| 1 | /* | 
| 2 | *  xxHash - Fast Hash algorithm | 
| 3 | *  Copyright (C) 2012-2016, Yann Collet | 
| 4 | * | 
| 5 | *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | 
| 6 | * | 
| 7 | *  Redistribution and use in source and binary forms, with or without | 
| 8 | *  modification, are permitted provided that the following conditions are | 
| 9 | *  met: | 
| 10 | * | 
| 11 | *  * Redistributions of source code must retain the above copyright | 
| 12 | *  notice, this list of conditions and the following disclaimer. | 
| 13 | *  * Redistributions in binary form must reproduce the above | 
| 14 | *  copyright notice, this list of conditions and the following disclaimer | 
| 15 | *  in the documentation and/or other materials provided with the | 
| 16 | *  distribution. | 
| 17 | * | 
| 18 | *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| 19 | *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| 20 | *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| 21 | *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
| 22 | *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| 23 | *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| 24 | *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
| 25 | *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
| 26 | *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 27 | *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 28 | *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 29 | * | 
| 30 | *  You can contact the author at : | 
| 31 | *  - xxHash homepage: http://www.xxhash.com | 
| 32 | *  - xxHash source repository : https://github.com/Cyan4973/xxHash | 
| 33 | */ | 
| 34 |  | 
| 35 |  | 
| 36 | /* ************************************* | 
| 37 | *  Tuning parameters | 
| 38 | ***************************************/ | 
| 39 | /*!XXH_FORCE_MEMORY_ACCESS : | 
| 40 |  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. | 
| 41 |  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. | 
| 42 |  * The below switch allow to select different access method for improved performance. | 
| 43 |  * Method 0 (default) : use `memcpy()`. Safe and portable. | 
| 44 |  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). | 
| 45 |  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. | 
| 46 |  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. | 
| 47 |  *            It can generate buggy code on targets which do not support unaligned memory accesses. | 
| 48 |  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) | 
| 49 |  * See http://stackoverflow.com/a/32095106/646947 for details. | 
| 50 |  * Prefer these methods in priority order (0 > 1 > 2) | 
| 51 |  */ | 
| 52 | #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */ | 
| 53 | #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \ | 
| 54 |                         || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \ | 
| 55 |                         || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) | 
| 56 | #    define XXH_FORCE_MEMORY_ACCESS 2 | 
| 57 | #  elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ | 
| 58 |   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \ | 
| 59 |                     || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \ | 
| 60 |                     || defined(__ARM_ARCH_7S__) )) | 
| 61 | #    define XXH_FORCE_MEMORY_ACCESS 1 | 
| 62 | #  endif | 
| 63 | #endif | 
| 64 |  | 
| 65 | /*!XXH_ACCEPT_NULL_INPUT_POINTER : | 
| 66 |  * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault. | 
| 67 |  * When this macro is enabled, xxHash actively checks input for null pointer. | 
| 68 |  * It it is, result for null input pointers is the same as a null-length input. | 
| 69 |  */ | 
| 70 | #ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */ | 
| 71 | #  define XXH_ACCEPT_NULL_INPUT_POINTER 0 | 
| 72 | #endif | 
| 73 |  | 
| 74 | /*!XXH_FORCE_NATIVE_FORMAT : | 
| 75 |  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. | 
