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+ |
4630 | */ |
4631 | static void |
4632 | xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) { |
4633 | int cur; |
4634 | xmlRegAtomType type = (xmlRegAtomType) 0; |
4635 | xmlChar *blockName = NULL; |
4636 | |
4637 | cur = CUR; |
4638 | if (cur == 'L') { |
4639 | NEXT; |
4640 | cur = CUR; |
4641 | if (cur == 'u') { |
4642 | NEXT; |
4643 | type = XML_REGEXP_LETTER_UPPERCASE; |
4644 | } else if (cur == 'l') { |
4645 | NEXT; |
4646 | type = XML_REGEXP_LETTER_LOWERCASE; |
4647 | } else if (cur == 't') { |
4648 | NEXT; |
4649 | type = XML_REGEXP_LETTER_TITLECASE; |
4650 | } else if (cur == 'm') { |
4651 | NEXT; |
4652 | type = XML_REGEXP_LETTER_MODIFIER; |
4653 | } else if (cur == 'o') { |
4654 | NEXT; |
4655 | type = XML_REGEXP_LETTER_OTHERS; |
4656 | } else { |
4657 | type = XML_REGEXP_LETTER; |
4658 | } |
4659 | } else if (cur == 'M') { |
4660 | NEXT; |
4661 | cur = CUR; |
4662 | if (cur == 'n') { |
4663 | NEXT; |
4664 | /* nonspacing */ |
4665 | type = XML_REGEXP_MARK_NONSPACING; |
4666 | } else if (cur == 'c') { |
4667 | NEXT; |
4668 | /* spacing combining */ |
4669 | type = XML_REGEXP_MARK_SPACECOMBINING; |
4670 | } else if (cur == 'e') { |
4671 | NEXT; |
4672 | /* enclosing */ |
4673 | type = XML_REGEXP_MARK_ENCLOSING; |
4674 | } else { |
4675 | /* all marks */ |
4676 | type = XML_REGEXP_MARK; |
4677 | } |
4678 | } else if (cur == 'N') { |
4679 | NEXT; |
4680 | cur = CUR; |
4681 | if (cur == 'd') { |
4682 | NEXT; |
4683 | /* digital */ |
4684 | type = XML_REGEXP_NUMBER_DECIMAL; |
4685 | } else if (cur == 'l') { |
4686 | NEXT; |
4687 | /* letter */ |
4688 | type = XML_REGEXP_NUMBER_LETTER; |
4689 | } else if (cur == 'o') { |
4690 | NEXT; |
4691 | /* other */ |
4692 | type = XML_REGEXP_NUMBER_OTHERS; |
4693 | } else { |
4694 | /* all numbers */ |
4695 | type = XML_REGEXP_NUMBER; |
4696 | } |
4697 | } else if (cur == 'P') { |
4698 | NEXT; |
4699 | cur = CUR; |
4700 | if (cur == 'c') { |
4701 | NEXT; |
4702 | /* connector */ |
4703 | type = XML_REGEXP_PUNCT_CONNECTOR; |
4704 | } else if (cur == 'd') { |
4705 | NEXT; |
4706 | /* dash */ |
4707 | type = XML_REGEXP_PUNCT_DASH; |
4708 | } else if (cur == 's') { |
4709 | NEXT; |
4710 | /* open */ |
4711 | type = XML_REGEXP_PUNCT_OPEN; |
4712 | } else if (cur == 'e') { |
4713 | NEXT; |
4714 | /* close */ |
4715 | type = XML_REGEXP_PUNCT_CLOSE; |
4716 | } else if (cur == 'i') { |
4717 | NEXT; |
4718 | /* initial quote */ |
4719 | type = XML_REGEXP_PUNCT_INITQUOTE; |
4720 | } else if (cur == 'f') { |
4721 | NEXT; |
4722 | /* final quote */ |
4723 | type = XML_REGEXP_PUNCT_FINQUOTE; |
4724 | } else if (cur == 'o') { |
4725 | NEXT; |
4726 | /* other */ |
4727 | type = XML_REGEXP_PUNCT_OTHERS; |
4728 | } else { |
4729 | /* all punctuation */ |
4730 | type = XML_REGEXP_PUNCT; |
4731 | } |
4732 | } else if (cur == 'Z') { |
4733 | NEXT; |
4734 | cur = CUR; |
4735 | if (cur == 's') { |
4736 | NEXT; |
4737 | /* space */ |
4738 | type = XML_REGEXP_SEPAR_SPACE; |
4739 | } else if (cur == 'l') { |
4740 | NEXT; |
4741 | /* line */ |
4742 | type = XML_REGEXP_SEPAR_LINE; |
4743 | } else if (cur == 'p') { |
4744 | NEXT; |
4745 | /* paragraph */ |
4746 | type = XML_REGEXP_SEPAR_PARA; |
4747 | } else { |
4748 | /* all separators */ |
4749 | type = XML_REGEXP_SEPAR; |
4750 | } |
4751 | } else if (cur == 'S') { |
4752 | NEXT; |
4753 | cur = CUR; |
4754 | if (cur == 'm') { |
4755 | NEXT; |
4756 | type = XML_REGEXP_SYMBOL_MATH; |
4757 | /* math */ |
4758 | } else if (cur == 'c') { |
4759 | NEXT; |
4760 | type = XML_REGEXP_SYMBOL_CURRENCY; |
4761 | /* currency */ |
4762 | } else if (cur == 'k') { |
4763 | NEXT; |
4764 | type = XML_REGEXP_SYMBOL_MODIFIER; |
4765 | /* modifiers */ |
4766 | } else if (cur == 'o') { |
4767 | NEXT; |
4768 | type = XML_REGEXP_SYMBOL_OTHERS; |
4769 | /* other */ |
4770 | } else { |
4771 | /* all symbols */ |
4772 | type = XML_REGEXP_SYMBOL; |
4773 | } |
4774 | } else if (cur == 'C') { |
4775 | NEXT; |
4776 | cur = CUR; |
4777 | if (cur == 'c') { |
4778 | NEXT; |
4779 | /* control */ |
4780 | type = XML_REGEXP_OTHER_CONTROL; |
4781 | } else if (cur == 'f') { |
4782 | NEXT; |
4783 | /* format */ |
4784 | type = XML_REGEXP_OTHER_FORMAT; |
4785 | } else if (cur == 'o') { |
4786 | NEXT; |
4787 | /* private use */ |
4788 | type = XML_REGEXP_OTHER_PRIVATE; |
4789 | } else if (cur == 'n') { |
4790 | NEXT; |
4791 | /* not assigned */ |
4792 | type = XML_REGEXP_OTHER_NA; |
4793 | } else { |
4794 | /* all others */ |
4795 | type = XML_REGEXP_OTHER; |
4796 | } |
4797 | } else if (cur == 'I') { |
4798 | const xmlChar *start; |
4799 | NEXT; |
4800 | cur = CUR; |
4801 | if (cur != 's') { |
4802 | ERROR("IsXXXX expected" ); |
4803 | return; |
4804 | } |
4805 | NEXT; |
4806 | start = ctxt->cur; |
4807 | cur = CUR; |
4808 | if (((cur >= 'a') && (cur <= 'z')) || |
4809 | ((cur >= 'A') && (cur <= 'Z')) || |
4810 | ((cur >= '0') && (cur <= '9')) || |
4811 | (cur == 0x2D)) { |
4812 | NEXT; |
4813 | cur = CUR; |
4814 | while (((cur >= 'a') && (cur <= 'z')) || |
4815 | ((cur >= 'A') && (cur <= 'Z')) || |
4816 | ((cur >= '0') && (cur <= '9')) || |
4817 | (cur == 0x2D)) { |
4818 | NEXT; |
4819 | cur = CUR; |
4820 | } |
4821 | } |
4822 | type = XML_REGEXP_BLOCK_NAME; |
4823 | blockName = xmlStrndup(start, ctxt->cur - start); |
4824 | } else { |
4825 | ERROR("Unknown char property" ); |
4826 | return; |
4827 | } |
4828 | if (ctxt->atom == NULL) { |
4829 | ctxt->atom = xmlRegNewAtom(ctxt, type); |
4830 | if (ctxt->atom != NULL) |
4831 | ctxt->atom->valuep = blockName; |
4832 | } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
4833 | xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
4834 | type, 0, 0, blockName); |
4835 | } |
4836 | } |
4837 | |
4838 | /** |
4839 | * xmlFAParseCharClassEsc: |
4840 | * @ctxt: a regexp parser context |
4841 | * |
4842 | * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc ) |
4843 | * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E] |
4844 | * [25] catEsc ::= '\p{' charProp '}' |
4845 | * [26] complEsc ::= '\P{' charProp '}' |
4846 | * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW]) |
4847 | */ |
4848 | static void |
4849 | xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) { |
4850 | int cur; |
4851 | |
4852 | if (CUR == '.') { |
4853 | if (ctxt->atom == NULL) { |
4854 | ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR); |
4855 | } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
4856 | xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
4857 | XML_REGEXP_ANYCHAR, 0, 0, NULL); |
4858 | } |
4859 | NEXT; |
4860 | return; |
4861 | } |
4862 | if (CUR != '\\') { |
4863 | ERROR("Escaped sequence: expecting \\" ); |
4864 | return; |
4865 | } |
4866 | NEXT; |
4867 | cur = CUR; |
4868 | if (cur == 'p') { |
4869 | NEXT; |
4870 | if (CUR != '{') { |
4871 | ERROR("Expecting '{'" ); |
4872 | return; |
4873 | } |
4874 | NEXT; |
4875 | xmlFAParseCharProp(ctxt); |
4876 | if (CUR != '}') { |
4877 | ERROR("Expecting '}'" ); |
4878 | return; |
4879 | } |
4880 | NEXT; |
4881 | } else if (cur == 'P') { |
4882 | NEXT; |
4883 | if (CUR != '{') { |
4884 | ERROR("Expecting '{'" ); |
4885 | return; |
4886 | } |
4887 | NEXT; |
4888 | xmlFAParseCharProp(ctxt); |
4889 | if (ctxt->atom != NULL) |
4890 | ctxt->atom->neg = 1; |
4891 | if (CUR != '}') { |
4892 | ERROR("Expecting '}'" ); |
4893 | return; |
4894 | } |
4895 | NEXT; |
4896 | } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') || |
4897 | (cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') || |
4898 | (cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') || |
4899 | (cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) || |
4900 | (cur == 0x5E)) { |
4901 | if (ctxt->atom == NULL) { |
4902 | ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL); |
4903 | if (ctxt->atom != NULL) { |
4904 | switch (cur) { |
4905 | case 'n': |
4906 | ctxt->atom->codepoint = '\n'; |
4907 | break; |
4908 | case 'r': |
4909 | ctxt->atom->codepoint = '\r'; |
4910 | break; |
4911 | case 't': |
4912 | ctxt->atom->codepoint = '\t'; |
4913 | break; |
4914 | default: |
4915 | ctxt->atom->codepoint = cur; |
4916 | } |
4917 | } |
4918 | } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
4919 | switch (cur) { |
4920 | case 'n': |
4921 | cur = '\n'; |
4922 | break; |
4923 | case 'r': |
4924 | cur = '\r'; |
4925 | break; |
4926 | case 't': |
4927 | cur = '\t'; |
4928 | break; |
4929 | } |
4930 | xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
4931 | XML_REGEXP_CHARVAL, cur, cur, NULL); |
4932 | } |
4933 | NEXT; |
4934 | } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') || |
4935 | (cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') || |
4936 | (cur == 'w') || (cur == 'W')) { |
4937 | xmlRegAtomType type = XML_REGEXP_ANYSPACE; |
4938 | |
4939 | switch (cur) { |
4940 | case 's': |
4941 | type = XML_REGEXP_ANYSPACE; |
4942 | break; |
4943 | case 'S': |
4944 | type = XML_REGEXP_NOTSPACE; |
4945 | break; |
4946 | case 'i': |
4947 | type = XML_REGEXP_INITNAME; |
4948 | break; |
4949 | case 'I': |
4950 | type = XML_REGEXP_NOTINITNAME; |
4951 | break; |
4952 | case 'c': |
4953 | type = XML_REGEXP_NAMECHAR; |
4954 | break; |
4955 | case 'C': |
4956 | type = XML_REGEXP_NOTNAMECHAR; |
4957 | break; |
4958 | case 'd': |
4959 | type = XML_REGEXP_DECIMAL; |
4960 | break; |
4961 | case 'D': |
4962 | type = XML_REGEXP_NOTDECIMAL; |
4963 | break; |
4964 | case 'w': |
4965 | type = XML_REGEXP_REALCHAR; |
4966 | break; |
4967 | case 'W': |
4968 | type = XML_REGEXP_NOTREALCHAR; |
4969 | break; |
4970 | } |
4971 | NEXT; |
4972 | if (ctxt->atom == NULL) { |
4973 | ctxt->atom = xmlRegNewAtom(ctxt, type); |
4974 | } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
4975 | xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
4976 | type, 0, 0, NULL); |
4977 | } |
4978 | } else { |
4979 | ERROR("Wrong escape sequence, misuse of character '\\'" ); |
4980 | } |
4981 | } |
4982 | |
4983 | /** |
4984 | * xmlFAParseCharRange: |
4985 | * @ctxt: a regexp parser context |
4986 | * |
4987 | * [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash |
4988 | * [18] seRange ::= charOrEsc '-' charOrEsc |
4989 | * [20] charOrEsc ::= XmlChar | SingleCharEsc |
4990 | * [21] XmlChar ::= [^\#x2D#x5B#x5D] |
4991 | * [22] XmlCharIncDash ::= [^\#x5B#x5D] |
4992 | */ |
4993 | static void |
4994 | xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) { |
4995 | int cur, len; |
4996 | int start = -1; |
4997 | int end = -1; |
4998 | |
4999 | if (CUR == '\0') { |
5000 | ERROR("Expecting ']'" ); |
5001 | return; |
5002 | } |
5003 | |
5004 | cur = CUR; |
5005 | if (cur == '\\') { |
5006 | NEXT; |
5007 | cur = CUR; |
5008 | switch (cur) { |
5009 | case 'n': start = 0xA; break; |
5010 | case 'r': start = 0xD; break; |
5011 | case 't': start = 0x9; break; |
5012 | case '\\': case '|': case '.': case '-': case '^': case '?': |
5013 | case '*': case '+': case '{': case '}': case '(': case ')': |
5014 | case '[': case ']': |
5015 | start = cur; break; |
5016 | default: |
5017 | ERROR("Invalid escape value" ); |
5018 | return; |
5019 | } |
5020 | end = start; |
5021 | len = 1; |
5022 | } else if ((cur != 0x5B) && (cur != 0x5D)) { |
5023 | end = start = CUR_SCHAR(ctxt->cur, len); |
5024 | } else { |
5025 | ERROR("Expecting a char range" ); |
5026 | return; |
5027 | } |
5028 | /* |
5029 | * Since we are "inside" a range, we can assume ctxt->cur is past |
5030 | * the start of ctxt->string, and PREV should be safe |
5031 | */ |
5032 | if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) { |
5033 | NEXTL(len); |
5034 | return; |
5035 | } |
5036 | NEXTL(len); |
5037 | cur = CUR; |
5038 | if ((cur != '-') || (NXT(1) == ']')) { |
5039 | xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
5040 | XML_REGEXP_CHARVAL, start, end, NULL); |
5041 | return; |
5042 | } |
5043 | NEXT; |
5044 | cur = CUR; |
5045 | if (cur == '\\') { |
5046 | NEXT; |
5047 | cur = CUR; |
5048 | switch (cur) { |
5049 | case 'n': end = 0xA; break; |
5050 | case 'r': end = 0xD; break; |
5051 | case 't': end = 0x9; break; |
5052 | case '\\': case '|': case '.': case '-': case '^': case '?': |
5053 | case '*': case '+': case '{': case '}': case '(': case ')': |
5054 | case '[': case ']': |
5055 | end = cur; break; |
5056 | default: |
5057 | ERROR("Invalid escape value" ); |
5058 | return; |
5059 | } |
5060 | len = 1; |
5061 | } else if ((cur != '\0') && (cur != 0x5B) && (cur != 0x5D)) { |
5062 | end = CUR_SCHAR(ctxt->cur, len); |
5063 | } else { |
5064 | ERROR("Expecting the end of a char range" ); |
5065 | return; |
5066 | } |
5067 | |
5068 | /* TODO check that the values are acceptable character ranges for XML */ |
5069 | if (end < start) { |
5070 | ERROR("End of range is before start of range" ); |
5071 | } else { |
5072 | NEXTL(len); |
5073 | xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
5074 | XML_REGEXP_CHARVAL, start, end, NULL); |
5075 | } |
5076 | return; |
5077 | } |
5078 | |
5079 | /** |
5080 | * xmlFAParsePosCharGroup: |
5081 | * @ctxt: a regexp parser context |
5082 | * |
5083 | * [14] posCharGroup ::= ( charRange | charClassEsc )+ |
5084 | */ |
5085 | static void |
5086 | xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) { |
5087 | do { |
5088 | if (CUR == '\\') { |
5089 | xmlFAParseCharClassEsc(ctxt); |
5090 | } else { |
5091 | xmlFAParseCharRange(ctxt); |
5092 | } |
5093 | } while ((CUR != ']') && (CUR != '^') && (CUR != '-') && |
5094 | (CUR != 0) && (ctxt->error == 0)); |
5095 | } |
5096 | |
5097 | /** |
5098 | * xmlFAParseCharGroup: |
5099 | * @ctxt: a regexp parser context |
5100 | * |
5101 | * [13] charGroup ::= posCharGroup | negCharGroup | charClassSub |
5102 | * [15] negCharGroup ::= '^' posCharGroup |
5103 | * [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr |
5104 | * [12] charClassExpr ::= '[' charGroup ']' |
5105 | */ |
5106 | static void |
