1 | /* |
2 | * LZ4 auto-framing library |
3 | * Copyright (C) 2011-2016, Yann Collet. |
4 | * |
5 | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions are |
9 | * met: |
10 | * |
11 | * - Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * - Redistributions in binary form must reproduce the above |
14 | * copyright notice, this list of conditions and the following disclaimer |
15 | * in the documentation and/or other materials provided with the |
16 | * distribution. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | * |
30 | * You can contact the author at : |
31 | * - LZ4 homepage : http://www.lz4.org |
32 | * - LZ4 source repository : https://github.com/lz4/lz4 |
33 | */ |
34 | |
35 | /* LZ4F is a stand-alone API to create LZ4-compressed Frames |
36 | * in full conformance with specification v1.6.1 . |
37 | * This library rely upon memory management capabilities (malloc, free) |
38 | * provided either by <stdlib.h>, |
39 | * or redirected towards another library of user's choice |
40 | * (see Memory Routines below). |
41 | */ |
42 | |
43 | |
44 | /*-************************************ |
45 | * Compiler Options |
46 | **************************************/ |
47 | #ifdef _MSC_VER /* Visual Studio */ |
48 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
49 | #endif |
50 | |
51 | |
52 | /*-************************************ |
53 | * Tuning parameters |
54 | **************************************/ |
55 | /* |
56 | * LZ4F_HEAPMODE : |
57 | * Select how default compression functions will allocate memory for their hash table, |
58 | * in memory stack (0:default, fastest), or in memory heap (1:requires malloc()). |
59 | */ |
60 | #ifndef LZ4F_HEAPMODE |
61 | # define LZ4F_HEAPMODE 0 |
62 | #endif |
63 | |
64 | |
65 | /*-************************************ |
66 | * Memory routines |
67 | **************************************/ |
68 | /* |
69 | * User may redirect invocations of |
70 | * malloc(), calloc() and free() |
71 | * towards another library or solution of their choice |
72 | * by modifying below section. |
73 | */ |
74 | #include <stdlib.h> /* malloc, calloc, free */ |
75 | #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */ |
76 | # define ALLOC(s) malloc(s) |
77 | # define ALLOC_AND_ZERO(s) calloc(1,(s)) |
78 | # define FREEMEM(p) free(p) |
79 | #endif |
80 | |
81 | #include <string.h> /* memset, memcpy, memmove */ |
82 | #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */ |
83 | # define MEM_INIT(p,v,s) memset((p),(v),(s)) |
84 | #endif |
85 | |
86 | |
87 | /*-************************************ |
88 | * Library declarations |
89 | **************************************/ |
90 | #define LZ4F_STATIC_LINKING_ONLY |
91 | #include "lz4frame.h" |
92 | #define LZ4_STATIC_LINKING_ONLY |
93 | #include "lz4.h" |
94 | #define LZ4_HC_STATIC_LINKING_ONLY |
95 | #include "lz4hc.h" |
96 | #define XXH_STATIC_LINKING_ONLY |
97 | #include "xxhash.h" |
98 | |
99 | |
100 | /*-************************************ |
101 | * Debug |
102 | **************************************/ |
103 | #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1) |
104 | # include <assert.h> |
105 | #else |
106 | # ifndef assert |
107 | # define assert(condition) ((void)0) |
108 | # endif |
109 | #endif |
110 | |
111 | #define LZ4F_STATIC_ASSERT(c) { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
112 | |
113 | #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG) |
114 | # include <stdio.h> |
115 | static int g_debuglog_enable = 1; |
116 | # define DEBUGLOG(l, ...) { \ |
117 | if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) { \ |
118 | fprintf(stderr, __FILE__ ": "); \ |
119 | fprintf(stderr, __VA_ARGS__); \ |
120 | fprintf(stderr, " \n"); \ |
121 | } } |
122 | #else |
123 | # define DEBUGLOG(l, ...) {} /* disabled */ |
124 | #endif |
125 | |
126 | |
127 | /*-************************************ |
128 | * Basic Types |
129 | **************************************/ |
130 | #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
131 | # include <stdint.h> |
132 | typedef uint8_t BYTE; |
133 | typedef uint16_t U16; |
134 | typedef uint32_t U32; |
135 | typedef int32_t S32; |
136 | typedef uint64_t U64; |
137 | #else |
138 | typedef unsigned char BYTE; |
139 | typedef unsigned short U16; |
140 | typedef unsigned int U32; |
141 | typedef signed int S32; |
142 | typedef unsigned long long U64; |
143 | #endif |
144 | |
145 | |
146 | /* unoptimized version; solves endianess & alignment issues */ |
147 | static U32 LZ4F_readLE32 (const void* src) |
148 | { |
149 | const BYTE* const srcPtr = (const BYTE*)src; |
150 | U32 value32 = srcPtr[0]; |
151 | value32 += ((U32)srcPtr[1])<< 8; |
152 | value32 += ((U32)srcPtr[2])<<16; |
153 | value32 += ((U32)srcPtr[3])<<24; |
154 | return value32; |
155 | } |
156 | |
157 | static void LZ4F_writeLE32 (void* dst, U32 value32) |
158 | { |
159 | BYTE* const dstPtr = (BYTE*)dst; |
160 | dstPtr[0] = (BYTE)value32; |
161 | dstPtr[1] = (BYTE)(value32 >> 8); |
162 | dstPtr[2] = (BYTE)(value32 >> 16); |
163 | dstPtr[3] = (BYTE)(value32 >> 24); |
164 | } |
165 | |
166 | static U64 LZ4F_readLE64 (const void* src) |
167 | { |
168 | const BYTE* const srcPtr = (const BYTE*)src; |
169 | U64 value64 = srcPtr[0]; |
170 | value64 += ((U64)srcPtr[1]<<8); |
171 | value64 += ((U64)srcPtr[2]<<16); |
172 | value64 += ((U64)srcPtr[3]<<24); |
173 | value64 += ((U64)srcPtr[4]<<32); |
174 | value64 += ((U64)srcPtr[5]<<40); |
175 | value64 += ((U64)srcPtr[6]<<48); |
176 | value64 += ((U64)srcPtr[7]<<56); |
177 | return value64; |
178 | } |
179 | |
180 | static void LZ4F_writeLE64 (void* dst, U64 value64) |
181 | { |
182 | BYTE* const dstPtr = (BYTE*)dst; |
183 | dstPtr[0] = (BYTE)value64; |
184 | dstPtr[1] = (BYTE)(value64 >> 8); |
185 | dstPtr[2] = (BYTE)(value64 >> 16); |
186 | dstPtr[3] = (BYTE)(value64 >> 24); |
187 | dstPtr[4] = (BYTE)(value64 >> 32); |
188 | dstPtr[5] = (BYTE)(value64 >> 40); |
189 | dstPtr[6] = (BYTE)(value64 >> 48); |
190 | dstPtr[7] = (BYTE)(value64 >> 56); |
191 | } |
192 | |
193 | |
194 | /*-************************************ |
195 | * Constants |
196 | **************************************/ |
197 | #ifndef LZ4_SRC_INCLUDED /* avoid double definition */ |
198 | # define KB *(1<<10) |
199 | # define MB *(1<<20) |
200 | # define GB *(1<<30) |
201 | #endif |
202 | |
203 | #define _1BIT 0x01 |
204 | #define _2BITS 0x03 |
205 | #define _3BITS 0x07 |
206 | #define _4BITS 0x0F |
207 | #define _8BITS 0xFF |
208 | |
209 | #define LZ4F_MAGIC_SKIPPABLE_START 0x184D2A50U |
210 | #define LZ4F_MAGICNUMBER 0x184D2204U |
211 | #define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U |
212 | #define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB |
213 | |
214 | static const size_t minFHSize = LZ4F_HEADER_SIZE_MIN; /* 7 */ |
215 | static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX; /* 19 */ |
216 | static const size_t BHSize = LZ4F_BLOCK_HEADER_SIZE; /* block header : size, and compress flag */ |
217 | static const size_t BFSize = LZ4F_BLOCK_CHECKSUM_SIZE; /* block footer : checksum (optional) */ |
218 | |
219 | |
220 | /*-************************************ |
221 | * Structures and local types |
222 | **************************************/ |
223 | typedef struct LZ4F_cctx_s |
224 | { |
225 | LZ4F_preferences_t prefs; |
226 | U32 version; |
227 | U32 cStage; |
228 | const LZ4F_CDict* cdict; |
229 | size_t maxBlockSize; |
230 | size_t maxBufferSize; |
231 | BYTE* tmpBuff; |
232 | BYTE* tmpIn; |
233 | size_t tmpInSize; |
234 | U64 totalInSize; |
235 | XXH32_state_t xxh; |
236 | void* lz4CtxPtr; |
237 | U16 lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ |
238 | U16 lz4CtxState; /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ |
239 | } LZ4F_cctx_t; |
240 | |
241 | |
242 | /*-************************************ |
243 | * Error management |
244 | **************************************/ |
245 | #define LZ4F_GENERATE_STRING(STRING) #STRING, |
246 | static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) }; |
247 | |
248 | |
249 | unsigned LZ4F_isError(LZ4F_errorCode_t code) |
250 | { |
251 | return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode)); |
252 | } |
253 | |
254 | const char* LZ4F_getErrorName(LZ4F_errorCode_t code) |
255 | { |
256 | static const char* codeError = "Unspecified error code" ; |
257 | if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)]; |
258 | return codeError; |
259 | } |
260 | |
261 | LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult) |
262 | { |
263 | if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError; |
264 | return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult); |
265 | } |
266 | |
267 | static LZ4F_errorCode_t err0r(LZ4F_errorCodes code) |
268 | { |
269 | /* A compilation error here means sizeof(ptrdiff_t) is not large enough */ |
270 | LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t)); |
271 | return (LZ4F_errorCode_t)-(ptrdiff_t)code; |
272 | } |
273 | |
274 | unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; } |
275 | |
276 | int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; } |
277 | |
278 | size_t LZ4F_getBlockSize(unsigned blockSizeID) |
279 | { |
280 | static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB }; |
281 | |
282 | if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; |
283 | if (blockSizeID < LZ4F_max64KB || blockSizeID > LZ4F_max4MB) |
284 | return err0r(LZ4F_ERROR_maxBlockSize_invalid); |
285 | blockSizeID -= LZ4F_max64KB; |