| 76 |  * Results are therefore identical for little-endian and big-endian CPU. | 
| 77 |  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. | 
| 78 |  * Should endian-independence be of no importance for your application, you may set the #define below to 1, | 
| 79 |  * to improve speed for Big-endian CPU. | 
| 80 |  * This option has no impact on Little_Endian CPU. | 
| 81 |  */ | 
| 82 | #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */ | 
| 83 | #  define XXH_FORCE_NATIVE_FORMAT 0 | 
| 84 | #endif | 
| 85 |  | 
| 86 | /*!XXH_FORCE_ALIGN_CHECK : | 
| 87 |  * This is a minor performance trick, only useful with lots of very small keys. | 
| 88 |  * It means : check for aligned/unaligned input. | 
| 89 |  * The check costs one initial branch per hash; | 
| 90 |  * set it to 0 when the input is guaranteed to be aligned, | 
| 91 |  * or when alignment doesn't matter for performance. | 
| 92 |  */ | 
| 93 | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ | 
| 94 | #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) | 
| 95 | #    define XXH_FORCE_ALIGN_CHECK 0 | 
| 96 | #  else | 
| 97 | #    define XXH_FORCE_ALIGN_CHECK 1 | 
| 98 | #  endif | 
| 99 | #endif | 
| 100 |  | 
| 101 |  | 
| 102 | /* ************************************* | 
| 103 | *  Includes & Memory related functions | 
| 104 | ***************************************/ | 
| 105 | /*! Modify the local functions below should you wish to use some other memory routines | 
| 106 | *   for malloc(), free() */ | 
| 107 | #include <stdlib.h> | 
| 108 | static void* XXH_malloc(size_t s) { return malloc(s); } | 
| 109 | static void  XXH_free  (void* p)  { free(p); } | 
| 110 | /*! and for memcpy() */ | 
| 111 | #include <string.h> | 
| 112 | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } | 
| 113 |  | 
| 114 | #include <assert.h>   /* assert */ | 
| 115 |  | 
| 116 | #define XXH_STATIC_LINKING_ONLY | 
| 117 | #include "xxhash.h" | 
| 118 |  | 
| 119 |  | 
| 120 | /* ************************************* | 
| 121 | *  Compiler Specific Options | 
| 122 | ***************************************/ | 
| 123 | #ifdef _MSC_VER    /* Visual Studio */ | 
| 124 | #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */ | 
| 125 | #  define FORCE_INLINE static __forceinline | 
| 126 | #else | 
| 127 | #  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */ | 
| 128 | #    ifdef __GNUC__ | 
| 129 | #      define FORCE_INLINE static inline __attribute__((always_inline)) | 
| 130 | #    else | 
| 131 | #      define FORCE_INLINE static inline | 
| 132 | #    endif | 
| 133 | #  else | 
| 134 | #    define FORCE_INLINE static | 
| 135 | #  endif /* __STDC_VERSION__ */ | 
| 136 | #endif | 
| 137 |  | 
| 138 |  | 
| 139 | /* ************************************* | 
| 140 | *  Basic Types | 
| 141 | ***************************************/ | 
| 142 | #ifndef MEM_MODULE | 
| 143 | # if !defined (__VMS) \ | 
| 144 |   && (defined (__cplusplus) \ | 
| 145 |   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) | 
| 146 | #   include <stdint.h> | 
| 147 |     typedef uint8_t  BYTE; | 
| 148 |     typedef uint16_t U16; | 
| 149 |     typedef uint32_t U32; | 
| 150 | # else | 
| 151 |     typedef unsigned char      BYTE; | 
| 152 |     typedef unsigned short     U16; | 
| 153 |     typedef unsigned int       U32; | 
| 154 | # endif | 
| 155 | #endif | 
| 156 |  | 
| 157 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) | 
| 158 |  | 
| 159 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ | 
| 160 | static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } | 
| 161 |  | 
| 162 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) | 
| 163 |  | 
| 164 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ | 
| 165 | /* currently only defined for gcc and icc */ | 
| 166 | typedef union { U32 u32; } __attribute__((packed)) unalign; | 
| 167 | static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } | 
| 168 |  | 
| 169 | #else | 
| 170 |  | 
