1/*
2* xxHash - Fast Hash algorithm
3* Copyright (C) 2012-2016, Yann Collet
4*
5* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6*
7* Redistribution and use in source and binary forms, with or without
8* modification, are permitted provided that the following conditions are
9* met:
10*
11* * Redistributions of source code must retain the above copyright
12* notice, this list of conditions and the following disclaimer.
13* * Redistributions in binary form must reproduce the above
14* copyright notice, this list of conditions and the following disclaimer
15* in the documentation and/or other materials provided with the
16* distribution.
17*
18* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29*
30* You can contact the author at :
31* - xxHash homepage: http://www.xxhash.com
32* - xxHash source repository : https://github.com/Cyan4973/xxHash
33*/
34
35
36/* *************************************
37* Tuning parameters
38***************************************/
39/*!XXH_FORCE_MEMORY_ACCESS :
40 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42 * The below switch allow to select different access method for improved performance.
43 * Method 0 (default) : use `memcpy()`. Safe and portable.
44 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47 * It can generate buggy code on targets which do not support unaligned memory accesses.
48 * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49 * See http://stackoverflow.com/a/32095106/646947 for details.
50 * Prefer these methods in priority order (0 > 1 > 2)
51 */
52#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
53# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
54 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
55 || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
56# define XXH_FORCE_MEMORY_ACCESS 2
57# elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
58 (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \
59 || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \
60 || defined(__ARM_ARCH_7S__) ))
61# define XXH_FORCE_MEMORY_ACCESS 1
62# endif
63#endif
64
65/*!XXH_ACCEPT_NULL_INPUT_POINTER :
66 * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault.
67 * When this macro is enabled, xxHash actively checks input for null pointer.
68 * It it is, result for null input pointers is the same as a null-length input.
69 */
70#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
71# define XXH_ACCEPT_NULL_INPUT_POINTER 0
72#endif
73
74/*!XXH_FORCE_NATIVE_FORMAT :
75 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
76 * Results are therefore identical for little-endian and big-endian CPU.
77 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
78 * Should endian-independence be of no importance for your application, you may set the #define below to 1,
79 * to improve speed for Big-endian CPU.
80 * This option has no impact on Little_Endian CPU.
81 */
82#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
83# define XXH_FORCE_NATIVE_FORMAT 0
84#endif
85
86/*!XXH_FORCE_ALIGN_CHECK :
87 * This is a minor performance trick, only useful with lots of very small keys.
88 * It means : check for aligned/unaligned input.
89 * The check costs one initial branch per hash;
90 * set it to 0 when the input is guaranteed to be aligned,
91 * or when alignment doesn't matter for performance.
92 */
93#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
94# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
95# define XXH_FORCE_ALIGN_CHECK 0
96# else
97# define XXH_FORCE_ALIGN_CHECK 1
98# endif
99#endif
100
101
102/* *************************************
103* Includes & Memory related functions
104***************************************/
105/*! Modify the local functions below should you wish to use some other memory routines
106* for malloc(), free() */
107#include <stdlib.h>
108static void* XXH_malloc(size_t s) { return malloc(s); }
109static void XXH_free (void* p) { free(p); }
110/*! and for memcpy() */
111#include <string.h>
112static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
113
114#include <assert.h> /* assert */
115
116#define XXH_STATIC_LINKING_ONLY
117#include "xxhash.h"
118
119
120/* *************************************
121* Compiler Specific Options
122***************************************/
123#ifdef _MSC_VER /* Visual Studio */
124# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
125# define FORCE_INLINE static __forceinline
126#else
127# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
128# ifdef __GNUC__
129# define FORCE_INLINE static inline __attribute__((always_inline))
130# else
131# define FORCE_INLINE static inline
132# endif
133# else
134# define FORCE_INLINE static
135# endif /* __STDC_VERSION__ */
136#endif
137
138
139/* *************************************
140* Basic Types
141***************************************/
142#ifndef MEM_MODULE
143# if !defined (__VMS) \
144 && (defined (__cplusplus) \
145 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
146# include <stdint.h>
147 typedef uint8_t BYTE;
148 typedef uint16_t U16;
149 typedef uint32_t U32;
150# else
151 typedef unsigned char BYTE;
152 typedef unsigned short U16;
153 typedef unsigned int U32;
154# endif
155#endif
156
157#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
158
159/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
160static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
161
162#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
163
164/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
165/* currently only defined for gcc and icc */
166typedef union { U32 u32; } __attribute__((packed)) unalign;
167static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
168
169#else
170
171/* portable and safe solution. Generally efficient.