286 | return blockSizes[blockSizeID]; |
287 | } |
288 | |
289 | /*-************************************ |
290 | * Private functions |
291 | **************************************/ |
292 | #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) |
293 | |
294 | static BYTE (const void* , size_t length) |
295 | { |
296 | U32 const xxh = XXH32(header, length, 0); |
297 | return (BYTE)(xxh >> 8); |
298 | } |
299 | |
300 | |
301 | /*-************************************ |
302 | * Simple-pass compression functions |
303 | **************************************/ |
304 | static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID, |
305 | const size_t srcSize) |
306 | { |
307 | LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB; |
308 | size_t maxBlockSize = 64 KB; |
309 | while (requestedBSID > proposedBSID) { |
310 | if (srcSize <= maxBlockSize) |
311 | return proposedBSID; |
312 | proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1); |
313 | maxBlockSize <<= 2; |
314 | } |
315 | return requestedBSID; |
316 | } |
317 | |
318 | /*! LZ4F_compressBound_internal() : |
319 | * Provides dstCapacity given a srcSize to guarantee operation success in worst case situations. |
320 | * prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario. |
321 | * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers. |
322 | * When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations. |
323 | */ |
324 | static size_t LZ4F_compressBound_internal(size_t srcSize, |
325 | const LZ4F_preferences_t* preferencesPtr, |
326 | size_t alreadyBuffered) |
327 | { |
328 | LZ4F_preferences_t prefsNull = LZ4F_INIT_PREFERENCES; |
329 | prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled; /* worst case */ |
330 | prefsNull.frameInfo.blockChecksumFlag = LZ4F_blockChecksumEnabled; /* worst case */ |
331 | { const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr; |
332 | U32 const flush = prefsPtr->autoFlush | (srcSize==0); |
333 | LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID; |
334 | size_t const blockSize = LZ4F_getBlockSize(blockID); |
335 | size_t const maxBuffered = blockSize - 1; |
336 | size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered); |
337 | size_t const maxSrcSize = srcSize + bufferedSize; |
338 | unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize); |
339 | size_t const partialBlockSize = maxSrcSize & (blockSize-1); |
340 | size_t const lastBlockSize = flush ? partialBlockSize : 0; |
341 | unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0); |
342 | |
343 | size_t const blockCRCSize = BFSize * prefsPtr->frameInfo.blockChecksumFlag; |
344 | size_t const frameEnd = BHSize + (prefsPtr->frameInfo.contentChecksumFlag*BFSize); |
345 | |
346 | return ((BHSize + blockCRCSize) * nbBlocks) + |
347 | (blockSize * nbFullBlocks) + lastBlockSize + frameEnd; |
348 | } |
349 | } |
350 | |
351 | size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) |
352 | { |
353 | LZ4F_preferences_t prefs; |
354 | size_t const = maxFHSize; /* max header size, including optional fields */ |
355 | |
356 | if (preferencesPtr!=NULL) prefs = *preferencesPtr; |
357 | else MEM_INIT(&prefs, 0, sizeof(prefs)); |
358 | prefs.autoFlush = 1; |
359 | |
360 | return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);; |
361 | } |
362 | |
363 | |
364 | /*! LZ4F_compressFrame_usingCDict() : |
365 | * Compress srcBuffer using a dictionary, in a single step. |
366 | * cdict can be NULL, in which case, no dictionary is used. |
367 | * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). |
368 | * The LZ4F_preferences_t structure is optional : you may provide NULL as argument, |
369 | * however, it's the only way to provide a dictID, so it's not recommended. |
370 | * @return : number of bytes written into dstBuffer, |
371 | * or an error code if it fails (can be tested using LZ4F_isError()) |
372 | */ |
373 | size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx, |
374 | void* dstBuffer, size_t dstCapacity, |
375 | const void* srcBuffer, size_t srcSize, |
376 | const LZ4F_CDict* cdict, |
377 | const LZ4F_preferences_t* preferencesPtr) |
378 | { |
379 | LZ4F_preferences_t prefs; |
380 | LZ4F_compressOptions_t options; |
381 | BYTE* const dstStart = (BYTE*) dstBuffer; |
382 | BYTE* dstPtr = dstStart; |
383 | BYTE* const dstEnd = dstStart + dstCapacity; |
384 | |
385 | if (preferencesPtr!=NULL) |
386 | prefs = *preferencesPtr; |
387 | else |
388 | MEM_INIT(&prefs, 0, sizeof(prefs)); |
389 | if (prefs.frameInfo.contentSize != 0) |
390 | prefs.frameInfo.contentSize = (U64)srcSize; /* auto-correct content size if selected (!=0) */ |
391 | |
392 | prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize); |
393 | prefs.autoFlush = 1; |
394 | if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID)) |
395 | prefs.frameInfo.blockMode = LZ4F_blockIndependent; /* only one block => no need for inter-block link */ |
396 | |
397 | MEM_INIT(&options, 0, sizeof(options)); |
398 | options.stableSrc = 1; |
399 | |
400 | if (dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs)) /* condition to guarantee success */ |
401 | return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
402 | |
403 | { size_t const = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs); /* write header */ |
404 | if (LZ4F_isError(headerSize)) return headerSize; |
405 | dstPtr += headerSize; /* header size */ } |
406 | |
407 | assert(dstEnd >= dstPtr); |
408 | { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, (size_t)(dstEnd-dstPtr), srcBuffer, srcSize, &options); |
409 | if (LZ4F_isError(cSize)) return cSize; |
410 | dstPtr += cSize; } |
411 | |
412 | assert(dstEnd >= dstPtr); |
413 | { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, (size_t)(dstEnd-dstPtr), &options); /* flush last block, and generate suffix */ |
414 | if (LZ4F_isError(tailSize)) return tailSize; |
415 | dstPtr += tailSize; } |
416 | |
417 | assert(dstEnd >= dstStart); |
418 | return (size_t)(dstPtr - dstStart); |
419 | } |
420 | |
421 | |
422 | /*! LZ4F_compressFrame() : |
423 | * Compress an entire srcBuffer into a valid LZ4 frame, in a single step. |
424 | * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). |
425 | * The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default. |
426 | * @return : number of bytes written into dstBuffer. |
427 | * or an error code if it fails (can be tested using LZ4F_isError()) |
428 | */ |
429 | size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity, |
430 | const void* srcBuffer, size_t srcSize, |
431 | const LZ4F_preferences_t* preferencesPtr) |
432 | { |
433 | size_t result; |
434 | #if (LZ4F_HEAPMODE) |
435 | LZ4F_cctx_t *cctxPtr; |
436 | result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION); |
437 | if (LZ4F_isError(result)) return result; |
438 | #else |
439 | LZ4F_cctx_t cctx; |
440 | LZ4_stream_t lz4ctx; |
441 | LZ4F_cctx_t *cctxPtr = &cctx; |
442 | |
443 | DEBUGLOG(4, "LZ4F_compressFrame" ); |
444 | MEM_INIT(&cctx, 0, sizeof(cctx)); |
445 | cctx.version = LZ4F_VERSION; |
446 | cctx.maxBufferSize = 5 MB; /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */ |
447 | if (preferencesPtr == NULL || |
448 | preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN) |
449 | { |
450 | LZ4_initStream(&lz4ctx, sizeof(lz4ctx)); |
451 | cctxPtr->lz4CtxPtr = &lz4ctx; |
452 | cctxPtr->lz4CtxAlloc = 1; |
453 | cctxPtr->lz4CtxState = 1; |
454 | } |
455 | #endif |
456 | |
457 | result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity, |
458 | srcBuffer, srcSize, |
459 | NULL, preferencesPtr); |
460 | |
461 | #if (LZ4F_HEAPMODE) |
462 | LZ4F_freeCompressionContext(cctxPtr); |
463 | #else |
464 | if (preferencesPtr != NULL && |
465 | preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) |
466 | { |
467 | FREEMEM(cctxPtr->lz4CtxPtr); |
468 | } |
469 | #endif |
470 | return result; |
471 | } |
472 | |
473 | |
474 | /*-*************************************************** |
475 | * Dictionary compression |
476 | *****************************************************/ |
477 | |
478 | struct LZ4F_CDict_s { |
479 | void* dictContent; |
480 | LZ4_stream_t* fastCtx; |
481 | LZ4_streamHC_t* HCCtx; |
482 | }; /* typedef'd to LZ4F_CDict within lz4frame_static.h */ |
483 | |
484 | /*! LZ4F_createCDict() : |
485 | * When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once. |
486 | * LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay. |
487 | * LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. |
488 | * `dictBuffer` can be released after LZ4F_CDict creation, since its content is copied within CDict |
489 | * @return : digested dictionary for compression, or NULL if failed */ |
490 | LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize) |
491 | { |
492 | const char* dictStart = (const char*)dictBuffer; |
493 | LZ4F_CDict* cdict = (LZ4F_CDict*) ALLOC(sizeof(*cdict)); |
494 | DEBUGLOG(4, "LZ4F_createCDict" ); |
495 | if (!cdict) return NULL; |
496 | if (dictSize > 64 KB) { |
497 | dictStart += dictSize - 64 KB; |
498 | dictSize = 64 KB; |
499 | } |
500 | cdict->dictContent = ALLOC(dictSize); |
501 | cdict->fastCtx = LZ4_createStream(); |
502 | cdict->HCCtx = LZ4_createStreamHC(); |
503 | if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) { |
504 | LZ4F_freeCDict(cdict); |
505 | return NULL; |
506 | } |
507 | memcpy(cdict->dictContent, dictStart, dictSize); |
508 | LZ4_loadDict (cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize); |
509 | LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT); |