| 171 | /* portable and safe solution. Generally efficient. | 
| 172 |  * see : http://stackoverflow.com/a/32095106/646947 | 
| 173 |  */ | 
| 174 | static U32 XXH_read32(const void* memPtr) | 
| 175 | { | 
| 176 |     U32 val; | 
| 177 |     memcpy(&val, memPtr, sizeof(val)); | 
| 178 |     return val; | 
| 179 | } | 
| 180 |  | 
| 181 | #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ | 
| 182 |  | 
| 183 |  | 
| 184 | /* **************************************** | 
| 185 | *  Compiler-specific Functions and Macros | 
| 186 | ******************************************/ | 
| 187 | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) | 
| 188 |  | 
| 189 | /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ | 
| 190 | #if defined(_MSC_VER) | 
| 191 | #  define XXH_rotl32(x,r) _rotl(x,r) | 
| 192 | #  define XXH_rotl64(x,r) _rotl64(x,r) | 
| 193 | #else | 
| 194 | #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) | 
| 195 | #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) | 
| 196 | #endif | 
| 197 |  | 
| 198 | #if defined(_MSC_VER)     /* Visual Studio */ | 
| 199 | #  define XXH_swap32 _byteswap_ulong | 
| 200 | #elif XXH_GCC_VERSION >= 403 | 
| 201 | #  define XXH_swap32 __builtin_bswap32 | 
| 202 | #else | 
| 203 | static U32 XXH_swap32 (U32 x) | 
| 204 | { | 
| 205 |     return  ((x << 24) & 0xff000000 ) | | 
| 206 |             ((x <<  8) & 0x00ff0000 ) | | 
| 207 |             ((x >>  8) & 0x0000ff00 ) | | 
| 208 |             ((x >> 24) & 0x000000ff ); | 
| 209 | } | 
| 210 | #endif | 
| 211 |  | 
| 212 |  | 
| 213 | /* ************************************* | 
| 214 | *  Architecture Macros | 
| 215 | ***************************************/ | 
| 216 | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; | 
| 217 |  | 
| 218 | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ | 
| 219 | #ifndef XXH_CPU_LITTLE_ENDIAN | 
| 220 | static int XXH_isLittleEndian(void) | 
| 221 | { | 
| 222 |     const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */ | 
| 223 |     return one.c[0]; | 
| 224 | } | 
| 225 | #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian() | 
| 226 | #endif | 
| 227 |  | 
| 228 |  | 
| 229 | /* *************************** | 
| 230 | *  Memory reads | 
| 231 | *****************************/ | 
| 232 | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; | 
| 233 |  | 
| 234 | FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) | 
| 235 | { | 
| 236 |     if (align==XXH_unaligned) | 
| 237 |         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); | 
| 238 |     else | 
| 239 |         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); | 
| 240 | } | 
| 241 |  | 
| 242 | FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) | 
| 243 | { | 
| 244 |     return XXH_readLE32_align(ptr, endian, XXH_unaligned); | 
| 245 | } | 
| 246 |  | 
| 247 | static U32 XXH_readBE32(const void* ptr) | 
| 248 | { | 
| 249 |     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); | 
| 250 | } | 
| 251 |  | 
| 252 |  | 
| 253 | /* ************************************* | 
| 254 | *  Macros | 
| 255 | ***************************************/ | 
| 256 | #define XXH_STATIC_ASSERT(c)  { enum { XXH_sa = 1/(int)(!!(c)) }; }  /* use after variable declarations */ | 
| 257 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } | 
| 258 |  | 
| 259 |  | 
| 260 | /* ******************************************************************* | 
| 261 | *  32-bit hash functions | 
| 262 | *********************************************************************/ | 
| 263 | static const U32 PRIME32_1 = 2654435761U; | 
| 264 | static const U32 PRIME32_2 = 2246822519U; | 
| 265 | static const U32 PRIME32_3 = 3266489917U; | 
| 266 | static const U32 PRIME32_4 =  668265263U; | 
| 267 | static const U32 PRIME32_5 =  374761393U; | 
| 268 |  | 
| 269 | static U32 XXH32_round(U32 seed, U32 input) | 
| 270 | { | 
| 271 |     seed += input * PRIME32_2; | 
| 272 |     seed  = XXH_rotl32(seed, 13); | 
| 273 |     seed *= PRIME32_1; | 