172 * see : http://stackoverflow.com/a/32095106/646947
173 */
174static U32 XXH_read32(const void* memPtr)
175{
176 U32 val;
177 memcpy(&val, memPtr, sizeof(val));
178 return val;
179}
180
181#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
182
183
184/* ****************************************
185* Compiler-specific Functions and Macros
186******************************************/
187#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
188
189/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
190#if defined(_MSC_VER)
191# define XXH_rotl32(x,r) _rotl(x,r)
192# define XXH_rotl64(x,r) _rotl64(x,r)
193#else
194# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
195# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
196#endif
197
198#if defined(_MSC_VER) /* Visual Studio */
199# define XXH_swap32 _byteswap_ulong
200#elif XXH_GCC_VERSION >= 403
201# define XXH_swap32 __builtin_bswap32
202#else
203static U32 XXH_swap32 (U32 x)
204{
205 return ((x << 24) & 0xff000000 ) |
206 ((x << 8) & 0x00ff0000 ) |
207 ((x >> 8) & 0x0000ff00 ) |
208 ((x >> 24) & 0x000000ff );
209}
210#endif
211
212
213/* *************************************
214* Architecture Macros
215***************************************/
216typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
217
218/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
219#ifndef XXH_CPU_LITTLE_ENDIAN
220static int XXH_isLittleEndian(void)
221{
222 const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
223 return one.c[0];
224}
225# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
226#endif
227
228
229/* ***************************
230* Memory reads
231*****************************/
232typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
233
234FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
235{
236 if (align==XXH_unaligned)
237 return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
238 else
239 return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
240}
241
242FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
243{
244 return XXH_readLE32_align(ptr, endian, XXH_unaligned);
245}
246
247static U32 XXH_readBE32(const void* ptr)
248{
249 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
250}
251
252
253/* *************************************
254* Macros
255***************************************/
256#define XXH_STATIC_ASSERT(c) { enum { XXH_sa = 1/(int)(!!(c)) }; } /* use after variable declarations */
257XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
258
259
260/* *******************************************************************
261* 32-bit hash functions
262*********************************************************************/
263static const U32 PRIME32_1 = 2654435761U;
264static const U32 PRIME32_2 = 2246822519U;
265static const U32 PRIME32_3 = 3266489917U;
266static const U32 PRIME32_4 = 668265263U;
267static const U32 PRIME32_5 = 374761393U;
268
269static U32 XXH32_round(U32 seed, U32 input)
270{
271 seed += input * PRIME32_2;
272 seed = XXH_rotl32(seed, 13);
273 seed *= PRIME32_1;
274 return seed;
275}
276
277/* mix all bits */
278static U32 XXH32_avalanche(U32 h32)
279{
280 h32 ^= h32 >> 15;
281 h32 *= PRIME32_2;
282 h32 ^= h32 >> 13;
283 h32 *= PRIME32_3;
284 h32 ^= h32 >> 16;
285 return(h32);
286}
287
288#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
289
290static U32
291XXH32_finalize(U32 h32, const void* ptr, size_t len,
292 XXH_endianess endian, XXH_alignment align)
293
294{
295 const BYTE* p = (const BYTE*)ptr;
296
297#define PROCESS1 \
298 h32 += (*p++) * PRIME32_5; \
299 h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
300
301#define PROCESS4 \
302 h32 += XXH_get32bits(p) * PRIME32_3; \
303 p+=4; \
304 h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
305
306 switch(len&15) /* or switch(bEnd - p) */
307 {
308 case 12: PROCESS4;
309 /* fallthrough */
310 case 8: PROCESS4;
311 /* fallthrough */
312 case 4: PROCESS4;
313 return XXH32_avalanche(h32);
314
315 case 13: PROCESS4;
316 /* fallthrough */
317 case 9: PROCESS4;
318 /* fallthrough */
319 case 5: PROCESS4;
320 PROCESS1;
321 return XXH32_avalanche(h32);
322
323 case 14: PROCESS4;
324 /* fallthrough */
325 case 10: PROCESS4;
326 /* fallthrough */
327 case 6: PROCESS4;
328 PROCESS1;
329 PROCESS1;
330 return XXH32_avalanche(h32);
331
332 case 15: PROCESS4;
333 /* fallthrough */
334 case 11: PROCESS4;
335 /* fallthrough */
336 case 7: PROCESS4;
337 /* fallthrough */
338 case 3: PROCESS1;
339 /* fallthrough */
340 case 2: PROCESS1;
341 /* fallthrough */
342 case 1: PROCESS1;
343 /* fallthrough */
344 case 0: return XXH32_avalanche(h32);
345 }
346 assert(0);
347 return h32; /* reaching this point is deemed impossible */
348}
349
350
351FORCE_INLINE U32
352XXH32_endian_align(const void* input, size_t len, U32 seed,
353 XXH_endianess endian, XXH_alignment align)
354{
355 const BYTE* p = (const BYTE*)input;
356 const BYTE* bEnd = p + len;
357 U32 h32;
358
359#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
360 if (p==NULL) {
361 len=0;
362 bEnd=p=(const BYTE*)(size_t)16;
363 }
364#endif
365
366 if (len>=16) {
367 const BYTE* const limit = bEnd - 15;
368 U32 v1 = seed + PRIME32_1 + PRIME32_2;
369 U32 v2 = seed + PRIME32_2;
370 U32 v3 = seed + 0;
371 U32 v4 = seed - PRIME32_1;
372