5107 | xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) { |
5108 | int n = ctxt->neg; |
5109 | while ((CUR != ']') && (ctxt->error == 0)) { |
5110 | if (CUR == '^') { |
5111 | int neg = ctxt->neg; |
5112 | |
5113 | NEXT; |
5114 | ctxt->neg = !ctxt->neg; |
5115 | xmlFAParsePosCharGroup(ctxt); |
5116 | ctxt->neg = neg; |
5117 | } else if ((CUR == '-') && (NXT(1) == '[')) { |
5118 | int neg = ctxt->neg; |
5119 | ctxt->neg = 2; |
5120 | NEXT; /* eat the '-' */ |
5121 | NEXT; /* eat the '[' */ |
5122 | xmlFAParseCharGroup(ctxt); |
5123 | if (CUR == ']') { |
5124 | NEXT; |
5125 | } else { |
5126 | ERROR("charClassExpr: ']' expected" ); |
5127 | break; |
5128 | } |
5129 | ctxt->neg = neg; |
5130 | break; |
5131 | } else if (CUR != ']') { |
5132 | xmlFAParsePosCharGroup(ctxt); |
5133 | } |
5134 | } |
5135 | ctxt->neg = n; |
5136 | } |
5137 | |
5138 | /** |
5139 | * xmlFAParseCharClass: |
5140 | * @ctxt: a regexp parser context |
5141 | * |
5142 | * [11] charClass ::= charClassEsc | charClassExpr |
5143 | * [12] charClassExpr ::= '[' charGroup ']' |
5144 | */ |
5145 | static void |
5146 | xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) { |
5147 | if (CUR == '[') { |
5148 | NEXT; |
5149 | ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES); |
5150 | if (ctxt->atom == NULL) |
5151 | return; |
5152 | xmlFAParseCharGroup(ctxt); |
5153 | if (CUR == ']') { |
5154 | NEXT; |
5155 | } else { |
5156 | ERROR("xmlFAParseCharClass: ']' expected" ); |
5157 | } |
5158 | } else { |
5159 | xmlFAParseCharClassEsc(ctxt); |
5160 | } |
5161 | } |
5162 | |
5163 | /** |
5164 | * xmlFAParseQuantExact: |
5165 | * @ctxt: a regexp parser context |
5166 | * |
5167 | * [8] QuantExact ::= [0-9]+ |
5168 | * |
5169 | * Returns 0 if success or -1 in case of error |
5170 | */ |
5171 | static int |
5172 | xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) { |
5173 | int ret = 0; |
5174 | int ok = 0; |
5175 | |
5176 | while ((CUR >= '0') && (CUR <= '9')) { |
5177 | ret = ret * 10 + (CUR - '0'); |
5178 | ok = 1; |
5179 | NEXT; |
5180 | } |
5181 | if (ok != 1) { |
5182 | return(-1); |
5183 | } |
5184 | return(ret); |
5185 | } |
5186 | |
5187 | /** |
5188 | * xmlFAParseQuantifier: |
5189 | * @ctxt: a regexp parser context |
5190 | * |
5191 | * [4] quantifier ::= [?*+] | ( '{' quantity '}' ) |
5192 | * [5] quantity ::= quantRange | quantMin | QuantExact |
5193 | * [6] quantRange ::= QuantExact ',' QuantExact |
5194 | * [7] quantMin ::= QuantExact ',' |
5195 | * [8] QuantExact ::= [0-9]+ |
5196 | */ |
5197 | static int |
5198 | xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) { |
5199 | int cur; |
5200 | |
5201 | cur = CUR; |
5202 | if ((cur == '?') || (cur == '*') || (cur == '+')) { |
5203 | if (ctxt->atom != NULL) { |
5204 | if (cur == '?') |
5205 | ctxt->atom->quant = XML_REGEXP_QUANT_OPT; |
5206 | else if (cur == '*') |
5207 | ctxt->atom->quant = XML_REGEXP_QUANT_MULT; |
5208 | else if (cur == '+') |
5209 | ctxt->atom->quant = XML_REGEXP_QUANT_PLUS; |
5210 | } |
5211 | NEXT; |
5212 | return(1); |
5213 | } |
5214 | if (cur == '{') { |
5215 | int min = 0, max = 0; |
5216 | |
5217 | NEXT; |
5218 | cur = xmlFAParseQuantExact(ctxt); |
5219 | if (cur >= 0) |
5220 | min = cur; |
5221 | if (CUR == ',') { |
5222 | NEXT; |
5223 | if (CUR == '}') |
5224 | max = INT_MAX; |
5225 | else { |
5226 | cur = xmlFAParseQuantExact(ctxt); |
5227 | if (cur >= 0) |
5228 | max = cur; |
5229 | else { |
5230 | ERROR("Improper quantifier" ); |
5231 | } |
5232 | } |
5233 | } |
5234 | if (CUR == '}') { |
5235 | NEXT; |
5236 | } else { |
5237 | ERROR("Unterminated quantifier" ); |
5238 | } |
5239 | if (max == 0) |
5240 | max = min; |
5241 | if (ctxt->atom != NULL) { |
5242 | ctxt->atom->quant = XML_REGEXP_QUANT_RANGE; |
5243 | ctxt->atom->min = min; |
5244 | ctxt->atom->max = max; |
5245 | } |
5246 | return(1); |
5247 | } |
5248 | return(0); |
5249 | } |
5250 | |
5251 | /** |
5252 | * xmlFAParseAtom: |
5253 | * @ctxt: a regexp parser context |
5254 | * |
5255 | * [9] atom ::= Char | charClass | ( '(' regExp ')' ) |
5256 | */ |
5257 | static int |
5258 | xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) { |
5259 | int codepoint, len; |
5260 | |
5261 | codepoint = xmlFAIsChar(ctxt); |
5262 | if (codepoint > 0) { |
5263 | ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL); |
5264 | if (ctxt->atom == NULL) |
5265 | return(-1); |
5266 | codepoint = CUR_SCHAR(ctxt->cur, len); |
5267 | ctxt->atom->codepoint = codepoint; |
5268 | NEXTL(len); |
5269 | return(1); |
5270 | } else if (CUR == '|') { |
5271 | return(0); |
5272 | } else if (CUR == 0) { |
5273 | return(0); |
5274 | } else if (CUR == ')') { |
5275 | return(0); |
5276 | } else if (CUR == '(') { |
5277 | xmlRegStatePtr start, oldend, start0; |
5278 | |
5279 | NEXT; |
5280 | /* |
5281 | * this extra Epsilon transition is needed if we count with 0 allowed |
5282 | * unfortunately this can't be known at that point |
5283 | */ |
5284 | xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL); |
5285 | start0 = ctxt->state; |
5286 | xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL); |
5287 | start = ctxt->state; |
5288 | oldend = ctxt->end; |
5289 | ctxt->end = NULL; |
5290 | ctxt->atom = NULL; |
5291 | xmlFAParseRegExp(ctxt, 0); |
5292 | if (CUR == ')') { |
5293 | NEXT; |
5294 | } else { |
5295 | ERROR("xmlFAParseAtom: expecting ')'" ); |
5296 | } |
5297 | ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG); |
5298 | if (ctxt->atom == NULL) |
5299 | return(-1); |
5300 | ctxt->atom->start = start; |
5301 | ctxt->atom->start0 = start0; |
5302 | ctxt->atom->stop = ctxt->state; |
5303 | ctxt->end = oldend; |
5304 | return(1); |
5305 | } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) { |
5306 | xmlFAParseCharClass(ctxt); |
5307 | return(1); |
5308 | } |
5309 | return(0); |
5310 | } |
5311 | |
5312 | /** |
5313 | * xmlFAParsePiece: |
5314 | * @ctxt: a regexp parser context |
5315 | * |
5316 | * [3] piece ::= atom quantifier? |
5317 | */ |
5318 | static int |
5319 | xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) { |
5320 | int ret; |
5321 | |
5322 | ctxt->atom = NULL; |
5323 | ret = xmlFAParseAtom(ctxt); |
5324 | if (ret == 0) |
5325 | return(0); |
5326 | if (ctxt->atom == NULL) { |
5327 | ERROR("internal: no atom generated" ); |
5328 | } |
5329 | xmlFAParseQuantifier(ctxt); |
5330 | return(1); |
5331 | } |
5332 | |
5333 | /** |
5334 | * xmlFAParseBranch: |
5335 | * @ctxt: a regexp parser context |
5336 | * @to: optional target to the end of the branch |
5337 | * |
5338 | * @to is used to optimize by removing duplicate path in automata |
5339 | * in expressions like (a|b)(c|d) |
5340 | * |
5341 | * [2] branch ::= piece* |
5342 | */ |
5343 | static int |
5344 | xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) { |
5345 | xmlRegStatePtr previous; |
5346 | int ret; |
5347 | |
5348 | previous = ctxt->state; |
5349 | ret = xmlFAParsePiece(ctxt); |
5350 | if (ret != 0) { |
5351 | if (xmlFAGenerateTransitions(ctxt, previous, |
5352 | (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0) |
5353 | return(-1); |
5354 | previous = ctxt->state; |
5355 | ctxt->atom = NULL; |
5356 | } |
5357 | while ((ret != 0) && (ctxt->error == 0)) { |
5358 | ret = xmlFAParsePiece(ctxt); |
5359 | if (ret != 0) { |
5360 | if (xmlFAGenerateTransitions(ctxt, previous, |
5361 | (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0) |
5362 | return(-1); |
5363 | previous = ctxt->state; |
5364 | ctxt->atom = NULL; |
5365 | } |
5366 | } |
5367 | return(0); |
5368 | } |
5369 | |
5370 | /** |
5371 | * xmlFAParseRegExp: |
5372 | * @ctxt: a regexp parser context |
5373 | * @top: is this the top-level expression ? |
5374 | * |
5375 | * [1] regExp ::= branch ( '|' branch )* |
5376 | */ |
5377 | static void |
5378 | xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) { |
5379 | xmlRegStatePtr start, end; |
5380 | |
5381 | /* if not top start should have been generated by an epsilon trans */ |
5382 | start = ctxt->state; |
5383 | ctxt->end = NULL; |
5384 | xmlFAParseBranch(ctxt, NULL); |
5385 | if (top) { |
5386 | #ifdef DEBUG_REGEXP_GRAPH |
5387 | printf("State %d is final\n" , ctxt->state->no); |
5388 | #endif |
5389 | ctxt->state->type = XML_REGEXP_FINAL_STATE; |
5390 | } |
5391 | if (CUR != '|') { |
5392 | ctxt->end = ctxt->state; |
5393 | return; |
5394 | } |
5395 | end = ctxt->state; |
5396 | while ((CUR == '|') && (ctxt->error == 0)) { |
5397 | NEXT; |
5398 | if (CUR == 0) { |
5399 | ERROR("expecting a branch after |" ) |
5400 | return; |
5401 | } |
5402 | ctxt->state = start; |
5403 | ctxt->end = NULL; |
5404 | xmlFAParseBranch(ctxt, end); |
5405 | } |
5406 | if (!top) { |
5407 | ctxt->state = end; |
5408 | ctxt->end = end; |
5409 | } |
5410 | } |
5411 | |
5412 | /************************************************************************ |
5413 | * * |
5414 | * The basic API * |
5415 | * * |
5416 | ************************************************************************/ |
5417 | |
5418 | /** |
5419 | * xmlRegexpPrint: |
5420 | * @output: the file for the output debug |
5421 | * @regexp: the compiled regexp |
5422 | * |
5423 | * Print the content of the compiled regular expression |
5424 | */ |
5425 | void |
5426 | xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) { |
5427 | int i; |
5428 | |
5429 | if (output == NULL) |
5430 | return; |
5431 | fprintf(output, " regexp: " ); |
5432 | if (regexp == NULL) { |
5433 | fprintf(output, "NULL\n" ); |
5434 | return; |
5435 | } |
5436 | fprintf(output, "'%s' " , regexp->string); |
5437 | fprintf(output, "\n" ); |
5438 | fprintf(output, "%d atoms:\n" , regexp->nbAtoms); |
5439 | for (i = 0;i < regexp->nbAtoms; i++) { |
5440 | fprintf(output, " %02d " , i); |
5441 | xmlRegPrintAtom(output, regexp->atoms[i]); |
5442 | } |
5443 | fprintf(output, "%d states:" , regexp->nbStates); |
5444 | fprintf(output, "\n" ); |
5445 | for (i = 0;i < regexp->nbStates; i++) { |
5446 | xmlRegPrintState(output, regexp->states[i]); |
5447 | } |
5448 | fprintf(output, "%d counters:\n" , regexp->nbCounters); |
5449 | for (i = 0;i < regexp->nbCounters; i++) { |
5450 | fprintf(output, " %d: min %d max %d\n" , i, regexp->counters[i].min, |
5451 | regexp->counters[i].max); |
5452 | } |
5453 | } |
5454 | |
5455 | /** |
5456 | * xmlRegexpCompile: |
5457 | * @regexp: a regular expression string |
5458 | * |
5459 | * Parses a regular expression conforming to XML Schemas Part 2 Datatype |
5460 | * Appendix F and builds an automata suitable for testing strings against |
5461 | * that regular expression |
5462 | * |
5463 | * Returns the compiled expression or NULL in case of error |
5464 | */ |
5465 | xmlRegexpPtr |
5466 | xmlRegexpCompile(const xmlChar *regexp) { |
5467 | xmlRegexpPtr ret; |
5468 | xmlRegParserCtxtPtr ctxt; |
5469 | |
5470 | ctxt = xmlRegNewParserCtxt(regexp); |
5471 | if (ctxt == NULL) |
5472 | return(NULL); |
5473 | |
5474 | /* initialize the parser */ |
5475 | ctxt->end = NULL; |
5476 | ctxt->start = ctxt->state = xmlRegNewState(ctxt); |
5477 | xmlRegStatePush(ctxt, ctxt->start); |
5478 | |
5479 | /* parse the expression building an automata */ |
5480 | xmlFAParseRegExp(ctxt, 1); |
5481 | if (CUR != 0) { |
5482 | ERROR("xmlFAParseRegExp: extra characters" ); |
5483 | } |
5484 | if (ctxt->error != 0) { |
5485 | xmlRegFreeParserCtxt(ctxt); |
5486 | return(NULL); |
5487 | } |
5488 | ctxt->end = ctxt->state; |
5489 | ctxt->start->type = XML_REGEXP_START_STATE; |
5490 | ctxt->end->type = XML_REGEXP_FINAL_STATE; |
5491 | |
5492 | /* remove the Epsilon except for counted transitions */ |
5493 | xmlFAEliminateEpsilonTransitions(ctxt); |
5494 | |
5495 | |
5496 | if (ctxt->error != 0) { |
5497 | xmlRegFreeParserCtxt(ctxt); |
5498 | return(NULL); |
5499 | } |
5500 | ret = xmlRegEpxFromParse(ctxt); |
5501 | xmlRegFreeParserCtxt(ctxt); |
5502 | return(ret); |
5503 | } |
5504 | |
5505 | /** |
5506 | * xmlRegexpExec: |
5507 | * @comp: the compiled regular expression |
5508 | * @content: the value to check against the regular expression |
5509 | * |
5510 | * Check if the regular expression generates the value |
5511 | * |
5512 | * Returns 1 if it matches, 0 if not and a negative value in case of error |
5513 | */ |
5514 | int |
5515 | xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) { |
5516 | if ((comp == NULL) || (content == NULL)) |
5517 | return(-1); |
5518 | return(xmlFARegExec(comp, content)); |
5519 | } |
5520 | |
5521 | /** |
5522 | * xmlRegexpIsDeterminist: |
5523 | * @comp: the compiled regular expression |
5524 | * |
5525 | * Check if the regular expression is determinist |
5526 | * |
5527 | * Returns 1 if it yes, 0 if not and a negative value in case of error |
5528 | */ |
5529 | int |
5530 | xmlRegexpIsDeterminist(xmlRegexpPtr comp) { |
5531 | xmlAutomataPtr am; |
5532 | int ret; |
5533 | |
5534 | if (comp == NULL) |
5535 | return(-1); |
5536 | if (comp->determinist != -1) |
5537 | return(comp->determinist); |
5538 | |
5539 | am = xmlNewAutomata(); |
5540 | if (am->states != NULL) { |
5541 | int i; |
5542 | |
5543 | for (i = 0;i < am->nbStates;i++) |
5544 | xmlRegFreeState(am->states[i]); |
5545 | xmlFree(am->states); |
5546 | } |
5547 | am->nbAtoms = comp->nbAtoms; |
5548 | am->atoms = comp->atoms; |
5549 | am->nbStates = comp->nbStates; |
5550 | am->states = comp->states; |
5551 | am->determinist = -1; |
5552 | am->flags = comp->flags; |
5553 | ret = xmlFAComputesDeterminism(am); |
5554 | am->atoms = NULL; |
5555 | am->states = NULL; |
5556 | xmlFreeAutomata(am); |
5557 | comp->determinist = ret; |
5558 | return(ret); |
5559 | } |
5560 | |
5561 | /** |
5562 | * xmlRegFreeRegexp: |
5563 | * @regexp: the regexp |
5564 | * |
5565 | * Free a regexp |
5566 | */ |
5567 | void |
5568 | xmlRegFreeRegexp(xmlRegexpPtr regexp) { |
5569 | int i; |
5570 | if (regexp == NULL) |
5571 | return; |
5572 | |
5573 | if (regexp->string != NULL) |