| 274 |     return seed; | 
| 275 | } | 
| 276 |  | 
| 277 | /* mix all bits */ | 
| 278 | static U32 XXH32_avalanche(U32 h32) | 
| 279 | { | 
| 280 |     h32 ^= h32 >> 15; | 
| 281 |     h32 *= PRIME32_2; | 
| 282 |     h32 ^= h32 >> 13; | 
| 283 |     h32 *= PRIME32_3; | 
| 284 |     h32 ^= h32 >> 16; | 
| 285 |     return(h32); | 
| 286 | } | 
| 287 |  | 
| 288 | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) | 
| 289 |  | 
| 290 | static U32 | 
| 291 | XXH32_finalize(U32 h32, const void* ptr, size_t len, | 
| 292 |                 XXH_endianess endian, XXH_alignment align) | 
| 293 |  | 
| 294 | { | 
| 295 |     const BYTE* p = (const BYTE*)ptr; | 
| 296 |  | 
| 297 | #define PROCESS1               \ | 
| 298 |     h32 += (*p++) * PRIME32_5; \ | 
| 299 |     h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; | 
| 300 |  | 
| 301 | #define PROCESS4                         \ | 
| 302 |     h32 += XXH_get32bits(p) * PRIME32_3; \ | 
| 303 |     p+=4;                                \ | 
| 304 |     h32  = XXH_rotl32(h32, 17) * PRIME32_4 ; | 
| 305 |  | 
| 306 |     switch(len&15)  /* or switch(bEnd - p) */ | 
| 307 |     { | 
| 308 |       case 12:      PROCESS4; | 
| 309 |                     /* fallthrough */ | 
| 310 |       case 8:       PROCESS4; | 
| 311 |                     /* fallthrough */ | 
| 312 |       case 4:       PROCESS4; | 
| 313 |                     return XXH32_avalanche(h32); | 
| 314 |  | 
| 315 |       case 13:      PROCESS4; | 
| 316 |                     /* fallthrough */ | 
| 317 |       case 9:       PROCESS4; | 
| 318 |                     /* fallthrough */ | 
| 319 |       case 5:       PROCESS4; | 
| 320 |                     PROCESS1; | 
| 321 |                     return XXH32_avalanche(h32); | 
| 322 |  | 
| 323 |       case 14:      PROCESS4; | 
| 324 |                     /* fallthrough */ | 
| 325 |       case 10:      PROCESS4; | 
| 326 |                     /* fallthrough */ | 
| 327 |       case 6:       PROCESS4; | 
| 328 |                     PROCESS1; | 
| 329 |                     PROCESS1; | 
| 330 |                     return XXH32_avalanche(h32); | 
| 331 |  | 
| 332 |       case 15:      PROCESS4; | 
| 333 |                     /* fallthrough */ | 
| 334 |       case 11:      PROCESS4; | 
| 335 |                     /* fallthrough */ | 
| 336 |       case 7:       PROCESS4; | 
| 337 |                     /* fallthrough */ | 
| 338 |       case 3:       PROCESS1; | 
| 339 |                     /* fallthrough */ | 
| 340 |       case 2:       PROCESS1; | 
| 341 |                     /* fallthrough */ | 
| 342 |       case 1:       PROCESS1; | 
| 343 |                     /* fallthrough */ | 
| 344 |       case 0:       return XXH32_avalanche(h32); | 
| 345 |     } | 
| 346 |     assert(0); | 
| 347 |     return h32;   /* reaching this point is deemed impossible */ | 
| 348 | } | 
| 349 |  | 
| 350 |  | 
| 351 | FORCE_INLINE U32 | 
| 352 | XXH32_endian_align(const void* input, size_t len, U32 seed, | 
| 353 |                     XXH_endianess endian, XXH_alignment align) | 
| 354 | { | 
| 355 |     const BYTE* p = (const BYTE*)input; | 
| 356 |     const BYTE* bEnd = p + len; | 
| 357 |     U32 h32; | 
| 358 |  | 
| 359 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) | 
| 360 |     if (p==NULL) { | 
| 361 |         len=0; | 
| 362 |         bEnd=p=(const BYTE*)(size_t)16; | 
| 363 |     } | 
| 364 | #endif | 
| 365 |  | 
| 366 |     if (len>=16) { | 
| 367 |         const BYTE* const limit = bEnd - 15; | 
| 368 |         U32 v1 = seed + PRIME32_1 + PRIME32_2; | 
| 369 |         U32 v2 = seed + PRIME32_2; | 
| 370 |         U32 v3 = seed + 0; | 
| 371 |         U32 v4 = seed - PRIME32_1; | 
| 372 |  | 
| 373 |         do { | 
| 374 |             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; | 
| 375 |             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; | 
| 376 |             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; | 