510 | LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize); |
511 | return cdict; |
512 | } |
513 | |
514 | void LZ4F_freeCDict(LZ4F_CDict* cdict) |
515 | { |
516 | if (cdict==NULL) return; /* support free on NULL */ |
517 | FREEMEM(cdict->dictContent); |
518 | LZ4_freeStream(cdict->fastCtx); |
519 | LZ4_freeStreamHC(cdict->HCCtx); |
520 | FREEMEM(cdict); |
521 | } |
522 | |
523 | |
524 | /*-********************************* |
525 | * Advanced compression functions |
526 | ***********************************/ |
527 | |
528 | /*! LZ4F_createCompressionContext() : |
529 | * The first thing to do is to create a compressionContext object, which will be used in all compression operations. |
530 | * This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure. |
531 | * The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries. |
532 | * The function will provide a pointer to an allocated LZ4F_compressionContext_t object. |
533 | * If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation. |
534 | * Object can release its memory using LZ4F_freeCompressionContext(); |
535 | */ |
536 | LZ4F_errorCode_t LZ4F_createCompressionContext(LZ4F_compressionContext_t* LZ4F_compressionContextPtr, unsigned version) |
537 | { |
538 | LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)ALLOC_AND_ZERO(sizeof(LZ4F_cctx_t)); |
539 | if (cctxPtr==NULL) return err0r(LZ4F_ERROR_allocation_failed); |
540 | |
541 | cctxPtr->version = version; |
542 | cctxPtr->cStage = 0; /* Next stage : init stream */ |
543 | |
544 | *LZ4F_compressionContextPtr = (LZ4F_compressionContext_t)cctxPtr; |
545 | |
546 | return LZ4F_OK_NoError; |
547 | } |
548 | |
549 | |
550 | LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_compressionContext_t LZ4F_compressionContext) |
551 | { |
552 | LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)LZ4F_compressionContext; |
553 | |
554 | if (cctxPtr != NULL) { /* support free on NULL */ |
555 | FREEMEM(cctxPtr->lz4CtxPtr); /* works because LZ4_streamHC_t and LZ4_stream_t are simple POD types */ |
556 | FREEMEM(cctxPtr->tmpBuff); |
557 | FREEMEM(LZ4F_compressionContext); |
558 | } |
559 | |
560 | return LZ4F_OK_NoError; |
561 | } |
562 | |
563 | |
564 | /** |
565 | * This function prepares the internal LZ4(HC) stream for a new compression, |
566 | * resetting the context and attaching the dictionary, if there is one. |
567 | * |
568 | * It needs to be called at the beginning of each independent compression |
569 | * stream (i.e., at the beginning of a frame in blockLinked mode, or at the |
570 | * beginning of each block in blockIndependent mode). |
571 | */ |
572 | static void LZ4F_initStream(void* ctx, |
573 | const LZ4F_CDict* cdict, |
574 | int level, |
575 | LZ4F_blockMode_t blockMode) { |
576 | if (level < LZ4HC_CLEVEL_MIN) { |
577 | if (cdict != NULL || blockMode == LZ4F_blockLinked) { |
578 | /* In these cases, we will call LZ4_compress_fast_continue(), |
579 | * which needs an already reset context. Otherwise, we'll call a |
580 | * one-shot API. The non-continued APIs internally perform their own |
581 | * resets at the beginning of their calls, where they know what |
582 | * tableType they need the context to be in. So in that case this |
583 | * would be misguided / wasted work. */ |
584 | LZ4_resetStream_fast((LZ4_stream_t*)ctx); |
585 | } |
586 | LZ4_attach_dictionary((LZ4_stream_t *)ctx, cdict ? cdict->fastCtx : NULL); |
587 | } else { |
588 | LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level); |
589 | LZ4_attach_HC_dictionary((LZ4_streamHC_t *)ctx, cdict ? cdict->HCCtx : NULL); |
590 | } |
591 | } |
592 | |
593 | |
594 | /*! LZ4F_compressBegin_usingCDict() : |
595 | * init streaming compression and writes frame header into dstBuffer. |
596 | * dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes. |
597 | * @return : number of bytes written into dstBuffer for the header |
598 | * or an error code (can be tested using LZ4F_isError()) |
599 | */ |
600 | size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctxPtr, |
601 | void* dstBuffer, size_t dstCapacity, |
602 | const LZ4F_CDict* cdict, |
603 | const LZ4F_preferences_t* preferencesPtr) |
604 | { |
605 | LZ4F_preferences_t prefNull; |
606 | BYTE* const dstStart = (BYTE*)dstBuffer; |
607 | BYTE* dstPtr = dstStart; |
608 | BYTE* ; |
609 | |
610 | if (dstCapacity < maxFHSize) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
611 | MEM_INIT(&prefNull, 0, sizeof(prefNull)); |
612 | if (preferencesPtr == NULL) preferencesPtr = &prefNull; |
613 | cctxPtr->prefs = *preferencesPtr; |
614 | |
615 | /* Ctx Management */ |
616 | { U16 const ctxTypeID = (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2; |
617 | if (cctxPtr->lz4CtxAlloc < ctxTypeID) { |
618 | FREEMEM(cctxPtr->lz4CtxPtr); |
619 | if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { |
620 | cctxPtr->lz4CtxPtr = LZ4_createStream(); |
621 | } else { |
622 | cctxPtr->lz4CtxPtr = LZ4_createStreamHC(); |
623 | } |
624 | if (cctxPtr->lz4CtxPtr == NULL) |
625 | return err0r(LZ4F_ERROR_allocation_failed); |
626 | cctxPtr->lz4CtxAlloc = ctxTypeID; |
627 | cctxPtr->lz4CtxState = ctxTypeID; |
628 | } else if (cctxPtr->lz4CtxState != ctxTypeID) { |
629 | /* otherwise, a sufficient buffer is allocated, but we need to |
630 | * reset it to the correct context type */ |
631 | if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { |
632 | LZ4_initStream((LZ4_stream_t *) cctxPtr->lz4CtxPtr, sizeof (LZ4_stream_t)); |
633 | } else { |
634 | LZ4_initStreamHC((LZ4_streamHC_t *) cctxPtr->lz4CtxPtr, sizeof(LZ4_streamHC_t)); |
635 | LZ4_setCompressionLevel((LZ4_streamHC_t *) cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel); |
636 | } |
637 | cctxPtr->lz4CtxState = ctxTypeID; |
638 | } |
639 | } |
640 | |
641 | /* Buffer Management */ |
642 | if (cctxPtr->prefs.frameInfo.blockSizeID == 0) |
643 | cctxPtr->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; |
644 | cctxPtr->maxBlockSize = LZ4F_getBlockSize(cctxPtr->prefs.frameInfo.blockSizeID); |
645 | |
646 | { size_t const requiredBuffSize = preferencesPtr->autoFlush ? |
647 | ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 64 KB : 0) : /* only needs past data up to window size */ |
648 | cctxPtr->maxBlockSize + ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 128 KB : 0); |
649 | |
650 | if (cctxPtr->maxBufferSize < requiredBuffSize) { |
651 | cctxPtr->maxBufferSize = 0; |
652 | FREEMEM(cctxPtr->tmpBuff); |
653 | cctxPtr->tmpBuff = (BYTE*)ALLOC_AND_ZERO(requiredBuffSize); |
654 | if (cctxPtr->tmpBuff == NULL) return err0r(LZ4F_ERROR_allocation_failed); |
655 | cctxPtr->maxBufferSize = requiredBuffSize; |
656 | } } |
657 | cctxPtr->tmpIn = cctxPtr->tmpBuff; |
658 | cctxPtr->tmpInSize = 0; |
659 | (void)XXH32_reset(&(cctxPtr->xxh), 0); |
660 | |
661 | /* context init */ |
662 | cctxPtr->cdict = cdict; |
663 | if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) { |
664 | /* frame init only for blockLinked : blockIndependent will be init at each block */ |
665 | LZ4F_initStream(cctxPtr->lz4CtxPtr, cdict, cctxPtr->prefs.compressionLevel, LZ4F_blockLinked); |
666 | } |
667 | if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) { |
668 | LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed); |
669 | } |
670 | |
671 | /* Magic Number */ |
672 | LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER); |
673 | dstPtr += 4; |
674 | headerStart = dstPtr; |
675 | |
676 | /* FLG Byte */ |
677 | *dstPtr++ = (BYTE)(((1 & _2BITS) << 6) /* Version('01') */ |
678 | + ((cctxPtr->prefs.frameInfo.blockMode & _1BIT ) << 5) |
679 | + ((cctxPtr->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4) |
680 | + ((unsigned)(cctxPtr->prefs.frameInfo.contentSize > 0) << 3) |
681 | + ((cctxPtr->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2) |
682 | + (cctxPtr->prefs.frameInfo.dictID > 0) ); |
683 | /* BD Byte */ |
684 | *dstPtr++ = (BYTE)((cctxPtr->prefs.frameInfo.blockSizeID & _3BITS) << 4); |
685 | /* Optional Frame content size field */ |
686 | if (cctxPtr->prefs.frameInfo.contentSize) { |
687 | LZ4F_writeLE64(dstPtr, cctxPtr->prefs.frameInfo.contentSize); |
688 | dstPtr += 8; |
689 | cctxPtr->totalInSize = 0; |
690 | } |
691 | /* Optional dictionary ID field */ |
692 | if (cctxPtr->prefs.frameInfo.dictID) { |
693 | LZ4F_writeLE32(dstPtr, cctxPtr->prefs.frameInfo.dictID); |
694 | dstPtr += 4; |
695 | } |
696 | /* Header CRC Byte */ |
697 | *dstPtr = LZ4F_headerChecksum(headerStart, (size_t)(dstPtr - headerStart)); |
698 | dstPtr++; |
699 | |
700 | cctxPtr->cStage = 1; /* header written, now request input data block */ |
701 | return (size_t)(dstPtr - dstStart); |
702 | } |
703 | |
704 | |
705 | /*! LZ4F_compressBegin() : |
706 | * init streaming compression and writes frame header into dstBuffer. |
707 | * dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes. |
708 | * preferencesPtr can be NULL, in which case default parameters are selected. |
709 | * @return : number of bytes written into dstBuffer for the header |
710 | * or an error code (can be tested using LZ4F_isError()) |
711 | */ |
712 | size_t LZ4F_compressBegin(LZ4F_cctx* cctxPtr, |
713 | void* dstBuffer, size_t dstCapacity, |
714 | const LZ4F_preferences_t* preferencesPtr) |
715 | { |
716 | return LZ4F_compressBegin_usingCDict(cctxPtr, dstBuffer, dstCapacity, |
717 | NULL, preferencesPtr); |
718 | } |
719 | |
720 | |
721 | /* LZ4F_compressBound() : |
722 | * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario. |
