1 | //===-- ExternalFunctions.cpp - Implement External Functions --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains both code to deal with invoking "external" functions, but |
10 | // also contains code that implements "exported" external functions. |
11 | // |
12 | // There are currently two mechanisms for handling external functions in the |
13 | // Interpreter. The first is to implement lle_* wrapper functions that are |
14 | // specific to well-known library functions which manually translate the |
15 | // arguments from GenericValues and make the call. If such a wrapper does |
16 | // not exist, and libffi is available, then the Interpreter will attempt to |
17 | // invoke the function using libffi, after finding its address. |
18 | // |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #include "Interpreter.h" |
22 | #include "llvm/ADT/APInt.h" |
23 | #include "llvm/ADT/ArrayRef.h" |
24 | #include "llvm/Config/config.h" // Detect libffi |
25 | #include "llvm/ExecutionEngine/GenericValue.h" |
26 | #include "llvm/IR/DataLayout.h" |
27 | #include "llvm/IR/DerivedTypes.h" |
28 | #include "llvm/IR/Function.h" |
29 | #include "llvm/IR/Type.h" |
30 | #include "llvm/Support/Casting.h" |
31 | #include "llvm/Support/DynamicLibrary.h" |
32 | #include "llvm/Support/ErrorHandling.h" |
33 | #include "llvm/Support/ManagedStatic.h" |
34 | #include "llvm/Support/Mutex.h" |
35 | #include "llvm/Support/UniqueLock.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | #include <cassert> |
38 | #include <cmath> |
39 | #include <csignal> |
40 | #include <cstdint> |
41 | #include <cstdio> |
42 | #include <cstring> |
43 | #include <map> |
44 | #include <string> |
45 | #include <utility> |
46 | #include <vector> |
47 | |
48 | #ifdef HAVE_FFI_CALL |
49 | #ifdef HAVE_FFI_H |
50 | #include <ffi.h> |
51 | #define USE_LIBFFI |
52 | #elif HAVE_FFI_FFI_H |
53 | #include <ffi/ffi.h> |
54 | #define USE_LIBFFI |
55 | #endif |
56 | #endif |
57 | |
58 | using namespace llvm; |
59 | |
60 | static ManagedStatic<sys::Mutex> FunctionsLock; |
61 | |
62 | typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>); |
63 | static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; |
64 | static ManagedStatic<std::map<std::string, ExFunc> > FuncNames; |
65 | |
66 | #ifdef USE_LIBFFI |
67 | typedef void (*RawFunc)(); |
68 | static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; |
69 | #endif |
70 | |
71 | static Interpreter *TheInterpreter; |
72 | |
73 | static char getTypeID(Type *Ty) { |
74 | switch (Ty->getTypeID()) { |
75 | case Type::VoidTyID: return 'V'; |
76 | case Type::IntegerTyID: |
77 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
78 | case 1: return 'o'; |
79 | case 8: return 'B'; |
80 | case 16: return 'S'; |
81 | case 32: return 'I'; |
82 | case 64: return 'L'; |
83 | default: return 'N'; |
84 | } |
85 | case Type::FloatTyID: return 'F'; |
86 | case Type::DoubleTyID: return 'D'; |
87 | case Type::PointerTyID: return 'P'; |
88 | case Type::FunctionTyID:return 'M'; |
89 | case Type::StructTyID: return 'T'; |
90 | case Type::ArrayTyID: return 'A'; |
91 | default: return 'U'; |
92 | } |
93 | } |
94 | |
95 | // Try to find address of external function given a Function object. |
96 | // Please note, that interpreter doesn't know how to assemble a |
97 | // real call in general case (this is JIT job), that's why it assumes, |
98 | // that all external functions has the same (and pretty "general") signature. |
99 | // The typical example of such functions are "lle_X_" ones. |
100 | static ExFunc lookupFunction(const Function *F) { |
101 | // Function not found, look it up... start by figuring out what the |
102 | // composite function name should be. |
103 | std::string ExtName = "lle_" ; |