| 377 |             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; | 
| 378 |         } while (p < limit); | 
| 379 |  | 
| 380 |         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7) | 
| 381 |             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); | 
| 382 |     } else { | 
| 383 |         h32  = seed + PRIME32_5; | 
| 384 |     } | 
| 385 |  | 
| 386 |     h32 += (U32)len; | 
| 387 |  | 
| 388 |     return XXH32_finalize(h32, p, len&15, endian, align); | 
| 389 | } | 
| 390 |  | 
| 391 |  | 
| 392 | XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) | 
| 393 | { | 
| 394 | #if 0 | 
| 395 |     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ | 
| 396 |     XXH32_state_t state; | 
| 397 |     XXH32_reset(&state, seed); | 
| 398 |     XXH32_update(&state, input, len); | 
| 399 |     return XXH32_digest(&state); | 
| 400 | #else | 
| 401 |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | 
| 402 |  | 
| 403 |     if (XXH_FORCE_ALIGN_CHECK) { | 
| 404 |         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */ | 
| 405 |             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 406 |                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | 
| 407 |             else | 
| 408 |                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | 
| 409 |     }   } | 
| 410 |  | 
| 411 |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 412 |         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | 
| 413 |     else | 
| 414 |         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | 
| 415 | #endif | 
| 416 | } | 
| 417 |  | 
| 418 |  | 
| 419 |  | 
| 420 | /*======   Hash streaming   ======*/ | 
| 421 |  | 
| 422 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) | 
| 423 | { | 
| 424 |     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); | 
| 425 | } | 
| 426 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) | 
| 427 | { | 
| 428 |     XXH_free(statePtr); | 
| 429 |     return XXH_OK; | 
| 430 | } | 
| 431 |  | 
| 432 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) | 
| 433 | { | 
| 434 |     memcpy(dstState, srcState, sizeof(*dstState)); | 
| 435 | } | 
| 436 |  | 
| 437 | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) | 
| 438 | { | 
| 439 |     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ | 
| 440 |     memset(&state, 0, sizeof(state)); | 
| 441 |     state.v1 = seed + PRIME32_1 + PRIME32_2; | 
| 442 |     state.v2 = seed + PRIME32_2; | 
| 443 |     state.v3 = seed + 0; | 
| 444 |     state.v4 = seed - PRIME32_1; | 
| 445 |     /* do not write into reserved, planned to be removed in a future version */ | 
| 446 |     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); | 
| 447 |     return XXH_OK; | 
| 448 | } | 
| 449 |  | 
| 450 |  | 
| 451 | FORCE_INLINE XXH_errorcode | 
| 452 | XXH32_update_endian(XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) | 
| 453 | { | 
| 454 |     if (input==NULL) | 
| 455 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) | 
| 456 |         return XXH_OK; | 
| 457 | #else | 
| 458 |         return XXH_ERROR; | 
| 459 | #endif | 
| 460 |  | 
| 461 |     {   const BYTE* p = (const BYTE*)input; | 
| 462 |         const BYTE* const bEnd = p + len; | 
| 463 |  | 
| 464 |         state->total_len_32 += (unsigned)len; | 
| 465 |         state->large_len |= (len>=16) | (state->total_len_32>=16); | 
| 466 |  | 
| 467 |         if (state->memsize + len < 16)  {   /* fill in tmp buffer */ | 
| 468 |             XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); | 
| 469 |             state->memsize += (unsigned)len; | 
| 470 |             return XXH_OK; | 
| 471 |         } | 
| 472 |  | 
| 473 |         if (state->memsize) {   /* some data left from previous update */ | 
| 474 |             XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); | 
| 475 |             {   const U32* p32 = state->mem32; | 
| 476 |                 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; | 