373 do {
374 v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
375 v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
376 v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
377 v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
378 } while (p < limit);
379
380 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
381 + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
382 } else {
383 h32 = seed + PRIME32_5;
384 }
385
386 h32 += (U32)len;
387
388 return XXH32_finalize(h32, p, len&15, endian, align);
389}
390
391
392XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
393{
394#if 0
395 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
396 XXH32_state_t state;
397 XXH32_reset(&state, seed);
398 XXH32_update(&state, input, len);
399 return XXH32_digest(&state);
400#else
401 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
402
403 if (XXH_FORCE_ALIGN_CHECK) {
404 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
405 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
406 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
407 else
408 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
409 } }
410
411 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
412 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
413 else
414 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
415#endif
416}
417
418
419
420/*====== Hash streaming ======*/
421
422XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
423{
424 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
425}
426XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
427{
428 XXH_free(statePtr);
429 return XXH_OK;
430}
431
432XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
433{
434 memcpy(dstState, srcState, sizeof(*dstState));
435}
436
437XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
438{
439 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
440 memset(&state, 0, sizeof(state));
441 state.v1 = seed + PRIME32_1 + PRIME32_2;
442 state.v2 = seed + PRIME32_2;
443 state.v3 = seed + 0;
444 state.v4 = seed - PRIME32_1;
445 /* do not write into reserved, planned to be removed in a future version */
446 memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
447 return XXH_OK;
448}
449
450
451FORCE_INLINE XXH_errorcode
452XXH32_update_endian(XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
453{
454 if (input==NULL)
455#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
456 return XXH_OK;
457#else
458 return XXH_ERROR;
459#endif
460
461 { const BYTE* p = (const BYTE*)input;
462 const BYTE* const bEnd = p + len;
463
464 state->total_len_32 += (unsigned)len;
465 state->large_len |= (len>=16) | (state->total_len_32>=16);
466
467 if (state->memsize + len < 16) { /* fill in tmp buffer */
468 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
469 state->memsize += (unsigned)len;
470 return XXH_OK;
471 }
472
473 if (state->memsize) { /* some data left from previous update */
474 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
475 { const U32* p32 = state->mem32;
476 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
477 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
478 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
479 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian));
480 }
481 p += 16-state->memsize;
482 state->memsize = 0;
483 }
484
485 if (p <= bEnd-16) {
486 const BYTE* const limit = bEnd - 16;
487 U32 v1 = state->v1;
488 U32 v2 = state->v2;
489 U32 v3 = state->v3;
490 U32 v4 = state->v4;
491
492 do {
493 v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
494 v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
495 v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
496 v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
497 } while (p<=limit);
498
499 state->v1 = v1;
500 state->v2 = v2;
501 state->v3 = v3;
502 state->v4 = v4;
503 }
504
505 if (p < bEnd) {
506 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
507 state->memsize = (unsigned)(bEnd-p);
508 }
509 }
510
511 return XXH_OK;
512}
513
514
515XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
516{
517 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
518
519 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
520 return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
521 else
522 return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
523}
524
525
526FORCE_INLINE U32
527XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
528{
529 U32 h32;
530
531 if (state->large_len) {
532 h32 = XXH_rotl32(state->v1, 1)
533 + XXH_rotl32(state->v2, 7)
534 + XXH_rotl32(state->v3, 12)
535 + XXH_rotl32(state->v4, 18);
536 } else {
537 h32 = state->v3 /* == seed */ + PRIME32_5;
538 }
539
540 h32 += state->total_len_32;
541
542 return XXH32_finalize(h32, state->mem32, state->memsize, endian, XXH_aligned);
543}
544
545
546XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
547{
548 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
549
550 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
551 return XXH32_digest_endian(state_in, XXH_littleEndian);
552 else
553 return XXH32_digest_endian(state_in, XXH_bigEndian);
554}
555
556
557/*====== Canonical representation ======*/
558
559/*! Default XXH result types are basic unsigned 32 and 64 bits.
560* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
561* These functions allow transformation of hash result into and from its canonical format.
562* This way, hash values can be written into a file or buffer, remaining comparable across different systems.
563*/
564
565XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
566{
567 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
568 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
569 memcpy(dst, &hash, sizeof(*dst));
570}
571
572XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
573{
574 return XXH_readBE32(src);
575}
576
577
578#ifndef XXH_NO_LONG_LONG
579
580/* *******************************************************************
581* 64-bit hash functions
582*********************************************************************/
583
584/*====== Memory access ======*/
585
586#ifndef MEM_MODULE
587# define MEM_MODULE
588# if !defined (__VMS) \
589 && (defined (__cplusplus) \
590 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
591# include <stdint.h>
592 typedef uint64_t U64;
593# else
594 /* if compiler doesn't support unsigned long long, replace by another 64-bit type */
595 typedef unsigned long long U64;
596# endif
597#endif
598
599
600#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
601
602/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
603static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
604
605#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
606
607/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
608/* currently only defined for gcc and icc */
609typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
610static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
611
612#else
613
614/* portable and safe solution. Generally efficient.
615 * see : http://stackoverflow.com/a/32095106/646947
616 */
617
618static U64 XXH_read64(const void* memPtr)
619{
620 U64 val;
621 memcpy(&val, memPtr, sizeof(val));
622 return val;
623}
624
625#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
626
627#if defined(_MSC_VER) /* Visual Studio */
628# define XXH_swap64 _byteswap_uint64
629#elif XXH_GCC_VERSION >= 403
630# define XXH_swap64 __builtin_bswap64
631#else
632static U64 XXH_swap64 (U64 x)
633{
634 return ((x << 56) & 0xff00000000000000ULL) |
635 ((x << 40) & 0x00ff000000000000ULL) |
636 ((x << 24) & 0x0000ff0000000000ULL) |
637 ((x << 8) & 0x000000ff00000000ULL) |
638 ((x >> 8) & 0x00000000ff000000ULL) |
639 ((x >> 24) & 0x0000000000ff0000ULL) |
640 ((x >> 40) & 0x000000000000ff00ULL) |
641 ((x >> 56) & 0x00000000000000ffULL);
642}
643#endif
644
645FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
646{
647 if (align==XXH_unaligned)
648 return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
649 else
650 return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
651}
652
653FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
654{
655 return XXH_readLE64_align(ptr, endian, XXH_unaligned);
656}
657
658static U64 XXH_readBE64(const void* ptr)
659{
660 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
661}
662
663
664/*====== xxh64 ======*/
665
666static const U64 PRIME64_1 = 11400714785074694791ULL;
667static const U64 PRIME64_2 = 14029467366897019727ULL;
668static const U64 PRIME64_3 = 1609587929392839161ULL;
669static const U64 PRIME64_4 = 9650029242287828579ULL;
670static const U64 PRIME64_5 = 2870177450012600261ULL;
671
672static U64 XXH64_round(U64 acc, U64 input)
673{
674 acc += input * PRIME64_2;
675 acc = XXH_rotl64(acc, 31);
676 acc *= PRIME64_1;
677 return acc;
678}
679
680static U64 XXH64_mergeRound(U64 acc, U64 val)
681{
682 val = XXH64_round(0, val);
683 acc ^= val;
684 acc = acc * PRIME64_1 + PRIME64_4;
685 return acc;
686}
687
688static U64 XXH64_avalanche(U64 h64)
689{
690 h64 ^= h64 >> 33;
691 h64 *= PRIME64_2;
692 h64 ^= h64 >> 29;
693 h64 *= PRIME64_3;
694 h64 ^= h64 >> 32;
695 return h64;
696}
697
698
699#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
700
701static U64
702XXH64_finalize(U64 h64, const void* ptr, size_t len,
703 XXH_endianess endian, XXH_alignment align)
704{
705 const BYTE* p = (const BYTE*)ptr;
706
707#define PROCESS1_64 \
708 h64 ^= (*p++) * PRIME64_5; \
709 h64 = XXH_rotl64(h64, 11) * PRIME64_1;
710
711#define PROCESS4_64 \
