| 1 | /* |
| 2 | * LZ4 auto-framing library |
| 3 | * Copyright (C) 2011-2016, Yann Collet. |
| 4 | * |
| 5 | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions are |
| 9 | * met: |
| 10 | * |
| 11 | * - Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * - Redistributions in binary form must reproduce the above |
| 14 | * copyright notice, this list of conditions and the following disclaimer |
| 15 | * in the documentation and/or other materials provided with the |
| 16 | * distribution. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | * |
| 30 | * You can contact the author at : |
| 31 | * - LZ4 homepage : http://www.lz4.org |
| 32 | * - LZ4 source repository : https://github.com/lz4/lz4 |
| 33 | */ |
| 34 | |
| 35 | /* LZ4F is a stand-alone API to create LZ4-compressed Frames |
| 36 | * in full conformance with specification v1.6.1 . |
| 37 | * This library rely upon memory management capabilities (malloc, free) |
| 38 | * provided either by <stdlib.h>, |
| 39 | * or redirected towards another library of user's choice |
| 40 | * (see Memory Routines below). |
| 41 | */ |
| 42 | |
| 43 | |
| 44 | /*-************************************ |
| 45 | * Compiler Options |
| 46 | **************************************/ |
| 47 | #ifdef _MSC_VER /* Visual Studio */ |
| 48 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| 49 | #endif |
| 50 | |
| 51 | |
| 52 | /*-************************************ |
| 53 | * Tuning parameters |
| 54 | **************************************/ |
| 55 | /* |
| 56 | * LZ4F_HEAPMODE : |
| 57 | * Select how default compression functions will allocate memory for their hash table, |
| 58 | * in memory stack (0:default, fastest), or in memory heap (1:requires malloc()). |
| 59 | */ |
| 60 | #ifndef LZ4F_HEAPMODE |
| 61 | # define LZ4F_HEAPMODE 0 |
| 62 | #endif |
| 63 | |
| 64 | |
| 65 | /*-************************************ |
| 66 | * Memory routines |
| 67 | **************************************/ |
| 68 | /* |
| 69 | * User may redirect invocations of |
| 70 | * malloc(), calloc() and free() |
| 71 | * towards another library or solution of their choice |
| 72 | * by modifying below section. |
| 73 | */ |
| 74 | #include <stdlib.h> /* malloc, calloc, free */ |
| 75 | #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */ |
| 76 | # define ALLOC(s) malloc(s) |
| 77 | # define ALLOC_AND_ZERO(s) calloc(1,(s)) |
| 78 | # define FREEMEM(p) free(p) |
| 79 | #endif |
| 80 | |
| 81 | #include <string.h> /* memset, memcpy, memmove */ |
| 82 | #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */ |
| 83 | # define MEM_INIT(p,v,s) memset((p),(v),(s)) |
| 84 | #endif |
| 85 | |
| 86 | |
| 87 | /*-************************************ |
| 88 | * Library declarations |
| 89 | **************************************/ |
| 90 | #define LZ4F_STATIC_LINKING_ONLY |
| 91 | #include "lz4frame.h" |
| 92 | #define LZ4_STATIC_LINKING_ONLY |
| 93 | #include "lz4.h" |
| 94 | #define LZ4_HC_STATIC_LINKING_ONLY |
| 95 | #include "lz4hc.h" |
| 96 | #define XXH_STATIC_LINKING_ONLY |
| 97 | #include "xxhash.h" |
| 98 | |
| 99 | |
| 100 | /*-************************************ |
| 101 | * Debug |
| 102 | **************************************/ |
| 103 | #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1) |
| 104 | # include <assert.h> |
| 105 | #else |
| 106 | # ifndef assert |
| 107 | # define assert(condition) ((void)0) |
| 108 | # endif |
| 109 | #endif |
| 110 | |
| 111 | #define LZ4F_STATIC_ASSERT(c) { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
| 112 | |
| 113 | #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG) |
| 114 | # include <stdio.h> |
| 115 | static int g_debuglog_enable = 1; |
| 116 | # define DEBUGLOG(l, ...) { \ |
| 117 | if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) { \ |
| 118 | fprintf(stderr, __FILE__ ": "); \ |
| 119 | fprintf(stderr, __VA_ARGS__); \ |
| 120 | fprintf(stderr, " \n"); \ |
| 121 | } } |
| 122 | #else |
| 123 | # define DEBUGLOG(l, ...) {} /* disabled */ |
| 124 | #endif |
| 125 | |
| 126 | |
| 127 | /*-************************************ |
| 128 | * Basic Types |
| 129 | **************************************/ |
| 130 | #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 131 | # include <stdint.h> |
| 132 | typedef uint8_t BYTE; |
| 133 | typedef uint16_t U16; |
| 134 | typedef uint32_t U32; |
| 135 | typedef int32_t S32; |
| 136 | typedef uint64_t U64; |
| 137 | #else |
| 138 | typedef unsigned char BYTE; |
| 139 | typedef unsigned short U16; |
| 140 | typedef unsigned int U32; |
| 141 | typedef signed int S32; |
| 142 | typedef unsigned long long U64; |
| 143 | #endif |
| 144 | |
| 145 | |
| 146 | /* unoptimized version; solves endianess & alignment issues */ |
| 147 | static U32 LZ4F_readLE32 (const void* src) |
| 148 | { |
| 149 | const BYTE* const srcPtr = (const BYTE*)src; |
| 150 | U32 value32 = srcPtr[0]; |
| 151 | value32 += ((U32)srcPtr[1])<< 8; |
| 152 | value32 += ((U32)srcPtr[2])<<16; |
| 153 | value32 += ((U32)srcPtr[3])<<24; |
| 154 | return value32; |
| 155 | } |
| 156 | |
| 157 | static void LZ4F_writeLE32 (void* dst, U32 value32) |
| 158 | { |
| 159 | BYTE* const dstPtr = (BYTE*)dst; |
| 160 | dstPtr[0] = (BYTE)value32; |
| 161 | dstPtr[1] = (BYTE)(value32 >> 8); |
| 162 | dstPtr[2] = (BYTE)(value32 >> 16); |
| 163 | dstPtr[3] = (BYTE)(value32 >> 24); |
| 164 | } |
| 165 | |
| 166 | static U64 LZ4F_readLE64 (const void* src) |
| 167 | { |
| 168 | const BYTE* const srcPtr = (const BYTE*)src; |
| 169 | U64 value64 = srcPtr[0]; |
| 170 | value64 += ((U64)srcPtr[1]<<8); |
| 171 | value64 += ((U64)srcPtr[2]<<16); |
| 172 | value64 += ((U64)srcPtr[3]<<24); |
| 173 | value64 += ((U64)srcPtr[4]<<32); |
| 174 | value64 += ((U64)srcPtr[5]<<40); |
| 175 | value64 += ((U64)srcPtr[6]<<48); |
| 176 | value64 += ((U64)srcPtr[7]<<56); |
| 177 | return value64; |
| 178 | } |
| 179 | |
| 180 | static void LZ4F_writeLE64 (void* dst, U64 value64) |
| 181 | { |
| 182 | BYTE* const dstPtr = (BYTE*)dst; |
| 183 | dstPtr[0] = (BYTE)value64; |
| 184 | dstPtr[1] = (BYTE)(value64 >> 8); |
| 185 | dstPtr[2] = (BYTE)(value64 >> 16); |
| 186 | dstPtr[3] = (BYTE)(value64 >> 24); |
| 187 | dstPtr[4] = (BYTE)(value64 >> 32); |
| 188 | dstPtr[5] = (BYTE)(value64 >> 40); |
| 189 | dstPtr[6] = (BYTE)(value64 >> 48); |
| 190 | dstPtr[7] = (BYTE)(value64 >> 56); |
| 191 | } |
| 192 | |
| 193 | |
| 194 | /*-************************************ |
| 195 | * Constants |
| 196 | **************************************/ |
| 197 | #ifndef LZ4_SRC_INCLUDED /* avoid double definition */ |
| 198 | # define KB *(1<<10) |
| 199 | # define MB *(1<<20) |
| 200 | # define GB *(1<<30) |
| 201 | #endif |
| 202 | |
| 203 | #define _1BIT 0x01 |
| 204 | #define _2BITS 0x03 |
| 205 | #define _3BITS 0x07 |
| 206 | #define _4BITS 0x0F |
| 207 | #define _8BITS 0xFF |
| 208 | |
| 209 | #define LZ4F_MAGIC_SKIPPABLE_START 0x184D2A50U |
| 210 | #define LZ4F_MAGICNUMBER 0x184D2204U |
| 211 | #define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U |
| 212 | #define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB |
| 213 | |
| 214 | static const size_t minFHSize = LZ4F_HEADER_SIZE_MIN; /* 7 */ |
| 215 | static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX; /* 19 */ |
| 216 | static const size_t BHSize = LZ4F_BLOCK_HEADER_SIZE; /* block header : size, and compress flag */ |
| 217 | static const size_t BFSize = LZ4F_BLOCK_CHECKSUM_SIZE; /* block footer : checksum (optional) */ |
| 218 | |
| 219 | |
| 220 | /*-************************************ |
| 221 | * Structures and local types |
| 222 | **************************************/ |
| 223 | typedef struct LZ4F_cctx_s |
| 224 | { |
| 225 | LZ4F_preferences_t prefs; |
| 226 | U32 version; |
| 227 | U32 cStage; |
| 228 | const LZ4F_CDict* cdict; |
| 229 | size_t maxBlockSize; |
| 230 | size_t maxBufferSize; |
| 231 | BYTE* tmpBuff; |
| 232 | BYTE* tmpIn; |
| 233 | size_t tmpInSize; |
| 234 | U64 totalInSize; |
| 235 | XXH32_state_t xxh; |
| 236 | void* lz4CtxPtr; |
| 237 | U16 lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ |
| 238 | U16 lz4CtxState; /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ |
| 239 | } LZ4F_cctx_t; |
| 240 | |
| 241 | |
| 242 | /*-************************************ |
| 243 | * Error management |
| 244 | **************************************/ |
| 245 | #define LZ4F_GENERATE_STRING(STRING) #STRING, |
| 246 | static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) }; |
| 247 | |
| 248 | |
| 249 | unsigned LZ4F_isError(LZ4F_errorCode_t code) |
| 250 | { |
| 251 | return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode)); |
| 252 | } |
| 253 | |
| 254 | const char* LZ4F_getErrorName(LZ4F_errorCode_t code) |
| 255 | { |
| 256 | static const char* codeError = "Unspecified error code" ; |
| 257 | if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)]; |
| 258 | return codeError; |
| 259 | } |
| 260 | |
| 261 | LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult) |
| 262 | { |
| 263 | if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError; |
| 264 | return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult); |
| 265 | } |
| 266 | |
| 267 | static LZ4F_errorCode_t err0r(LZ4F_errorCodes code) |
| 268 | { |
| 269 | /* A compilation error here means sizeof(ptrdiff_t) is not large enough */ |
| 270 | LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t)); |
| 271 | return (LZ4F_errorCode_t)-(ptrdiff_t)code; |
| 272 | } |
| 273 | |
| 274 | unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; } |
| 275 | |
| 276 | int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; } |
| 277 | |
| 278 | size_t LZ4F_getBlockSize(unsigned blockSizeID) |
| 279 | { |
| 280 | static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB }; |
| 281 | |
| 282 | if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; |
| 283 | if (blockSizeID < LZ4F_max64KB || blockSizeID > LZ4F_max4MB) |