104 | FunctionType *FT = F->getFunctionType(); |
105 | ExtName += getTypeID(FT->getReturnType()); |
106 | for (Type *T : FT->params()) |
107 | ExtName += getTypeID(T); |
108 | ExtName += ("_" + F->getName()).str(); |
109 | |
110 | sys::ScopedLock Writer(*FunctionsLock); |
111 | ExFunc FnPtr = (*FuncNames)[ExtName]; |
112 | if (!FnPtr) |
113 | FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()]; |
114 | if (!FnPtr) // Try calling a generic function... if it exists... |
115 | FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( |
116 | ("lle_X_" + F->getName()).str()); |
117 | if (FnPtr) |
118 | ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later |
119 | return FnPtr; |
120 | } |
121 | |
122 | #ifdef USE_LIBFFI |
123 | static ffi_type *ffiTypeFor(Type *Ty) { |
124 | switch (Ty->getTypeID()) { |
125 | case Type::VoidTyID: return &ffi_type_void; |
126 | case Type::IntegerTyID: |
127 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
128 | case 8: return &ffi_type_sint8; |
129 | case 16: return &ffi_type_sint16; |
130 | case 32: return &ffi_type_sint32; |
131 | case 64: return &ffi_type_sint64; |
132 | } |
133 | case Type::FloatTyID: return &ffi_type_float; |
134 | case Type::DoubleTyID: return &ffi_type_double; |
135 | case Type::PointerTyID: return &ffi_type_pointer; |
136 | default: break; |
137 | } |
138 | // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. |
139 | report_fatal_error("Type could not be mapped for use with libffi." ); |
140 | return NULL; |
141 | } |
142 | |
143 | static void *ffiValueFor(Type *Ty, const GenericValue &AV, |
144 | void *ArgDataPtr) { |
145 | switch (Ty->getTypeID()) { |
146 | case Type::IntegerTyID: |
147 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
148 | case 8: { |
149 | int8_t *I8Ptr = (int8_t *) ArgDataPtr; |
150 | *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); |
151 | return ArgDataPtr; |
152 | } |
153 | case 16: { |
154 | int16_t *I16Ptr = (int16_t *) ArgDataPtr; |
155 | *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); |
156 | return ArgDataPtr; |
157 | } |
158 | case 32: { |
159 | int32_t *I32Ptr = (int32_t *) ArgDataPtr; |
160 | *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); |
161 | return ArgDataPtr; |
162 | } |
163 | case 64: { |
164 | int64_t *I64Ptr = (int64_t *) ArgDataPtr; |
165 | *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); |
166 | return ArgDataPtr; |
167 | } |
168 | } |
169 | case Type::FloatTyID: { |
170 | float *FloatPtr = (float *) ArgDataPtr; |
171 | *FloatPtr = AV.FloatVal; |
172 | return ArgDataPtr; |
173 | } |
174 | case Type::DoubleTyID: { |
175 | double *DoublePtr = (double *) ArgDataPtr; |
176 | *DoublePtr = AV.DoubleVal; |
177 | return ArgDataPtr; |
178 | } |
179 | case Type::PointerTyID: { |
180 | void **PtrPtr = (void **) ArgDataPtr; |
181 | *PtrPtr = GVTOP(AV); |
182 | return ArgDataPtr; |
183 | } |
184 | default: break; |
185 | } |
186 | // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. |
187 | report_fatal_error("Type value could not be mapped for use with libffi." ); |
188 | return NULL; |
189 | } |
190 | |
191 | static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals, |
192 | const DataLayout &TD, GenericValue &Result) { |
193 | ffi_cif cif; |
194 | FunctionType *FTy = F->getFunctionType(); |
195 | const unsigned NumArgs = F->arg_size(); |
196 | |
197 | // TODO: We don't have type information about the remaining arguments, because |
198 | // this information is never passed into ExecutionEngine::runFunction(). |
199 | if (ArgVals.size() > NumArgs && F->isVarArg()) { |
200 | report_fatal_error("Calling external var arg function '" + F->getName() |
201 | + "' is not supported by the Interpreter." ); |
202 | } |
203 | |
204 | unsigned ArgBytes = 0; |
205 | |