723 | * LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario. |
724 | * This function cannot fail. |
725 | */ |
726 | size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) |
727 | { |
728 | return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1); |
729 | } |
730 | |
731 | |
732 | typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict); |
733 | |
734 | |
735 | /*! LZ4F_makeBlock(): |
736 | * compress a single block, add header and optional checksum. |
737 | * assumption : dst buffer capacity is >= BHSize + srcSize + crcSize |
738 | */ |
739 | static size_t LZ4F_makeBlock(void* dst, |
740 | const void* src, size_t srcSize, |
741 | compressFunc_t compress, void* lz4ctx, int level, |
742 | const LZ4F_CDict* cdict, |
743 | LZ4F_blockChecksum_t crcFlag) |
744 | { |
745 | BYTE* const cSizePtr = (BYTE*)dst; |
746 | U32 cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+BHSize), |
747 | (int)(srcSize), (int)(srcSize-1), |
748 | level, cdict); |
749 | if (cSize == 0) { /* compression failed */ |
750 | cSize = (U32)srcSize; |
751 | LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG); |
752 | memcpy(cSizePtr+BHSize, src, srcSize); |
753 | } else { |
754 | LZ4F_writeLE32(cSizePtr, cSize); |
755 | } |
756 | if (crcFlag) { |
757 | U32 const crc32 = XXH32(cSizePtr+BHSize, cSize, 0); /* checksum of compressed data */ |
758 | LZ4F_writeLE32(cSizePtr+BHSize+cSize, crc32); |
759 | } |
760 | return BHSize + cSize + ((U32)crcFlag)*BFSize; |
761 | } |
762 | |
763 | |
764 | static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
765 | { |
766 | int const acceleration = (level < 0) ? -level + 1 : 1; |
767 | LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); |
768 | if (cdict) { |
769 | return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); |
770 | } else { |
771 | return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration); |
772 | } |
773 | } |
774 | |
775 | static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
776 | { |
777 | int const acceleration = (level < 0) ? -level + 1 : 1; |
778 | (void)cdict; /* init once at beginning of frame */ |
779 | return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); |
780 | } |
781 | |
782 | static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
783 | { |
784 | LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); |
785 | if (cdict) { |
786 | return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); |
787 | } |
788 | return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level); |
789 | } |
790 | |
791 | static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
792 | { |
793 | (void)level; (void)cdict; /* init once at beginning of frame */ |
794 | return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); |
795 | } |
796 | |
797 | static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level) |
798 | { |
799 | if (level < LZ4HC_CLEVEL_MIN) { |
800 | if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock; |
801 | return LZ4F_compressBlock_continue; |
802 | } |
803 | if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC; |
804 | return LZ4F_compressBlockHC_continue; |
805 | } |
806 | |
807 | static int LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr) |
808 | { |
809 | if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) |
810 | return LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); |
811 | return LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); |
812 | } |
813 | |
814 | typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus; |
815 | |
816 | /*! LZ4F_compressUpdate() : |
817 | * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary. |
818 | * dstBuffer MUST be >= LZ4F_compressBound(srcSize, preferencesPtr). |
819 | * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
820 | * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered. |
821 | * or an error code if it fails (which can be tested using LZ4F_isError()) |
822 | */ |
823 | size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr, |
824 | void* dstBuffer, size_t dstCapacity, |
825 | const void* srcBuffer, size_t srcSize, |
826 | const LZ4F_compressOptions_t* compressOptionsPtr) |
827 | { |
828 | LZ4F_compressOptions_t cOptionsNull; |
829 | size_t const blockSize = cctxPtr->maxBlockSize; |
830 | const BYTE* srcPtr = (const BYTE*)srcBuffer; |
831 | const BYTE* const srcEnd = srcPtr + srcSize; |
832 | BYTE* const dstStart = (BYTE*)dstBuffer; |
833 | BYTE* dstPtr = dstStart; |
834 | LZ4F_lastBlockStatus lastBlockCompressed = notDone; |
835 | compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel); |
836 | |
837 | DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)" , srcSize); |
838 | |
839 | if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC); |
840 | if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize)) |
841 | return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
842 | MEM_INIT(&cOptionsNull, 0, sizeof(cOptionsNull)); |
843 | if (compressOptionsPtr == NULL) compressOptionsPtr = &cOptionsNull; |
844 | |
845 | /* complete tmp buffer */ |
846 | if (cctxPtr->tmpInSize > 0) { /* some data already within tmp buffer */ |
847 | size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize; |
848 | if (sizeToCopy > srcSize) { |
849 | /* add src to tmpIn buffer */ |
850 | memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize); |
851 | srcPtr = srcEnd; |
852 | cctxPtr->tmpInSize += srcSize; |
853 | /* still needs some CRC */ |
854 | } else { |
855 | /* complete tmpIn block and then compress it */ |
856 | lastBlockCompressed = fromTmpBuffer; |
857 | memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy); |
858 | srcPtr += sizeToCopy; |
859 | |
860 | dstPtr += LZ4F_makeBlock(dstPtr, |
861 | cctxPtr->tmpIn, blockSize, |
862 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
863 | cctxPtr->cdict, |
864 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
865 | |
866 | if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize; |
867 | cctxPtr->tmpInSize = 0; |
868 | } |
869 | } |
870 | |
871 | while ((size_t)(srcEnd - srcPtr) >= blockSize) { |
872 | /* compress full blocks */ |
873 | lastBlockCompressed = fromSrcBuffer; |
874 | dstPtr += LZ4F_makeBlock(dstPtr, |
875 | srcPtr, blockSize, |
876 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
877 | cctxPtr->cdict, |
878 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
879 | srcPtr += blockSize; |
880 | } |
881 | |
882 | if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) { |
883 | /* compress remaining input < blockSize */ |
884 | lastBlockCompressed = fromSrcBuffer; |
885 | dstPtr += LZ4F_makeBlock(dstPtr, |
886 | srcPtr, (size_t)(srcEnd - srcPtr), |
887 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
888 | cctxPtr->cdict, |
889 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
890 | srcPtr = srcEnd; |
891 | } |
892 | |
893 | /* preserve dictionary if necessary */ |
894 | if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) { |
895 | if (compressOptionsPtr->stableSrc) { |
896 | cctxPtr->tmpIn = cctxPtr->tmpBuff; |
897 | } else { |
898 | int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
899 | if (realDictSize==0) return err0r(LZ4F_ERROR_GENERIC); |
900 | cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
901 | } |
902 | } |
903 | |
904 | /* keep tmpIn within limits */ |
905 | if ((cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize) /* necessarily LZ4F_blockLinked && lastBlockCompressed==fromTmpBuffer */ |
906 | && !(cctxPtr->prefs.autoFlush)) |
907 | { |
908 | int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
909 | cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
910 | } |
911 | |
912 | /* some input data left, necessarily < blockSize */ |
913 | if (srcPtr < srcEnd) { |
914 | /* fill tmp buffer */ |
915 | size_t const sizeToCopy = (size_t)(srcEnd - srcPtr); |
916 | memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy); |
917 | cctxPtr->tmpInSize = sizeToCopy; |
918 | } |
919 | |
920 | if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) |
921 | (void)XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize); |
922 | |
923 | cctxPtr->totalInSize += srcSize; |
924 | return (size_t)(dstPtr - dstStart); |
925 | } |
926 | |
927 | |
928 | /*! LZ4F_flush() : |
929 | * When compressed data must be sent immediately, without waiting for a block to be filled, |
930 | * invoke LZ4_flush(), which will immediately compress any remaining data stored within LZ4F_cctx. |
931 | * The result of the function is the number of bytes written into dstBuffer. |
932 | * It can be zero, this means there was no data left within LZ4F_cctx. |
933 | * The function outputs an error code if it fails (can be tested using LZ4F_isError()) |
934 | * LZ4F_compressOptions_t* is optional. NULL is a valid argument. |
935 | */ |
936 | size_t LZ4F_flush(LZ4F_cctx* cctxPtr, |
937 | void* dstBuffer, size_t dstCapacity, |
938 | const LZ4F_compressOptions_t* compressOptionsPtr) |
939 | { |
940 | BYTE* const dstStart = (BYTE*)dstBuffer; |
941 | BYTE* dstPtr = dstStart; |
942 | compressFunc_t compress; |
943 | |
944 | if (cctxPtr->tmpInSize == 0) return 0; /* nothing to flush */ |
945 | if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC); |
946 | if (dstCapacity < (cctxPtr->tmpInSize + BHSize + BFSize)) |
947 | return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
948 | (void)compressOptionsPtr; /* not yet useful */ |
949 | |
950 | /* select compression function */ |