| 284 | return err0r(LZ4F_ERROR_maxBlockSize_invalid); |
| 285 | blockSizeID -= LZ4F_max64KB; |
| 286 | return blockSizes[blockSizeID]; |
| 287 | } |
| 288 | |
| 289 | /*-************************************ |
| 290 | * Private functions |
| 291 | **************************************/ |
| 292 | #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) |
| 293 | |
| 294 | static BYTE (const void* , size_t length) |
| 295 | { |
| 296 | U32 const xxh = XXH32(header, length, 0); |
| 297 | return (BYTE)(xxh >> 8); |
| 298 | } |
| 299 | |
| 300 | |
| 301 | /*-************************************ |
| 302 | * Simple-pass compression functions |
| 303 | **************************************/ |
| 304 | static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID, |
| 305 | const size_t srcSize) |
| 306 | { |
| 307 | LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB; |
| 308 | size_t maxBlockSize = 64 KB; |
| 309 | while (requestedBSID > proposedBSID) { |
| 310 | if (srcSize <= maxBlockSize) |
| 311 | return proposedBSID; |
| 312 | proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1); |
| 313 | maxBlockSize <<= 2; |
| 314 | } |
| 315 | return requestedBSID; |
| 316 | } |
| 317 | |
| 318 | /*! LZ4F_compressBound_internal() : |
| 319 | * Provides dstCapacity given a srcSize to guarantee operation success in worst case situations. |
| 320 | * prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario. |
| 321 | * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers. |
| 322 | * When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations. |
| 323 | */ |
| 324 | static size_t LZ4F_compressBound_internal(size_t srcSize, |
| 325 | const LZ4F_preferences_t* preferencesPtr, |
| 326 | size_t alreadyBuffered) |
| 327 | { |
| 328 | LZ4F_preferences_t prefsNull = LZ4F_INIT_PREFERENCES; |
| 329 | prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled; /* worst case */ |
| 330 | prefsNull.frameInfo.blockChecksumFlag = LZ4F_blockChecksumEnabled; /* worst case */ |
| 331 | { const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr; |
| 332 | U32 const flush = prefsPtr->autoFlush | (srcSize==0); |
| 333 | LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID; |
| 334 | size_t const blockSize = LZ4F_getBlockSize(blockID); |
| 335 | size_t const maxBuffered = blockSize - 1; |
| 336 | size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered); |
| 337 | size_t const maxSrcSize = srcSize + bufferedSize; |
| 338 | unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize); |
| 339 | size_t const partialBlockSize = maxSrcSize & (blockSize-1); |
| 340 | size_t const lastBlockSize = flush ? partialBlockSize : 0; |
| 341 | unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0); |
| 342 | |
| 343 | size_t const blockCRCSize = BFSize * prefsPtr->frameInfo.blockChecksumFlag; |
| 344 | size_t const frameEnd = BHSize + (prefsPtr->frameInfo.contentChecksumFlag*BFSize); |
| 345 | |
| 346 | return ((BHSize + blockCRCSize) * nbBlocks) + |
| 347 | (blockSize * nbFullBlocks) + lastBlockSize + frameEnd; |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) |
| 352 | { |
| 353 | LZ4F_preferences_t prefs; |
| 354 | size_t const = maxFHSize; /* max header size, including optional fields */ |
| 355 | |
| 356 | if (preferencesPtr!=NULL) prefs = *preferencesPtr; |
| 357 | else MEM_INIT(&prefs, 0, sizeof(prefs)); |
| 358 | prefs.autoFlush = 1; |
| 359 | |
| 360 | return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);; |
| 361 | } |
| 362 | |
| 363 | |
| 364 | /*! LZ4F_compressFrame_usingCDict() : |
| 365 | * Compress srcBuffer using a dictionary, in a single step. |
| 366 | * cdict can be NULL, in which case, no dictionary is used. |
| 367 | * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). |
| 368 | * The LZ4F_preferences_t structure is optional : you may provide NULL as argument, |
| 369 | * however, it's the only way to provide a dictID, so it's not recommended. |
| 370 | * @return : number of bytes written into dstBuffer, |
| 371 | * or an error code if it fails (can be tested using LZ4F_isError()) |
| 372 | */ |
| 373 | size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx, |
| 374 | void* dstBuffer, size_t dstCapacity, |
| 375 | const void* srcBuffer, size_t srcSize, |
| 376 | const LZ4F_CDict* cdict, |
| 377 | const LZ4F_preferences_t* preferencesPtr) |
| 378 | { |
| 379 | LZ4F_preferences_t prefs; |
| 380 | LZ4F_compressOptions_t options; |
| 381 | BYTE* const dstStart = (BYTE*) dstBuffer; |
| 382 | BYTE* dstPtr = dstStart; |
| 383 | BYTE* const dstEnd = dstStart + dstCapacity; |
| 384 | |
| 385 | if (preferencesPtr!=NULL) |
| 386 | prefs = *preferencesPtr; |
| 387 | else |
| 388 | MEM_INIT(&prefs, 0, sizeof(prefs)); |
| 389 | if (prefs.frameInfo.contentSize != 0) |
| 390 | prefs.frameInfo.contentSize = (U64)srcSize; /* auto-correct content size if selected (!=0) */ |
| 391 | |
| 392 | prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize); |
| 393 | prefs.autoFlush = 1; |
| 394 | if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID)) |
| 395 | prefs.frameInfo.blockMode = LZ4F_blockIndependent; /* only one block => no need for inter-block link */ |
| 396 | |
| 397 | MEM_INIT(&options, 0, sizeof(options)); |
| 398 | options.stableSrc = 1; |
| 399 | |
| 400 | if (dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs)) /* condition to guarantee success */ |
| 401 | return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| 402 | |
| 403 | { size_t const = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs); /* write header */ |
| 404 | if (LZ4F_isError(headerSize)) return headerSize; |
| 405 | dstPtr += headerSize; /* header size */ } |
| 406 | |
| 407 | assert(dstEnd >= dstPtr); |
| 408 | { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, (size_t)(dstEnd-dstPtr), srcBuffer, srcSize, &options); |
| 409 | if (LZ4F_isError(cSize)) return cSize; |
| 410 | dstPtr += cSize; } |
| 411 | |
| 412 | assert(dstEnd >= dstPtr); |
| 413 | { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, (size_t)(dstEnd-dstPtr), &options); /* flush last block, and generate suffix */ |
| 414 | if (LZ4F_isError(tailSize)) return tailSize; |
| 415 | dstPtr += tailSize; } |
| 416 | |
| 417 | assert(dstEnd >= dstStart); |
| 418 | return (size_t)(dstPtr - dstStart); |
| 419 | } |
| 420 | |
| 421 | |
| 422 | /*! LZ4F_compressFrame() : |
| 423 | * Compress an entire srcBuffer into a valid LZ4 frame, in a single step. |
| 424 | * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). |
| 425 | * The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default. |
| 426 | * @return : number of bytes written into dstBuffer. |
| 427 | * or an error code if it fails (can be tested using LZ4F_isError()) |
| 428 | */ |
| 429 | size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity, |
| 430 | const void* srcBuffer, size_t srcSize, |
| 431 | const LZ4F_preferences_t* preferencesPtr) |
| 432 | { |
| 433 | size_t result; |
| 434 | #if (LZ4F_HEAPMODE) |
| 435 | LZ4F_cctx_t *cctxPtr; |
| 436 | result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION); |
| 437 | if (LZ4F_isError(result)) return result; |
| 438 | #else |
| 439 | LZ4F_cctx_t cctx; |
| 440 | LZ4_stream_t lz4ctx; |
| 441 | LZ4F_cctx_t *cctxPtr = &cctx; |
| 442 | |
| 443 | DEBUGLOG(4, "LZ4F_compressFrame" ); |
| 444 | MEM_INIT(&cctx, 0, sizeof(cctx)); |
| 445 | cctx.version = LZ4F_VERSION; |
| 446 | cctx.maxBufferSize = 5 MB; /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */ |
| 447 | if (preferencesPtr == NULL || |
| 448 | preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN) |
| 449 | { |
| 450 | LZ4_initStream(&lz4ctx, sizeof(lz4ctx)); |
| 451 | cctxPtr->lz4CtxPtr = &lz4ctx; |
| 452 | cctxPtr->lz4CtxAlloc = 1; |
| 453 | cctxPtr->lz4CtxState = 1; |
| 454 | } |
| 455 | #endif |
| 456 | |
| 457 | result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity, |
| 458 | srcBuffer, srcSize, |
| 459 | NULL, preferencesPtr); |
| 460 | |
| 461 | #if (LZ4F_HEAPMODE) |
| 462 | LZ4F_freeCompressionContext(cctxPtr); |
| 463 | #else |
| 464 | if (preferencesPtr != NULL && |
| 465 | preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) |
| 466 | { |
| 467 | FREEMEM(cctxPtr->lz4CtxPtr); |
| 468 | } |
| 469 | #endif |
| 470 | return result; |
| 471 | } |
| 472 | |
| 473 | |
| 474 | /*-*************************************************** |
| 475 | * Dictionary compression |
| 476 | *****************************************************/ |
| 477 | |
| 478 | struct LZ4F_CDict_s { |
| 479 | void* dictContent; |
| 480 | LZ4_stream_t* fastCtx; |
| 481 | LZ4_streamHC_t* HCCtx; |
| 482 | }; /* typedef'd to LZ4F_CDict within lz4frame_static.h */ |
| 483 | |
| 484 | /*! LZ4F_createCDict() : |
| 485 | * When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once. |
| 486 | * LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay. |
| 487 | * LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. |
| 488 | * `dictBuffer` can be released after LZ4F_CDict creation, since its content is copied within CDict |
| 489 | * @return : digested dictionary for compression, or NULL if failed */ |
| 490 | LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize) |
| 491 | { |
| 492 | const char* dictStart = (const char*)dictBuffer; |
| 493 | LZ4F_CDict* cdict = (LZ4F_CDict*) ALLOC(sizeof(*cdict)); |
| 494 | DEBUGLOG(4, "LZ4F_createCDict" ); |
| 495 | if (!cdict) return NULL; |
| 496 | if (dictSize > 64 KB) { |
| 497 | dictStart += dictSize - 64 KB; |
| 498 | dictSize = 64 KB; |
| 499 | } |
| 500 | cdict->dictContent = ALLOC(dictSize); |
| 501 | cdict->fastCtx = LZ4_createStream(); |
| 502 | cdict->HCCtx = LZ4_createStreamHC(); |
| 503 | if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) { |
| 504 | LZ4F_freeCDict(cdict); |
| 505 | return NULL; |
| 506 | } |
| 507 | memcpy(cdict->dictContent, dictStart, dictSize); |
| 508 | LZ4_loadDict (cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize); |