| 477 |                 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; | 
| 478 |                 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; | 
| 479 |                 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); | 
| 480 |             } | 
| 481 |             p += 16-state->memsize; | 
| 482 |             state->memsize = 0; | 
| 483 |         } | 
| 484 |  | 
| 485 |         if (p <= bEnd-16) { | 
| 486 |             const BYTE* const limit = bEnd - 16; | 
| 487 |             U32 v1 = state->v1; | 
| 488 |             U32 v2 = state->v2; | 
| 489 |             U32 v3 = state->v3; | 
| 490 |             U32 v4 = state->v4; | 
| 491 |  | 
| 492 |             do { | 
| 493 |                 v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; | 
| 494 |                 v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; | 
| 495 |                 v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; | 
| 496 |                 v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; | 
| 497 |             } while (p<=limit); | 
| 498 |  | 
| 499 |             state->v1 = v1; | 
| 500 |             state->v2 = v2; | 
| 501 |             state->v3 = v3; | 
| 502 |             state->v4 = v4; | 
| 503 |         } | 
| 504 |  | 
| 505 |         if (p < bEnd) { | 
| 506 |             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); | 
| 507 |             state->memsize = (unsigned)(bEnd-p); | 
| 508 |         } | 
| 509 |     } | 
| 510 |  | 
| 511 |     return XXH_OK; | 
| 512 | } | 
| 513 |  | 
| 514 |  | 
| 515 | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) | 
| 516 | { | 
| 517 |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | 
| 518 |  | 
| 519 |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 520 |         return XXH32_update_endian(state_in, input, len, XXH_littleEndian); | 
| 521 |     else | 
| 522 |         return XXH32_update_endian(state_in, input, len, XXH_bigEndian); | 
| 523 | } | 
| 524 |  | 
| 525 |  | 
| 526 | FORCE_INLINE U32 | 
| 527 | XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) | 
| 528 | { | 
| 529 |     U32 h32; | 
| 530 |  | 
| 531 |     if (state->large_len) { | 
| 532 |         h32 = XXH_rotl32(state->v1, 1) | 
| 533 |             + XXH_rotl32(state->v2, 7) | 
| 534 |             + XXH_rotl32(state->v3, 12) | 
| 535 |             + XXH_rotl32(state->v4, 18); | 
| 536 |     } else { | 
| 537 |         h32 = state->v3 /* == seed */ + PRIME32_5; | 
| 538 |     } | 
| 539 |  | 
| 540 |     h32 += state->total_len_32; | 
| 541 |  | 
| 542 |     return XXH32_finalize(h32, state->mem32, state->memsize, endian, XXH_aligned); | 
| 543 | } | 
| 544 |  | 
| 545 |  | 
| 546 | XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) | 
| 547 | { | 
| 548 |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | 
| 549 |  | 
| 550 |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 551 |         return XXH32_digest_endian(state_in, XXH_littleEndian); | 
| 552 |     else | 
| 553 |         return XXH32_digest_endian(state_in, XXH_bigEndian); | 
| 554 | } | 
| 555 |  | 
| 556 |  | 
| 557 | /*======   Canonical representation   ======*/ | 
| 558 |  | 
| 559 | /*! Default XXH result types are basic unsigned 32 and 64 bits. | 
| 560 | *   The canonical representation follows human-readable write convention, aka big-endian (large digits first). | 
| 561 | *   These functions allow transformation of hash result into and from its canonical format. | 
| 562 | *   This way, hash values can be written into a file or buffer, remaining comparable across different systems. | 
| 563 | */ | 
| 564 |  | 
| 565 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) | 
| 566 | { | 
| 567 |     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); | 
| 568 |     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); | 
| 569 |     memcpy(dst, &hash, sizeof(*dst)); | 
| 570 | } | 
| 571 |  | 
| 572 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) | 
| 573 | { | 