951 | compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel); |
952 | |
953 | /* compress tmp buffer */ |
954 | dstPtr += LZ4F_makeBlock(dstPtr, |
955 | cctxPtr->tmpIn, cctxPtr->tmpInSize, |
956 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
957 | cctxPtr->cdict, |
958 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
959 | assert(((void)"flush overflows dstBuffer!" , (size_t)(dstPtr - dstStart) <= dstCapacity)); |
960 | |
961 | if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) |
962 | cctxPtr->tmpIn += cctxPtr->tmpInSize; |
963 | cctxPtr->tmpInSize = 0; |
964 | |
965 | /* keep tmpIn within limits */ |
966 | if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) { /* necessarily LZ4F_blockLinked */ |
967 | int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
968 | cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
969 | } |
970 | |
971 | return (size_t)(dstPtr - dstStart); |
972 | } |
973 | |
974 | |
975 | /*! LZ4F_compressEnd() : |
976 | * When you want to properly finish the compressed frame, just call LZ4F_compressEnd(). |
977 | * It will flush whatever data remained within compressionContext (like LZ4_flush()) |
978 | * but also properly finalize the frame, with an endMark and an (optional) checksum. |
979 | * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
980 | * @return: the number of bytes written into dstBuffer (necessarily >= 4 (endMark size)) |
981 | * or an error code if it fails (can be tested using LZ4F_isError()) |
982 | * The context can then be used again to compress a new frame, starting with LZ4F_compressBegin(). |
983 | */ |
984 | size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr, |
985 | void* dstBuffer, size_t dstCapacity, |
986 | const LZ4F_compressOptions_t* compressOptionsPtr) |
987 | { |
988 | BYTE* const dstStart = (BYTE*)dstBuffer; |
989 | BYTE* dstPtr = dstStart; |
990 | |
991 | size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr); |
992 | if (LZ4F_isError(flushSize)) return flushSize; |
993 | dstPtr += flushSize; |
994 | |
995 | assert(flushSize <= dstCapacity); |
996 | dstCapacity -= flushSize; |
997 | |
998 | if (dstCapacity < 4) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
999 | LZ4F_writeLE32(dstPtr, 0); |
1000 | dstPtr += 4; /* endMark */ |
1001 | |
1002 | if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) { |
1003 | U32 const xxh = XXH32_digest(&(cctxPtr->xxh)); |
1004 | if (dstCapacity < 8) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
1005 | LZ4F_writeLE32(dstPtr, xxh); |
1006 | dstPtr+=4; /* content Checksum */ |
1007 | } |
1008 | |
1009 | cctxPtr->cStage = 0; /* state is now re-usable (with identical preferences) */ |
1010 | cctxPtr->maxBufferSize = 0; /* reuse HC context */ |
1011 | |
1012 | if (cctxPtr->prefs.frameInfo.contentSize) { |
1013 | if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize) |
1014 | return err0r(LZ4F_ERROR_frameSize_wrong); |
1015 | } |
1016 | |
1017 | return (size_t)(dstPtr - dstStart); |
1018 | } |
1019 | |
1020 | |
1021 | /*-*************************************************** |
1022 | * Frame Decompression |
1023 | *****************************************************/ |
1024 | |
1025 | typedef enum { |
1026 | =0, , |
1027 | dstage_init, |
1028 | , , |
1029 | dstage_copyDirect, dstage_getBlockChecksum, |
1030 | dstage_getCBlock, dstage_storeCBlock, |
1031 | dstage_flushOut, |
1032 | dstage_getSuffix, dstage_storeSuffix, |
1033 | dstage_getSFrameSize, dstage_storeSFrameSize, |
1034 | dstage_skipSkippable |
1035 | } dStage_t; |
1036 | |
1037 | struct LZ4F_dctx_s { |
1038 | LZ4F_frameInfo_t frameInfo; |
1039 | U32 version; |
1040 | dStage_t dStage; |
1041 | U64 frameRemainingSize; |
1042 | size_t maxBlockSize; |
1043 | size_t maxBufferSize; |
1044 | BYTE* tmpIn; |
1045 | size_t tmpInSize; |
1046 | size_t tmpInTarget; |
1047 | BYTE* tmpOutBuffer; |
1048 | const BYTE* dict; |
1049 | size_t dictSize; |
1050 | BYTE* tmpOut; |
1051 | size_t tmpOutSize; |
1052 | size_t tmpOutStart; |
1053 | XXH32_state_t xxh; |
1054 | XXH32_state_t blockChecksum; |
1055 | BYTE [LZ4F_HEADER_SIZE_MAX]; |
1056 | }; /* typedef'd to LZ4F_dctx in lz4frame.h */ |
1057 | |
1058 | |
1059 | /*! LZ4F_createDecompressionContext() : |
1060 | * Create a decompressionContext object, which will track all decompression operations. |
1061 | * Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object. |
1062 | * Object can later be released using LZ4F_freeDecompressionContext(). |
1063 | * @return : if != 0, there was an error during context creation. |
1064 | */ |
1065 | LZ4F_errorCode_t LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber) |
1066 | { |
1067 | LZ4F_dctx* const dctx = (LZ4F_dctx*)ALLOC_AND_ZERO(sizeof(LZ4F_dctx)); |
1068 | if (dctx == NULL) { /* failed allocation */ |
1069 | *LZ4F_decompressionContextPtr = NULL; |
1070 | return err0r(LZ4F_ERROR_allocation_failed); |
1071 | } |
1072 | |
1073 | dctx->version = versionNumber; |
1074 | *LZ4F_decompressionContextPtr = dctx; |
1075 | return LZ4F_OK_NoError; |
1076 | } |
1077 | |
1078 | LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx) |
1079 | { |
1080 | LZ4F_errorCode_t result = LZ4F_OK_NoError; |
1081 | if (dctx != NULL) { /* can accept NULL input, like free() */ |
1082 | result = (LZ4F_errorCode_t)dctx->dStage; |
1083 | FREEMEM(dctx->tmpIn); |
1084 | FREEMEM(dctx->tmpOutBuffer); |
1085 | FREEMEM(dctx); |
1086 | } |
1087 | return result; |
1088 | } |
1089 | |
1090 | |
1091 | /*==--- Streaming Decompression operations ---==*/ |
1092 | |
1093 | void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx) |
1094 | { |
1095 | dctx->dStage = dstage_getFrameHeader; |
1096 | dctx->dict = NULL; |
1097 | dctx->dictSize = 0; |
1098 | } |
1099 | |
1100 | |
1101 | /*! LZ4F_decodeHeader() : |
1102 | * input : `src` points at the **beginning of the frame** |
1103 | * output : set internal values of dctx, such as |
1104 | * dctx->frameInfo and dctx->dStage. |
1105 | * Also allocates internal buffers. |
1106 | * @return : nb Bytes read from src (necessarily <= srcSize) |
1107 | * or an error code (testable with LZ4F_isError()) |
1108 | */ |
1109 | static size_t (LZ4F_dctx* dctx, const void* src, size_t srcSize) |
1110 | { |
1111 | unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID; |
1112 | size_t ; |
1113 | const BYTE* srcPtr = (const BYTE*)src; |
1114 | |
1115 | /* need to decode header to get frameInfo */ |
1116 | if (srcSize < minFHSize) return err0r(LZ4F_ERROR_frameHeader_incomplete); /* minimal frame header size */ |
1117 | MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo)); |
1118 | |
1119 | /* special case : skippable frames */ |
1120 | if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) { |
1121 | dctx->frameInfo.frameType = LZ4F_skippableFrame; |
1122 | if (src == (void*)(dctx->header)) { |
1123 | dctx->tmpInSize = srcSize; |
1124 | dctx->tmpInTarget = 8; |
1125 | dctx->dStage = dstage_storeSFrameSize; |
1126 | return srcSize; |
1127 | } else { |
1128 | dctx->dStage = dstage_getSFrameSize; |
1129 | return 4; |
1130 | } |
1131 | } |
1132 | |
1133 | /* control magic number */ |
1134 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
1135 | if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER) |
1136 | return err0r(LZ4F_ERROR_frameType_unknown); |
1137 | #endif |
1138 | dctx->frameInfo.frameType = LZ4F_frame; |
1139 | |
1140 | /* Flags */ |
1141 | { U32 const FLG = srcPtr[4]; |
1142 | U32 const version = (FLG>>6) & _2BITS; |
1143 | blockChecksumFlag = (FLG>>4) & _1BIT; |
1144 | blockMode = (FLG>>5) & _1BIT; |
1145 | contentSizeFlag = (FLG>>3) & _1BIT; |
1146 | contentChecksumFlag = (FLG>>2) & _1BIT; |
1147 | dictIDFlag = FLG & _1BIT; |
1148 | /* validate */ |
1149 | if (((FLG>>1)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */ |
1150 | if (version != 1) return err0r(LZ4F_ERROR_headerVersion_wrong); /* Version Number, only supported value */ |
1151 | } |
1152 | |
1153 | /* Frame Header Size */ |
1154 | frameHeaderSize = minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0); |
1155 | |
1156 | if (srcSize < frameHeaderSize) { |
1157 | /* not enough input to fully decode frame header */ |
1158 | if (srcPtr != dctx->header) |
1159 | memcpy(dctx->header, srcPtr, srcSize); |
1160 | dctx->tmpInSize = srcSize; |
1161 | dctx->tmpInTarget = frameHeaderSize; |
1162 | dctx->dStage = dstage_storeFrameHeader; |
1163 | return srcSize; |
1164 | } |
1165 | |
1166 | { U32 const BD = srcPtr[5]; |
1167 | blockSizeID = (BD>>4) & _3BITS; |
1168 | /* validate */ |
1169 | if (((BD>>7)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */ |
1170 | if (blockSizeID < 4) return err0r(LZ4F_ERROR_maxBlockSize_invalid); /* 4-7 only supported values for the time being */ |
1171 | if (((BD>>0)&_4BITS) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bits */ |
1172 | } |
1173 | |
1174 | /* check header */ |
1175 | assert(frameHeaderSize > 5); |
1176 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
1177 | { BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5); |
1178 | if (HC != srcPtr[frameHeaderSize-1]) |
1179 | return err0r(LZ4F_ERROR_headerChecksum_invalid); |
1180 | } |
1181 | #endif |
1182 | |
1183 | /* save */ |
1184 | dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode; |
1185 | dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag; |
1186 | dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag; |
1187 | dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID; |
1188 | dctx->maxBlockSize = LZ4F_getBlockSize(blockSizeID); |