| 509 | LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT); |
| 510 | LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize); |
| 511 | return cdict; |
| 512 | } |
| 513 | |
| 514 | void LZ4F_freeCDict(LZ4F_CDict* cdict) |
| 515 | { |
| 516 | if (cdict==NULL) return; /* support free on NULL */ |
| 517 | FREEMEM(cdict->dictContent); |
| 518 | LZ4_freeStream(cdict->fastCtx); |
| 519 | LZ4_freeStreamHC(cdict->HCCtx); |
| 520 | FREEMEM(cdict); |
| 521 | } |
| 522 | |
| 523 | |
| 524 | /*-********************************* |
| 525 | * Advanced compression functions |
| 526 | ***********************************/ |
| 527 | |
| 528 | /*! LZ4F_createCompressionContext() : |
| 529 | * The first thing to do is to create a compressionContext object, which will be used in all compression operations. |
| 530 | * This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure. |
| 531 | * The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries. |
| 532 | * The function will provide a pointer to an allocated LZ4F_compressionContext_t object. |
| 533 | * If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation. |
| 534 | * Object can release its memory using LZ4F_freeCompressionContext(); |
| 535 | */ |
| 536 | LZ4F_errorCode_t LZ4F_createCompressionContext(LZ4F_compressionContext_t* LZ4F_compressionContextPtr, unsigned version) |
| 537 | { |
| 538 | LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)ALLOC_AND_ZERO(sizeof(LZ4F_cctx_t)); |
| 539 | if (cctxPtr==NULL) return err0r(LZ4F_ERROR_allocation_failed); |
| 540 | |
| 541 | cctxPtr->version = version; |
| 542 | cctxPtr->cStage = 0; /* Next stage : init stream */ |
| 543 | |
| 544 | *LZ4F_compressionContextPtr = (LZ4F_compressionContext_t)cctxPtr; |
| 545 | |
| 546 | return LZ4F_OK_NoError; |
| 547 | } |
| 548 | |
| 549 | |
| 550 | LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_compressionContext_t LZ4F_compressionContext) |
| 551 | { |
| 552 | LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)LZ4F_compressionContext; |
| 553 | |
| 554 | if (cctxPtr != NULL) { /* support free on NULL */ |
| 555 | FREEMEM(cctxPtr->lz4CtxPtr); /* works because LZ4_streamHC_t and LZ4_stream_t are simple POD types */ |
| 556 | FREEMEM(cctxPtr->tmpBuff); |
| 557 | FREEMEM(LZ4F_compressionContext); |
| 558 | } |
| 559 | |
| 560 | return LZ4F_OK_NoError; |
| 561 | } |
| 562 | |
| 563 | |
| 564 | /** |
| 565 | * This function prepares the internal LZ4(HC) stream for a new compression, |
| 566 | * resetting the context and attaching the dictionary, if there is one. |
| 567 | * |
| 568 | * It needs to be called at the beginning of each independent compression |
| 569 | * stream (i.e., at the beginning of a frame in blockLinked mode, or at the |
| 570 | * beginning of each block in blockIndependent mode). |
| 571 | */ |
| 572 | static void LZ4F_initStream(void* ctx, |
| 573 | const LZ4F_CDict* cdict, |
| 574 | int level, |
| 575 | LZ4F_blockMode_t blockMode) { |
| 576 | if (level < LZ4HC_CLEVEL_MIN) { |
| 577 | if (cdict != NULL || blockMode == LZ4F_blockLinked) { |
| 578 | /* In these cases, we will call LZ4_compress_fast_continue(), |
| 579 | * which needs an already reset context. Otherwise, we'll call a |
| 580 | * one-shot API. The non-continued APIs internally perform their own |
| 581 | * resets at the beginning of their calls, where they know what |
| 582 | * tableType they need the context to be in. So in that case this |
| 583 | * would be misguided / wasted work. */ |
| 584 | LZ4_resetStream_fast((LZ4_stream_t*)ctx); |
| 585 | } |
| 586 | LZ4_attach_dictionary((LZ4_stream_t *)ctx, cdict ? cdict->fastCtx : NULL); |
| 587 | } else { |
| 588 | LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level); |
| 589 | LZ4_attach_HC_dictionary((LZ4_streamHC_t *)ctx, cdict ? cdict->HCCtx : NULL); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | |
| 594 | /*! LZ4F_compressBegin_usingCDict() : |
| 595 | * init streaming compression and writes frame header into dstBuffer. |
| 596 | * dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes. |
| 597 | * @return : number of bytes written into dstBuffer for the header |
| 598 | * or an error code (can be tested using LZ4F_isError()) |
| 599 | */ |
| 600 | size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctxPtr, |
| 601 | void* dstBuffer, size_t dstCapacity, |
| 602 | const LZ4F_CDict* cdict, |
| 603 | const LZ4F_preferences_t* preferencesPtr) |
| 604 | { |
| 605 | LZ4F_preferences_t prefNull; |
| 606 | BYTE* const dstStart = (BYTE*)dstBuffer; |
| 607 | BYTE* dstPtr = dstStart; |
| 608 | BYTE* ; |
| 609 | |
| 610 | if (dstCapacity < maxFHSize) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| 611 | MEM_INIT(&prefNull, 0, sizeof(prefNull)); |
| 612 | if (preferencesPtr == NULL) preferencesPtr = &prefNull; |
| 613 | cctxPtr->prefs = *preferencesPtr; |
| 614 | |
| 615 | /* Ctx Management */ |
| 616 | { U16 const ctxTypeID = (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2; |
| 617 | if (cctxPtr->lz4CtxAlloc < ctxTypeID) { |
| 618 | FREEMEM(cctxPtr->lz4CtxPtr); |
| 619 | if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { |
| 620 | cctxPtr->lz4CtxPtr = LZ4_createStream(); |
| 621 | } else { |
| 622 | cctxPtr->lz4CtxPtr = LZ4_createStreamHC(); |
| 623 | } |
| 624 | if (cctxPtr->lz4CtxPtr == NULL) |
| 625 | return err0r(LZ4F_ERROR_allocation_failed); |
| 626 | cctxPtr->lz4CtxAlloc = ctxTypeID; |
| 627 | cctxPtr->lz4CtxState = ctxTypeID; |
| 628 | } else if (cctxPtr->lz4CtxState != ctxTypeID) { |
| 629 | /* otherwise, a sufficient buffer is allocated, but we need to |
| 630 | * reset it to the correct context type */ |
| 631 | if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { |
| 632 | LZ4_initStream((LZ4_stream_t *) cctxPtr->lz4CtxPtr, sizeof (LZ4_stream_t)); |
| 633 | } else { |
| 634 | LZ4_initStreamHC((LZ4_streamHC_t *) cctxPtr->lz4CtxPtr, sizeof(LZ4_streamHC_t)); |
| 635 | LZ4_setCompressionLevel((LZ4_streamHC_t *) cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel); |
| 636 | } |
| 637 | cctxPtr->lz4CtxState = ctxTypeID; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | /* Buffer Management */ |
| 642 | if (cctxPtr->prefs.frameInfo.blockSizeID == 0) |
| 643 | cctxPtr->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; |
| 644 | cctxPtr->maxBlockSize = LZ4F_getBlockSize(cctxPtr->prefs.frameInfo.blockSizeID); |
| 645 | |
| 646 | { size_t const requiredBuffSize = preferencesPtr->autoFlush ? |
| 647 | ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 64 KB : 0) : /* only needs past data up to window size */ |
| 648 | cctxPtr->maxBlockSize + ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 128 KB : 0); |
| 649 | |
| 650 | if (cctxPtr->maxBufferSize < requiredBuffSize) { |
| 651 | cctxPtr->maxBufferSize = 0; |
| 652 | FREEMEM(cctxPtr->tmpBuff); |
| 653 | cctxPtr->tmpBuff = (BYTE*)ALLOC_AND_ZERO(requiredBuffSize); |
| 654 | if (cctxPtr->tmpBuff == NULL) return err0r(LZ4F_ERROR_allocation_failed); |
| 655 | cctxPtr->maxBufferSize = requiredBuffSize; |
| 656 | } } |
| 657 | cctxPtr->tmpIn = cctxPtr->tmpBuff; |
| 658 | cctxPtr->tmpInSize = 0; |
| 659 | (void)XXH32_reset(&(cctxPtr->xxh), 0); |
| 660 | |
| 661 | /* context init */ |
| 662 | cctxPtr->cdict = cdict; |
| 663 | if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) { |
| 664 | /* frame init only for blockLinked : blockIndependent will be init at each block */ |
| 665 | LZ4F_initStream(cctxPtr->lz4CtxPtr, cdict, cctxPtr->prefs.compressionLevel, LZ4F_blockLinked); |
| 666 | } |
| 667 | if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) { |
| 668 | LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed); |
| 669 | } |
| 670 | |
| 671 | /* Magic Number */ |
| 672 | LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER); |
| 673 | dstPtr += 4; |
| 674 | headerStart = dstPtr; |
| 675 | |
| 676 | /* FLG Byte */ |
| 677 | *dstPtr++ = (BYTE)(((1 & _2BITS) << 6) /* Version('01') */ |
| 678 | + ((cctxPtr->prefs.frameInfo.blockMode & _1BIT ) << 5) |
| 679 | + ((cctxPtr->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4) |
| 680 | + ((unsigned)(cctxPtr->prefs.frameInfo.contentSize > 0) << 3) |
| 681 | + ((cctxPtr->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2) |
| 682 | + (cctxPtr->prefs.frameInfo.dictID > 0) ); |
| 683 | /* BD Byte */ |
| 684 | *dstPtr++ = (BYTE)((cctxPtr->prefs.frameInfo.blockSizeID & _3BITS) << 4); |
| 685 | /* Optional Frame content size field */ |
| 686 | if (cctxPtr->prefs.frameInfo.contentSize) { |
| 687 | LZ4F_writeLE64(dstPtr, cctxPtr->prefs.frameInfo.contentSize); |
| 688 | dstPtr += 8; |
| 689 | cctxPtr->totalInSize = 0; |
| 690 | } |
| 691 | /* Optional dictionary ID field */ |
| 692 | if (cctxPtr->prefs.frameInfo.dictID) { |
| 693 | LZ4F_writeLE32(dstPtr, cctxPtr->prefs.frameInfo.dictID); |
| 694 | dstPtr += 4; |
| 695 | } |
| 696 | /* Header CRC Byte */ |
| 697 | *dstPtr = LZ4F_headerChecksum(headerStart, (size_t)(dstPtr - headerStart)); |
| 698 | dstPtr++; |
| 699 | |
| 700 | cctxPtr->cStage = 1; /* header written, now request input data block */ |
| 701 | return (size_t)(dstPtr - dstStart); |
| 702 | } |
| 703 | |
| 704 | |
| 705 | /*! LZ4F_compressBegin() : |
| 706 | * init streaming compression and writes frame header into dstBuffer. |
| 707 | * dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes. |
| 708 | * preferencesPtr can be NULL, in which case default parameters are selected. |
| 709 | * @return : number of bytes written into dstBuffer for the header |
| 710 | * or an error code (can be tested using LZ4F_isError()) |
| 711 | */ |
| 712 | size_t LZ4F_compressBegin(LZ4F_cctx* cctxPtr, |
| 713 | void* dstBuffer, size_t dstCapacity, |
| 714 | const LZ4F_preferences_t* preferencesPtr) |
| 715 | { |
| 716 | return LZ4F_compressBegin_usingCDict(cctxPtr, dstBuffer, dstCapacity, |
| 717 | NULL, preferencesPtr); |
| 718 | } |
| 719 | |
| 720 | |
| 721 | /* LZ4F_compressBound() : |