5574 | xmlFree(regexp->string); |
5575 | if (regexp->states != NULL) { |
5576 | for (i = 0;i < regexp->nbStates;i++) |
5577 | xmlRegFreeState(regexp->states[i]); |
5578 | xmlFree(regexp->states); |
5579 | } |
5580 | if (regexp->atoms != NULL) { |
5581 | for (i = 0;i < regexp->nbAtoms;i++) |
5582 | xmlRegFreeAtom(regexp->atoms[i]); |
5583 | xmlFree(regexp->atoms); |
5584 | } |
5585 | if (regexp->counters != NULL) |
5586 | xmlFree(regexp->counters); |
5587 | if (regexp->compact != NULL) |
5588 | xmlFree(regexp->compact); |
5589 | if (regexp->transdata != NULL) |
5590 | xmlFree(regexp->transdata); |
5591 | if (regexp->stringMap != NULL) { |
5592 | for (i = 0; i < regexp->nbstrings;i++) |
5593 | xmlFree(regexp->stringMap[i]); |
5594 | xmlFree(regexp->stringMap); |
5595 | } |
5596 | |
5597 | xmlFree(regexp); |
5598 | } |
5599 | |
5600 | #ifdef LIBXML_AUTOMATA_ENABLED |
5601 | /************************************************************************ |
5602 | * * |
5603 | * The Automata interface * |
5604 | * * |
5605 | ************************************************************************/ |
5606 | |
5607 | /** |
5608 | * xmlNewAutomata: |
5609 | * |
5610 | * Create a new automata |
5611 | * |
5612 | * Returns the new object or NULL in case of failure |
5613 | */ |
5614 | xmlAutomataPtr |
5615 | xmlNewAutomata(void) { |
5616 | xmlAutomataPtr ctxt; |
5617 | |
5618 | ctxt = xmlRegNewParserCtxt(NULL); |
5619 | if (ctxt == NULL) |
5620 | return(NULL); |
5621 | |
5622 | /* initialize the parser */ |
5623 | ctxt->end = NULL; |
5624 | ctxt->start = ctxt->state = xmlRegNewState(ctxt); |
5625 | if (ctxt->start == NULL) { |
5626 | xmlFreeAutomata(ctxt); |
5627 | return(NULL); |
5628 | } |
5629 | ctxt->start->type = XML_REGEXP_START_STATE; |
5630 | if (xmlRegStatePush(ctxt, ctxt->start) < 0) { |
5631 | xmlRegFreeState(ctxt->start); |
5632 | xmlFreeAutomata(ctxt); |
5633 | return(NULL); |
5634 | } |
5635 | ctxt->flags = 0; |
5636 | |
5637 | return(ctxt); |
5638 | } |
5639 | |
5640 | /** |
5641 | * xmlFreeAutomata: |
5642 | * @am: an automata |
5643 | * |
5644 | * Free an automata |
5645 | */ |
5646 | void |
5647 | xmlFreeAutomata(xmlAutomataPtr am) { |
5648 | if (am == NULL) |
5649 | return; |
5650 | xmlRegFreeParserCtxt(am); |
5651 | } |
5652 | |
5653 | /** |
5654 | * xmlAutomataSetFlags: |
5655 | * @am: an automata |
5656 | * @flags: a set of internal flags |
5657 | * |
5658 | * Set some flags on the automata |
5659 | */ |
5660 | void |
5661 | xmlAutomataSetFlags(xmlAutomataPtr am, int flags) { |
5662 | if (am == NULL) |
5663 | return; |
5664 | am->flags |= flags; |
5665 | } |
5666 | |
5667 | /** |
5668 | * xmlAutomataGetInitState: |
5669 | * @am: an automata |
5670 | * |
5671 | * Initial state lookup |
5672 | * |
5673 | * Returns the initial state of the automata |
5674 | */ |
5675 | xmlAutomataStatePtr |
5676 | xmlAutomataGetInitState(xmlAutomataPtr am) { |
5677 | if (am == NULL) |
5678 | return(NULL); |
5679 | return(am->start); |
5680 | } |
5681 | |
5682 | /** |
5683 | * xmlAutomataSetFinalState: |
5684 | * @am: an automata |
5685 | * @state: a state in this automata |
5686 | * |
5687 | * Makes that state a final state |
5688 | * |
5689 | * Returns 0 or -1 in case of error |
5690 | */ |
5691 | int |
5692 | xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) { |
5693 | if ((am == NULL) || (state == NULL)) |
5694 | return(-1); |
5695 | state->type = XML_REGEXP_FINAL_STATE; |
5696 | return(0); |
5697 | } |
5698 | |
5699 | /** |
5700 | * xmlAutomataNewTransition: |
5701 | * @am: an automata |
5702 | * @from: the starting point of the transition |
5703 | * @to: the target point of the transition or NULL |
5704 | * @token: the input string associated to that transition |
5705 | * @data: data passed to the callback function if the transition is activated |
5706 | * |
5707 | * If @to is NULL, this creates first a new target state in the automata |
5708 | * and then adds a transition from the @from state to the target state |
5709 | * activated by the value of @token |
5710 | * |
5711 | * Returns the target state or NULL in case of error |
5712 | */ |
5713 | xmlAutomataStatePtr |
5714 | xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from, |
5715 | xmlAutomataStatePtr to, const xmlChar *token, |
5716 | void *data) { |
5717 | xmlRegAtomPtr atom; |
5718 | |
5719 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
5720 | return(NULL); |
5721 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
5722 | if (atom == NULL) |
5723 | return(NULL); |
5724 | atom->data = data; |
5725 | atom->valuep = xmlStrdup(token); |
5726 | |
5727 | if (xmlFAGenerateTransitions(am, from, to, atom) < 0) { |
5728 | xmlRegFreeAtom(atom); |
5729 | return(NULL); |
5730 | } |
5731 | if (to == NULL) |
5732 | return(am->state); |
5733 | return(to); |
5734 | } |
5735 | |
5736 | /** |
5737 | * xmlAutomataNewTransition2: |
5738 | * @am: an automata |
5739 | * @from: the starting point of the transition |
5740 | * @to: the target point of the transition or NULL |
5741 | * @token: the first input string associated to that transition |
5742 | * @token2: the second input string associated to that transition |
5743 | * @data: data passed to the callback function if the transition is activated |
5744 | * |
5745 | * If @to is NULL, this creates first a new target state in the automata |
5746 | * and then adds a transition from the @from state to the target state |
5747 | * activated by the value of @token |
5748 | * |
5749 | * Returns the target state or NULL in case of error |
5750 | */ |
5751 | xmlAutomataStatePtr |
5752 | xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from, |
5753 | xmlAutomataStatePtr to, const xmlChar *token, |
5754 | const xmlChar *token2, void *data) { |
5755 | xmlRegAtomPtr atom; |
5756 | |
5757 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
5758 | return(NULL); |
5759 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
5760 | if (atom == NULL) |
5761 | return(NULL); |
5762 | atom->data = data; |
5763 | if ((token2 == NULL) || (*token2 == 0)) { |
5764 | atom->valuep = xmlStrdup(token); |
5765 | } else { |
5766 | int lenn, lenp; |
5767 | xmlChar *str; |
5768 | |
5769 | lenn = strlen((char *) token2); |
5770 | lenp = strlen((char *) token); |
5771 | |
5772 | str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
5773 | if (str == NULL) { |
5774 | xmlRegFreeAtom(atom); |
5775 | return(NULL); |
5776 | } |
5777 | memcpy(&str[0], token, lenp); |
5778 | str[lenp] = '|'; |
5779 | memcpy(&str[lenp + 1], token2, lenn); |
5780 | str[lenn + lenp + 1] = 0; |
5781 | |
5782 | atom->valuep = str; |
5783 | } |
5784 | |
5785 | if (xmlFAGenerateTransitions(am, from, to, atom) < 0) { |
5786 | xmlRegFreeAtom(atom); |
5787 | return(NULL); |
5788 | } |
5789 | if (to == NULL) |
5790 | return(am->state); |
5791 | return(to); |
5792 | } |
5793 | |
5794 | /** |
5795 | * xmlAutomataNewNegTrans: |
5796 | * @am: an automata |
5797 | * @from: the starting point of the transition |
5798 | * @to: the target point of the transition or NULL |
5799 | * @token: the first input string associated to that transition |
5800 | * @token2: the second input string associated to that transition |
5801 | * @data: data passed to the callback function if the transition is activated |
5802 | * |
5803 | * If @to is NULL, this creates first a new target state in the automata |
5804 | * and then adds a transition from the @from state to the target state |
5805 | * activated by any value except (@token,@token2) |
5806 | * Note that if @token2 is not NULL, then (X, NULL) won't match to follow |
5807 | # the semantic of XSD ##other |
5808 | * |
5809 | * Returns the target state or NULL in case of error |
5810 | */ |
5811 | xmlAutomataStatePtr |
5812 | xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
5813 | xmlAutomataStatePtr to, const xmlChar *token, |
5814 | const xmlChar *token2, void *data) { |
5815 | xmlRegAtomPtr atom; |
5816 | xmlChar err_msg[200]; |
5817 | |
5818 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
5819 | return(NULL); |
5820 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
5821 | if (atom == NULL) |
5822 | return(NULL); |
5823 | atom->data = data; |
5824 | atom->neg = 1; |
5825 | if ((token2 == NULL) || (*token2 == 0)) { |
5826 | atom->valuep = xmlStrdup(token); |
5827 | } else { |
5828 | int lenn, lenp; |
5829 | xmlChar *str; |
5830 | |
5831 | lenn = strlen((char *) token2); |
5832 | lenp = strlen((char *) token); |
5833 | |
5834 | str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
5835 | if (str == NULL) { |
5836 | xmlRegFreeAtom(atom); |
5837 | return(NULL); |
5838 | } |
5839 | memcpy(&str[0], token, lenp); |
5840 | str[lenp] = '|'; |
5841 | memcpy(&str[lenp + 1], token2, lenn); |
5842 | str[lenn + lenp + 1] = 0; |
5843 | |
5844 | atom->valuep = str; |
5845 | } |
5846 | snprintf((char *) err_msg, 199, "not %s" , (const char *) atom->valuep); |
5847 | err_msg[199] = 0; |
5848 | atom->valuep2 = xmlStrdup(err_msg); |
5849 | |
5850 | if (xmlFAGenerateTransitions(am, from, to, atom) < 0) { |
5851 | xmlRegFreeAtom(atom); |
5852 | return(NULL); |
5853 | } |
5854 | am->negs++; |
5855 | if (to == NULL) |
5856 | return(am->state); |
5857 | return(to); |
5858 | } |
5859 | |
5860 | /** |
5861 | * xmlAutomataNewCountTrans2: |
5862 | * @am: an automata |
5863 | * @from: the starting point of the transition |
5864 | * @to: the target point of the transition or NULL |
5865 | * @token: the input string associated to that transition |
5866 | * @token2: the second input string associated to that transition |
5867 | * @min: the minimum successive occurences of token |
5868 | * @max: the maximum successive occurences of token |
5869 | * @data: data associated to the transition |
5870 | * |
5871 | * If @to is NULL, this creates first a new target state in the automata |
5872 | * and then adds a transition from the @from state to the target state |
5873 | * activated by a succession of input of value @token and @token2 and |
5874 | * whose number is between @min and @max |
5875 | * |
5876 | * Returns the target state or NULL in case of error |
5877 | */ |
5878 | xmlAutomataStatePtr |
5879 | xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from, |
5880 | xmlAutomataStatePtr to, const xmlChar *token, |
5881 | const xmlChar *token2, |
5882 | int min, int max, void *data) { |
5883 | xmlRegAtomPtr atom; |
5884 | int counter; |
5885 | |
5886 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
5887 | return(NULL); |
5888 | if (min < 0) |
5889 | return(NULL); |
5890 | if ((max < min) || (max < 1)) |
5891 | return(NULL); |
5892 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
5893 | if (atom == NULL) |
5894 | return(NULL); |
5895 | if ((token2 == NULL) || (*token2 == 0)) { |
5896 | atom->valuep = xmlStrdup(token); |
5897 | } else { |
5898 | int lenn, lenp; |
5899 | xmlChar *str; |
5900 | |
5901 | lenn = strlen((char *) token2); |
5902 | lenp = strlen((char *) token); |
5903 | |
5904 | str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
5905 | if (str == NULL) { |
5906 | xmlRegFreeAtom(atom); |
5907 | return(NULL); |
5908 | } |
5909 | memcpy(&str[0], token, lenp); |
5910 | str[lenp] = '|'; |
5911 | memcpy(&str[lenp + 1], token2, lenn); |
5912 | str[lenn + lenp + 1] = 0; |
5913 | |
5914 | atom->valuep = str; |
5915 | } |
5916 | atom->data = data; |
5917 | if (min == 0) |
5918 | atom->min = 1; |
5919 | else |
5920 | atom->min = min; |
5921 | atom->max = max; |
5922 | |
5923 | /* |
5924 | * associate a counter to the transition. |
5925 | */ |
5926 | counter = xmlRegGetCounter(am); |
5927 | am->counters[counter].min = min; |
5928 | am->counters[counter].max = max; |
5929 | |
5930 | /* xmlFAGenerateTransitions(am, from, to, atom); */ |
5931 | if (to == NULL) { |
5932 | to = xmlRegNewState(am); |
5933 | xmlRegStatePush(am, to); |
5934 | } |
5935 | xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
5936 | xmlRegAtomPush(am, atom); |
5937 | am->state = to; |
5938 | |
5939 | if (to == NULL) |
5940 | to = am->state; |
5941 | if (to == NULL) |
5942 | return(NULL); |
5943 | if (min == 0) |
5944 | xmlFAGenerateEpsilonTransition(am, from, to); |
5945 | return(to); |
5946 | } |
5947 | |
5948 | /** |
5949 | * xmlAutomataNewCountTrans: |
5950 | * @am: an automata |
5951 | * @from: the starting point of the transition |
5952 | * @to: the target point of the transition or NULL |
5953 | * @token: the input string associated to that transition |
5954 | * @min: the minimum successive occurences of token |
5955 | * @max: the maximum successive occurences of token |
5956 | * @data: data associated to the transition |
5957 | * |
5958 | * If @to is NULL, this creates first a new target state in the automata |
5959 | * and then adds a transition from the @from state to the target state |
5960 | * activated by a succession of input of value @token and whose number |
5961 | * is between @min and @max |
5962 | * |
5963 | * Returns the target state or NULL in case of error |
5964 | */ |
5965 | xmlAutomataStatePtr |
5966 | xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
5967 | xmlAutomataStatePtr to, const xmlChar *token, |
5968 | int min, int max, void *data) { |
5969 | xmlRegAtomPtr atom; |
5970 | int counter; |
5971 | |
5972 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
5973 | return(NULL); |
5974 | if (min < 0) |
5975 | return(NULL); |
5976 | if ((max < min) || (max < 1)) |
5977 | return(NULL); |
5978 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
5979 | if (atom == NULL) |
5980 | return(NULL); |
5981 | atom->valuep = xmlStrdup(token); |
5982 | atom->data = data; |
5983 | if (min == 0) |
5984 | atom->min = 1; |
5985 | else |
5986 | atom->min = min; |
5987 | atom->max = max; |
5988 | |
5989 | /* |
5990 | * associate a counter to the transition. |
5991 | */ |
5992 | counter = xmlRegGetCounter(am); |
5993 | am->counters[counter].min = min; |