1189 | if (contentSizeFlag) |
1190 | dctx->frameRemainingSize = |
1191 | dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6); |
1192 | if (dictIDFlag) |
1193 | dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5); |
1194 | |
1195 | dctx->dStage = dstage_init; |
1196 | |
1197 | return frameHeaderSize; |
1198 | } |
1199 | |
1200 | |
1201 | /*! LZ4F_headerSize() : |
1202 | * @return : size of frame header |
1203 | * or an error code, which can be tested using LZ4F_isError() |
1204 | */ |
1205 | size_t (const void* src, size_t srcSize) |
1206 | { |
1207 | if (src == NULL) return err0r(LZ4F_ERROR_srcPtr_wrong); |
1208 | |
1209 | /* minimal srcSize to determine header size */ |
1210 | if (srcSize < LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH) |
1211 | return err0r(LZ4F_ERROR_frameHeader_incomplete); |
1212 | |
1213 | /* special case : skippable frames */ |
1214 | if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) |
1215 | return 8; |
1216 | |
1217 | /* control magic number */ |
1218 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
1219 | if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER) |
1220 | return err0r(LZ4F_ERROR_frameType_unknown); |
1221 | #endif |
1222 | |
1223 | /* Frame Header Size */ |
1224 | { BYTE const FLG = ((const BYTE*)src)[4]; |
1225 | U32 const contentSizeFlag = (FLG>>3) & _1BIT; |
1226 | U32 const dictIDFlag = FLG & _1BIT; |
1227 | return minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0); |
1228 | } |
1229 | } |
1230 | |
1231 | /*! LZ4F_getFrameInfo() : |
1232 | * This function extracts frame parameters (max blockSize, frame checksum, etc.). |
1233 | * Usage is optional. Objective is to provide relevant information for allocation purposes. |
1234 | * This function works in 2 situations : |
1235 | * - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process. |
1236 | * Amount of input data provided must be large enough to successfully decode the frame header. |
1237 | * A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum. |
1238 | * - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx. |
1239 | * The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value). |
1240 | * Decompression must resume from (srcBuffer + *srcSizePtr). |
1241 | * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call, |
1242 | * or an error code which can be tested using LZ4F_isError() |
1243 | * note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped. |
1244 | * note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure. |
1245 | */ |
1246 | LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx, |
1247 | LZ4F_frameInfo_t* frameInfoPtr, |
1248 | const void* srcBuffer, size_t* srcSizePtr) |
1249 | { |
1250 | LZ4F_STATIC_ASSERT(dstage_getFrameHeader < dstage_storeFrameHeader); |
1251 | if (dctx->dStage > dstage_storeFrameHeader) { |
1252 | /* frameInfo already decoded */ |
1253 | size_t o=0, i=0; |
1254 | *srcSizePtr = 0; |
1255 | *frameInfoPtr = dctx->frameInfo; |
1256 | /* returns : recommended nb of bytes for LZ4F_decompress() */ |
1257 | return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL); |
1258 | } else { |
1259 | if (dctx->dStage == dstage_storeFrameHeader) { |
1260 | /* frame decoding already started, in the middle of header => automatic fail */ |
1261 | *srcSizePtr = 0; |
1262 | return err0r(LZ4F_ERROR_frameDecoding_alreadyStarted); |
1263 | } else { |
1264 | size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr); |
1265 | if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; } |
1266 | if (*srcSizePtr < hSize) { |
1267 | *srcSizePtr=0; |
1268 | return err0r(LZ4F_ERROR_frameHeader_incomplete); |
1269 | } |
1270 | |
1271 | { size_t decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize); |
1272 | if (LZ4F_isError(decodeResult)) { |
1273 | *srcSizePtr = 0; |
1274 | } else { |
1275 | *srcSizePtr = decodeResult; |
1276 | decodeResult = BHSize; /* block header size */ |
1277 | } |
1278 | *frameInfoPtr = dctx->frameInfo; |
1279 | return decodeResult; |
1280 | } } } |
1281 | } |
1282 | |
1283 | |
1284 | /* LZ4F_updateDict() : |
1285 | * only used for LZ4F_blockLinked mode */ |
1286 | static void LZ4F_updateDict(LZ4F_dctx* dctx, |
1287 | const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart, |
1288 | unsigned withinTmp) |
1289 | { |
1290 | if (dctx->dictSize==0) |
1291 | dctx->dict = (const BYTE*)dstPtr; /* priority to dictionary continuity */ |
1292 | |
1293 | if (dctx->dict + dctx->dictSize == dstPtr) { /* dictionary continuity, directly within dstBuffer */ |
1294 | dctx->dictSize += dstSize; |
1295 | return; |
1296 | } |
1297 | |
1298 | assert(dstPtr >= dstBufferStart); |
1299 | if ((size_t)(dstPtr - dstBufferStart) + dstSize >= 64 KB) { /* history in dstBuffer becomes large enough to become dictionary */ |
1300 | dctx->dict = (const BYTE*)dstBufferStart; |
1301 | dctx->dictSize = (size_t)(dstPtr - dstBufferStart) + dstSize; |
1302 | return; |
1303 | } |
1304 | |
1305 | assert(dstSize < 64 KB); /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */ |
1306 | |
1307 | /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOut */ |
1308 | |
1309 | if ((withinTmp) && (dctx->dict == dctx->tmpOutBuffer)) { /* continue history within tmpOutBuffer */ |
1310 | /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */ |
1311 | assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart); |
1312 | dctx->dictSize += dstSize; |
1313 | return; |
1314 | } |
1315 | |
1316 | if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */ |
1317 | size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer); |
1318 | size_t copySize = 64 KB - dctx->tmpOutSize; |
1319 | const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; |
1320 | if (dctx->tmpOutSize > 64 KB) copySize = 0; |
1321 | if (copySize > preserveSize) copySize = preserveSize; |
1322 | |
1323 | memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); |
1324 | |
1325 | dctx->dict = dctx->tmpOutBuffer; |
1326 | dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize; |
1327 | return; |
1328 | } |
1329 | |
1330 | if (dctx->dict == dctx->tmpOutBuffer) { /* copy dst into tmp to complete dict */ |
1331 | if (dctx->dictSize + dstSize > dctx->maxBufferSize) { /* tmp buffer not large enough */ |
1332 | size_t const preserveSize = 64 KB - dstSize; |
1333 | memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); |
1334 | dctx->dictSize = preserveSize; |
1335 | } |
1336 | memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize); |
1337 | dctx->dictSize += dstSize; |
1338 | return; |
1339 | } |
1340 | |
1341 | /* join dict & dest into tmp */ |
1342 | { size_t preserveSize = 64 KB - dstSize; |
1343 | if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize; |
1344 | memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); |
1345 | memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize); |
1346 | dctx->dict = dctx->tmpOutBuffer; |
1347 | dctx->dictSize = preserveSize + dstSize; |
1348 | } |
1349 | } |
1350 | |
1351 | |
1352 | |
1353 | /*! LZ4F_decompress() : |
1354 | * Call this function repetitively to regenerate compressed data in srcBuffer. |
1355 | * The function will attempt to decode up to *srcSizePtr bytes from srcBuffer |
1356 | * into dstBuffer of capacity *dstSizePtr. |
1357 | * |
1358 | * The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value). |
1359 | * |
1360 | * The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value). |
1361 | * If number of bytes read is < number of bytes provided, then decompression operation is not complete. |
1362 | * Remaining data will have to be presented again in a subsequent invocation. |
1363 | * |
1364 | * The function result is an hint of the better srcSize to use for next call to LZ4F_decompress. |
1365 | * Schematically, it's the size of the current (or remaining) compressed block + header of next block. |
1366 | * Respecting the hint provides a small boost to performance, since it allows less buffer shuffling. |
1367 | * Note that this is just a hint, and it's always possible to any srcSize value. |
1368 | * When a frame is fully decoded, @return will be 0. |
1369 | * If decompression failed, @return is an error code which can be tested using LZ4F_isError(). |
1370 | */ |
1371 | size_t LZ4F_decompress(LZ4F_dctx* dctx, |
1372 | void* dstBuffer, size_t* dstSizePtr, |
1373 | const void* srcBuffer, size_t* srcSizePtr, |
1374 | const LZ4F_decompressOptions_t* decompressOptionsPtr) |
1375 | { |
1376 | LZ4F_decompressOptions_t optionsNull; |
1377 | const BYTE* const srcStart = (const BYTE*)srcBuffer; |
1378 | const BYTE* const srcEnd = srcStart + *srcSizePtr; |
1379 | const BYTE* srcPtr = srcStart; |
1380 | BYTE* const dstStart = (BYTE*)dstBuffer; |
1381 | BYTE* const dstEnd = dstStart + *dstSizePtr; |
1382 | BYTE* dstPtr = dstStart; |
1383 | const BYTE* selectedIn = NULL; |
1384 | unsigned doAnotherStage = 1; |
1385 | size_t nextSrcSizeHint = 1; |
1386 | |
1387 | |
1388 | MEM_INIT(&optionsNull, 0, sizeof(optionsNull)); |
1389 | if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull; |
1390 | *srcSizePtr = 0; |
1391 | *dstSizePtr = 0; |
1392 | |
1393 | /* behaves as a state machine */ |
1394 | |
1395 | while (doAnotherStage) { |
1396 | |
1397 | switch(dctx->dStage) |
1398 | { |
1399 | |
1400 | case dstage_getFrameHeader: |
1401 | if ((size_t)(srcEnd-srcPtr) >= maxFHSize) { /* enough to decode - shortcut */ |
1402 | size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, (size_t)(srcEnd-srcPtr)); /* will update dStage appropriately */ |