| 722 | * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario. |
| 723 | * LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario. |
| 724 | * This function cannot fail. |
| 725 | */ |
| 726 | size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) |
| 727 | { |
| 728 | return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1); |
| 729 | } |
| 730 | |
| 731 | |
| 732 | typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict); |
| 733 | |
| 734 | |
| 735 | /*! LZ4F_makeBlock(): |
| 736 | * compress a single block, add header and optional checksum. |
| 737 | * assumption : dst buffer capacity is >= BHSize + srcSize + crcSize |
| 738 | */ |
| 739 | static size_t LZ4F_makeBlock(void* dst, |
| 740 | const void* src, size_t srcSize, |
| 741 | compressFunc_t compress, void* lz4ctx, int level, |
| 742 | const LZ4F_CDict* cdict, |
| 743 | LZ4F_blockChecksum_t crcFlag) |
| 744 | { |
| 745 | BYTE* const cSizePtr = (BYTE*)dst; |
| 746 | U32 cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+BHSize), |
| 747 | (int)(srcSize), (int)(srcSize-1), |
| 748 | level, cdict); |
| 749 | if (cSize == 0) { /* compression failed */ |
| 750 | cSize = (U32)srcSize; |
| 751 | LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG); |
| 752 | memcpy(cSizePtr+BHSize, src, srcSize); |
| 753 | } else { |
| 754 | LZ4F_writeLE32(cSizePtr, cSize); |
| 755 | } |
| 756 | if (crcFlag) { |
| 757 | U32 const crc32 = XXH32(cSizePtr+BHSize, cSize, 0); /* checksum of compressed data */ |
| 758 | LZ4F_writeLE32(cSizePtr+BHSize+cSize, crc32); |
| 759 | } |
| 760 | return BHSize + cSize + ((U32)crcFlag)*BFSize; |
| 761 | } |
| 762 | |
| 763 | |
| 764 | static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| 765 | { |
| 766 | int const acceleration = (level < 0) ? -level + 1 : 1; |
| 767 | LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); |
| 768 | if (cdict) { |
| 769 | return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); |
| 770 | } else { |
| 771 | return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| 776 | { |
| 777 | int const acceleration = (level < 0) ? -level + 1 : 1; |
| 778 | (void)cdict; /* init once at beginning of frame */ |
| 779 | return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); |
| 780 | } |
| 781 | |
| 782 | static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| 783 | { |
| 784 | LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); |
| 785 | if (cdict) { |
| 786 | return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); |
| 787 | } |
| 788 | return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level); |
| 789 | } |
| 790 | |
| 791 | static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| 792 | { |
| 793 | (void)level; (void)cdict; /* init once at beginning of frame */ |
| 794 | return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); |
| 795 | } |
| 796 | |
| 797 | static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level) |
| 798 | { |
| 799 | if (level < LZ4HC_CLEVEL_MIN) { |
| 800 | if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock; |
| 801 | return LZ4F_compressBlock_continue; |
| 802 | } |
| 803 | if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC; |
| 804 | return LZ4F_compressBlockHC_continue; |
| 805 | } |
| 806 | |
| 807 | static int LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr) |
| 808 | { |
| 809 | if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) |
| 810 | return LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); |
| 811 | return LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); |
| 812 | } |
| 813 | |
| 814 | typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus; |
| 815 | |
| 816 | /*! LZ4F_compressUpdate() : |
| 817 | * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary. |
| 818 | * dstBuffer MUST be >= LZ4F_compressBound(srcSize, preferencesPtr). |
| 819 | * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
| 820 | * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered. |
| 821 | * or an error code if it fails (which can be tested using LZ4F_isError()) |
| 822 | */ |
| 823 | size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr, |
| 824 | void* dstBuffer, size_t dstCapacity, |
| 825 | const void* srcBuffer, size_t srcSize, |
| 826 | const LZ4F_compressOptions_t* compressOptionsPtr) |
| 827 | { |
| 828 | LZ4F_compressOptions_t cOptionsNull; |
| 829 | size_t const blockSize = cctxPtr->maxBlockSize; |
| 830 | const BYTE* srcPtr = (const BYTE*)srcBuffer; |
| 831 | const BYTE* const srcEnd = srcPtr + srcSize; |
| 832 | BYTE* const dstStart = (BYTE*)dstBuffer; |
| 833 | BYTE* dstPtr = dstStart; |
| 834 | LZ4F_lastBlockStatus lastBlockCompressed = notDone; |
| 835 | compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel); |
| 836 | |
| 837 | DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)" , srcSize); |
| 838 | |
| 839 | if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC); |
| 840 | if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize)) |
| 841 | return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| 842 | MEM_INIT(&cOptionsNull, 0, sizeof(cOptionsNull)); |
| 843 | if (compressOptionsPtr == NULL) compressOptionsPtr = &cOptionsNull; |
| 844 | |
| 845 | /* complete tmp buffer */ |
| 846 | if (cctxPtr->tmpInSize > 0) { /* some data already within tmp buffer */ |
| 847 | size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize; |
| 848 | if (sizeToCopy > srcSize) { |
| 849 | /* add src to tmpIn buffer */ |
| 850 | memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize); |
| 851 | srcPtr = srcEnd; |
| 852 | cctxPtr->tmpInSize += srcSize; |
| 853 | /* still needs some CRC */ |
| 854 | } else { |
| 855 | /* complete tmpIn block and then compress it */ |
| 856 | lastBlockCompressed = fromTmpBuffer; |
| 857 | memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy); |
| 858 | srcPtr += sizeToCopy; |
| 859 | |
| 860 | dstPtr += LZ4F_makeBlock(dstPtr, |
| 861 | cctxPtr->tmpIn, blockSize, |
| 862 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| 863 | cctxPtr->cdict, |
| 864 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| 865 | |
| 866 | if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize; |
| 867 | cctxPtr->tmpInSize = 0; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | while ((size_t)(srcEnd - srcPtr) >= blockSize) { |
| 872 | /* compress full blocks */ |
| 873 | lastBlockCompressed = fromSrcBuffer; |
| 874 | dstPtr += LZ4F_makeBlock(dstPtr, |
| 875 | srcPtr, blockSize, |
| 876 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| 877 | cctxPtr->cdict, |
| 878 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| 879 | srcPtr += blockSize; |
| 880 | } |
| 881 | |
| 882 | if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) { |
| 883 | /* compress remaining input < blockSize */ |
| 884 | lastBlockCompressed = fromSrcBuffer; |
| 885 | dstPtr += LZ4F_makeBlock(dstPtr, |
| 886 | srcPtr, (size_t)(srcEnd - srcPtr), |
| 887 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| 888 | cctxPtr->cdict, |
| 889 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| 890 | srcPtr = srcEnd; |
| 891 | } |
| 892 | |
| 893 | /* preserve dictionary if necessary */ |
| 894 | if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) { |
| 895 | if (compressOptionsPtr->stableSrc) { |
| 896 | cctxPtr->tmpIn = cctxPtr->tmpBuff; |
| 897 | } else { |
| 898 | int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
| 899 | if (realDictSize==0) return err0r(LZ4F_ERROR_GENERIC); |
| 900 | cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | /* keep tmpIn within limits */ |
| 905 | if ((cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize) /* necessarily LZ4F_blockLinked && lastBlockCompressed==fromTmpBuffer */ |
| 906 | && !(cctxPtr->prefs.autoFlush)) |
| 907 | { |
| 908 | int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
| 909 | cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
| 910 | } |
| 911 | |
| 912 | /* some input data left, necessarily < blockSize */ |
| 913 | if (srcPtr < srcEnd) { |
| 914 | /* fill tmp buffer */ |
| 915 | size_t const sizeToCopy = (size_t)(srcEnd - srcPtr); |
| 916 | memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy); |
| 917 | cctxPtr->tmpInSize = sizeToCopy; |
| 918 | } |
| 919 | |
| 920 | if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) |
| 921 | (void)XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize); |
| 922 | |
| 923 | cctxPtr->totalInSize += srcSize; |
| 924 | return (size_t)(dstPtr - dstStart); |
| 925 | } |
| 926 | |
| 927 | |
| 928 | /*! LZ4F_flush() : |
| 929 | * When compressed data must be sent immediately, without waiting for a block to be filled, |
| 930 | * invoke LZ4_flush(), which will immediately compress any remaining data stored within LZ4F_cctx. |
| 931 | * The result of the function is the number of bytes written into dstBuffer. |
| 932 | * It can be zero, this means there was no data left within LZ4F_cctx. |
| 933 | * The function outputs an error code if it fails (can be tested using LZ4F_isError()) |
| 934 | * LZ4F_compressOptions_t* is optional. NULL is a valid argument. |
| 935 | */ |
| 936 | size_t LZ4F_flush(LZ4F_cctx* cctxPtr, |
| 937 | void* dstBuffer, size_t dstCapacity, |
| 938 | const LZ4F_compressOptions_t* compressOptionsPtr) |
| 939 | { |
| 940 | BYTE* const dstStart = (BYTE*)dstBuffer; |
| 941 | BYTE* dstPtr = dstStart; |
| 942 | compressFunc_t compress; |
| 943 | |
| 944 | if (cctxPtr->tmpInSize == 0) return 0; /* nothing to flush */ |
| 945 | if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC); |
| 946 | if (dstCapacity < (cctxPtr->tmpInSize + BHSize + BFSize)) |
| 947 | return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| 948 | (void)compressOptionsPtr; /* not yet useful */ |
| 949 | |
| 950 | /* select compression function */ |
| 951 | compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel); |
| 952 | |
| 953 | /* compress tmp buffer */ |