5994 | am->counters[counter].max = max; |
5995 | |
5996 | /* xmlFAGenerateTransitions(am, from, to, atom); */ |
5997 | if (to == NULL) { |
5998 | to = xmlRegNewState(am); |
5999 | xmlRegStatePush(am, to); |
6000 | } |
6001 | xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
6002 | xmlRegAtomPush(am, atom); |
6003 | am->state = to; |
6004 | |
6005 | if (to == NULL) |
6006 | to = am->state; |
6007 | if (to == NULL) |
6008 | return(NULL); |
6009 | if (min == 0) |
6010 | xmlFAGenerateEpsilonTransition(am, from, to); |
6011 | return(to); |
6012 | } |
6013 | |
6014 | /** |
6015 | * xmlAutomataNewOnceTrans2: |
6016 | * @am: an automata |
6017 | * @from: the starting point of the transition |
6018 | * @to: the target point of the transition or NULL |
6019 | * @token: the input string associated to that transition |
6020 | * @token2: the second input string associated to that transition |
6021 | * @min: the minimum successive occurences of token |
6022 | * @max: the maximum successive occurences of token |
6023 | * @data: data associated to the transition |
6024 | * |
6025 | * If @to is NULL, this creates first a new target state in the automata |
6026 | * and then adds a transition from the @from state to the target state |
6027 | * activated by a succession of input of value @token and @token2 and whose |
6028 | * number is between @min and @max, moreover that transition can only be |
6029 | * crossed once. |
6030 | * |
6031 | * Returns the target state or NULL in case of error |
6032 | */ |
6033 | xmlAutomataStatePtr |
6034 | xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from, |
6035 | xmlAutomataStatePtr to, const xmlChar *token, |
6036 | const xmlChar *token2, |
6037 | int min, int max, void *data) { |
6038 | xmlRegAtomPtr atom; |
6039 | int counter; |
6040 | |
6041 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
6042 | return(NULL); |
6043 | if (min < 1) |
6044 | return(NULL); |
6045 | if ((max < min) || (max < 1)) |
6046 | return(NULL); |
6047 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
6048 | if (atom == NULL) |
6049 | return(NULL); |
6050 | if ((token2 == NULL) || (*token2 == 0)) { |
6051 | atom->valuep = xmlStrdup(token); |
6052 | } else { |
6053 | int lenn, lenp; |
6054 | xmlChar *str; |
6055 | |
6056 | lenn = strlen((char *) token2); |
6057 | lenp = strlen((char *) token); |
6058 | |
6059 | str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
6060 | if (str == NULL) { |
6061 | xmlRegFreeAtom(atom); |
6062 | return(NULL); |
6063 | } |
6064 | memcpy(&str[0], token, lenp); |
6065 | str[lenp] = '|'; |
6066 | memcpy(&str[lenp + 1], token2, lenn); |
6067 | str[lenn + lenp + 1] = 0; |
6068 | |
6069 | atom->valuep = str; |
6070 | } |
6071 | atom->data = data; |
6072 | atom->quant = XML_REGEXP_QUANT_ONCEONLY; |
6073 | atom->min = min; |
6074 | atom->max = max; |
6075 | /* |
6076 | * associate a counter to the transition. |
6077 | */ |
6078 | counter = xmlRegGetCounter(am); |
6079 | am->counters[counter].min = 1; |
6080 | am->counters[counter].max = 1; |
6081 | |
6082 | /* xmlFAGenerateTransitions(am, from, to, atom); */ |
6083 | if (to == NULL) { |
6084 | to = xmlRegNewState(am); |
6085 | xmlRegStatePush(am, to); |
6086 | } |
6087 | xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
6088 | xmlRegAtomPush(am, atom); |
6089 | am->state = to; |
6090 | return(to); |
6091 | } |
6092 | |
6093 | |
6094 | |
6095 | /** |
6096 | * xmlAutomataNewOnceTrans: |
6097 | * @am: an automata |
6098 | * @from: the starting point of the transition |
6099 | * @to: the target point of the transition or NULL |
6100 | * @token: the input string associated to that transition |
6101 | * @min: the minimum successive occurences of token |
6102 | * @max: the maximum successive occurences of token |
6103 | * @data: data associated to the transition |
6104 | * |
6105 | * If @to is NULL, this creates first a new target state in the automata |
6106 | * and then adds a transition from the @from state to the target state |
6107 | * activated by a succession of input of value @token and whose number |
6108 | * is between @min and @max, moreover that transition can only be crossed |
6109 | * once. |
6110 | * |
6111 | * Returns the target state or NULL in case of error |
6112 | */ |
6113 | xmlAutomataStatePtr |
6114 | xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
6115 | xmlAutomataStatePtr to, const xmlChar *token, |
6116 | int min, int max, void *data) { |
6117 | xmlRegAtomPtr atom; |
6118 | int counter; |
6119 | |
6120 | if ((am == NULL) || (from == NULL) || (token == NULL)) |
6121 | return(NULL); |
6122 | if (min < 1) |
6123 | return(NULL); |
6124 | if ((max < min) || (max < 1)) |
6125 | return(NULL); |
6126 | atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
6127 | if (atom == NULL) |
6128 | return(NULL); |
6129 | atom->valuep = xmlStrdup(token); |
6130 | atom->data = data; |
6131 | atom->quant = XML_REGEXP_QUANT_ONCEONLY; |
6132 | atom->min = min; |
6133 | atom->max = max; |
6134 | /* |
6135 | * associate a counter to the transition. |
6136 | */ |
6137 | counter = xmlRegGetCounter(am); |
6138 | am->counters[counter].min = 1; |
6139 | am->counters[counter].max = 1; |
6140 | |
6141 | /* xmlFAGenerateTransitions(am, from, to, atom); */ |
6142 | if (to == NULL) { |
6143 | to = xmlRegNewState(am); |
6144 | xmlRegStatePush(am, to); |
6145 | } |
6146 | xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
6147 | xmlRegAtomPush(am, atom); |
6148 | am->state = to; |
6149 | return(to); |
6150 | } |
6151 | |
6152 | /** |
6153 | * xmlAutomataNewState: |
6154 | * @am: an automata |
6155 | * |
6156 | * Create a new disconnected state in the automata |
6157 | * |
6158 | * Returns the new state or NULL in case of error |
6159 | */ |
6160 | xmlAutomataStatePtr |
6161 | xmlAutomataNewState(xmlAutomataPtr am) { |
6162 | xmlAutomataStatePtr to; |
6163 | |
6164 | if (am == NULL) |
6165 | return(NULL); |
6166 | to = xmlRegNewState(am); |
6167 | xmlRegStatePush(am, to); |
6168 | return(to); |
6169 | } |
6170 | |
6171 | /** |
6172 | * xmlAutomataNewEpsilon: |
6173 | * @am: an automata |
6174 | * @from: the starting point of the transition |
6175 | * @to: the target point of the transition or NULL |
6176 | * |
6177 | * If @to is NULL, this creates first a new target state in the automata |
6178 | * and then adds an epsilon transition from the @from state to the |
6179 | * target state |
6180 | * |
6181 | * Returns the target state or NULL in case of error |
6182 | */ |
6183 | xmlAutomataStatePtr |
6184 | xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from, |
6185 | xmlAutomataStatePtr to) { |
6186 | if ((am == NULL) || (from == NULL)) |
6187 | return(NULL); |
6188 | xmlFAGenerateEpsilonTransition(am, from, to); |
6189 | if (to == NULL) |
6190 | return(am->state); |
6191 | return(to); |
6192 | } |
6193 | |
6194 | /** |
6195 | * xmlAutomataNewAllTrans: |
6196 | * @am: an automata |
6197 | * @from: the starting point of the transition |
6198 | * @to: the target point of the transition or NULL |
6199 | * @lax: allow to transition if not all all transitions have been activated |
6200 | * |
6201 | * If @to is NULL, this creates first a new target state in the automata |
6202 | * and then adds a an ALL transition from the @from state to the |
6203 | * target state. That transition is an epsilon transition allowed only when |
6204 | * all transitions from the @from node have been activated. |
6205 | * |
6206 | * Returns the target state or NULL in case of error |
6207 | */ |
6208 | xmlAutomataStatePtr |
6209 | xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
6210 | xmlAutomataStatePtr to, int lax) { |
6211 | if ((am == NULL) || (from == NULL)) |
6212 | return(NULL); |
6213 | xmlFAGenerateAllTransition(am, from, to, lax); |
6214 | if (to == NULL) |
6215 | return(am->state); |
6216 | return(to); |
6217 | } |
6218 | |
6219 | /** |
6220 | * xmlAutomataNewCounter: |
6221 | * @am: an automata |
6222 | * @min: the minimal value on the counter |
6223 | * @max: the maximal value on the counter |
6224 | * |
6225 | * Create a new counter |
6226 | * |
6227 | * Returns the counter number or -1 in case of error |
6228 | */ |
6229 | int |
6230 | xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) { |
6231 | int ret; |
6232 | |
6233 | if (am == NULL) |
6234 | return(-1); |
6235 | |
6236 | ret = xmlRegGetCounter(am); |
6237 | if (ret < 0) |
6238 | return(-1); |
6239 | am->counters[ret].min = min; |
6240 | am->counters[ret].max = max; |
6241 | return(ret); |
6242 | } |
6243 | |
6244 | /** |
6245 | * xmlAutomataNewCountedTrans: |
6246 | * @am: an automata |
6247 | * @from: the starting point of the transition |
6248 | * @to: the target point of the transition or NULL |
6249 | * @counter: the counter associated to that transition |
6250 | * |
6251 | * If @to is NULL, this creates first a new target state in the automata |
6252 | * and then adds an epsilon transition from the @from state to the target state |
6253 | * which will increment the counter provided |
6254 | * |
6255 | * Returns the target state or NULL in case of error |
6256 | */ |
6257 | xmlAutomataStatePtr |
6258 | xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
6259 | xmlAutomataStatePtr to, int counter) { |
6260 | if ((am == NULL) || (from == NULL) || (counter < 0)) |
6261 | return(NULL); |
6262 | xmlFAGenerateCountedEpsilonTransition(am, from, to, counter); |
6263 | if (to == NULL) |
6264 | return(am->state); |
6265 | return(to); |
6266 | } |
6267 | |
6268 | /** |
6269 | * xmlAutomataNewCounterTrans: |
6270 | * @am: an automata |
6271 | * @from: the starting point of the transition |
6272 | * @to: the target point of the transition or NULL |
6273 | * @counter: the counter associated to that transition |
6274 | * |
6275 | * If @to is NULL, this creates first a new target state in the automata |
6276 | * and then adds an epsilon transition from the @from state to the target state |
6277 | * which will be allowed only if the counter is within the right range. |
6278 | * |
6279 | * Returns the target state or NULL in case of error |
6280 | */ |
6281 | xmlAutomataStatePtr |
6282 | xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
6283 | xmlAutomataStatePtr to, int counter) { |
6284 | if ((am == NULL) || (from == NULL) || (counter < 0)) |
6285 | return(NULL); |
6286 | xmlFAGenerateCountedTransition(am, from, to, counter); |
6287 | if (to == NULL) |
6288 | return(am->state); |
6289 | return(to); |
6290 | } |
6291 | |
6292 | /** |
6293 | * xmlAutomataCompile: |
6294 | * @am: an automata |
6295 | * |
6296 | * Compile the automata into a Reg Exp ready for being executed. |
6297 | * The automata should be free after this point. |
6298 | * |
6299 | * Returns the compiled regexp or NULL in case of error |
6300 | */ |
6301 | xmlRegexpPtr |
6302 | xmlAutomataCompile(xmlAutomataPtr am) { |
6303 | xmlRegexpPtr ret; |
6304 | |
6305 | if ((am == NULL) || (am->error != 0)) return(NULL); |
6306 | xmlFAEliminateEpsilonTransitions(am); |
6307 | /* xmlFAComputesDeterminism(am); */ |
6308 | ret = xmlRegEpxFromParse(am); |
6309 | |
6310 | return(ret); |
6311 | } |
6312 | |
6313 | /** |
6314 | * xmlAutomataIsDeterminist: |
6315 | * @am: an automata |
6316 | * |
6317 | * Checks if an automata is determinist. |
6318 | * |
6319 | * Returns 1 if true, 0 if not, and -1 in case of error |
6320 | */ |
6321 | int |
6322 | xmlAutomataIsDeterminist(xmlAutomataPtr am) { |
6323 | int ret; |
6324 | |
6325 | if (am == NULL) |
6326 | return(-1); |
6327 | |
6328 | ret = xmlFAComputesDeterminism(am); |
6329 | return(ret); |
6330 | } |
6331 | #endif /* LIBXML_AUTOMATA_ENABLED */ |
6332 | |
6333 | #ifdef LIBXML_EXPR_ENABLED |
6334 | /************************************************************************ |
6335 | * * |
6336 | * Formal Expression handling code * |
6337 | * * |
6338 | ************************************************************************/ |
6339 | /************************************************************************ |
6340 | * * |
6341 | * Expression handling context * |
6342 | * * |
6343 | ************************************************************************/ |
6344 | |
6345 | struct _xmlExpCtxt { |
6346 | xmlDictPtr dict; |
6347 | xmlExpNodePtr *table; |
6348 | int size; |
6349 | int nbElems; |
6350 | int nb_nodes; |
6351 | int maxNodes; |
6352 | const char *expr; |
6353 | const char *cur; |
6354 | int nb_cons; |
6355 | int tabSize; |
6356 | }; |
6357 | |
6358 | /** |
6359 | * xmlExpNewCtxt: |
6360 | * @maxNodes: the maximum number of nodes |
6361 | * @dict: optional dictionary to use internally |
6362 | * |
6363 | * Creates a new context for manipulating expressions |
6364 | * |
6365 | * Returns the context or NULL in case of error |
6366 | */ |
6367 | xmlExpCtxtPtr |
6368 | xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) { |
6369 | xmlExpCtxtPtr ret; |
6370 | int size = 256; |
6371 | |
6372 | if (maxNodes <= 4096) |
6373 | maxNodes = 4096; |
6374 | |
6375 | ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt)); |
6376 | if (ret == NULL) |
6377 | return(NULL); |
6378 | memset(ret, 0, sizeof(xmlExpCtxt)); |
6379 | ret->size = size; |
6380 | ret->nbElems = 0; |
6381 | ret->maxNodes = maxNodes; |
6382 | ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr)); |
6383 | if (ret->table == NULL) { |
6384 | xmlFree(ret); |
6385 | return(NULL); |
6386 | } |
6387 | memset(ret->table, 0, size * sizeof(xmlExpNodePtr)); |
6388 | if (dict == NULL) { |
6389 | ret->dict = xmlDictCreate(); |
6390 | if (ret->dict == NULL) { |
6391 | xmlFree(ret->table); |
6392 | xmlFree(ret); |
6393 | return(NULL); |
6394 | } |
6395 | } else { |
6396 | ret->dict = dict; |
6397 | xmlDictReference(ret->dict); |
6398 | } |
6399 | return(ret); |
6400 | } |
6401 | |
6402 | /** |
6403 | * xmlExpFreeCtxt: |
6404 | * @ctxt: an expression context |
6405 | * |