206 | std::vector<ffi_type*> args(NumArgs); |
207 | for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); |
208 | A != E; ++A) { |
209 | const unsigned ArgNo = A->getArgNo(); |
210 | Type *ArgTy = FTy->getParamType(ArgNo); |
211 | args[ArgNo] = ffiTypeFor(ArgTy); |
212 | ArgBytes += TD.getTypeStoreSize(ArgTy); |
213 | } |
214 | |
215 | SmallVector<uint8_t, 128> ArgData; |
216 | ArgData.resize(ArgBytes); |
217 | uint8_t *ArgDataPtr = ArgData.data(); |
218 | SmallVector<void*, 16> values(NumArgs); |
219 | for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); |
220 | A != E; ++A) { |
221 | const unsigned ArgNo = A->getArgNo(); |
222 | Type *ArgTy = FTy->getParamType(ArgNo); |
223 | values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); |
224 | ArgDataPtr += TD.getTypeStoreSize(ArgTy); |
225 | } |
226 | |
227 | Type *RetTy = FTy->getReturnType(); |
228 | ffi_type *rtype = ffiTypeFor(RetTy); |
229 | |
230 | if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) == |
231 | FFI_OK) { |
232 | SmallVector<uint8_t, 128> ret; |
233 | if (RetTy->getTypeID() != Type::VoidTyID) |
234 | ret.resize(TD.getTypeStoreSize(RetTy)); |
235 | ffi_call(&cif, Fn, ret.data(), values.data()); |
236 | switch (RetTy->getTypeID()) { |
237 | case Type::IntegerTyID: |
238 | switch (cast<IntegerType>(RetTy)->getBitWidth()) { |
239 | case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; |
240 | case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; |
241 | case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; |
242 | case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; |
243 | } |
244 | break; |
245 | case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; |
246 | case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; |
247 | case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; |
248 | default: break; |
249 | } |
250 | return true; |
251 | } |
252 | |
253 | return false; |
254 | } |
255 | #endif // USE_LIBFFI |
256 | |
257 | GenericValue Interpreter::callExternalFunction(Function *F, |
258 | ArrayRef<GenericValue> ArgVals) { |
259 | TheInterpreter = this; |
260 | |
261 | unique_lock<sys::Mutex> Guard(*FunctionsLock); |
262 | |
263 | // Do a lookup to see if the function is in our cache... this should just be a |
264 | // deferred annotation! |
265 | std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); |
266 | if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) |
267 | : FI->second) { |
268 | Guard.unlock(); |
269 | return Fn(F->getFunctionType(), ArgVals); |
270 | } |
271 | |
272 | #ifdef USE_LIBFFI |
273 | std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); |
274 | RawFunc RawFn; |
275 | if (RF == RawFunctions->end()) { |
276 | RawFn = (RawFunc)(intptr_t) |
277 | sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); |
278 | if (!RawFn) |
279 | RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); |
280 | if (RawFn != 0) |
281 | RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later |
282 | } else { |
283 | RawFn = RF->second; |
284 | } |
285 | |
286 | Guard.unlock(); |
287 | |
288 | GenericValue Result; |
289 | if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) |
290 | return Result; |
291 | #endif // USE_LIBFFI |
292 | |
293 | if (F->getName() == "__main" ) |
294 | errs() << "Tried to execute an unknown external function: " |
295 | << *F->getType() << " __main\n" ; |
296 | else |
297 | report_fatal_error("Tried to execute an unknown external function: " + |
298 | F->getName()); |
299 | #ifndef USE_LIBFFI |
300 | errs() << "Recompiling LLVM with --enable-libffi might help.\n" ; |
301 | #endif |
302 | return GenericValue(); |
303 | } |
304 | |
305 | //===----------------------------------------------------------------------===// |