| 954 | dstPtr += LZ4F_makeBlock(dstPtr, |
| 955 | cctxPtr->tmpIn, cctxPtr->tmpInSize, |
| 956 | compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| 957 | cctxPtr->cdict, |
| 958 | cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| 959 | assert(((void)"flush overflows dstBuffer!" , (size_t)(dstPtr - dstStart) <= dstCapacity)); |
| 960 | |
| 961 | if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) |
| 962 | cctxPtr->tmpIn += cctxPtr->tmpInSize; |
| 963 | cctxPtr->tmpInSize = 0; |
| 964 | |
| 965 | /* keep tmpIn within limits */ |
| 966 | if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) { /* necessarily LZ4F_blockLinked */ |
| 967 | int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
| 968 | cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
| 969 | } |
| 970 | |
| 971 | return (size_t)(dstPtr - dstStart); |
| 972 | } |
| 973 | |
| 974 | |
| 975 | /*! LZ4F_compressEnd() : |
| 976 | * When you want to properly finish the compressed frame, just call LZ4F_compressEnd(). |
| 977 | * It will flush whatever data remained within compressionContext (like LZ4_flush()) |
| 978 | * but also properly finalize the frame, with an endMark and an (optional) checksum. |
| 979 | * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
| 980 | * @return: the number of bytes written into dstBuffer (necessarily >= 4 (endMark size)) |
| 981 | * or an error code if it fails (can be tested using LZ4F_isError()) |
| 982 | * The context can then be used again to compress a new frame, starting with LZ4F_compressBegin(). |
| 983 | */ |
| 984 | size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr, |
| 985 | void* dstBuffer, size_t dstCapacity, |
| 986 | const LZ4F_compressOptions_t* compressOptionsPtr) |
| 987 | { |
| 988 | BYTE* const dstStart = (BYTE*)dstBuffer; |
| 989 | BYTE* dstPtr = dstStart; |
| 990 | |
| 991 | size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr); |
| 992 | if (LZ4F_isError(flushSize)) return flushSize; |
| 993 | dstPtr += flushSize; |
| 994 | |
| 995 | assert(flushSize <= dstCapacity); |
| 996 | dstCapacity -= flushSize; |
| 997 | |
| 998 | if (dstCapacity < 4) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| 999 | LZ4F_writeLE32(dstPtr, 0); |
| 1000 | dstPtr += 4; /* endMark */ |
| 1001 | |
| 1002 | if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) { |
| 1003 | U32 const xxh = XXH32_digest(&(cctxPtr->xxh)); |
| 1004 | if (dstCapacity < 8) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| 1005 | LZ4F_writeLE32(dstPtr, xxh); |
| 1006 | dstPtr+=4; /* content Checksum */ |
| 1007 | } |
| 1008 | |
| 1009 | cctxPtr->cStage = 0; /* state is now re-usable (with identical preferences) */ |
| 1010 | cctxPtr->maxBufferSize = 0; /* reuse HC context */ |
| 1011 | |
| 1012 | if (cctxPtr->prefs.frameInfo.contentSize) { |
| 1013 | if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize) |
| 1014 | return err0r(LZ4F_ERROR_frameSize_wrong); |
| 1015 | } |
| 1016 | |
| 1017 | return (size_t)(dstPtr - dstStart); |
| 1018 | } |
| 1019 | |
| 1020 | |
| 1021 | /*-*************************************************** |
| 1022 | * Frame Decompression |
| 1023 | *****************************************************/ |
| 1024 | |
| 1025 | typedef enum { |
| 1026 | =0, , |
| 1027 | dstage_init, |
| 1028 | , , |
| 1029 | dstage_copyDirect, dstage_getBlockChecksum, |
| 1030 | dstage_getCBlock, dstage_storeCBlock, |
| 1031 | dstage_flushOut, |
| 1032 | dstage_getSuffix, dstage_storeSuffix, |
| 1033 | dstage_getSFrameSize, dstage_storeSFrameSize, |
| 1034 | dstage_skipSkippable |
| 1035 | } dStage_t; |
| 1036 | |
| 1037 | struct LZ4F_dctx_s { |
| 1038 | LZ4F_frameInfo_t frameInfo; |
| 1039 | U32 version; |
| 1040 | dStage_t dStage; |
| 1041 | U64 frameRemainingSize; |
| 1042 | size_t maxBlockSize; |
| 1043 | size_t maxBufferSize; |
| 1044 | BYTE* tmpIn; |
| 1045 | size_t tmpInSize; |
| 1046 | size_t tmpInTarget; |
| 1047 | BYTE* tmpOutBuffer; |
| 1048 | const BYTE* dict; |
| 1049 | size_t dictSize; |
| 1050 | BYTE* tmpOut; |
| 1051 | size_t tmpOutSize; |
| 1052 | size_t tmpOutStart; |
| 1053 | XXH32_state_t xxh; |
| 1054 | XXH32_state_t blockChecksum; |
| 1055 | BYTE [LZ4F_HEADER_SIZE_MAX]; |
| 1056 | }; /* typedef'd to LZ4F_dctx in lz4frame.h */ |
| 1057 | |
| 1058 | |
| 1059 | /*! LZ4F_createDecompressionContext() : |
| 1060 | * Create a decompressionContext object, which will track all decompression operations. |
| 1061 | * Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object. |
| 1062 | * Object can later be released using LZ4F_freeDecompressionContext(). |
| 1063 | * @return : if != 0, there was an error during context creation. |
| 1064 | */ |
| 1065 | LZ4F_errorCode_t LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber) |
| 1066 | { |
| 1067 | LZ4F_dctx* const dctx = (LZ4F_dctx*)ALLOC_AND_ZERO(sizeof(LZ4F_dctx)); |
| 1068 | if (dctx == NULL) { /* failed allocation */ |
| 1069 | *LZ4F_decompressionContextPtr = NULL; |
| 1070 | return err0r(LZ4F_ERROR_allocation_failed); |
| 1071 | } |
| 1072 | |
| 1073 | dctx->version = versionNumber; |
| 1074 | *LZ4F_decompressionContextPtr = dctx; |
| 1075 | return LZ4F_OK_NoError; |
| 1076 | } |
| 1077 | |
| 1078 | LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx) |
| 1079 | { |
| 1080 | LZ4F_errorCode_t result = LZ4F_OK_NoError; |
| 1081 | if (dctx != NULL) { /* can accept NULL input, like free() */ |
| 1082 | result = (LZ4F_errorCode_t)dctx->dStage; |
| 1083 | FREEMEM(dctx->tmpIn); |
| 1084 | FREEMEM(dctx->tmpOutBuffer); |
| 1085 | FREEMEM(dctx); |
| 1086 | } |
| 1087 | return result; |
| 1088 | } |
| 1089 | |
| 1090 | |
| 1091 | /*==--- Streaming Decompression operations ---==*/ |
| 1092 | |
| 1093 | void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx) |
| 1094 | { |
| 1095 | dctx->dStage = dstage_getFrameHeader; |
| 1096 | dctx->dict = NULL; |
| 1097 | dctx->dictSize = 0; |
| 1098 | } |
| 1099 | |
| 1100 | |
| 1101 | /*! LZ4F_decodeHeader() : |
| 1102 | * input : `src` points at the **beginning of the frame** |
| 1103 | * output : set internal values of dctx, such as |
| 1104 | * dctx->frameInfo and dctx->dStage. |
| 1105 | * Also allocates internal buffers. |
| 1106 | * @return : nb Bytes read from src (necessarily <= srcSize) |
| 1107 | * or an error code (testable with LZ4F_isError()) |
| 1108 | */ |
| 1109 | static size_t (LZ4F_dctx* dctx, const void* src, size_t srcSize) |
| 1110 | { |
| 1111 | unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID; |
| 1112 | size_t ; |
| 1113 | const BYTE* srcPtr = (const BYTE*)src; |
| 1114 | |
| 1115 | /* need to decode header to get frameInfo */ |
| 1116 | if (srcSize < minFHSize) return err0r(LZ4F_ERROR_frameHeader_incomplete); /* minimal frame header size */ |
| 1117 | MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo)); |
| 1118 | |
| 1119 | /* special case : skippable frames */ |
| 1120 | if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) { |
| 1121 | dctx->frameInfo.frameType = LZ4F_skippableFrame; |
| 1122 | if (src == (void*)(dctx->header)) { |
| 1123 | dctx->tmpInSize = srcSize; |
| 1124 | dctx->tmpInTarget = 8; |
| 1125 | dctx->dStage = dstage_storeSFrameSize; |
| 1126 | return srcSize; |
| 1127 | } else { |
| 1128 | dctx->dStage = dstage_getSFrameSize; |
| 1129 | return 4; |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | /* control magic number */ |
| 1134 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| 1135 | if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER) |
| 1136 | return err0r(LZ4F_ERROR_frameType_unknown); |
| 1137 | #endif |
| 1138 | dctx->frameInfo.frameType = LZ4F_frame; |
| 1139 | |
| 1140 | /* Flags */ |
| 1141 | { U32 const FLG = srcPtr[4]; |
| 1142 | U32 const version = (FLG>>6) & _2BITS; |
| 1143 | blockChecksumFlag = (FLG>>4) & _1BIT; |
| 1144 | blockMode = (FLG>>5) & _1BIT; |
| 1145 | contentSizeFlag = (FLG>>3) & _1BIT; |
| 1146 | contentChecksumFlag = (FLG>>2) & _1BIT; |
| 1147 | dictIDFlag = FLG & _1BIT; |
| 1148 | /* validate */ |
| 1149 | if (((FLG>>1)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */ |
| 1150 | if (version != 1) return err0r(LZ4F_ERROR_headerVersion_wrong); /* Version Number, only supported value */ |
| 1151 | } |
| 1152 | |
| 1153 | /* Frame Header Size */ |
| 1154 | frameHeaderSize = minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0); |
| 1155 | |
| 1156 | if (srcSize < frameHeaderSize) { |
| 1157 | /* not enough input to fully decode frame header */ |
| 1158 | if (srcPtr != dctx->header) |
| 1159 | memcpy(dctx->header, srcPtr, srcSize); |
| 1160 | dctx->tmpInSize = srcSize; |
| 1161 | dctx->tmpInTarget = frameHeaderSize; |
| 1162 | dctx->dStage = dstage_storeFrameHeader; |
| 1163 | return srcSize; |
| 1164 | } |
| 1165 | |
| 1166 | { U32 const BD = srcPtr[5]; |
| 1167 | blockSizeID = (BD>>4) & _3BITS; |
| 1168 | /* validate */ |
| 1169 | if (((BD>>7)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */ |
| 1170 | if (blockSizeID < 4) return err0r(LZ4F_ERROR_maxBlockSize_invalid); /* 4-7 only supported values for the time being */ |
| 1171 | if (((BD>>0)&_4BITS) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bits */ |
| 1172 | } |
| 1173 | |
| 1174 | /* check header */ |
| 1175 | assert(frameHeaderSize > 5); |
| 1176 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| 1177 | { BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5); |
| 1178 | if (HC != srcPtr[frameHeaderSize-1]) |
| 1179 | return err0r(LZ4F_ERROR_headerChecksum_invalid); |
| 1180 | } |
| 1181 | #endif |
| 1182 | |
| 1183 | /* save */ |
| 1184 | dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode; |
| 1185 | dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag; |
| 1186 | dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag; |
| 1187 | dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID; |
| 1188 | dctx->maxBlockSize = LZ4F_getBlockSize(blockSizeID); |
| 1189 | if (contentSizeFlag) |