6406 | * Free an expression context |
6407 | */ |
6408 | void |
6409 | xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) { |
6410 | if (ctxt == NULL) |
6411 | return; |
6412 | xmlDictFree(ctxt->dict); |
6413 | if (ctxt->table != NULL) |
6414 | xmlFree(ctxt->table); |
6415 | xmlFree(ctxt); |
6416 | } |
6417 | |
6418 | /************************************************************************ |
6419 | * * |
6420 | * Structure associated to an expression node * |
6421 | * * |
6422 | ************************************************************************/ |
6423 | #define MAX_NODES 10000 |
6424 | |
6425 | /* #define DEBUG_DERIV */ |
6426 | |
6427 | /* |
6428 | * TODO: |
6429 | * - Wildcards |
6430 | * - public API for creation |
6431 | * |
6432 | * Started |
6433 | * - regression testing |
6434 | * |
6435 | * Done |
6436 | * - split into module and test tool |
6437 | * - memleaks |
6438 | */ |
6439 | |
6440 | typedef enum { |
6441 | XML_EXP_NILABLE = (1 << 0) |
6442 | } xmlExpNodeInfo; |
6443 | |
6444 | #define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE) |
6445 | |
6446 | struct _xmlExpNode { |
6447 | unsigned char type;/* xmlExpNodeType */ |
6448 | unsigned char info;/* OR of xmlExpNodeInfo */ |
6449 | unsigned short key; /* the hash key */ |
6450 | unsigned int ref; /* The number of references */ |
6451 | int c_max; /* the maximum length it can consume */ |
6452 | xmlExpNodePtr exp_left; |
6453 | xmlExpNodePtr next;/* the next node in the hash table or free list */ |
6454 | union { |
6455 | struct { |
6456 | int f_min; |
6457 | int f_max; |
6458 | } count; |
6459 | struct { |
6460 | xmlExpNodePtr f_right; |
6461 | } children; |
6462 | const xmlChar *f_str; |
6463 | } field; |
6464 | }; |
6465 | |
6466 | #define exp_min field.count.f_min |
6467 | #define exp_max field.count.f_max |
6468 | /* #define exp_left field.children.f_left */ |
6469 | #define exp_right field.children.f_right |
6470 | #define exp_str field.f_str |
6471 | |
6472 | static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type); |
6473 | static xmlExpNode forbiddenExpNode = { |
6474 | XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}} |
6475 | }; |
6476 | xmlExpNodePtr forbiddenExp = &forbiddenExpNode; |
6477 | static xmlExpNode emptyExpNode = { |
6478 | XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}} |
6479 | }; |
6480 | xmlExpNodePtr emptyExp = &emptyExpNode; |
6481 | |
6482 | /************************************************************************ |
6483 | * * |
6484 | * The custom hash table for unicity and canonicalization * |
6485 | * of sub-expressions pointers * |
6486 | * * |
6487 | ************************************************************************/ |
6488 | /* |
6489 | * xmlExpHashNameComputeKey: |
6490 | * Calculate the hash key for a token |
6491 | */ |
6492 | static unsigned short |
6493 | xmlExpHashNameComputeKey(const xmlChar *name) { |
6494 | unsigned short value = 0L; |
6495 | char ch; |
6496 | |
6497 | if (name != NULL) { |
6498 | value += 30 * (*name); |
6499 | while ((ch = *name++) != 0) { |
6500 | value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); |
6501 | } |
6502 | } |
6503 | return (value); |
6504 | } |
6505 | |
6506 | /* |
6507 | * xmlExpHashComputeKey: |
6508 | * Calculate the hash key for a compound expression |
6509 | */ |
6510 | static unsigned short |
6511 | xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left, |
6512 | xmlExpNodePtr right) { |
6513 | unsigned long value; |
6514 | unsigned short ret; |
6515 | |
6516 | switch (type) { |
6517 | case XML_EXP_SEQ: |
6518 | value = left->key; |
6519 | value += right->key; |
6520 | value *= 3; |
6521 | ret = (unsigned short) value; |
6522 | break; |
6523 | case XML_EXP_OR: |
6524 | value = left->key; |
6525 | value += right->key; |
6526 | value *= 7; |
6527 | ret = (unsigned short) value; |
6528 | break; |
6529 | case XML_EXP_COUNT: |
6530 | value = left->key; |
6531 | value += right->key; |
6532 | ret = (unsigned short) value; |
6533 | break; |
6534 | default: |
6535 | ret = 0; |
6536 | } |
6537 | return(ret); |
6538 | } |
6539 | |
6540 | |
6541 | static xmlExpNodePtr |
6542 | xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) { |
6543 | xmlExpNodePtr ret; |
6544 | |
6545 | if (ctxt->nb_nodes >= MAX_NODES) |
6546 | return(NULL); |
6547 | ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode)); |
6548 | if (ret == NULL) |
6549 | return(NULL); |
6550 | memset(ret, 0, sizeof(xmlExpNode)); |
6551 | ret->type = type; |
6552 | ret->next = NULL; |
6553 | ctxt->nb_nodes++; |
6554 | ctxt->nb_cons++; |
6555 | return(ret); |
6556 | } |
6557 | |
6558 | /** |
6559 | * xmlExpHashGetEntry: |
6560 | * @table: the hash table |
6561 | * |
6562 | * Get the unique entry from the hash table. The entry is created if |
6563 | * needed. @left and @right are consumed, i.e. their ref count will |
6564 | * be decremented by the operation. |
6565 | * |
6566 | * Returns the pointer or NULL in case of error |
6567 | */ |
6568 | static xmlExpNodePtr |
6569 | xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type, |
6570 | xmlExpNodePtr left, xmlExpNodePtr right, |
6571 | const xmlChar *name, int min, int max) { |
6572 | unsigned short kbase, key; |
6573 | xmlExpNodePtr entry; |
6574 | xmlExpNodePtr insert; |
6575 | |
6576 | if (ctxt == NULL) |
6577 | return(NULL); |
6578 | |
6579 | /* |
6580 | * Check for duplicate and insertion location. |
6581 | */ |
6582 | if (type == XML_EXP_ATOM) { |
6583 | kbase = xmlExpHashNameComputeKey(name); |
6584 | } else if (type == XML_EXP_COUNT) { |
6585 | /* COUNT reduction rule 1 */ |
6586 | /* a{1} -> a */ |
6587 | if (min == max) { |
6588 | if (min == 1) { |
6589 | return(left); |
6590 | } |
6591 | if (min == 0) { |
6592 | xmlExpFree(ctxt, left); |
6593 | return(emptyExp); |
6594 | } |
6595 | } |
6596 | if (min < 0) { |
6597 | xmlExpFree(ctxt, left); |
6598 | return(forbiddenExp); |
6599 | } |
6600 | if (max == -1) |
6601 | kbase = min + 79; |
6602 | else |
6603 | kbase = max - min; |
6604 | kbase += left->key; |
6605 | } else if (type == XML_EXP_OR) { |
6606 | /* Forbid reduction rules */ |
6607 | if (left->type == XML_EXP_FORBID) { |
6608 | xmlExpFree(ctxt, left); |
6609 | return(right); |
6610 | } |
6611 | if (right->type == XML_EXP_FORBID) { |
6612 | xmlExpFree(ctxt, right); |
6613 | return(left); |
6614 | } |
6615 | |
6616 | /* OR reduction rule 1 */ |
6617 | /* a | a reduced to a */ |
6618 | if (left == right) { |
6619 | left->ref--; |
6620 | return(left); |
6621 | } |
6622 | /* OR canonicalization rule 1 */ |
6623 | /* linearize (a | b) | c into a | (b | c) */ |
6624 | if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) { |
6625 | xmlExpNodePtr tmp = left; |
6626 | left = right; |
6627 | right = tmp; |
6628 | } |
6629 | /* OR reduction rule 2 */ |
6630 | /* a | (a | b) and b | (a | b) are reduced to a | b */ |
6631 | if (right->type == XML_EXP_OR) { |
6632 | if ((left == right->exp_left) || |
6633 | (left == right->exp_right)) { |
6634 | xmlExpFree(ctxt, left); |
6635 | return(right); |
6636 | } |
6637 | } |
6638 | /* OR canonicalization rule 2 */ |
6639 | /* linearize (a | b) | c into a | (b | c) */ |
6640 | if (left->type == XML_EXP_OR) { |
6641 | xmlExpNodePtr tmp; |
6642 | |
6643 | /* OR canonicalization rule 2 */ |
6644 | if ((left->exp_right->type != XML_EXP_OR) && |
6645 | (left->exp_right->key < left->exp_left->key)) { |
6646 | tmp = left->exp_right; |
6647 | left->exp_right = left->exp_left; |
6648 | left->exp_left = tmp; |
6649 | } |
6650 | left->exp_right->ref++; |
6651 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right, |
6652 | NULL, 0, 0); |
6653 | left->exp_left->ref++; |
6654 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp, |
6655 | NULL, 0, 0); |
6656 | |
6657 | xmlExpFree(ctxt, left); |
6658 | return(tmp); |
6659 | } |
6660 | if (right->type == XML_EXP_OR) { |
6661 | /* Ordering in the tree */ |
6662 | /* C | (A | B) -> A | (B | C) */ |
6663 | if (left->key > right->exp_right->key) { |
6664 | xmlExpNodePtr tmp; |
6665 | right->exp_right->ref++; |
6666 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right, |
6667 | left, NULL, 0, 0); |
6668 | right->exp_left->ref++; |
6669 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left, |
6670 | tmp, NULL, 0, 0); |
6671 | xmlExpFree(ctxt, right); |
6672 | return(tmp); |
6673 | } |
6674 | /* Ordering in the tree */ |
6675 | /* B | (A | C) -> A | (B | C) */ |
6676 | if (left->key > right->exp_left->key) { |
6677 | xmlExpNodePtr tmp; |
6678 | right->exp_right->ref++; |
6679 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, |
6680 | right->exp_right, NULL, 0, 0); |
6681 | right->exp_left->ref++; |
6682 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left, |
6683 | tmp, NULL, 0, 0); |
6684 | xmlExpFree(ctxt, right); |
6685 | return(tmp); |
6686 | } |
6687 | } |
6688 | /* we know both types are != XML_EXP_OR here */ |
6689 | else if (left->key > right->key) { |
6690 | xmlExpNodePtr tmp = left; |
6691 | left = right; |
6692 | right = tmp; |
6693 | } |
6694 | kbase = xmlExpHashComputeKey(type, left, right); |
6695 | } else if (type == XML_EXP_SEQ) { |
6696 | /* Forbid reduction rules */ |
6697 | if (left->type == XML_EXP_FORBID) { |
6698 | xmlExpFree(ctxt, right); |
6699 | return(left); |
6700 | } |
6701 | if (right->type == XML_EXP_FORBID) { |
6702 | xmlExpFree(ctxt, left); |
6703 | return(right); |
6704 | } |
6705 | /* Empty reduction rules */ |
6706 | if (right->type == XML_EXP_EMPTY) { |
6707 | return(left); |
6708 | } |
6709 | if (left->type == XML_EXP_EMPTY) { |
6710 | return(right); |
6711 | } |
6712 | kbase = xmlExpHashComputeKey(type, left, right); |
6713 | } else |
6714 | return(NULL); |
6715 | |
6716 | key = kbase % ctxt->size; |
6717 | if (ctxt->table[key] != NULL) { |
6718 | for (insert = ctxt->table[key]; insert != NULL; |
6719 | insert = insert->next) { |
6720 | if ((insert->key == kbase) && |
6721 | (insert->type == type)) { |
6722 | if (type == XML_EXP_ATOM) { |
6723 | if (name == insert->exp_str) { |
6724 | insert->ref++; |
6725 | return(insert); |
6726 | } |
6727 | } else if (type == XML_EXP_COUNT) { |
6728 | if ((insert->exp_min == min) && (insert->exp_max == max) && |
6729 | (insert->exp_left == left)) { |
6730 | insert->ref++; |
6731 | left->ref--; |
6732 | return(insert); |
6733 | } |
6734 | } else if ((insert->exp_left == left) && |
6735 | (insert->exp_right == right)) { |
6736 | insert->ref++; |
6737 | left->ref--; |
6738 | right->ref--; |
6739 | return(insert); |
6740 | } |
6741 | } |
6742 | } |
6743 | } |
6744 | |
6745 | entry = xmlExpNewNode(ctxt, type); |
6746 | if (entry == NULL) |
6747 | return(NULL); |
6748 | entry->key = kbase; |
6749 | if (type == XML_EXP_ATOM) { |
6750 | entry->exp_str = name; |
6751 | entry->c_max = 1; |
6752 | } else if (type == XML_EXP_COUNT) { |
6753 | entry->exp_min = min; |
6754 | entry->exp_max = max; |
6755 | entry->exp_left = left; |
6756 | if ((min == 0) || (IS_NILLABLE(left))) |
6757 | entry->info |= XML_EXP_NILABLE; |
6758 | if (max < 0) |
6759 | entry->c_max = -1; |
6760 | else |
6761 | entry->c_max = max * entry->exp_left->c_max; |
6762 | } else { |
6763 | entry->exp_left = left; |
6764 | entry->exp_right = right; |
6765 | if (type == XML_EXP_OR) { |
6766 | if ((IS_NILLABLE(left)) || (IS_NILLABLE(right))) |
6767 | entry->info |= XML_EXP_NILABLE; |
6768 | if ((entry->exp_left->c_max == -1) || |
6769 | (entry->exp_right->c_max == -1)) |
6770 | entry->c_max = -1; |
6771 | else if (entry->exp_left->c_max > entry->exp_right->c_max) |
6772 | entry->c_max = entry->exp_left->c_max; |
6773 | else |
6774 | entry->c_max = entry->exp_right->c_max; |
6775 | } else { |
6776 | if ((IS_NILLABLE(left)) && (IS_NILLABLE(right))) |
6777 | entry->info |= XML_EXP_NILABLE; |
6778 | if ((entry->exp_left->c_max == -1) || |
6779 | (entry->exp_right->c_max == -1)) |
6780 | entry->c_max = -1; |
6781 | else |
6782 | entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max; |
6783 | } |
6784 | } |
6785 | entry->ref = 1; |
6786 | if (ctxt->table[key] != NULL) |
6787 | entry->next = ctxt->table[key]; |
6788 | |
6789 | ctxt->table[key] = entry; |
6790 | ctxt->nbElems++; |
6791 | |
6792 | return(entry); |
6793 | } |
6794 | |
6795 | /** |
6796 | * xmlExpFree: |
6797 | * @ctxt: the expression context |
6798 | * @exp: the expression |
6799 | * |
6800 | * Dereference the expression |
6801 | */ |
6802 | void |
6803 | xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) { |
6804 | if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp)) |
6805 | return; |
6806 | exp->ref--; |
6807 | if (exp->ref == 0) { |
6808 | unsigned short key; |
6809 | |
6810 | /* Unlink it first from the hash table */ |
6811 | key = exp->key % ctxt->size; |
6812 | if (ctxt->table[key] == exp) { |
6813 | ctxt->table[key] = exp->next; |
6814 | } else { |
6815 | xmlExpNodePtr tmp; |
6816 | |
6817 | tmp = ctxt->table[key]; |
6818 | while (tmp != NULL) { |
6819 | if (tmp->next == exp) { |
6820 | tmp->next = exp->next; |
6821 | break; |
6822 | } |
6823 | tmp = tmp->next; |
6824 | } |
6825 | } |
6826 | |
6827 | if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) { |
6828 | xmlExpFree(ctxt, exp->exp_left); |
6829 | xmlExpFree(ctxt, exp->exp_right); |
6830 | } else if (exp->type == XML_EXP_COUNT) { |
6831 | xmlExpFree(ctxt, exp->exp_left); |
6832 | } |
6833 | xmlFree(exp); |
6834 | ctxt->nb_nodes--; |
6835 | } |
6836 | } |
6837 | |
6838 | /** |
6839 | * xmlExpRef: |
6840 | * @exp: the expression |
6841 | * |
6842 | * Increase the reference count of the expression |
6843 | */ |
6844 | void |
6845 | xmlExpRef(xmlExpNodePtr exp) { |
6846 | if (exp != NULL) |
6847 | exp->ref++; |
6848 | } |
6849 | |
6850 | /** |
6851 | * xmlExpNewAtom: |
6852 | * @ctxt: the expression context |
6853 | * @name: the atom name |
6854 | * @len: the atom name length in byte (or -1); |
6855 | * |