1403 | if (LZ4F_isError(hSize)) return hSize; |
1404 | srcPtr += hSize; |
1405 | break; |
1406 | } |
1407 | dctx->tmpInSize = 0; |
1408 | if (srcEnd-srcPtr == 0) return minFHSize; /* 0-size input */ |
1409 | dctx->tmpInTarget = minFHSize; /* minimum size to decode header */ |
1410 | dctx->dStage = dstage_storeFrameHeader; |
1411 | /* fall-through */ |
1412 | |
1413 | case dstage_storeFrameHeader: |
1414 | { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr)); |
1415 | memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
1416 | dctx->tmpInSize += sizeToCopy; |
1417 | srcPtr += sizeToCopy; |
1418 | } |
1419 | if (dctx->tmpInSize < dctx->tmpInTarget) { |
1420 | nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize; /* rest of header + nextBlockHeader */ |
1421 | doAnotherStage = 0; /* not enough src data, ask for some more */ |
1422 | break; |
1423 | } |
1424 | { size_t const hSize = LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget); /* will update dStage appropriately */ |
1425 | if (LZ4F_isError(hSize)) return hSize; |
1426 | } |
1427 | break; |
1428 | |
1429 | case dstage_init: |
1430 | if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_reset(&(dctx->xxh), 0); |
1431 | /* internal buffers allocation */ |
1432 | { size_t const bufferNeeded = dctx->maxBlockSize |
1433 | + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) ? 128 KB : 0); |
1434 | if (bufferNeeded > dctx->maxBufferSize) { /* tmp buffers too small */ |
1435 | dctx->maxBufferSize = 0; /* ensure allocation will be re-attempted on next entry*/ |
1436 | FREEMEM(dctx->tmpIn); |
1437 | dctx->tmpIn = (BYTE*)ALLOC(dctx->maxBlockSize + BFSize /* block checksum */); |
1438 | if (dctx->tmpIn == NULL) |
1439 | return err0r(LZ4F_ERROR_allocation_failed); |
1440 | FREEMEM(dctx->tmpOutBuffer); |
1441 | dctx->tmpOutBuffer= (BYTE*)ALLOC(bufferNeeded); |
1442 | if (dctx->tmpOutBuffer== NULL) |
1443 | return err0r(LZ4F_ERROR_allocation_failed); |
1444 | dctx->maxBufferSize = bufferNeeded; |
1445 | } } |
1446 | dctx->tmpInSize = 0; |
1447 | dctx->tmpInTarget = 0; |
1448 | dctx->tmpOut = dctx->tmpOutBuffer; |
1449 | dctx->tmpOutStart = 0; |
1450 | dctx->tmpOutSize = 0; |
1451 | |
1452 | dctx->dStage = dstage_getBlockHeader; |
1453 | /* fall-through */ |
1454 | |
1455 | case dstage_getBlockHeader: |
1456 | if ((size_t)(srcEnd - srcPtr) >= BHSize) { |
1457 | selectedIn = srcPtr; |
1458 | srcPtr += BHSize; |
1459 | } else { |
1460 | /* not enough input to read cBlockSize field */ |
1461 | dctx->tmpInSize = 0; |
1462 | dctx->dStage = dstage_storeBlockHeader; |
1463 | } |
1464 | |
1465 | if (dctx->dStage == dstage_storeBlockHeader) /* can be skipped */ |
1466 | case dstage_storeBlockHeader: |
1467 | { size_t const remainingInput = (size_t)(srcEnd - srcPtr); |
1468 | size_t const wantedData = BHSize - dctx->tmpInSize; |
1469 | size_t const sizeToCopy = MIN(wantedData, remainingInput); |
1470 | memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
1471 | srcPtr += sizeToCopy; |
1472 | dctx->tmpInSize += sizeToCopy; |
1473 | |
1474 | if (dctx->tmpInSize < BHSize) { /* not enough input for cBlockSize */ |
1475 | nextSrcSizeHint = BHSize - dctx->tmpInSize; |
1476 | doAnotherStage = 0; |
1477 | break; |
1478 | } |
1479 | selectedIn = dctx->tmpIn; |
1480 | } /* if (dctx->dStage == dstage_storeBlockHeader) */ |
1481 | |
1482 | /* decode block header */ |
1483 | { size_t const nextCBlockSize = LZ4F_readLE32(selectedIn) & 0x7FFFFFFFU; |
1484 | size_t const crcSize = dctx->frameInfo.blockChecksumFlag * BFSize; |
1485 | if (nextCBlockSize==0) { /* frameEnd signal, no more block */ |
1486 | dctx->dStage = dstage_getSuffix; |
1487 | break; |
1488 | } |
1489 | if (nextCBlockSize > dctx->maxBlockSize) |
1490 | return err0r(LZ4F_ERROR_maxBlockSize_invalid); |
1491 | if (LZ4F_readLE32(selectedIn) & LZ4F_BLOCKUNCOMPRESSED_FLAG) { |
1492 | /* next block is uncompressed */ |
1493 | dctx->tmpInTarget = nextCBlockSize; |
1494 | if (dctx->frameInfo.blockChecksumFlag) { |
1495 | (void)XXH32_reset(&dctx->blockChecksum, 0); |
1496 | } |
1497 | dctx->dStage = dstage_copyDirect; |
1498 | break; |
1499 | } |
1500 | /* next block is a compressed block */ |
1501 | dctx->tmpInTarget = nextCBlockSize + crcSize; |
1502 | dctx->dStage = dstage_getCBlock; |
1503 | if (dstPtr==dstEnd || srcPtr==srcEnd) { |
1504 | nextSrcSizeHint = BHSize + nextCBlockSize + crcSize; |
1505 | doAnotherStage = 0; |
1506 | } |
1507 | break; |
1508 | } |
1509 | |
1510 | case dstage_copyDirect: /* uncompressed block */ |
1511 | { size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr)); |
1512 | size_t const sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize); |
1513 | memcpy(dstPtr, srcPtr, sizeToCopy); |
1514 | if (dctx->frameInfo.blockChecksumFlag) { |
1515 | (void)XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy); |
1516 | } |
1517 | if (dctx->frameInfo.contentChecksumFlag) |
1518 | (void)XXH32_update(&dctx->xxh, srcPtr, sizeToCopy); |
1519 | if (dctx->frameInfo.contentSize) |
1520 | dctx->frameRemainingSize -= sizeToCopy; |
1521 | |
1522 | /* history management (linked blocks only)*/ |
1523 | if (dctx->frameInfo.blockMode == LZ4F_blockLinked) |
1524 | LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0); |
1525 | |
1526 | srcPtr += sizeToCopy; |
1527 | dstPtr += sizeToCopy; |
1528 | if (sizeToCopy == dctx->tmpInTarget) { /* all done */ |
1529 | if (dctx->frameInfo.blockChecksumFlag) { |
1530 | dctx->tmpInSize = 0; |
1531 | dctx->dStage = dstage_getBlockChecksum; |
1532 | } else |
1533 | dctx->dStage = dstage_getBlockHeader; /* new block */ |
1534 | break; |
1535 | } |
1536 | dctx->tmpInTarget -= sizeToCopy; /* need to copy more */ |
1537 | nextSrcSizeHint = dctx->tmpInTarget + |
1538 | +(dctx->frameInfo.blockChecksumFlag ? BFSize : 0) |
1539 | + BHSize /* next header size */; |
1540 | doAnotherStage = 0; |
1541 | break; |
1542 | } |
1543 | |
1544 | /* check block checksum for recently transferred uncompressed block */ |
1545 | case dstage_getBlockChecksum: |
1546 | { const void* crcSrc; |
1547 | if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) { |
1548 | crcSrc = srcPtr; |
1549 | srcPtr += 4; |
1550 | } else { |
1551 | size_t const stillToCopy = 4 - dctx->tmpInSize; |
1552 | size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr)); |
1553 | memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
1554 | dctx->tmpInSize += sizeToCopy; |
1555 | srcPtr += sizeToCopy; |
1556 | if (dctx->tmpInSize < 4) { /* all input consumed */ |
1557 | doAnotherStage = 0; |
1558 | break; |
1559 | } |
1560 | crcSrc = dctx->header; |
1561 | } |
1562 | { U32 const readCRC = LZ4F_readLE32(crcSrc); |
1563 | U32 const calcCRC = XXH32_digest(&dctx->blockChecksum); |
1564 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
1565 | if (readCRC != calcCRC) |
1566 | return err0r(LZ4F_ERROR_blockChecksum_invalid); |
1567 | #else |
1568 | (void)readCRC; |
1569 | (void)calcCRC; |
1570 | #endif |
1571 | } } |
1572 | dctx->dStage = dstage_getBlockHeader; /* new block */ |
1573 | break; |
1574 | |
1575 | case dstage_getCBlock: |
1576 | if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) { |
1577 | dctx->tmpInSize = 0; |
1578 | dctx->dStage = dstage_storeCBlock; |
1579 | break; |
1580 | } |
1581 | /* input large enough to read full block directly */ |
1582 | selectedIn = srcPtr; |
1583 | srcPtr += dctx->tmpInTarget; |
1584 | |
1585 | if (0) /* jump over next block */ |
1586 | case dstage_storeCBlock: |
1587 | { size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize; |
1588 | size_t const inputLeft = (size_t)(srcEnd-srcPtr); |
1589 | size_t const sizeToCopy = MIN(wantedData, inputLeft); |
1590 | memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
1591 | dctx->tmpInSize += sizeToCopy; |
1592 | srcPtr += sizeToCopy; |
1593 | if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */ |
1594 | nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) |
1595 | + (dctx->frameInfo.blockChecksumFlag ? BFSize : 0) |
1596 | + BHSize /* next header size */; |
1597 | doAnotherStage = 0; |
1598 | break; |
1599 | } |
1600 | selectedIn = dctx->tmpIn; |
1601 | } |
1602 | |
1603 | /* At this stage, input is large enough to decode a block */ |
1604 | if (dctx->frameInfo.blockChecksumFlag) { |
1605 | dctx->tmpInTarget -= 4; |
1606 | assert(selectedIn != NULL); /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */ |
1607 | { U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget); |
1608 | U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0); |
1609 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
1610 | if (readBlockCrc != calcBlockCrc) |
1611 | return err0r(LZ4F_ERROR_blockChecksum_invalid); |
1612 | #else |
1613 | (void)readBlockCrc; |
1614 | (void)calcBlockCrc; |
1615 | #endif |
1616 | } } |
1617 | |
1618 | if ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize) { |
1619 | const char* dict = (const char*)dctx->dict; |
1620 | size_t dictSize = dctx->dictSize; |
1621 | int decodedSize; |
1622 | if (dict && dictSize > 1 GB) { |
1623 | /* the dictSize param is an int, avoid truncation / sign issues */ |
1624 | dict += dictSize - 64 KB; |
1625 | dictSize = 64 KB; |
1626 | } |
1627 | /* enough capacity in `dst` to decompress directly there */ |
1628 | decodedSize = LZ4_decompress_safe_usingDict( |
1629 | (const char*)selectedIn, (char*)dstPtr, |
1630 | (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, |
1631 | dict, (int)dictSize); |