712 h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \
713 p+=4; \
714 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
715
716#define PROCESS8_64 { \
717 U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \
718 p+=8; \
719 h64 ^= k1; \
720 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \
721}
722
723 switch(len&31) {
724 case 24: PROCESS8_64;
725 /* fallthrough */
726 case 16: PROCESS8_64;
727 /* fallthrough */
728 case 8: PROCESS8_64;
729 return XXH64_avalanche(h64);
730
731 case 28: PROCESS8_64;
732 /* fallthrough */
733 case 20: PROCESS8_64;
734 /* fallthrough */
735 case 12: PROCESS8_64;
736 /* fallthrough */
737 case 4: PROCESS4_64;
738 return XXH64_avalanche(h64);
739
740 case 25: PROCESS8_64;
741 /* fallthrough */
742 case 17: PROCESS8_64;
743 /* fallthrough */
744 case 9: PROCESS8_64;
745 PROCESS1_64;
746 return XXH64_avalanche(h64);
747
748 case 29: PROCESS8_64;
749 /* fallthrough */
750 case 21: PROCESS8_64;
751 /* fallthrough */
752 case 13: PROCESS8_64;
753 /* fallthrough */
754 case 5: PROCESS4_64;
755 PROCESS1_64;
756 return XXH64_avalanche(h64);
757
758 case 26: PROCESS8_64;
759 /* fallthrough */
760 case 18: PROCESS8_64;
761 /* fallthrough */
762 case 10: PROCESS8_64;
763 PROCESS1_64;
764 PROCESS1_64;
765 return XXH64_avalanche(h64);
766
767 case 30: PROCESS8_64;
768 /* fallthrough */
769 case 22: PROCESS8_64;
770 /* fallthrough */
771 case 14: PROCESS8_64;
772 /* fallthrough */
773 case 6: PROCESS4_64;
774 PROCESS1_64;
775 PROCESS1_64;
776 return XXH64_avalanche(h64);
777
778 case 27: PROCESS8_64;
779 /* fallthrough */
780 case 19: PROCESS8_64;
781 /* fallthrough */
782 case 11: PROCESS8_64;
783 PROCESS1_64;
784 PROCESS1_64;
785 PROCESS1_64;
786 return XXH64_avalanche(h64);
787
788 case 31: PROCESS8_64;
789 /* fallthrough */
790 case 23: PROCESS8_64;
791 /* fallthrough */
792 case 15: PROCESS8_64;
793 /* fallthrough */
794 case 7: PROCESS4_64;
795 /* fallthrough */
796 case 3: PROCESS1_64;
797 /* fallthrough */
798 case 2: PROCESS1_64;
799 /* fallthrough */
800 case 1: PROCESS1_64;
801 /* fallthrough */
802 case 0: return XXH64_avalanche(h64);
803 }
804
805 /* impossible to reach */
806 assert(0);
807 return 0; /* unreachable, but some compilers complain without it */
808}
809
810FORCE_INLINE U64
811XXH64_endian_align(const void* input, size_t len, U64 seed,
812 XXH_endianess endian, XXH_alignment align)
813{
814 const BYTE* p = (const BYTE*)input;
815 const BYTE* bEnd = p + len;
816 U64 h64;
817
818#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
819 if (p==NULL) {
820 len=0;
821 bEnd=p=(const BYTE*)(size_t)32;
822 }
823#endif
824
825 if (len>=32) {
826 const BYTE* const limit = bEnd - 32;
827 U64 v1 = seed + PRIME64_1 + PRIME64_2;
828 U64 v2 = seed + PRIME64_2;
829 U64 v3 = seed + 0;
830 U64 v4 = seed - PRIME64_1;
831
832 do {
833 v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
834 v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
835 v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
836 v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
837 } while (p<=limit);
838
839 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
840 h64 = XXH64_mergeRound(h64, v1);
841 h64 = XXH64_mergeRound(h64, v2);
842 h64 = XXH64_mergeRound(h64, v3);
843 h64 = XXH64_mergeRound(h64, v4);
844
845 } else {
846 h64 = seed + PRIME64_5;
847 }
848
849 h64 += (U64) len;
850
851 return XXH64_finalize(h64, p, len, endian, align);
852}
853
854
855XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
856{
857#if 0
858 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
859 XXH64_state_t state;
860 XXH64_reset(&state, seed);
861 XXH64_update(&state, input, len);
862 return XXH64_digest(&state);
863#else
864 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
865
866 if (XXH_FORCE_ALIGN_CHECK) {
867 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
868 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
869 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
870 else
871 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
872 } }
873
874 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
875 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
876 else
877 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
878#endif
879}