6856 | * Get the atom associated to this name from that context |
6857 | * |
6858 | * Returns the node or NULL in case of error |
6859 | */ |
6860 | xmlExpNodePtr |
6861 | xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) { |
6862 | if ((ctxt == NULL) || (name == NULL)) |
6863 | return(NULL); |
6864 | name = xmlDictLookup(ctxt->dict, name, len); |
6865 | if (name == NULL) |
6866 | return(NULL); |
6867 | return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0)); |
6868 | } |
6869 | |
6870 | /** |
6871 | * xmlExpNewOr: |
6872 | * @ctxt: the expression context |
6873 | * @left: left expression |
6874 | * @right: right expression |
6875 | * |
6876 | * Get the atom associated to the choice @left | @right |
6877 | * Note that @left and @right are consumed in the operation, to keep |
6878 | * an handle on them use xmlExpRef() and use xmlExpFree() to release them, |
6879 | * this is true even in case of failure (unless ctxt == NULL). |
6880 | * |
6881 | * Returns the node or NULL in case of error |
6882 | */ |
6883 | xmlExpNodePtr |
6884 | xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) { |
6885 | if (ctxt == NULL) |
6886 | return(NULL); |
6887 | if ((left == NULL) || (right == NULL)) { |
6888 | xmlExpFree(ctxt, left); |
6889 | xmlExpFree(ctxt, right); |
6890 | return(NULL); |
6891 | } |
6892 | return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0)); |
6893 | } |
6894 | |
6895 | /** |
6896 | * xmlExpNewSeq: |
6897 | * @ctxt: the expression context |
6898 | * @left: left expression |
6899 | * @right: right expression |
6900 | * |
6901 | * Get the atom associated to the sequence @left , @right |
6902 | * Note that @left and @right are consumed in the operation, to keep |
6903 | * an handle on them use xmlExpRef() and use xmlExpFree() to release them, |
6904 | * this is true even in case of failure (unless ctxt == NULL). |
6905 | * |
6906 | * Returns the node or NULL in case of error |
6907 | */ |
6908 | xmlExpNodePtr |
6909 | xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) { |
6910 | if (ctxt == NULL) |
6911 | return(NULL); |
6912 | if ((left == NULL) || (right == NULL)) { |
6913 | xmlExpFree(ctxt, left); |
6914 | xmlExpFree(ctxt, right); |
6915 | return(NULL); |
6916 | } |
6917 | return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0)); |
6918 | } |
6919 | |
6920 | /** |
6921 | * xmlExpNewRange: |
6922 | * @ctxt: the expression context |
6923 | * @subset: the expression to be repeated |
6924 | * @min: the lower bound for the repetition |
6925 | * @max: the upper bound for the repetition, -1 means infinite |
6926 | * |
6927 | * Get the atom associated to the range (@subset){@min, @max} |
6928 | * Note that @subset is consumed in the operation, to keep |
6929 | * an handle on it use xmlExpRef() and use xmlExpFree() to release it, |
6930 | * this is true even in case of failure (unless ctxt == NULL). |
6931 | * |
6932 | * Returns the node or NULL in case of error |
6933 | */ |
6934 | xmlExpNodePtr |
6935 | xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) { |
6936 | if (ctxt == NULL) |
6937 | return(NULL); |
6938 | if ((subset == NULL) || (min < 0) || (max < -1) || |
6939 | ((max >= 0) && (min > max))) { |
6940 | xmlExpFree(ctxt, subset); |
6941 | return(NULL); |
6942 | } |
6943 | return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset, |
6944 | NULL, NULL, min, max)); |
6945 | } |
6946 | |
6947 | /************************************************************************ |
6948 | * * |
6949 | * Public API for operations on expressions * |
6950 | * * |
6951 | ************************************************************************/ |
6952 | |
6953 | static int |
6954 | xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
6955 | const xmlChar**list, int len, int nb) { |
6956 | int tmp, tmp2; |
6957 | tail: |
6958 | switch (exp->type) { |
6959 | case XML_EXP_EMPTY: |
6960 | return(0); |
6961 | case XML_EXP_ATOM: |
6962 | for (tmp = 0;tmp < nb;tmp++) |
6963 | if (list[tmp] == exp->exp_str) |
6964 | return(0); |
6965 | if (nb >= len) |
6966 | return(-2); |
6967 | list[nb] = exp->exp_str; |
6968 | return(1); |
6969 | case XML_EXP_COUNT: |
6970 | exp = exp->exp_left; |
6971 | goto tail; |
6972 | case XML_EXP_SEQ: |
6973 | case XML_EXP_OR: |
6974 | tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb); |
6975 | if (tmp < 0) |
6976 | return(tmp); |
6977 | tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len, |
6978 | nb + tmp); |
6979 | if (tmp2 < 0) |
6980 | return(tmp2); |
6981 | return(tmp + tmp2); |
6982 | } |
6983 | return(-1); |
6984 | } |
6985 | |
6986 | /** |
6987 | * xmlExpGetLanguage: |
6988 | * @ctxt: the expression context |
6989 | * @exp: the expression |
6990 | * @langList: where to store the tokens |
6991 | * @len: the allocated length of @list |
6992 | * |
6993 | * Find all the strings used in @exp and store them in @list |
6994 | * |
6995 | * Returns the number of unique strings found, -1 in case of errors and |
6996 | * -2 if there is more than @len strings |
6997 | */ |
6998 | int |
6999 | xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
7000 | const xmlChar**langList, int len) { |
7001 | if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0)) |
7002 | return(-1); |
7003 | return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0)); |
7004 | } |
7005 | |
7006 | static int |
7007 | xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
7008 | const xmlChar**list, int len, int nb) { |
7009 | int tmp, tmp2; |
7010 | tail: |
7011 | switch (exp->type) { |
7012 | case XML_EXP_FORBID: |
7013 | return(0); |
7014 | case XML_EXP_EMPTY: |
7015 | return(0); |
7016 | case XML_EXP_ATOM: |
7017 | for (tmp = 0;tmp < nb;tmp++) |
7018 | if (list[tmp] == exp->exp_str) |
7019 | return(0); |
7020 | if (nb >= len) |
7021 | return(-2); |
7022 | list[nb] = exp->exp_str; |
7023 | return(1); |
7024 | case XML_EXP_COUNT: |
7025 | exp = exp->exp_left; |
7026 | goto tail; |
7027 | case XML_EXP_SEQ: |
7028 | tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb); |
7029 | if (tmp < 0) |
7030 | return(tmp); |
7031 | if (IS_NILLABLE(exp->exp_left)) { |
7032 | tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len, |
7033 | nb + tmp); |
7034 | if (tmp2 < 0) |
7035 | return(tmp2); |
7036 | tmp += tmp2; |
7037 | } |
7038 | return(tmp); |
7039 | case XML_EXP_OR: |
7040 | tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb); |
7041 | if (tmp < 0) |
7042 | return(tmp); |
7043 | tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len, |
7044 | nb + tmp); |
7045 | if (tmp2 < 0) |
7046 | return(tmp2); |
7047 | return(tmp + tmp2); |
7048 | } |
7049 | return(-1); |
7050 | } |
7051 | |
7052 | /** |
7053 | * xmlExpGetStart: |
7054 | * @ctxt: the expression context |
7055 | * @exp: the expression |
7056 | * @tokList: where to store the tokens |
7057 | * @len: the allocated length of @list |
7058 | * |
7059 | * Find all the strings that appears at the start of the languages |
7060 | * accepted by @exp and store them in @list. E.g. for (a, b) | c |
7061 | * it will return the list [a, c] |
7062 | * |
7063 | * Returns the number of unique strings found, -1 in case of errors and |
7064 | * -2 if there is more than @len strings |
7065 | */ |
7066 | int |
7067 | xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
7068 | const xmlChar**tokList, int len) { |
7069 | if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0)) |
7070 | return(-1); |
7071 | return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0)); |
7072 | } |
7073 | |
7074 | /** |
7075 | * xmlExpIsNillable: |
7076 | * @exp: the expression |
7077 | * |
7078 | * Finds if the expression is nillable, i.e. if it accepts the empty sequqnce |
7079 | * |
7080 | * Returns 1 if nillable, 0 if not and -1 in case of error |
7081 | */ |
7082 | int |
7083 | xmlExpIsNillable(xmlExpNodePtr exp) { |
7084 | if (exp == NULL) |
7085 | return(-1); |
7086 | return(IS_NILLABLE(exp) != 0); |
7087 | } |
7088 | |
7089 | static xmlExpNodePtr |
7090 | xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str) |
7091 | { |
7092 | xmlExpNodePtr ret; |
7093 | |
7094 | switch (exp->type) { |
7095 | case XML_EXP_EMPTY: |
7096 | return(forbiddenExp); |
7097 | case XML_EXP_FORBID: |
7098 | return(forbiddenExp); |
7099 | case XML_EXP_ATOM: |
7100 | if (exp->exp_str == str) { |
7101 | #ifdef DEBUG_DERIV |
7102 | printf("deriv atom: equal => Empty\n" ); |
7103 | #endif |
7104 | ret = emptyExp; |
7105 | } else { |
7106 | #ifdef DEBUG_DERIV |
7107 | printf("deriv atom: mismatch => forbid\n" ); |
7108 | #endif |
7109 | /* TODO wildcards here */ |
7110 | ret = forbiddenExp; |
7111 | } |
7112 | return(ret); |
7113 | case XML_EXP_OR: { |
7114 | xmlExpNodePtr tmp; |
7115 | |
7116 | #ifdef DEBUG_DERIV |
7117 | printf("deriv or: => or(derivs)\n" ); |
7118 | #endif |
7119 | tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str); |
7120 | if (tmp == NULL) { |
7121 | return(NULL); |
7122 | } |
7123 | ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str); |
7124 | if (ret == NULL) { |
7125 | xmlExpFree(ctxt, tmp); |
7126 | return(NULL); |
7127 | } |
7128 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, |
7129 | NULL, 0, 0); |
7130 | return(ret); |
7131 | } |
7132 | case XML_EXP_SEQ: |
7133 | #ifdef DEBUG_DERIV |
7134 | printf("deriv seq: starting with left\n" ); |
7135 | #endif |
7136 | ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str); |
7137 | if (ret == NULL) { |
7138 | return(NULL); |
7139 | } else if (ret == forbiddenExp) { |
7140 | if (IS_NILLABLE(exp->exp_left)) { |
7141 | #ifdef DEBUG_DERIV |
7142 | printf("deriv seq: left failed but nillable\n" ); |
7143 | #endif |
7144 | ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str); |
7145 | } |
7146 | } else { |
7147 | #ifdef DEBUG_DERIV |
7148 | printf("deriv seq: left match => sequence\n" ); |
7149 | #endif |
7150 | exp->exp_right->ref++; |
7151 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right, |
7152 | NULL, 0, 0); |
7153 | } |
7154 | return(ret); |
7155 | case XML_EXP_COUNT: { |
7156 | int min, max; |
7157 | xmlExpNodePtr tmp; |
7158 | |
7159 | if (exp->exp_max == 0) |
7160 | return(forbiddenExp); |
7161 | ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str); |
7162 | if (ret == NULL) |
7163 | return(NULL); |
7164 | if (ret == forbiddenExp) { |
7165 | #ifdef DEBUG_DERIV |
7166 | printf("deriv count: pattern mismatch => forbid\n" ); |
7167 | #endif |
7168 | return(ret); |
7169 | } |
7170 | if (exp->exp_max == 1) |
7171 | return(ret); |
7172 | if (exp->exp_max < 0) /* unbounded */ |
7173 | max = -1; |
7174 | else |
7175 | max = exp->exp_max - 1; |
7176 | if (exp->exp_min > 0) |
7177 | min = exp->exp_min - 1; |
7178 | else |
7179 | min = 0; |
7180 | exp->exp_left->ref++; |
7181 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL, |
7182 | NULL, min, max); |
7183 | if (ret == emptyExp) { |
7184 | #ifdef DEBUG_DERIV |
7185 | printf("deriv count: match to empty => new count\n" ); |
7186 | #endif |
7187 | return(tmp); |
7188 | } |
7189 | #ifdef DEBUG_DERIV |
7190 | printf("deriv count: match => sequence with new count\n" ); |
7191 | #endif |
7192 | return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp, |
7193 | NULL, 0, 0)); |
7194 | } |
7195 | } |
7196 | return(NULL); |
7197 | } |
7198 | |
7199 | /** |
7200 | * xmlExpStringDerive: |
7201 | * @ctxt: the expression context |
7202 | * @exp: the expression |
7203 | * @str: the string |
7204 | * @len: the string len in bytes if available |
7205 | * |
7206 | * Do one step of Brzozowski derivation of the expression @exp with |
7207 | * respect to the input string |
7208 | * |
7209 | * Returns the resulting expression or NULL in case of internal error |
7210 | */ |
7211 | xmlExpNodePtr |
7212 | xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
7213 | const xmlChar *str, int len) { |
7214 | const xmlChar *input; |
7215 | |
7216 | if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) { |
7217 | return(NULL); |
7218 | } |
7219 | /* |
7220 | * check the string is in the dictionary, if yes use an interned |
7221 | * copy, otherwise we know it's not an acceptable input |
7222 | */ |
7223 | input = xmlDictExists(ctxt->dict, str, len); |
7224 | if (input == NULL) { |
7225 | return(forbiddenExp); |
7226 | } |
7227 | return(xmlExpStringDeriveInt(ctxt, exp, input)); |
7228 | } |
7229 | |
7230 | static int |
7231 | xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) { |
7232 | int ret = 1; |
7233 | |
7234 | if (sub->c_max == -1) { |
7235 | if (exp->c_max != -1) |
7236 | ret = 0; |
7237 | } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) { |
7238 | ret = 0; |
7239 | } |
7240 | #if 0 |
7241 | if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp))) |
7242 | ret = 0; |
7243 | #endif |
7244 | return(ret); |
7245 | } |
7246 | |
7247 | static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
7248 | xmlExpNodePtr sub); |
7249 | /** |
7250 | * xmlExpDivide: |
7251 | * @ctxt: the expressions context |
7252 | * @exp: the englobing expression |
7253 | * @sub: the subexpression |
7254 | * @mult: the multiple expression |
7255 | * @remain: the remain from the derivation of the multiple |
7256 | * |
7257 | * Check if exp is a multiple of sub, i.e. if there is a finite number n |
7258 | * so that sub{n} subsume exp |
7259 | * |
7260 | * Returns the multiple value if successful, 0 if it is not a multiple |
7261 | * and -1 in case of internel error. |
7262 | */ |
7263 | |
7264 | static int |
7265 | xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub, |
7266 | xmlExpNodePtr *mult, xmlExpNodePtr *remain) { |
7267 | int i; |
7268 | xmlExpNodePtr tmp, tmp2; |
7269 | |
7270 | if (mult != NULL) *mult = NULL; |
7271 | if (remain != NULL) *remain = NULL; |
7272 | if (exp->c_max == -1) return(0); |
7273 | if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0); |
7274 | |
7275 | for (i = 1;i <= exp->c_max;i++) { |