| 1190 | dctx->frameRemainingSize = |
| 1191 | dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6); |
| 1192 | if (dictIDFlag) |
| 1193 | dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5); |
| 1194 | |
| 1195 | dctx->dStage = dstage_init; |
| 1196 | |
| 1197 | return frameHeaderSize; |
| 1198 | } |
| 1199 | |
| 1200 | |
| 1201 | /*! LZ4F_headerSize() : |
| 1202 | * @return : size of frame header |
| 1203 | * or an error code, which can be tested using LZ4F_isError() |
| 1204 | */ |
| 1205 | size_t (const void* src, size_t srcSize) |
| 1206 | { |
| 1207 | if (src == NULL) return err0r(LZ4F_ERROR_srcPtr_wrong); |
| 1208 | |
| 1209 | /* minimal srcSize to determine header size */ |
| 1210 | if (srcSize < LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH) |
| 1211 | return err0r(LZ4F_ERROR_frameHeader_incomplete); |
| 1212 | |
| 1213 | /* special case : skippable frames */ |
| 1214 | if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) |
| 1215 | return 8; |
| 1216 | |
| 1217 | /* control magic number */ |
| 1218 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| 1219 | if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER) |
| 1220 | return err0r(LZ4F_ERROR_frameType_unknown); |
| 1221 | #endif |
| 1222 | |
| 1223 | /* Frame Header Size */ |
| 1224 | { BYTE const FLG = ((const BYTE*)src)[4]; |
| 1225 | U32 const contentSizeFlag = (FLG>>3) & _1BIT; |
| 1226 | U32 const dictIDFlag = FLG & _1BIT; |
| 1227 | return minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0); |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | /*! LZ4F_getFrameInfo() : |
| 1232 | * This function extracts frame parameters (max blockSize, frame checksum, etc.). |
| 1233 | * Usage is optional. Objective is to provide relevant information for allocation purposes. |
| 1234 | * This function works in 2 situations : |
| 1235 | * - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process. |
| 1236 | * Amount of input data provided must be large enough to successfully decode the frame header. |
| 1237 | * A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum. |
| 1238 | * - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx. |
| 1239 | * The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value). |
| 1240 | * Decompression must resume from (srcBuffer + *srcSizePtr). |
| 1241 | * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call, |
| 1242 | * or an error code which can be tested using LZ4F_isError() |
| 1243 | * note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped. |
| 1244 | * note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure. |
| 1245 | */ |
| 1246 | LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx, |
| 1247 | LZ4F_frameInfo_t* frameInfoPtr, |
| 1248 | const void* srcBuffer, size_t* srcSizePtr) |
| 1249 | { |
| 1250 | LZ4F_STATIC_ASSERT(dstage_getFrameHeader < dstage_storeFrameHeader); |
| 1251 | if (dctx->dStage > dstage_storeFrameHeader) { |
| 1252 | /* frameInfo already decoded */ |
| 1253 | size_t o=0, i=0; |
| 1254 | *srcSizePtr = 0; |
| 1255 | *frameInfoPtr = dctx->frameInfo; |
| 1256 | /* returns : recommended nb of bytes for LZ4F_decompress() */ |
| 1257 | return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL); |
| 1258 | } else { |
| 1259 | if (dctx->dStage == dstage_storeFrameHeader) { |
| 1260 | /* frame decoding already started, in the middle of header => automatic fail */ |
| 1261 | *srcSizePtr = 0; |
| 1262 | return err0r(LZ4F_ERROR_frameDecoding_alreadyStarted); |
| 1263 | } else { |
| 1264 | size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr); |
| 1265 | if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; } |
| 1266 | if (*srcSizePtr < hSize) { |
| 1267 | *srcSizePtr=0; |
| 1268 | return err0r(LZ4F_ERROR_frameHeader_incomplete); |
| 1269 | } |
| 1270 | |
| 1271 | { size_t decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize); |
| 1272 | if (LZ4F_isError(decodeResult)) { |
| 1273 | *srcSizePtr = 0; |
| 1274 | } else { |
| 1275 | *srcSizePtr = decodeResult; |
| 1276 | decodeResult = BHSize; /* block header size */ |
| 1277 | } |
| 1278 | *frameInfoPtr = dctx->frameInfo; |
| 1279 | return decodeResult; |
| 1280 | } } } |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | /* LZ4F_updateDict() : |
| 1285 | * only used for LZ4F_blockLinked mode */ |
| 1286 | static void LZ4F_updateDict(LZ4F_dctx* dctx, |
| 1287 | const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart, |
| 1288 | unsigned withinTmp) |
| 1289 | { |
| 1290 | if (dctx->dictSize==0) |
| 1291 | dctx->dict = (const BYTE*)dstPtr; /* priority to dictionary continuity */ |
| 1292 | |
| 1293 | if (dctx->dict + dctx->dictSize == dstPtr) { /* dictionary continuity, directly within dstBuffer */ |
| 1294 | dctx->dictSize += dstSize; |
| 1295 | return; |
| 1296 | } |
| 1297 | |
| 1298 | assert(dstPtr >= dstBufferStart); |
| 1299 | if ((size_t)(dstPtr - dstBufferStart) + dstSize >= 64 KB) { /* history in dstBuffer becomes large enough to become dictionary */ |
| 1300 | dctx->dict = (const BYTE*)dstBufferStart; |
| 1301 | dctx->dictSize = (size_t)(dstPtr - dstBufferStart) + dstSize; |
| 1302 | return; |
| 1303 | } |
| 1304 | |
| 1305 | assert(dstSize < 64 KB); /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */ |
| 1306 | |
| 1307 | /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOut */ |
| 1308 | |
| 1309 | if ((withinTmp) && (dctx->dict == dctx->tmpOutBuffer)) { /* continue history within tmpOutBuffer */ |
| 1310 | /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */ |
| 1311 | assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart); |
| 1312 | dctx->dictSize += dstSize; |
| 1313 | return; |
| 1314 | } |
| 1315 | |
| 1316 | if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */ |
| 1317 | size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer); |
| 1318 | size_t copySize = 64 KB - dctx->tmpOutSize; |
| 1319 | const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; |
| 1320 | if (dctx->tmpOutSize > 64 KB) copySize = 0; |
| 1321 | if (copySize > preserveSize) copySize = preserveSize; |
| 1322 | |
| 1323 | memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); |
| 1324 | |
| 1325 | dctx->dict = dctx->tmpOutBuffer; |
| 1326 | dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize; |
| 1327 | return; |
| 1328 | } |
| 1329 | |
| 1330 | if (dctx->dict == dctx->tmpOutBuffer) { /* copy dst into tmp to complete dict */ |
| 1331 | if (dctx->dictSize + dstSize > dctx->maxBufferSize) { /* tmp buffer not large enough */ |
| 1332 | size_t const preserveSize = 64 KB - dstSize; |
| 1333 | memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); |
| 1334 | dctx->dictSize = preserveSize; |
| 1335 | } |
| 1336 | memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize); |
| 1337 | dctx->dictSize += dstSize; |
| 1338 | return; |
| 1339 | } |
| 1340 | |
| 1341 | /* join dict & dest into tmp */ |
| 1342 | { size_t preserveSize = 64 KB - dstSize; |
| 1343 | if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize; |
| 1344 | memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); |
| 1345 | memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize); |
| 1346 | dctx->dict = dctx->tmpOutBuffer; |
| 1347 | dctx->dictSize = preserveSize + dstSize; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | |
| 1352 | |
| 1353 | /*! LZ4F_decompress() : |
| 1354 | * Call this function repetitively to regenerate compressed data in srcBuffer. |
| 1355 | * The function will attempt to decode up to *srcSizePtr bytes from srcBuffer |
| 1356 | * into dstBuffer of capacity *dstSizePtr. |
| 1357 | * |
| 1358 | * The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value). |
| 1359 | * |
| 1360 | * The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value). |
| 1361 | * If number of bytes read is < number of bytes provided, then decompression operation is not complete. |
| 1362 | * Remaining data will have to be presented again in a subsequent invocation. |
| 1363 | * |
| 1364 | * The function result is an hint of the better srcSize to use for next call to LZ4F_decompress. |
| 1365 | * Schematically, it's the size of the current (or remaining) compressed block + header of next block. |
| 1366 | * Respecting the hint provides a small boost to performance, since it allows less buffer shuffling. |
| 1367 | * Note that this is just a hint, and it's always possible to any srcSize value. |
| 1368 | * When a frame is fully decoded, @return will be 0. |
| 1369 | * If decompression failed, @return is an error code which can be tested using LZ4F_isError(). |
| 1370 | */ |
| 1371 | size_t LZ4F_decompress(LZ4F_dctx* dctx, |
| 1372 | void* dstBuffer, size_t* dstSizePtr, |
| 1373 | const void* srcBuffer, size_t* srcSizePtr, |
| 1374 | const LZ4F_decompressOptions_t* decompressOptionsPtr) |
| 1375 | { |
| 1376 | LZ4F_decompressOptions_t optionsNull; |
| 1377 | const BYTE* const srcStart = (const BYTE*)srcBuffer; |
| 1378 | const BYTE* const srcEnd = srcStart + *srcSizePtr; |
| 1379 | const BYTE* srcPtr = srcStart; |
| 1380 | BYTE* const dstStart = (BYTE*)dstBuffer; |
| 1381 | BYTE* const dstEnd = dstStart + *dstSizePtr; |
| 1382 | BYTE* dstPtr = dstStart; |
| 1383 | const BYTE* selectedIn = NULL; |
| 1384 | unsigned doAnotherStage = 1; |
| 1385 | size_t nextSrcSizeHint = 1; |
| 1386 | |
| 1387 | |
| 1388 | MEM_INIT(&optionsNull, 0, sizeof(optionsNull)); |
| 1389 | if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull; |
| 1390 | *srcSizePtr = 0; |
| 1391 | *dstSizePtr = 0; |
| 1392 | |
| 1393 | /* behaves as a state machine */ |
| 1394 | |
| 1395 | while (doAnotherStage) { |
| 1396 | |
| 1397 | switch(dctx->dStage) |
| 1398 | { |
| 1399 | |
| 1400 | case dstage_getFrameHeader: |
| 1401 | if ((size_t)(srcEnd-srcPtr) >= maxFHSize) { /* enough to decode - shortcut */ |
| 1402 | size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, (size_t)(srcEnd-srcPtr)); /* will update dStage appropriately */ |