306 | // Functions "exported" to the running application... |
307 | // |
308 | |
309 | // void atexit(Function*) |
310 | static GenericValue lle_X_atexit(FunctionType *FT, |
311 | ArrayRef<GenericValue> Args) { |
312 | assert(Args.size() == 1); |
313 | TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); |
314 | GenericValue GV; |
315 | GV.IntVal = 0; |
316 | return GV; |
317 | } |
318 | |
319 | // void exit(int) |
320 | static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) { |
321 | TheInterpreter->exitCalled(Args[0]); |
322 | return GenericValue(); |
323 | } |
324 | |
325 | // void abort(void) |
326 | static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) { |
327 | //FIXME: should we report or raise here? |
328 | //report_fatal_error("Interpreted program raised SIGABRT"); |
329 | raise (SIGABRT); |
330 | return GenericValue(); |
331 | } |
332 | |
333 | // int sprintf(char *, const char *, ...) - a very rough implementation to make |
334 | // output useful. |
335 | static GenericValue lle_X_sprintf(FunctionType *FT, |
336 | ArrayRef<GenericValue> Args) { |
337 | char *OutputBuffer = (char *)GVTOP(Args[0]); |
338 | const char *FmtStr = (const char *)GVTOP(Args[1]); |
339 | unsigned ArgNo = 2; |
340 | |
341 | // printf should return # chars printed. This is completely incorrect, but |
342 | // close enough for now. |
343 | GenericValue GV; |
344 | GV.IntVal = APInt(32, strlen(FmtStr)); |
345 | while (true) { |
346 | switch (*FmtStr) { |
347 | case 0: return GV; // Null terminator... |
348 | default: // Normal nonspecial character |
349 | sprintf(OutputBuffer++, "%c" , *FmtStr++); |
350 | break; |
351 | case '\\': { // Handle escape codes |
352 | sprintf(OutputBuffer, "%c%c" , *FmtStr, *(FmtStr+1)); |
353 | FmtStr += 2; OutputBuffer += 2; |
354 | break; |
355 | } |
356 | case '%': { // Handle format specifiers |
357 | char FmtBuf[100] = "" , Buffer[1000] = "" ; |
358 | char *FB = FmtBuf; |
359 | *FB++ = *FmtStr++; |
360 | char Last = *FB++ = *FmtStr++; |
361 | unsigned HowLong = 0; |
362 | while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && |
363 | Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && |
364 | Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && |
365 | Last != 'p' && Last != 's' && Last != '%') { |
366 | if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's |
367 | Last = *FB++ = *FmtStr++; |
368 | } |
369 | *FB = 0; |
370 | |
371 | switch (Last) { |
372 | case '%': |
373 | memcpy(Buffer, "%" , 2); break; |
374 | case 'c': |
375 | sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
376 | break; |
377 | case 'd': case 'i': |
378 | case 'u': case 'o': |
379 | case 'x': case 'X': |
380 | if (HowLong >= 1) { |
381 | if (HowLong == 1 && |
382 | TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 && |
383 | sizeof(long) < sizeof(int64_t)) { |
384 | // Make sure we use %lld with a 64 bit argument because we might be |
385 | // compiling LLI on a 32 bit compiler. |
386 | unsigned Size = strlen(FmtBuf); |
387 | FmtBuf[Size] = FmtBuf[Size-1]; |
388 | FmtBuf[Size+1] = 0; |
389 | FmtBuf[Size-1] = 'l'; |
390 | } |
391 | sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); |
392 | } else |
393 | sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
394 | break; |
395 | case 'e': case 'E': case 'g': case 'G': case 'f': |
396 | sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; |
397 | case 'p': |
398 | sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; |
399 | case 's': |
400 | sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; |
401 | default: |
402 | errs() << "<unknown printf code '" << *FmtStr << "'!>" ; |
403 | ArgNo++; break; |
404 | } |
405 | size_t Len = strlen(Buffer); |
406 | memcpy(OutputBuffer, Buffer, Len + 1); |
407 | OutputBuffer += Len; |