7276 | sub->ref++; |
7277 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, |
7278 | sub, NULL, NULL, i, i); |
7279 | if (tmp == NULL) { |
7280 | return(-1); |
7281 | } |
7282 | if (!xmlExpCheckCard(tmp, exp)) { |
7283 | xmlExpFree(ctxt, tmp); |
7284 | continue; |
7285 | } |
7286 | tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp); |
7287 | if (tmp2 == NULL) { |
7288 | xmlExpFree(ctxt, tmp); |
7289 | return(-1); |
7290 | } |
7291 | if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) { |
7292 | if (remain != NULL) |
7293 | *remain = tmp2; |
7294 | else |
7295 | xmlExpFree(ctxt, tmp2); |
7296 | if (mult != NULL) |
7297 | *mult = tmp; |
7298 | else |
7299 | xmlExpFree(ctxt, tmp); |
7300 | #ifdef DEBUG_DERIV |
7301 | printf("Divide succeeded %d\n" , i); |
7302 | #endif |
7303 | return(i); |
7304 | } |
7305 | xmlExpFree(ctxt, tmp); |
7306 | xmlExpFree(ctxt, tmp2); |
7307 | } |
7308 | #ifdef DEBUG_DERIV |
7309 | printf("Divide failed\n" ); |
7310 | #endif |
7311 | return(0); |
7312 | } |
7313 | |
7314 | /** |
7315 | * xmlExpExpDeriveInt: |
7316 | * @ctxt: the expressions context |
7317 | * @exp: the englobing expression |
7318 | * @sub: the subexpression |
7319 | * |
7320 | * Try to do a step of Brzozowski derivation but at a higher level |
7321 | * the input being a subexpression. |
7322 | * |
7323 | * Returns the resulting expression or NULL in case of internal error |
7324 | */ |
7325 | static xmlExpNodePtr |
7326 | xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) { |
7327 | xmlExpNodePtr ret, tmp, tmp2, tmp3; |
7328 | const xmlChar **tab; |
7329 | int len, i; |
7330 | |
7331 | /* |
7332 | * In case of equality and if the expression can only consume a finite |
7333 | * amount, then the derivation is empty |
7334 | */ |
7335 | if ((exp == sub) && (exp->c_max >= 0)) { |
7336 | #ifdef DEBUG_DERIV |
7337 | printf("Equal(exp, sub) and finite -> Empty\n" ); |
7338 | #endif |
7339 | return(emptyExp); |
7340 | } |
7341 | /* |
7342 | * decompose sub sequence first |
7343 | */ |
7344 | if (sub->type == XML_EXP_EMPTY) { |
7345 | #ifdef DEBUG_DERIV |
7346 | printf("Empty(sub) -> Empty\n" ); |
7347 | #endif |
7348 | exp->ref++; |
7349 | return(exp); |
7350 | } |
7351 | if (sub->type == XML_EXP_SEQ) { |
7352 | #ifdef DEBUG_DERIV |
7353 | printf("Seq(sub) -> decompose\n" ); |
7354 | #endif |
7355 | tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left); |
7356 | if (tmp == NULL) |
7357 | return(NULL); |
7358 | if (tmp == forbiddenExp) |
7359 | return(tmp); |
7360 | ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right); |
7361 | xmlExpFree(ctxt, tmp); |
7362 | return(ret); |
7363 | } |
7364 | if (sub->type == XML_EXP_OR) { |
7365 | #ifdef DEBUG_DERIV |
7366 | printf("Or(sub) -> decompose\n" ); |
7367 | #endif |
7368 | tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left); |
7369 | if (tmp == forbiddenExp) |
7370 | return(tmp); |
7371 | if (tmp == NULL) |
7372 | return(NULL); |
7373 | ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right); |
7374 | if ((ret == NULL) || (ret == forbiddenExp)) { |
7375 | xmlExpFree(ctxt, tmp); |
7376 | return(ret); |
7377 | } |
7378 | return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0)); |
7379 | } |
7380 | if (!xmlExpCheckCard(exp, sub)) { |
7381 | #ifdef DEBUG_DERIV |
7382 | printf("CheckCard(exp, sub) failed -> Forbid\n" ); |
7383 | #endif |
7384 | return(forbiddenExp); |
7385 | } |
7386 | switch (exp->type) { |
7387 | case XML_EXP_EMPTY: |
7388 | if (sub == emptyExp) |
7389 | return(emptyExp); |
7390 | #ifdef DEBUG_DERIV |
7391 | printf("Empty(exp) -> Forbid\n" ); |
7392 | #endif |
7393 | return(forbiddenExp); |
7394 | case XML_EXP_FORBID: |
7395 | #ifdef DEBUG_DERIV |
7396 | printf("Forbid(exp) -> Forbid\n" ); |
7397 | #endif |
7398 | return(forbiddenExp); |
7399 | case XML_EXP_ATOM: |
7400 | if (sub->type == XML_EXP_ATOM) { |
7401 | /* TODO: handle wildcards */ |
7402 | if (exp->exp_str == sub->exp_str) { |
7403 | #ifdef DEBUG_DERIV |
7404 | printf("Atom match -> Empty\n" ); |
7405 | #endif |
7406 | return(emptyExp); |
7407 | } |
7408 | #ifdef DEBUG_DERIV |
7409 | printf("Atom mismatch -> Forbid\n" ); |
7410 | #endif |
7411 | return(forbiddenExp); |
7412 | } |
7413 | if ((sub->type == XML_EXP_COUNT) && |
7414 | (sub->exp_max == 1) && |
7415 | (sub->exp_left->type == XML_EXP_ATOM)) { |
7416 | /* TODO: handle wildcards */ |
7417 | if (exp->exp_str == sub->exp_left->exp_str) { |
7418 | #ifdef DEBUG_DERIV |
7419 | printf("Atom match -> Empty\n" ); |
7420 | #endif |
7421 | return(emptyExp); |
7422 | } |
7423 | #ifdef DEBUG_DERIV |
7424 | printf("Atom mismatch -> Forbid\n" ); |
7425 | #endif |
7426 | return(forbiddenExp); |
7427 | } |
7428 | #ifdef DEBUG_DERIV |
7429 | printf("Compex exp vs Atom -> Forbid\n" ); |
7430 | #endif |
7431 | return(forbiddenExp); |
7432 | case XML_EXP_SEQ: |
7433 | /* try to get the sequence consumed only if possible */ |
7434 | if (xmlExpCheckCard(exp->exp_left, sub)) { |
7435 | /* See if the sequence can be consumed directly */ |
7436 | #ifdef DEBUG_DERIV |
7437 | printf("Seq trying left only\n" ); |
7438 | #endif |
7439 | ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub); |
7440 | if ((ret != forbiddenExp) && (ret != NULL)) { |
7441 | #ifdef DEBUG_DERIV |
7442 | printf("Seq trying left only worked\n" ); |
7443 | #endif |
7444 | /* |
7445 | * TODO: assumption here that we are determinist |
7446 | * i.e. we won't get to a nillable exp left |
7447 | * subset which could be matched by the right |
7448 | * part too. |
7449 | * e.g.: (a | b)+,(a | c) and 'a+,a' |
7450 | */ |
7451 | exp->exp_right->ref++; |
7452 | return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, |
7453 | exp->exp_right, NULL, 0, 0)); |
7454 | } |
7455 | #ifdef DEBUG_DERIV |
7456 | } else { |
7457 | printf("Seq: left too short\n" ); |
7458 | #endif |
7459 | } |
7460 | /* Try instead to decompose */ |
7461 | if (sub->type == XML_EXP_COUNT) { |
7462 | int min, max; |
7463 | |
7464 | #ifdef DEBUG_DERIV |
7465 | printf("Seq: sub is a count\n" ); |
7466 | #endif |
7467 | ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left); |
7468 | if (ret == NULL) |
7469 | return(NULL); |
7470 | if (ret != forbiddenExp) { |
7471 | #ifdef DEBUG_DERIV |
7472 | printf("Seq , Count match on left\n" ); |
7473 | #endif |
7474 | if (sub->exp_max < 0) |
7475 | max = -1; |
7476 | else |
7477 | max = sub->exp_max -1; |
7478 | if (sub->exp_min > 0) |
7479 | min = sub->exp_min -1; |
7480 | else |
7481 | min = 0; |
7482 | exp->exp_right->ref++; |
7483 | tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, |
7484 | exp->exp_right, NULL, 0, 0); |
7485 | if (tmp == NULL) |
7486 | return(NULL); |
7487 | |
7488 | sub->exp_left->ref++; |
7489 | tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, |
7490 | sub->exp_left, NULL, NULL, min, max); |
7491 | if (tmp2 == NULL) { |
7492 | xmlExpFree(ctxt, tmp); |
7493 | return(NULL); |
7494 | } |
7495 | ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2); |
7496 | xmlExpFree(ctxt, tmp); |
7497 | xmlExpFree(ctxt, tmp2); |
7498 | return(ret); |
7499 | } |
7500 | } |
7501 | /* we made no progress on structured operations */ |
7502 | break; |
7503 | case XML_EXP_OR: |
7504 | #ifdef DEBUG_DERIV |
7505 | printf("Or , trying both side\n" ); |
7506 | #endif |
7507 | ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub); |
7508 | if (ret == NULL) |
7509 | return(NULL); |
7510 | tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub); |
7511 | if (tmp == NULL) { |
7512 | xmlExpFree(ctxt, ret); |
7513 | return(NULL); |
7514 | } |
7515 | return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0)); |
7516 | case XML_EXP_COUNT: { |
7517 | int min, max; |
7518 | |
7519 | if (sub->type == XML_EXP_COUNT) { |
7520 | /* |
7521 | * Try to see if the loop is completely subsumed |
7522 | */ |
7523 | tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left); |
7524 | if (tmp == NULL) |
7525 | return(NULL); |
7526 | if (tmp == forbiddenExp) { |
7527 | int mult; |
7528 | |
7529 | #ifdef DEBUG_DERIV |
7530 | printf("Count, Count inner don't subsume\n" ); |
7531 | #endif |
7532 | mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left, |
7533 | NULL, &tmp); |
7534 | if (mult <= 0) { |
7535 | #ifdef DEBUG_DERIV |
7536 | printf("Count, Count not multiple => forbidden\n" ); |
7537 | #endif |
7538 | return(forbiddenExp); |
7539 | } |
7540 | if (sub->exp_max == -1) { |
7541 | max = -1; |
7542 | if (exp->exp_max == -1) { |
7543 | if (exp->exp_min <= sub->exp_min * mult) |
7544 | min = 0; |
7545 | else |
7546 | min = exp->exp_min - sub->exp_min * mult; |
7547 | } else { |
7548 | #ifdef DEBUG_DERIV |
7549 | printf("Count, Count finite can't subsume infinite\n" ); |
7550 | #endif |
7551 | xmlExpFree(ctxt, tmp); |
7552 | return(forbiddenExp); |
7553 | } |
7554 | } else { |
7555 | if (exp->exp_max == -1) { |
7556 | #ifdef DEBUG_DERIV |
7557 | printf("Infinite loop consume mult finite loop\n" ); |
7558 | #endif |
7559 | if (exp->exp_min > sub->exp_min * mult) { |
7560 | max = -1; |
7561 | min = exp->exp_min - sub->exp_min * mult; |
7562 | } else { |
7563 | max = -1; |
7564 | min = 0; |
7565 | } |
7566 | } else { |
7567 | if (exp->exp_max < sub->exp_max * mult) { |
7568 | #ifdef DEBUG_DERIV |
7569 | printf("loops max mult mismatch => forbidden\n" ); |
7570 | #endif |
7571 | xmlExpFree(ctxt, tmp); |
7572 | return(forbiddenExp); |
7573 | } |
7574 | if (sub->exp_max * mult > exp->exp_min) |
7575 | min = 0; |
7576 | else |
7577 | min = exp->exp_min - sub->exp_max * mult; |
7578 | max = exp->exp_max - sub->exp_max * mult; |
7579 | } |
7580 | } |
7581 | } else if (!IS_NILLABLE(tmp)) { |
7582 | /* |
7583 | * TODO: loop here to try to grow if working on finite |
7584 | * blocks. |
7585 | */ |
7586 | #ifdef DEBUG_DERIV |
7587 | printf("Count, Count remain not nillable => forbidden\n" ); |
7588 | #endif |
7589 | xmlExpFree(ctxt, tmp); |
7590 | return(forbiddenExp); |
7591 | } else if (sub->exp_max == -1) { |
7592 | if (exp->exp_max == -1) { |
7593 | if (exp->exp_min <= sub->exp_min) { |
7594 | #ifdef DEBUG_DERIV |
7595 | printf("Infinite loops Okay => COUNT(0,Inf)\n" ); |
7596 | #endif |
7597 | max = -1; |
7598 | min = 0; |
7599 | } else { |
7600 | #ifdef DEBUG_DERIV |
7601 | printf("Infinite loops min => Count(X,Inf)\n" ); |
7602 | #endif |
7603 | max = -1; |
7604 | min = exp->exp_min - sub->exp_min; |
7605 | } |
7606 | } else if (exp->exp_min > sub->exp_min) { |
7607 | #ifdef DEBUG_DERIV |
7608 | printf("loops min mismatch 1 => forbidden ???\n" ); |
7609 | #endif |
7610 | xmlExpFree(ctxt, tmp); |
7611 | return(forbiddenExp); |
7612 | } else { |
7613 | max = -1; |
7614 | min = 0; |
7615 | } |
7616 | } else { |
7617 | if (exp->exp_max == -1) { |
7618 | #ifdef DEBUG_DERIV |
7619 | printf("Infinite loop consume finite loop\n" ); |
7620 | #endif |
7621 | if (exp->exp_min > sub->exp_min) { |
7622 | max = -1; |
7623 | min = exp->exp_min - sub->exp_min; |
7624 | } else { |
7625 | max = -1; |
7626 | min = 0; |
7627 | } |
7628 | } else { |
7629 | if (exp->exp_max < sub->exp_max) { |
7630 | #ifdef DEBUG_DERIV |
7631 | printf("loops max mismatch => forbidden\n" ); |
7632 | #endif |
7633 | xmlExpFree(ctxt, tmp); |
7634 | return(forbiddenExp); |
7635 | } |
7636 | if (sub->exp_max > exp->exp_min) |
7637 | min = 0; |
7638 | else |
7639 | min = exp->exp_min - sub->exp_max; |
7640 | max = exp->exp_max - sub->exp_max; |
7641 | } |
7642 | } |
7643 | #ifdef DEBUG_DERIV |
7644 | printf("loops match => SEQ(COUNT())\n" ); |
7645 | #endif |
7646 | exp->exp_left->ref++; |
7647 | tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, |
7648 | NULL, NULL, min, max); |
7649 | if (tmp2 == NULL) { |
7650 | return(NULL); |
7651 | } |
7652 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2, |
7653 | NULL, 0, 0); |
7654 | return(ret); |
7655 | } |
7656 | tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub); |
7657 | if (tmp == NULL) |
7658 | return(NULL); |
7659 | if (tmp == forbiddenExp) { |
7660 | #ifdef DEBUG_DERIV |
7661 | printf("loop mismatch => forbidden\n" ); |
7662 | #endif |
7663 | return(forbiddenExp); |
7664 | } |
7665 | if (exp->exp_min > 0) |
7666 | min = exp->exp_min - 1; |
7667 | else |
7668 | min = 0; |
7669 | if (exp->exp_max < 0) |
7670 | max = -1; |
7671 | else |
7672 | max = exp->exp_max - 1; |
7673 | |
7674 | #ifdef DEBUG_DERIV |
7675 | printf("loop match => SEQ(COUNT())\n" ); |
7676 | #endif |
7677 | exp->exp_left->ref++; |
7678 | tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, |
7679 | NULL, NULL, min, max); |
7680 | if (tmp2 == NULL) |
7681 | return(NULL); |
7682 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2, |
7683 | NULL, 0, 0); |
7684 | return(ret); |
7685 | } |
7686 | } |
7687 | |
7688 | #ifdef DEBUG_DERIV |
7689 | printf("Fallback to derivative\n" ); |
7690 | #endif |
7691 | if (IS_NILLABLE(sub)) { |
7692 | if (!(IS_NILLABLE(exp))) |
7693 | return(forbiddenExp); |
7694 | else |
7695 | ret = emptyExp; |
7696 | } else |
7697 | ret = NULL; |
7698 | /* |
7699 | * here the structured derivation made no progress so |
7700 | * we use the default token based derivation to force one more step |
7701 | */ |
7702 | if (ctxt->tabSize == 0) |
7703 | ctxt->tabSize = 40; |
7704 | |
7705 | tab = (const xmlChar **) xmlMalloc(ctxt->tabSize * |
7706 | sizeof(const xmlChar *)); |
7707 | if (tab == NULL) { |
7708 | return(NULL); |
7709 | } |
7710 | |
7711 | /* |
7712 | * collect all the strings accepted by the subexpression on input |
7713 | */ |
7714 | len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0); |
7715 | while (len < 0) { |
7716 | const xmlChar **temp; |
7717 | temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 * |
7718 | sizeof(const xmlChar *)); |
7719 | if (temp == NULL) { |
7720 | xmlFree((xmlChar **) tab); |
7721 | return(NULL); |
7722 | } |
7723 | tab = temp; |
7724 | ctxt->tabSize *= 2; |