1632 | if (decodedSize < 0) return err0r(LZ4F_ERROR_GENERIC); /* decompression failed */ |
1633 | if (dctx->frameInfo.contentChecksumFlag) |
1634 | XXH32_update(&(dctx->xxh), dstPtr, (size_t)decodedSize); |
1635 | if (dctx->frameInfo.contentSize) |
1636 | dctx->frameRemainingSize -= (size_t)decodedSize; |
1637 | |
1638 | /* dictionary management */ |
1639 | if (dctx->frameInfo.blockMode==LZ4F_blockLinked) |
1640 | LZ4F_updateDict(dctx, dstPtr, (size_t)decodedSize, dstStart, 0); |
1641 | |
1642 | dstPtr += decodedSize; |
1643 | dctx->dStage = dstage_getBlockHeader; |
1644 | break; |
1645 | } |
1646 | |
1647 | /* not enough place into dst : decode into tmpOut */ |
1648 | /* ensure enough place for tmpOut */ |
1649 | if (dctx->frameInfo.blockMode == LZ4F_blockLinked) { |
1650 | if (dctx->dict == dctx->tmpOutBuffer) { |
1651 | if (dctx->dictSize > 128 KB) { |
1652 | memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB); |
1653 | dctx->dictSize = 64 KB; |
1654 | } |
1655 | dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize; |
1656 | } else { /* dict not within tmp */ |
1657 | size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB); |
1658 | dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace; |
1659 | } } |
1660 | |
1661 | /* Decode block */ |
1662 | { const char* dict = (const char*)dctx->dict; |
1663 | size_t dictSize = dctx->dictSize; |
1664 | int decodedSize; |
1665 | if (dict && dictSize > 1 GB) { |
1666 | /* the dictSize param is an int, avoid truncation / sign issues */ |
1667 | dict += dictSize - 64 KB; |
1668 | dictSize = 64 KB; |
1669 | } |
1670 | decodedSize = LZ4_decompress_safe_usingDict( |
1671 | (const char*)selectedIn, (char*)dctx->tmpOut, |
1672 | (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, |
1673 | dict, (int)dictSize); |
1674 | if (decodedSize < 0) /* decompression failed */ |
1675 | return err0r(LZ4F_ERROR_decompressionFailed); |
1676 | if (dctx->frameInfo.contentChecksumFlag) |
1677 | XXH32_update(&(dctx->xxh), dctx->tmpOut, (size_t)decodedSize); |
1678 | if (dctx->frameInfo.contentSize) |
1679 | dctx->frameRemainingSize -= (size_t)decodedSize; |
1680 | dctx->tmpOutSize = (size_t)decodedSize; |
1681 | dctx->tmpOutStart = 0; |
1682 | dctx->dStage = dstage_flushOut; |
1683 | } |
1684 | /* fall-through */ |
1685 | |
1686 | case dstage_flushOut: /* flush decoded data from tmpOut to dstBuffer */ |
1687 | { size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr)); |
1688 | memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy); |
1689 | |
1690 | /* dictionary management */ |
1691 | if (dctx->frameInfo.blockMode == LZ4F_blockLinked) |
1692 | LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/); |
1693 | |
1694 | dctx->tmpOutStart += sizeToCopy; |
1695 | dstPtr += sizeToCopy; |
1696 | |
1697 | if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */ |
1698 | dctx->dStage = dstage_getBlockHeader; /* get next block */ |
1699 | break; |
1700 | } |
1701 | /* could not flush everything : stop there, just request a block header */ |
1702 | doAnotherStage = 0; |
1703 | nextSrcSizeHint = BHSize; |
1704 | break; |
1705 | } |
1706 | |
1707 | case dstage_getSuffix: |
1708 | if (dctx->frameRemainingSize) |
1709 | return err0r(LZ4F_ERROR_frameSize_wrong); /* incorrect frame size decoded */ |
1710 | if (!dctx->frameInfo.contentChecksumFlag) { /* no checksum, frame is completed */ |
1711 | nextSrcSizeHint = 0; |
1712 | LZ4F_resetDecompressionContext(dctx); |
1713 | doAnotherStage = 0; |
1714 | break; |
1715 | } |
1716 | if ((srcEnd - srcPtr) < 4) { /* not enough size for entire CRC */ |
1717 | dctx->tmpInSize = 0; |
1718 | dctx->dStage = dstage_storeSuffix; |
1719 | } else { |
1720 | selectedIn = srcPtr; |
1721 | srcPtr += 4; |
1722 | } |
1723 | |
1724 | if (dctx->dStage == dstage_storeSuffix) /* can be skipped */ |
1725 | case dstage_storeSuffix: |
1726 | { size_t const remainingInput = (size_t)(srcEnd - srcPtr); |
1727 | size_t const wantedData = 4 - dctx->tmpInSize; |
1728 | size_t const sizeToCopy = MIN(wantedData, remainingInput); |
1729 | memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
1730 | srcPtr += sizeToCopy; |
1731 | dctx->tmpInSize += sizeToCopy; |
1732 | if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */ |
1733 | nextSrcSizeHint = 4 - dctx->tmpInSize; |
1734 | doAnotherStage=0; |
1735 | break; |
1736 | } |
1737 | selectedIn = dctx->tmpIn; |
1738 | } /* if (dctx->dStage == dstage_storeSuffix) */ |
1739 | |
1740 | /* case dstage_checkSuffix: */ /* no direct entry, avoid initialization risks */ |
1741 | { U32 const readCRC = LZ4F_readLE32(selectedIn); |
1742 | U32 const resultCRC = XXH32_digest(&(dctx->xxh)); |
1743 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
1744 | if (readCRC != resultCRC) |
1745 | return err0r(LZ4F_ERROR_contentChecksum_invalid); |
1746 | #else |
1747 | (void)readCRC; |
1748 | (void)resultCRC; |
1749 | #endif |
1750 | nextSrcSizeHint = 0; |
1751 | LZ4F_resetDecompressionContext(dctx); |
1752 | doAnotherStage = 0; |
1753 | break; |
1754 | } |
1755 | |
1756 | case dstage_getSFrameSize: |
1757 | if ((srcEnd - srcPtr) >= 4) { |
1758 | selectedIn = srcPtr; |
1759 | srcPtr += 4; |
1760 | } else { |
1761 | /* not enough input to read cBlockSize field */ |
1762 | dctx->tmpInSize = 4; |
1763 | dctx->tmpInTarget = 8; |
1764 | dctx->dStage = dstage_storeSFrameSize; |
1765 | } |
1766 | |
1767 | if (dctx->dStage == dstage_storeSFrameSize) |
1768 | case dstage_storeSFrameSize: |
1769 | { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, |
1770 | (size_t)(srcEnd - srcPtr) ); |
1771 | memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
1772 | srcPtr += sizeToCopy; |
1773 | dctx->tmpInSize += sizeToCopy; |
1774 | if (dctx->tmpInSize < dctx->tmpInTarget) { |
1775 | /* not enough input to get full sBlockSize; wait for more */ |
1776 | nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize; |
1777 | doAnotherStage = 0; |
1778 | break; |
1779 | } |
1780 | selectedIn = dctx->header + 4; |
1781 | } /* if (dctx->dStage == dstage_storeSFrameSize) */ |
1782 | |
1783 | /* case dstage_decodeSFrameSize: */ /* no direct entry */ |
1784 | { size_t const SFrameSize = LZ4F_readLE32(selectedIn); |
1785 | dctx->frameInfo.contentSize = SFrameSize; |
1786 | dctx->tmpInTarget = SFrameSize; |
1787 | dctx->dStage = dstage_skipSkippable; |
1788 | break; |
1789 | } |
1790 | |
1791 | case dstage_skipSkippable: |
1792 | { size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr)); |
1793 | srcPtr += skipSize; |
1794 | dctx->tmpInTarget -= skipSize; |
1795 | doAnotherStage = 0; |
1796 | nextSrcSizeHint = dctx->tmpInTarget; |
1797 | if (nextSrcSizeHint) break; /* still more to skip */ |
1798 | /* frame fully skipped : prepare context for a new frame */ |
1799 | LZ4F_resetDecompressionContext(dctx); |
1800 | break; |
1801 | } |
1802 | } /* switch (dctx->dStage) */ |
1803 | } /* while (doAnotherStage) */ |
1804 | |
1805 | /* preserve history within tmp whenever necessary */ |
1806 | LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2); |
1807 | if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked) /* next block will use up to 64KB from previous ones */ |
1808 | && (dctx->dict != dctx->tmpOutBuffer) /* dictionary is not already within tmp */ |
1809 | && (!decompressOptionsPtr->stableDst) /* cannot rely on dst data to remain there for next call */ |
1810 | && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) ) /* valid stages : [init ... getSuffix[ */ |
1811 | { |
1812 | if (dctx->dStage == dstage_flushOut) { |
1813 | size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer); |
1814 | size_t copySize = 64 KB - dctx->tmpOutSize; |
1815 | const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; |
1816 | if (dctx->tmpOutSize > 64 KB) copySize = 0; |
1817 | if (copySize > preserveSize) copySize = preserveSize; |
1818 | |
1819 | if (copySize > 0) |
1820 | memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); |
1821 | |
1822 | dctx->dict = dctx->tmpOutBuffer; |
1823 | dctx->dictSize = preserveSize + dctx->tmpOutStart; |
1824 | } else { |
1825 | const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize; |
1826 | size_t const newDictSize = MIN(dctx->dictSize, 64 KB); |
1827 | |
1828 | if (newDictSize > 0) |
1829 | memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize); |
1830 | |
1831 | dctx->dict = dctx->tmpOutBuffer; |
1832 | dctx->dictSize = newDictSize; |
1833 | dctx->tmpOut = dctx->tmpOutBuffer + newDictSize; |
1834 | } |
1835 | } |
1836 | |
1837 | *srcSizePtr = (size_t)(srcPtr - srcStart); |
1838 | *dstSizePtr = (size_t)(dstPtr - dstStart); |
1839 | return nextSrcSizeHint; |
1840 | } |
1841 | |
1842 | /*! LZ4F_decompress_usingDict() : |
1843 | * Same as LZ4F_decompress(), using a predefined dictionary. |
1844 | * Dictionary is used "in place", without any preprocessing. |
1845 | * It must remain accessible throughout the entire frame decoding. |
1846 | */ |
1847 | size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx, |
1848 | void* dstBuffer, size_t* dstSizePtr, |
1849 | const void* srcBuffer, size_t* srcSizePtr, |
1850 | const void* dict, size_t dictSize, |
1851 | const LZ4F_decompressOptions_t* decompressOptionsPtr) |
1852 | { |
1853 | if (dctx->dStage <= dstage_init) { |
1854 | dctx->dict = (const BYTE*)dict; |
1855 | dctx->dictSize = dictSize; |
1856 | } |
1857 | return LZ4F_decompress(dctx, dstBuffer, dstSizePtr, |
1858 | srcBuffer, srcSizePtr, |
1859 | decompressOptionsPtr); |
1860 | } |
1861 | |