| 574 |     return XXH_readBE32(src); | 
| 575 | } | 
| 576 |  | 
| 577 |  | 
| 578 | #ifndef XXH_NO_LONG_LONG | 
| 579 |  | 
| 580 | /* ******************************************************************* | 
| 581 | *  64-bit hash functions | 
| 582 | *********************************************************************/ | 
| 583 |  | 
| 584 | /*======   Memory access   ======*/ | 
| 585 |  | 
| 586 | #ifndef MEM_MODULE | 
| 587 | # define MEM_MODULE | 
| 588 | # if !defined (__VMS) \ | 
| 589 |   && (defined (__cplusplus) \ | 
| 590 |   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) | 
| 591 | #   include <stdint.h> | 
| 592 |     typedef uint64_t U64; | 
| 593 | # else | 
| 594 |     /* if compiler doesn't support unsigned long long, replace by another 64-bit type */ | 
| 595 |     typedef unsigned long long U64; | 
| 596 | # endif | 
| 597 | #endif | 
| 598 |  | 
| 599 |  | 
| 600 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) | 
| 601 |  | 
| 602 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ | 
| 603 | static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } | 
| 604 |  | 
| 605 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) | 
| 606 |  | 
| 607 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ | 
| 608 | /* currently only defined for gcc and icc */ | 
| 609 | typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; | 
| 610 | static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } | 
| 611 |  | 
| 612 | #else | 
| 613 |  | 
| 614 | /* portable and safe solution. Generally efficient. | 
| 615 |  * see : http://stackoverflow.com/a/32095106/646947 | 
| 616 |  */ | 
| 617 |  | 
| 618 | static U64 XXH_read64(const void* memPtr) | 
| 619 | { | 
| 620 |     U64 val; | 
| 621 |     memcpy(&val, memPtr, sizeof(val)); | 
| 622 |     return val; | 
| 623 | } | 
| 624 |  | 
| 625 | #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ | 
| 626 |  | 
| 627 | #if defined(_MSC_VER)     /* Visual Studio */ | 
| 628 | #  define XXH_swap64 _byteswap_uint64 | 
| 629 | #elif XXH_GCC_VERSION >= 403 | 
| 630 | #  define XXH_swap64 __builtin_bswap64 | 
| 631 | #else | 
| 632 | static U64 XXH_swap64 (U64 x) | 
| 633 | { | 
| 634 |     return  ((x << 56) & 0xff00000000000000ULL) | | 
| 635 |             ((x << 40) & 0x00ff000000000000ULL) | | 
| 636 |             ((x << 24) & 0x0000ff0000000000ULL) | | 
| 637 |             ((x << 8)  & 0x000000ff00000000ULL) | | 
| 638 |             ((x >> 8)  & 0x00000000ff000000ULL) | | 
| 639 |             ((x >> 24) & 0x0000000000ff0000ULL) | | 
| 640 |             ((x >> 40) & 0x000000000000ff00ULL) | | 
| 641 |             ((x >> 56) & 0x00000000000000ffULL); | 
| 642 | } | 
| 643 | #endif | 
| 644 |  | 
| 645 | FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) | 
| 646 | { | 
| 647 |     if (align==XXH_unaligned) | 
| 648 |         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); | 
| 649 |     else | 
| 650 |         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); | 
| 651 | } | 
| 652 |  | 
| 653 | FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) | 
| 654 | { | 
| 655 |     return XXH_readLE64_align(ptr, endian, XXH_unaligned); | 
| 656 | } | 
| 657 |  | 
| 658 | static U64 XXH_readBE64(const void* ptr) | 
| 659 | { | 
| 660 |     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); | 
| 661 | } | 
| 662 |  | 
| 663 |  | 
| 664 | /*======   xxh64   ======*/ | 
| 665 |  | 
| 666 | static const U64 PRIME64_1 = 11400714785074694791ULL; | 
| 667 | static const U64 PRIME64_2 = 14029467366897019727ULL; | 
| 668 | static const U64 PRIME64_3 =  1609587929392839161ULL; | 
| 669 | static const U64 PRIME64_4 =  9650029242287828579ULL; | 
| 670 | static const U64 PRIME64_5 =  2870177450012600261ULL; | 
| 671 |  | 
| 672 | static U64 XXH64_round(U64 acc, U64 input) | 
| 673 | { | 
| 674 |     acc += input * PRIME64_2; | 
| 675 |     acc  = XXH_rotl64(acc, 31); | 
| 676 |     acc *= PRIME64_1; | 
| 677 |     return acc; | 
| 678 | } | 