| 1403 | if (LZ4F_isError(hSize)) return hSize; |
| 1404 | srcPtr += hSize; |
| 1405 | break; |
| 1406 | } |
| 1407 | dctx->tmpInSize = 0; |
| 1408 | if (srcEnd-srcPtr == 0) return minFHSize; /* 0-size input */ |
| 1409 | dctx->tmpInTarget = minFHSize; /* minimum size to decode header */ |
| 1410 | dctx->dStage = dstage_storeFrameHeader; |
| 1411 | /* fall-through */ |
| 1412 | |
| 1413 | case dstage_storeFrameHeader: |
| 1414 | { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr)); |
| 1415 | memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
| 1416 | dctx->tmpInSize += sizeToCopy; |
| 1417 | srcPtr += sizeToCopy; |
| 1418 | } |
| 1419 | if (dctx->tmpInSize < dctx->tmpInTarget) { |
| 1420 | nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize; /* rest of header + nextBlockHeader */ |
| 1421 | doAnotherStage = 0; /* not enough src data, ask for some more */ |
| 1422 | break; |
| 1423 | } |
| 1424 | { size_t const hSize = LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget); /* will update dStage appropriately */ |
| 1425 | if (LZ4F_isError(hSize)) return hSize; |
| 1426 | } |
| 1427 | break; |
| 1428 | |
| 1429 | case dstage_init: |
| 1430 | if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_reset(&(dctx->xxh), 0); |
| 1431 | /* internal buffers allocation */ |
| 1432 | { size_t const bufferNeeded = dctx->maxBlockSize |
| 1433 | + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) ? 128 KB : 0); |
| 1434 | if (bufferNeeded > dctx->maxBufferSize) { /* tmp buffers too small */ |
| 1435 | dctx->maxBufferSize = 0; /* ensure allocation will be re-attempted on next entry*/ |
| 1436 | FREEMEM(dctx->tmpIn); |
| 1437 | dctx->tmpIn = (BYTE*)ALLOC(dctx->maxBlockSize + BFSize /* block checksum */); |
| 1438 | if (dctx->tmpIn == NULL) |
| 1439 | return err0r(LZ4F_ERROR_allocation_failed); |
| 1440 | FREEMEM(dctx->tmpOutBuffer); |
| 1441 | dctx->tmpOutBuffer= (BYTE*)ALLOC(bufferNeeded); |
| 1442 | if (dctx->tmpOutBuffer== NULL) |
| 1443 | return err0r(LZ4F_ERROR_allocation_failed); |
| 1444 | dctx->maxBufferSize = bufferNeeded; |
| 1445 | } } |
| 1446 | dctx->tmpInSize = 0; |
| 1447 | dctx->tmpInTarget = 0; |
| 1448 | dctx->tmpOut = dctx->tmpOutBuffer; |
| 1449 | dctx->tmpOutStart = 0; |
| 1450 | dctx->tmpOutSize = 0; |
| 1451 | |
| 1452 | dctx->dStage = dstage_getBlockHeader; |
| 1453 | /* fall-through */ |
| 1454 | |
| 1455 | case dstage_getBlockHeader: |
| 1456 | if ((size_t)(srcEnd - srcPtr) >= BHSize) { |
| 1457 | selectedIn = srcPtr; |
| 1458 | srcPtr += BHSize; |
| 1459 | } else { |
| 1460 | /* not enough input to read cBlockSize field */ |
| 1461 | dctx->tmpInSize = 0; |
| 1462 | dctx->dStage = dstage_storeBlockHeader; |
| 1463 | } |
| 1464 | |
| 1465 | if (dctx->dStage == dstage_storeBlockHeader) /* can be skipped */ |
| 1466 | case dstage_storeBlockHeader: |
| 1467 | { size_t const remainingInput = (size_t)(srcEnd - srcPtr); |
| 1468 | size_t const wantedData = BHSize - dctx->tmpInSize; |
| 1469 | size_t const sizeToCopy = MIN(wantedData, remainingInput); |
| 1470 | memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
| 1471 | srcPtr += sizeToCopy; |
| 1472 | dctx->tmpInSize += sizeToCopy; |
| 1473 | |
| 1474 | if (dctx->tmpInSize < BHSize) { /* not enough input for cBlockSize */ |
| 1475 | nextSrcSizeHint = BHSize - dctx->tmpInSize; |
| 1476 | doAnotherStage = 0; |
| 1477 | break; |
| 1478 | } |
| 1479 | selectedIn = dctx->tmpIn; |
| 1480 | } /* if (dctx->dStage == dstage_storeBlockHeader) */ |
| 1481 | |
| 1482 | /* decode block header */ |
| 1483 | { size_t const nextCBlockSize = LZ4F_readLE32(selectedIn) & 0x7FFFFFFFU; |
| 1484 | size_t const crcSize = dctx->frameInfo.blockChecksumFlag * BFSize; |
| 1485 | if (nextCBlockSize==0) { /* frameEnd signal, no more block */ |
| 1486 | dctx->dStage = dstage_getSuffix; |
| 1487 | break; |
| 1488 | } |
| 1489 | if (nextCBlockSize > dctx->maxBlockSize) |
| 1490 | return err0r(LZ4F_ERROR_maxBlockSize_invalid); |
| 1491 | if (LZ4F_readLE32(selectedIn) & LZ4F_BLOCKUNCOMPRESSED_FLAG) { |
| 1492 | /* next block is uncompressed */ |
| 1493 | dctx->tmpInTarget = nextCBlockSize; |
| 1494 | if (dctx->frameInfo.blockChecksumFlag) { |
| 1495 | (void)XXH32_reset(&dctx->blockChecksum, 0); |
| 1496 | } |
| 1497 | dctx->dStage = dstage_copyDirect; |
| 1498 | break; |
| 1499 | } |
| 1500 | /* next block is a compressed block */ |
| 1501 | dctx->tmpInTarget = nextCBlockSize + crcSize; |
| 1502 | dctx->dStage = dstage_getCBlock; |
| 1503 | if (dstPtr==dstEnd || srcPtr==srcEnd) { |
| 1504 | nextSrcSizeHint = BHSize + nextCBlockSize + crcSize; |
| 1505 | doAnotherStage = 0; |
| 1506 | } |
| 1507 | break; |
| 1508 | } |
| 1509 | |
| 1510 | case dstage_copyDirect: /* uncompressed block */ |
| 1511 | { size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr)); |
| 1512 | size_t const sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize); |
| 1513 | memcpy(dstPtr, srcPtr, sizeToCopy); |
| 1514 | if (dctx->frameInfo.blockChecksumFlag) { |
| 1515 | (void)XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy); |
| 1516 | } |
| 1517 | if (dctx->frameInfo.contentChecksumFlag) |
| 1518 | (void)XXH32_update(&dctx->xxh, srcPtr, sizeToCopy); |
| 1519 | if (dctx->frameInfo.contentSize) |
| 1520 | dctx->frameRemainingSize -= sizeToCopy; |
| 1521 | |
| 1522 | /* history management (linked blocks only)*/ |
| 1523 | if (dctx->frameInfo.blockMode == LZ4F_blockLinked) |
| 1524 | LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0); |
| 1525 | |
| 1526 | srcPtr += sizeToCopy; |
| 1527 | dstPtr += sizeToCopy; |
| 1528 | if (sizeToCopy == dctx->tmpInTarget) { /* all done */ |
| 1529 | if (dctx->frameInfo.blockChecksumFlag) { |
| 1530 | dctx->tmpInSize = 0; |
| 1531 | dctx->dStage = dstage_getBlockChecksum; |
| 1532 | } else |
| 1533 | dctx->dStage = dstage_getBlockHeader; /* new block */ |
| 1534 | break; |
| 1535 | } |
| 1536 | dctx->tmpInTarget -= sizeToCopy; /* need to copy more */ |
| 1537 | nextSrcSizeHint = dctx->tmpInTarget + |
| 1538 | +(dctx->frameInfo.blockChecksumFlag ? BFSize : 0) |
| 1539 | + BHSize /* next header size */; |
| 1540 | doAnotherStage = 0; |
| 1541 | break; |
| 1542 | } |
| 1543 | |
| 1544 | /* check block checksum for recently transferred uncompressed block */ |
| 1545 | case dstage_getBlockChecksum: |
| 1546 | { const void* crcSrc; |
| 1547 | if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) { |
| 1548 | crcSrc = srcPtr; |
| 1549 | srcPtr += 4; |
| 1550 | } else { |
| 1551 | size_t const stillToCopy = 4 - dctx->tmpInSize; |
| 1552 | size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr)); |
| 1553 | memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
| 1554 | dctx->tmpInSize += sizeToCopy; |
| 1555 | srcPtr += sizeToCopy; |
| 1556 | if (dctx->tmpInSize < 4) { /* all input consumed */ |
| 1557 | doAnotherStage = 0; |
| 1558 | break; |
| 1559 | } |
| 1560 | crcSrc = dctx->header; |
| 1561 | } |
| 1562 | { U32 const readCRC = LZ4F_readLE32(crcSrc); |
| 1563 | U32 const calcCRC = XXH32_digest(&dctx->blockChecksum); |
| 1564 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| 1565 | if (readCRC != calcCRC) |
| 1566 | return err0r(LZ4F_ERROR_blockChecksum_invalid); |
| 1567 | #else |
| 1568 | (void)readCRC; |
| 1569 | (void)calcCRC; |
| 1570 | #endif |
| 1571 | } } |
| 1572 | dctx->dStage = dstage_getBlockHeader; /* new block */ |
| 1573 | break; |
| 1574 | |
| 1575 | case dstage_getCBlock: |
| 1576 | if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) { |
| 1577 | dctx->tmpInSize = 0; |
| 1578 | dctx->dStage = dstage_storeCBlock; |
| 1579 | break; |
| 1580 | } |
| 1581 | /* input large enough to read full block directly */ |
| 1582 | selectedIn = srcPtr; |
| 1583 | srcPtr += dctx->tmpInTarget; |
| 1584 | |
| 1585 | if (0) /* jump over next block */ |
| 1586 | case dstage_storeCBlock: |
| 1587 | { size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize; |
| 1588 | size_t const inputLeft = (size_t)(srcEnd-srcPtr); |
| 1589 | size_t const sizeToCopy = MIN(wantedData, inputLeft); |
| 1590 | memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
| 1591 | dctx->tmpInSize += sizeToCopy; |
| 1592 | srcPtr += sizeToCopy; |
| 1593 | if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */ |
| 1594 | nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) |
| 1595 | + (dctx->frameInfo.blockChecksumFlag ? BFSize : 0) |
| 1596 | + BHSize /* next header size */; |
| 1597 | doAnotherStage = 0; |
| 1598 | break; |
| 1599 | } |
| 1600 | selectedIn = dctx->tmpIn; |
| 1601 | } |
| 1602 | |
| 1603 | /* At this stage, input is large enough to decode a block */ |
| 1604 | if (dctx->frameInfo.blockChecksumFlag) { |
| 1605 | dctx->tmpInTarget -= 4; |
| 1606 | assert(selectedIn != NULL); /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */ |
| 1607 | { U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget); |
| 1608 | U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0); |
| 1609 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| 1610 | if (readBlockCrc != calcBlockCrc) |
| 1611 | return err0r(LZ4F_ERROR_blockChecksum_invalid); |
| 1612 | #else |
| 1613 | (void)readBlockCrc; |
| 1614 | (void)calcBlockCrc; |
| 1615 | #endif |
| 1616 | } } |
| 1617 | |
| 1618 | if ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize) { |
| 1619 | const char* dict = (const char*)dctx->dict; |
| 1620 | size_t dictSize = dctx->dictSize; |
| 1621 | int decodedSize; |
| 1622 | if (dict && dictSize > 1 GB) { |
| 1623 | /* the dictSize param is an int, avoid truncation / sign issues */ |
| 1624 | dict += dictSize - 64 KB; |
| 1625 | dictSize = 64 KB; |
| 1626 | } |
| 1627 | /* enough capacity in `dst` to decompress directly there */ |
| 1628 | decodedSize = LZ4_decompress_safe_usingDict( |
| 1629 | (const char*)selectedIn, (char*)dstPtr, |
| 1630 | (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, |
| 1631 | dict, (int)dictSize); |