880
881/*====== Hash Streaming ======*/
882
883XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
884{
885 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
886}
887XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
888{
889 XXH_free(statePtr);
890 return XXH_OK;
891}
892
893XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
894{
895 memcpy(dstState, srcState, sizeof(*dstState));
896}
897
898XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
899{
900 XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
901 memset(&state, 0, sizeof(state));
902 state.v1 = seed + PRIME64_1 + PRIME64_2;
903 state.v2 = seed + PRIME64_2;
904 state.v3 = seed + 0;
905 state.v4 = seed - PRIME64_1;
906 /* do not write into reserved, planned to be removed in a future version */
907 memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
908 return XXH_OK;
909}
910
911FORCE_INLINE XXH_errorcode
912XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
913{
914 if (input==NULL)
915#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
916 return XXH_OK;
917#else
918 return XXH_ERROR;
919#endif
920
921 { const BYTE* p = (const BYTE*)input;
922 const BYTE* const bEnd = p + len;
923
924 state->total_len += len;
925
926 if (state->memsize + len < 32) { /* fill in tmp buffer */
927 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
928 state->memsize += (U32)len;
929 return XXH_OK;
930 }
931
932 if (state->memsize) { /* tmp buffer is full */
933 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
934 state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
935 state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
936 state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
937 state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
938 p += 32-state->memsize;
939 state->memsize = 0;
940 }
941
942 if (p+32 <= bEnd) {
943 const BYTE* const limit = bEnd - 32;
944 U64 v1 = state->v1;
945 U64 v2 = state->v2;
946 U64 v3 = state->v3;
947 U64 v4 = state->v4;
948
949 do {
950 v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
951 v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
952 v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
953 v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
954 } while (p<=limit);
955
956 state->v1 = v1;
957 state->v2 = v2;
958 state->v3 = v3;
959 state->v4 = v4;
960 }
961
962 if (p < bEnd) {
963 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
964 state->memsize = (unsigned)(bEnd-p);
965 }
966 }
967
968 return XXH_OK;
969}
970
971XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
972{
973 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
974
975 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
976 return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
977 else
978 return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
979}
980
981FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
982{
983 U64 h64;
984
985 if (state->total_len >= 32) {
986 U64 const v1 = state->v1;
987 U64 const v2 = state->v2;
988 U64 const v3 = state->v3;
989 U64 const v4 = state->v4;
990
991 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
992 h64 = XXH64_mergeRound(h64, v1);
993 h64 = XXH64_mergeRound(h64, v2);
994 h64 = XXH64_mergeRound(h64, v3);
995 h64 = XXH64_mergeRound(h64, v4);
996 } else {
997 h64 = state->v3 /*seed*/ + PRIME64_5;
998 }
999
1000 h64 += (U64) state->total_len;
1001
1002 return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, endian, XXH_aligned);
1003}
1004
1005XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
1006{
1007 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
1008
1009 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
1010 return XXH64_digest_endian(state_in, XXH_littleEndian);
1011 else
1012 return XXH64_digest_endian(state_in, XXH_bigEndian);
1013}
1014
1015
1016/*====== Canonical representation ======*/
1017
1018XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
1019{
1020 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
1021 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
1022 memcpy(dst, &hash, sizeof(*dst));
1023}
1024
1025XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
1026{
1027 return XXH_readBE64(src);
1028}
1029
1030#endif /* XXH_NO_LONG_LONG */
1031