408 | } |
409 | break; |
410 | } |
411 | } |
412 | return GV; |
413 | } |
414 | |
415 | // int printf(const char *, ...) - a very rough implementation to make output |
416 | // useful. |
417 | static GenericValue lle_X_printf(FunctionType *FT, |
418 | ArrayRef<GenericValue> Args) { |
419 | char Buffer[10000]; |
420 | std::vector<GenericValue> NewArgs; |
421 | NewArgs.push_back(PTOGV((void*)&Buffer[0])); |
422 | NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); |
423 | GenericValue GV = lle_X_sprintf(FT, NewArgs); |
424 | outs() << Buffer; |
425 | return GV; |
426 | } |
427 | |
428 | // int sscanf(const char *format, ...); |
429 | static GenericValue lle_X_sscanf(FunctionType *FT, |
430 | ArrayRef<GenericValue> args) { |
431 | assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!" ); |
432 | |
433 | char *Args[10]; |
434 | for (unsigned i = 0; i < args.size(); ++i) |
435 | Args[i] = (char*)GVTOP(args[i]); |
436 | |
437 | GenericValue GV; |
438 | GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], |
439 | Args[5], Args[6], Args[7], Args[8], Args[9])); |
440 | return GV; |
441 | } |
442 | |
443 | // int scanf(const char *format, ...); |
444 | static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) { |
445 | assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!" ); |
446 | |
447 | char *Args[10]; |
448 | for (unsigned i = 0; i < args.size(); ++i) |
449 | Args[i] = (char*)GVTOP(args[i]); |
450 | |
451 | GenericValue GV; |
452 | GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], |
453 | Args[5], Args[6], Args[7], Args[8], Args[9])); |
454 | return GV; |
455 | } |
456 | |
457 | // int fprintf(FILE *, const char *, ...) - a very rough implementation to make |
458 | // output useful. |
459 | static GenericValue lle_X_fprintf(FunctionType *FT, |
460 | ArrayRef<GenericValue> Args) { |
461 | assert(Args.size() >= 2); |
462 | char Buffer[10000]; |
463 | std::vector<GenericValue> NewArgs; |
464 | NewArgs.push_back(PTOGV(Buffer)); |
465 | NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); |
466 | GenericValue GV = lle_X_sprintf(FT, NewArgs); |
467 | |
468 | fputs(Buffer, (FILE *) GVTOP(Args[0])); |
469 | return GV; |
470 | } |
471 | |
472 | static GenericValue lle_X_memset(FunctionType *FT, |
473 | ArrayRef<GenericValue> Args) { |
474 | int val = (int)Args[1].IntVal.getSExtValue(); |
475 | size_t len = (size_t)Args[2].IntVal.getZExtValue(); |
476 | memset((void *)GVTOP(Args[0]), val, len); |
477 | // llvm.memset.* returns void, lle_X_* returns GenericValue, |
478 | // so here we return GenericValue with IntVal set to zero |
479 | GenericValue GV; |
480 | GV.IntVal = 0; |
481 | return GV; |
482 | } |
483 | |
484 | static GenericValue lle_X_memcpy(FunctionType *FT, |
485 | ArrayRef<GenericValue> Args) { |
486 | memcpy(GVTOP(Args[0]), GVTOP(Args[1]), |
487 | (size_t)(Args[2].IntVal.getLimitedValue())); |
488 | |
489 | // llvm.memcpy* returns void, lle_X_* returns GenericValue, |
490 | // so here we return GenericValue with IntVal set to zero |
491 | GenericValue GV; |
492 | GV.IntVal = 0; |
493 | return GV; |
494 | } |
495 | |
496 | void Interpreter::initializeExternalFunctions() { |
497 | sys::ScopedLock Writer(*FunctionsLock); |
498 | (*FuncNames)["lle_X_atexit" ] = lle_X_atexit; |
499 | (*FuncNames)["lle_X_exit" ] = lle_X_exit; |
500 | (*FuncNames)["lle_X_abort" ] = lle_X_abort; |
501 | |
502 | (*FuncNames)["lle_X_printf" ] = lle_X_printf; |
503 | (*FuncNames)["lle_X_sprintf" ] = lle_X_sprintf; |
504 | (*FuncNames)["lle_X_sscanf" ] = lle_X_sscanf; |
505 | (*FuncNames)["lle_X_scanf" ] = lle_X_scanf; |
506 | (*FuncNames)["lle_X_fprintf" ] = lle_X_fprintf; |
507 | (*FuncNames)["lle_X_memset" ] = lle_X_memset; |
508 | (*FuncNames)["lle_X_memcpy" ] = lle_X_memcpy; |
509 | } |
510 | |