| 1632 | if (decodedSize < 0) return err0r(LZ4F_ERROR_GENERIC); /* decompression failed */ |
| 1633 | if (dctx->frameInfo.contentChecksumFlag) |
| 1634 | XXH32_update(&(dctx->xxh), dstPtr, (size_t)decodedSize); |
| 1635 | if (dctx->frameInfo.contentSize) |
| 1636 | dctx->frameRemainingSize -= (size_t)decodedSize; |
| 1637 | |
| 1638 | /* dictionary management */ |
| 1639 | if (dctx->frameInfo.blockMode==LZ4F_blockLinked) |
| 1640 | LZ4F_updateDict(dctx, dstPtr, (size_t)decodedSize, dstStart, 0); |
| 1641 | |
| 1642 | dstPtr += decodedSize; |
| 1643 | dctx->dStage = dstage_getBlockHeader; |
| 1644 | break; |
| 1645 | } |
| 1646 | |
| 1647 | /* not enough place into dst : decode into tmpOut */ |
| 1648 | /* ensure enough place for tmpOut */ |
| 1649 | if (dctx->frameInfo.blockMode == LZ4F_blockLinked) { |
| 1650 | if (dctx->dict == dctx->tmpOutBuffer) { |
| 1651 | if (dctx->dictSize > 128 KB) { |
| 1652 | memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB); |
| 1653 | dctx->dictSize = 64 KB; |
| 1654 | } |
| 1655 | dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize; |
| 1656 | } else { /* dict not within tmp */ |
| 1657 | size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB); |
| 1658 | dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace; |
| 1659 | } } |
| 1660 | |
| 1661 | /* Decode block */ |
| 1662 | { const char* dict = (const char*)dctx->dict; |
| 1663 | size_t dictSize = dctx->dictSize; |
| 1664 | int decodedSize; |
| 1665 | if (dict && dictSize > 1 GB) { |
| 1666 | /* the dictSize param is an int, avoid truncation / sign issues */ |
| 1667 | dict += dictSize - 64 KB; |
| 1668 | dictSize = 64 KB; |
| 1669 | } |
| 1670 | decodedSize = LZ4_decompress_safe_usingDict( |
| 1671 | (const char*)selectedIn, (char*)dctx->tmpOut, |
| 1672 | (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, |
| 1673 | dict, (int)dictSize); |
| 1674 | if (decodedSize < 0) /* decompression failed */ |
| 1675 | return err0r(LZ4F_ERROR_decompressionFailed); |
| 1676 | if (dctx->frameInfo.contentChecksumFlag) |
| 1677 | XXH32_update(&(dctx->xxh), dctx->tmpOut, (size_t)decodedSize); |
| 1678 | if (dctx->frameInfo.contentSize) |
| 1679 | dctx->frameRemainingSize -= (size_t)decodedSize; |
| 1680 | dctx->tmpOutSize = (size_t)decodedSize; |
| 1681 | dctx->tmpOutStart = 0; |
| 1682 | dctx->dStage = dstage_flushOut; |
| 1683 | } |
| 1684 | /* fall-through */ |
| 1685 | |
| 1686 | case dstage_flushOut: /* flush decoded data from tmpOut to dstBuffer */ |
| 1687 | { size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr)); |
| 1688 | memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy); |
| 1689 | |
| 1690 | /* dictionary management */ |
| 1691 | if (dctx->frameInfo.blockMode == LZ4F_blockLinked) |
| 1692 | LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/); |
| 1693 | |
| 1694 | dctx->tmpOutStart += sizeToCopy; |
| 1695 | dstPtr += sizeToCopy; |
| 1696 | |
| 1697 | if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */ |
| 1698 | dctx->dStage = dstage_getBlockHeader; /* get next block */ |
| 1699 | break; |
| 1700 | } |
| 1701 | /* could not flush everything : stop there, just request a block header */ |
| 1702 | doAnotherStage = 0; |
| 1703 | nextSrcSizeHint = BHSize; |
| 1704 | break; |
| 1705 | } |
| 1706 | |
| 1707 | case dstage_getSuffix: |
| 1708 | if (dctx->frameRemainingSize) |
| 1709 | return err0r(LZ4F_ERROR_frameSize_wrong); /* incorrect frame size decoded */ |
| 1710 | if (!dctx->frameInfo.contentChecksumFlag) { /* no checksum, frame is completed */ |
| 1711 | nextSrcSizeHint = 0; |
| 1712 | LZ4F_resetDecompressionContext(dctx); |
| 1713 | doAnotherStage = 0; |
| 1714 | break; |
| 1715 | } |
| 1716 | if ((srcEnd - srcPtr) < 4) { /* not enough size for entire CRC */ |
| 1717 | dctx->tmpInSize = 0; |
| 1718 | dctx->dStage = dstage_storeSuffix; |
| 1719 | } else { |
| 1720 | selectedIn = srcPtr; |
| 1721 | srcPtr += 4; |
| 1722 | } |
| 1723 | |
| 1724 | if (dctx->dStage == dstage_storeSuffix) /* can be skipped */ |
| 1725 | case dstage_storeSuffix: |
| 1726 | { size_t const remainingInput = (size_t)(srcEnd - srcPtr); |
| 1727 | size_t const wantedData = 4 - dctx->tmpInSize; |
| 1728 | size_t const sizeToCopy = MIN(wantedData, remainingInput); |
| 1729 | memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
| 1730 | srcPtr += sizeToCopy; |
| 1731 | dctx->tmpInSize += sizeToCopy; |
| 1732 | if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */ |
| 1733 | nextSrcSizeHint = 4 - dctx->tmpInSize; |
| 1734 | doAnotherStage=0; |
| 1735 | break; |
| 1736 | } |
| 1737 | selectedIn = dctx->tmpIn; |
| 1738 | } /* if (dctx->dStage == dstage_storeSuffix) */ |
| 1739 | |
| 1740 | /* case dstage_checkSuffix: */ /* no direct entry, avoid initialization risks */ |
| 1741 | { U32 const readCRC = LZ4F_readLE32(selectedIn); |
| 1742 | U32 const resultCRC = XXH32_digest(&(dctx->xxh)); |
| 1743 | #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| 1744 | if (readCRC != resultCRC) |
| 1745 | return err0r(LZ4F_ERROR_contentChecksum_invalid); |
| 1746 | #else |
| 1747 | (void)readCRC; |
| 1748 | (void)resultCRC; |
| 1749 | #endif |
| 1750 | nextSrcSizeHint = 0; |
| 1751 | LZ4F_resetDecompressionContext(dctx); |
| 1752 | doAnotherStage = 0; |
| 1753 | break; |
| 1754 | } |
| 1755 | |
| 1756 | case dstage_getSFrameSize: |
| 1757 | if ((srcEnd - srcPtr) >= 4) { |
| 1758 | selectedIn = srcPtr; |
| 1759 | srcPtr += 4; |
| 1760 | } else { |
| 1761 | /* not enough input to read cBlockSize field */ |
| 1762 | dctx->tmpInSize = 4; |
| 1763 | dctx->tmpInTarget = 8; |
| 1764 | dctx->dStage = dstage_storeSFrameSize; |
| 1765 | } |
| 1766 | |
| 1767 | if (dctx->dStage == dstage_storeSFrameSize) |
| 1768 | case dstage_storeSFrameSize: |
| 1769 | { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, |
| 1770 | (size_t)(srcEnd - srcPtr) ); |
| 1771 | memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
| 1772 | srcPtr += sizeToCopy; |
| 1773 | dctx->tmpInSize += sizeToCopy; |
| 1774 | if (dctx->tmpInSize < dctx->tmpInTarget) { |
| 1775 | /* not enough input to get full sBlockSize; wait for more */ |
| 1776 | nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize; |
| 1777 | doAnotherStage = 0; |
| 1778 | break; |
| 1779 | } |
| 1780 | selectedIn = dctx->header + 4; |
| 1781 | } /* if (dctx->dStage == dstage_storeSFrameSize) */ |
| 1782 | |
| 1783 | /* case dstage_decodeSFrameSize: */ /* no direct entry */ |
| 1784 | { size_t const SFrameSize = LZ4F_readLE32(selectedIn); |
| 1785 | dctx->frameInfo.contentSize = SFrameSize; |
| 1786 | dctx->tmpInTarget = SFrameSize; |
| 1787 | dctx->dStage = dstage_skipSkippable; |
| 1788 | break; |
| 1789 | } |
| 1790 | |
| 1791 | case dstage_skipSkippable: |
| 1792 | { size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr)); |
| 1793 | srcPtr += skipSize; |
| 1794 | dctx->tmpInTarget -= skipSize; |
| 1795 | doAnotherStage = 0; |
| 1796 | nextSrcSizeHint = dctx->tmpInTarget; |
| 1797 | if (nextSrcSizeHint) break; /* still more to skip */ |
| 1798 | /* frame fully skipped : prepare context for a new frame */ |
| 1799 | LZ4F_resetDecompressionContext(dctx); |
| 1800 | break; |
| 1801 | } |
| 1802 | } /* switch (dctx->dStage) */ |
| 1803 | } /* while (doAnotherStage) */ |
| 1804 | |
| 1805 | /* preserve history within tmp whenever necessary */ |
| 1806 | LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2); |
| 1807 | if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked) /* next block will use up to 64KB from previous ones */ |
| 1808 | && (dctx->dict != dctx->tmpOutBuffer) /* dictionary is not already within tmp */ |
| 1809 | && (!decompressOptionsPtr->stableDst) /* cannot rely on dst data to remain there for next call */ |
| 1810 | && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) ) /* valid stages : [init ... getSuffix[ */ |
| 1811 | { |
| 1812 | if (dctx->dStage == dstage_flushOut) { |
| 1813 | size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer); |
| 1814 | size_t copySize = 64 KB - dctx->tmpOutSize; |
| 1815 | const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; |
| 1816 | if (dctx->tmpOutSize > 64 KB) copySize = 0; |
| 1817 | if (copySize > preserveSize) copySize = preserveSize; |
| 1818 | |
| 1819 | if (copySize > 0) |
| 1820 | memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); |
| 1821 | |
| 1822 | dctx->dict = dctx->tmpOutBuffer; |
| 1823 | dctx->dictSize = preserveSize + dctx->tmpOutStart; |
| 1824 | } else { |
| 1825 | const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize; |
| 1826 | size_t const newDictSize = MIN(dctx->dictSize, 64 KB); |
| 1827 | |
| 1828 | if (newDictSize > 0) |
| 1829 | memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize); |
| 1830 | |
| 1831 | dctx->dict = dctx->tmpOutBuffer; |
| 1832 | dctx->dictSize = newDictSize; |
| 1833 | dctx->tmpOut = dctx->tmpOutBuffer + newDictSize; |
| 1834 | } |
| 1835 | } |
| 1836 | |
| 1837 | *srcSizePtr = (size_t)(srcPtr - srcStart); |
| 1838 | *dstSizePtr = (size_t)(dstPtr - dstStart); |
| 1839 | return nextSrcSizeHint; |
| 1840 | } |
| 1841 | |
| 1842 | /*! LZ4F_decompress_usingDict() : |
| 1843 | * Same as LZ4F_decompress(), using a predefined dictionary. |
| 1844 | * Dictionary is used "in place", without any preprocessing. |
| 1845 | * It must remain accessible throughout the entire frame decoding. |
| 1846 | */ |
| 1847 | size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx, |
| 1848 | void* dstBuffer, size_t* dstSizePtr, |
| 1849 | const void* srcBuffer, size_t* srcSizePtr, |
| 1850 | const void* dict, size_t dictSize, |
| 1851 | const LZ4F_decompressOptions_t* decompressOptionsPtr) |
| 1852 | { |
| 1853 | if (dctx->dStage <= dstage_init) { |
| 1854 | dctx->dict = (const BYTE*)dict; |
| 1855 | dctx->dictSize = dictSize; |
| 1856 | } |
| 1857 | return LZ4F_decompress(dctx, dstBuffer, dstSizePtr, |
| 1858 | srcBuffer, srcSizePtr, |
| 1859 | decompressOptionsPtr); |
| 1860 | } |
| 1861 | |