7725 | len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0); |
7726 | } |
7727 | for (i = 0;i < len;i++) { |
7728 | tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]); |
7729 | if ((tmp == NULL) || (tmp == forbiddenExp)) { |
7730 | xmlExpFree(ctxt, ret); |
7731 | xmlFree((xmlChar **) tab); |
7732 | return(tmp); |
7733 | } |
7734 | tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]); |
7735 | if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) { |
7736 | xmlExpFree(ctxt, tmp); |
7737 | xmlExpFree(ctxt, ret); |
7738 | xmlFree((xmlChar **) tab); |
7739 | return(tmp); |
7740 | } |
7741 | tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2); |
7742 | xmlExpFree(ctxt, tmp); |
7743 | xmlExpFree(ctxt, tmp2); |
7744 | |
7745 | if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) { |
7746 | xmlExpFree(ctxt, ret); |
7747 | xmlFree((xmlChar **) tab); |
7748 | return(tmp3); |
7749 | } |
7750 | |
7751 | if (ret == NULL) |
7752 | ret = tmp3; |
7753 | else { |
7754 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0); |
7755 | if (ret == NULL) { |
7756 | xmlFree((xmlChar **) tab); |
7757 | return(NULL); |
7758 | } |
7759 | } |
7760 | } |
7761 | xmlFree((xmlChar **) tab); |
7762 | return(ret); |
7763 | } |
7764 | |
7765 | /** |
7766 | * xmlExpExpDerive: |
7767 | * @ctxt: the expressions context |
7768 | * @exp: the englobing expression |
7769 | * @sub: the subexpression |
7770 | * |
7771 | * Evaluates the expression resulting from @exp consuming a sub expression @sub |
7772 | * Based on algebraic derivation and sometimes direct Brzozowski derivation |
7773 | * it usually tatkes less than linear time and can handle expressions generating |
7774 | * infinite languages. |
7775 | * |
7776 | * Returns the resulting expression or NULL in case of internal error, the |
7777 | * result must be freed |
7778 | */ |
7779 | xmlExpNodePtr |
7780 | xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) { |
7781 | if ((exp == NULL) || (ctxt == NULL) || (sub == NULL)) |
7782 | return(NULL); |
7783 | |
7784 | /* |
7785 | * O(1) speedups |
7786 | */ |
7787 | if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) { |
7788 | #ifdef DEBUG_DERIV |
7789 | printf("Sub nillable and not exp : can't subsume\n" ); |
7790 | #endif |
7791 | return(forbiddenExp); |
7792 | } |
7793 | if (xmlExpCheckCard(exp, sub) == 0) { |
7794 | #ifdef DEBUG_DERIV |
7795 | printf("sub generate longuer sequances than exp : can't subsume\n" ); |
7796 | #endif |
7797 | return(forbiddenExp); |
7798 | } |
7799 | return(xmlExpExpDeriveInt(ctxt, exp, sub)); |
7800 | } |
7801 | |
7802 | /** |
7803 | * xmlExpSubsume: |
7804 | * @ctxt: the expressions context |
7805 | * @exp: the englobing expression |
7806 | * @sub: the subexpression |
7807 | * |
7808 | * Check whether @exp accepts all the languages accexpted by @sub |
7809 | * the input being a subexpression. |
7810 | * |
7811 | * Returns 1 if true 0 if false and -1 in case of failure. |
7812 | */ |
7813 | int |
7814 | xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) { |
7815 | xmlExpNodePtr tmp; |
7816 | |
7817 | if ((exp == NULL) || (ctxt == NULL) || (sub == NULL)) |
7818 | return(-1); |
7819 | |
7820 | /* |
7821 | * TODO: speedup by checking the language of sub is a subset of the |
7822 | * language of exp |
7823 | */ |
7824 | /* |
7825 | * O(1) speedups |
7826 | */ |
7827 | if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) { |
7828 | #ifdef DEBUG_DERIV |
7829 | printf("Sub nillable and not exp : can't subsume\n" ); |
7830 | #endif |
7831 | return(0); |
7832 | } |
7833 | if (xmlExpCheckCard(exp, sub) == 0) { |
7834 | #ifdef DEBUG_DERIV |
7835 | printf("sub generate longuer sequances than exp : can't subsume\n" ); |
7836 | #endif |
7837 | return(0); |
7838 | } |
7839 | tmp = xmlExpExpDeriveInt(ctxt, exp, sub); |
7840 | #ifdef DEBUG_DERIV |
7841 | printf("Result derivation :\n" ); |
7842 | PRINT_EXP(tmp); |
7843 | #endif |
7844 | if (tmp == NULL) |
7845 | return(-1); |
7846 | if (tmp == forbiddenExp) |
7847 | return(0); |
7848 | if (tmp == emptyExp) |
7849 | return(1); |
7850 | if ((tmp != NULL) && (IS_NILLABLE(tmp))) { |
7851 | xmlExpFree(ctxt, tmp); |
7852 | return(1); |
7853 | } |
7854 | xmlExpFree(ctxt, tmp); |
7855 | return(0); |
7856 | } |
7857 | |
7858 | /************************************************************************ |
7859 | * * |
7860 | * Parsing expression * |
7861 | * * |
7862 | ************************************************************************/ |
7863 | |
7864 | static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt); |
7865 | |
7866 | #undef CUR |
7867 | #define CUR (*ctxt->cur) |
7868 | #undef NEXT |
7869 | #define NEXT ctxt->cur++; |
7870 | #undef IS_BLANK |
7871 | #define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t')) |
7872 | #define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++; |
7873 | |
7874 | static int |
7875 | xmlExpParseNumber(xmlExpCtxtPtr ctxt) { |
7876 | int ret = 0; |
7877 | |
7878 | SKIP_BLANKS |
7879 | if (CUR == '*') { |
7880 | NEXT |
7881 | return(-1); |
7882 | } |
7883 | if ((CUR < '0') || (CUR > '9')) |
7884 | return(-1); |
7885 | while ((CUR >= '0') && (CUR <= '9')) { |
7886 | ret = ret * 10 + (CUR - '0'); |
7887 | NEXT |
7888 | } |
7889 | return(ret); |
7890 | } |
7891 | |
7892 | static xmlExpNodePtr |
7893 | xmlExpParseOr(xmlExpCtxtPtr ctxt) { |
7894 | const char *base; |
7895 | xmlExpNodePtr ret; |
7896 | const xmlChar *val; |
7897 | |
7898 | SKIP_BLANKS |
7899 | base = ctxt->cur; |
7900 | if (*ctxt->cur == '(') { |
7901 | NEXT |
7902 | ret = xmlExpParseExpr(ctxt); |
7903 | SKIP_BLANKS |
7904 | if (*ctxt->cur != ')') { |
7905 | fprintf(stderr, "unbalanced '(' : %s\n" , base); |
7906 | xmlExpFree(ctxt, ret); |
7907 | return(NULL); |
7908 | } |
7909 | NEXT; |
7910 | SKIP_BLANKS |
7911 | goto parse_quantifier; |
7912 | } |
7913 | while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') && |
7914 | (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') && |
7915 | (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}')) |
7916 | NEXT; |
7917 | val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base); |
7918 | if (val == NULL) |
7919 | return(NULL); |
7920 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0); |
7921 | if (ret == NULL) |
7922 | return(NULL); |
7923 | SKIP_BLANKS |
7924 | parse_quantifier: |
7925 | if (CUR == '{') { |
7926 | int min, max; |
7927 | |
7928 | NEXT |
7929 | min = xmlExpParseNumber(ctxt); |
7930 | if (min < 0) { |
7931 | xmlExpFree(ctxt, ret); |
7932 | return(NULL); |
7933 | } |
7934 | SKIP_BLANKS |
7935 | if (CUR == ',') { |
7936 | NEXT |
7937 | max = xmlExpParseNumber(ctxt); |
7938 | SKIP_BLANKS |
7939 | } else |
7940 | max = min; |
7941 | if (CUR != '}') { |
7942 | xmlExpFree(ctxt, ret); |
7943 | return(NULL); |
7944 | } |
7945 | NEXT |
7946 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
7947 | min, max); |
7948 | SKIP_BLANKS |
7949 | } else if (CUR == '?') { |
7950 | NEXT |
7951 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
7952 | 0, 1); |
7953 | SKIP_BLANKS |
7954 | } else if (CUR == '+') { |
7955 | NEXT |
7956 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
7957 | 1, -1); |
7958 | SKIP_BLANKS |
7959 | } else if (CUR == '*') { |
7960 | NEXT |
7961 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
7962 | 0, -1); |
7963 | SKIP_BLANKS |
7964 | } |
7965 | return(ret); |
7966 | } |
7967 | |
7968 | |
7969 | static xmlExpNodePtr |
7970 | xmlExpParseSeq(xmlExpCtxtPtr ctxt) { |
7971 | xmlExpNodePtr ret, right; |
7972 | |
7973 | ret = xmlExpParseOr(ctxt); |
7974 | SKIP_BLANKS |
7975 | while (CUR == '|') { |
7976 | NEXT |
7977 | right = xmlExpParseOr(ctxt); |
7978 | if (right == NULL) { |
7979 | xmlExpFree(ctxt, ret); |
7980 | return(NULL); |
7981 | } |
7982 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0); |
7983 | if (ret == NULL) |
7984 | return(NULL); |
7985 | } |
7986 | return(ret); |
7987 | } |
7988 | |
7989 | static xmlExpNodePtr |
7990 | xmlExpParseExpr(xmlExpCtxtPtr ctxt) { |
7991 | xmlExpNodePtr ret, right; |
7992 | |
7993 | ret = xmlExpParseSeq(ctxt); |
7994 | SKIP_BLANKS |
7995 | while (CUR == ',') { |
7996 | NEXT |
7997 | right = xmlExpParseSeq(ctxt); |
7998 | if (right == NULL) { |
7999 | xmlExpFree(ctxt, ret); |
8000 | return(NULL); |
8001 | } |
8002 | ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0); |
8003 | if (ret == NULL) |
8004 | return(NULL); |
8005 | } |
8006 | return(ret); |
8007 | } |
8008 | |
8009 | /** |
8010 | * xmlExpParse: |
8011 | * @ctxt: the expressions context |
8012 | * @expr: the 0 terminated string |
8013 | * |
8014 | * Minimal parser for regexps, it understand the following constructs |
8015 | * - string terminals |
8016 | * - choice operator | |
8017 | * - sequence operator , |
8018 | * - subexpressions (...) |
8019 | * - usual cardinality operators + * and ? |
8020 | * - finite sequences { min, max } |
8021 | * - infinite sequences { min, * } |
8022 | * There is minimal checkings made especially no checking on strings values |
8023 | * |
8024 | * Returns a new expression or NULL in case of failure |
8025 | */ |
8026 | xmlExpNodePtr |
8027 | xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) { |
8028 | xmlExpNodePtr ret; |
8029 | |
8030 | ctxt->expr = expr; |
8031 | ctxt->cur = expr; |
8032 | |
8033 | ret = xmlExpParseExpr(ctxt); |
8034 | SKIP_BLANKS |
8035 | if (*ctxt->cur != 0) { |
8036 | xmlExpFree(ctxt, ret); |
8037 | return(NULL); |
8038 | } |
8039 | return(ret); |
8040 | } |
8041 | |
8042 | static void |
8043 | xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) { |
8044 | xmlExpNodePtr c; |
8045 | |
8046 | if (expr == NULL) return; |
8047 | if (glob) xmlBufferWriteChar(buf, "(" ); |
8048 | switch (expr->type) { |
8049 | case XML_EXP_EMPTY: |
8050 | xmlBufferWriteChar(buf, "empty" ); |
8051 | break; |
8052 | case XML_EXP_FORBID: |
8053 | xmlBufferWriteChar(buf, "forbidden" ); |
8054 | break; |
8055 | case XML_EXP_ATOM: |
8056 | xmlBufferWriteCHAR(buf, expr->exp_str); |
8057 | break; |
8058 | case XML_EXP_SEQ: |
8059 | c = expr->exp_left; |
8060 | if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
8061 | xmlExpDumpInt(buf, c, 1); |
8062 | else |
8063 | xmlExpDumpInt(buf, c, 0); |
8064 | xmlBufferWriteChar(buf, " , " ); |
8065 | c = expr->exp_right; |
8066 | if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
8067 | xmlExpDumpInt(buf, c, 1); |
8068 | else |
8069 | xmlExpDumpInt(buf, c, 0); |
8070 | break; |
8071 | case XML_EXP_OR: |
8072 | c = expr->exp_left; |
8073 | if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
8074 | xmlExpDumpInt(buf, c, 1); |
8075 | else |
8076 | xmlExpDumpInt(buf, c, 0); |
8077 | xmlBufferWriteChar(buf, " | " ); |
8078 | c = expr->exp_right; |
8079 | if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
8080 | xmlExpDumpInt(buf, c, 1); |
8081 | else |
8082 | xmlExpDumpInt(buf, c, 0); |
8083 | break; |
8084 | case XML_EXP_COUNT: { |
8085 | char rep[40]; |
8086 | |
8087 | c = expr->exp_left; |
8088 | if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
8089 | xmlExpDumpInt(buf, c, 1); |
8090 | else |
8091 | xmlExpDumpInt(buf, c, 0); |
8092 | if ((expr->exp_min == 0) && (expr->exp_max == 1)) { |
8093 | rep[0] = '?'; |
8094 | rep[1] = 0; |
8095 | } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) { |
8096 | rep[0] = '*'; |
8097 | rep[1] = 0; |
8098 | } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) { |
8099 | rep[0] = '+'; |
8100 | rep[1] = 0; |
8101 | } else if (expr->exp_max == expr->exp_min) { |
8102 | snprintf(rep, 39, "{%d}" , expr->exp_min); |
8103 | } else if (expr->exp_max < 0) { |
8104 | snprintf(rep, 39, "{%d,inf}" , expr->exp_min); |
8105 | } else { |
8106 | snprintf(rep, 39, "{%d,%d}" , expr->exp_min, expr->exp_max); |
8107 | } |
8108 | rep[39] = 0; |
8109 | xmlBufferWriteChar(buf, rep); |
8110 | break; |
8111 | } |
8112 | default: |
8113 | fprintf(stderr, "Error in tree\n" ); |
8114 | } |
8115 | if (glob) |
8116 | xmlBufferWriteChar(buf, ")" ); |
8117 | } |
8118 | /** |
8119 | * xmlExpDump: |
8120 | * @buf: a buffer to receive the output |
8121 | * @expr: the compiled expression |
8122 | * |
8123 | * Serialize the expression as compiled to the buffer |
8124 | */ |
8125 | void |
8126 | xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) { |
8127 | if ((buf == NULL) || (expr == NULL)) |
8128 | return; |
8129 | xmlExpDumpInt(buf, expr, 0); |
8130 | } |
8131 | |
8132 | /** |
8133 | * xmlExpMaxToken: |
8134 | * @expr: a compiled expression |
8135 | * |
8136 | * Indicate the maximum number of input a expression can accept |
8137 | * |
8138 | * Returns the maximum length or -1 in case of error |
8139 | */ |
8140 | int |
8141 | xmlExpMaxToken(xmlExpNodePtr expr) { |
8142 | if (expr == NULL) |
8143 | return(-1); |
8144 | return(expr->c_max); |
8145 | } |
8146 | |
8147 | /** |
8148 | * xmlExpCtxtNbNodes: |
8149 | * @ctxt: an expression context |
8150 | * |
8151 | * Debugging facility provides the number of allocated nodes at a that point |
8152 | * |
8153 | * Returns the number of nodes in use or -1 in case of error |
8154 | */ |
8155 | int |
8156 | xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) { |
8157 | if (ctxt == NULL) |
8158 | return(-1); |
8159 | return(ctxt->nb_nodes); |
8160 | } |
8161 | |
8162 | /** |
8163 | * xmlExpCtxtNbCons: |
8164 | * @ctxt: an expression context |
8165 | * |
8166 | * Debugging facility provides the number of allocated nodes over lifetime |
8167 | * |
8168 | * Returns the number of nodes ever allocated or -1 in case of error |
8169 | */ |
8170 | int |
8171 | xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) { |
8172 | if (ctxt == NULL) |
8173 | return(-1); |
8174 | return(ctxt->nb_cons); |
8175 | } |
8176 | |
8177 | #endif /* LIBXML_EXPR_ENABLED */ |
8178 | #define bottom_xmlregexp |
8179 | #include "elfgcchack.h" |
8180 | #endif /* LIBXML_REGEXP_ENABLED */ |
8181 | |