| 679 |  | 
| 680 | static U64 XXH64_mergeRound(U64 acc, U64 val) | 
| 681 | { | 
| 682 |     val  = XXH64_round(0, val); | 
| 683 |     acc ^= val; | 
| 684 |     acc  = acc * PRIME64_1 + PRIME64_4; | 
| 685 |     return acc; | 
| 686 | } | 
| 687 |  | 
| 688 | static U64 XXH64_avalanche(U64 h64) | 
| 689 | { | 
| 690 |     h64 ^= h64 >> 33; | 
| 691 |     h64 *= PRIME64_2; | 
| 692 |     h64 ^= h64 >> 29; | 
| 693 |     h64 *= PRIME64_3; | 
| 694 |     h64 ^= h64 >> 32; | 
| 695 |     return h64; | 
| 696 | } | 
| 697 |  | 
| 698 |  | 
| 699 | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) | 
| 700 |  | 
| 701 | static U64 | 
| 702 | XXH64_finalize(U64 h64, const void* ptr, size_t len, | 
| 703 |                XXH_endianess endian, XXH_alignment align) | 
| 704 | { | 
| 705 |     const BYTE* p = (const BYTE*)ptr; | 
| 706 |  | 
| 707 | #define PROCESS1_64            \ | 
| 708 |     h64 ^= (*p++) * PRIME64_5; \ | 
| 709 |     h64 = XXH_rotl64(h64, 11) * PRIME64_1; | 
| 710 |  | 
| 711 | #define PROCESS4_64          \ | 
| 712 |     h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \ | 
| 713 |     p+=4;                    \ | 
| 714 |     h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; | 
| 715 |  | 
| 716 | #define PROCESS8_64 {        \ | 
| 717 |     U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \ | 
| 718 |     p+=8;                    \ | 
| 719 |     h64 ^= k1;               \ | 
| 720 |     h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \ | 
| 721 | } | 
| 722 |  | 
| 723 |     switch(len&31) { | 
| 724 |       case 24: PROCESS8_64; | 
| 725 |                     /* fallthrough */ | 
| 726 |       case 16: PROCESS8_64; | 
| 727 |                     /* fallthrough */ | 
| 728 |       case  8: PROCESS8_64; | 
| 729 |                return XXH64_avalanche(h64); | 
| 730 |  | 
| 731 |       case 28: PROCESS8_64; | 
| 732 |                     /* fallthrough */ | 
| 733 |       case 20: PROCESS8_64; | 
| 734 |                     /* fallthrough */ | 
| 735 |       case 12: PROCESS8_64; | 
| 736 |                     /* fallthrough */ | 
| 737 |       case  4: PROCESS4_64; | 
| 738 |                return XXH64_avalanche(h64); | 
| 739 |  | 
| 740 |       case 25: PROCESS8_64; | 
| 741 |                     /* fallthrough */ | 
| 742 |       case 17: PROCESS8_64; | 
| 743 |                     /* fallthrough */ | 
| 744 |       case  9: PROCESS8_64; | 
| 745 |                PROCESS1_64; | 
| 746 |                return XXH64_avalanche(h64); | 
| 747 |  | 
| 748 |       case 29: PROCESS8_64; | 
| 749 |                     /* fallthrough */ | 
| 750 |       case 21: PROCESS8_64; | 
| 751 |                     /* fallthrough */ | 
| 752 |       case 13: PROCESS8_64; | 
| 753 |                     /* fallthrough */ | 
| 754 |       case  5: PROCESS4_64; | 
| 755 |                PROCESS1_64; | 
| 756 |                return XXH64_avalanche(h64); | 
| 757 |  | 
| 758 |       case 26: PROCESS8_64; | 
| 759 |                     /* fallthrough */ | 
| 760 |       case 18: PROCESS8_64; | 
| 761 |                     /* fallthrough */ | 
| 762 |       case 10: PROCESS8_64; | 
| 763 |                PROCESS1_64; | 
| 764 |                PROCESS1_64; | 
| 765 |                return XXH64_avalanche(h64); | 
| 766 |  | 
| 767 |       case 30: PROCESS8_64; | 
| 768 |                     /* fallthrough */ | 
| 769 |       case 22: PROCESS8_64; | 
| 770 |                     /* fallthrough */ | 
| 771 |       case 14: PROCESS8_64; | 
| 772 |                     /* fallthrough */ | 
| 773 |       case  6: PROCESS4_64; | 
| 774 |                PROCESS1_64; | 
| 775 |                PROCESS1_64; | 
| 776 |                return XXH64_avalanche(h64); | 
| 777 |  | 
| 778 |       case 27: PROCESS8_64; | 
| 779 |                     /* fallthrough */ | 
| 780 |       case 19: PROCESS8_64; | 
| 781 |                     /* fallthrough */ | 
| 782 |       case 11: PROCESS8_64; | 
| 783 |                PROCESS1_64; | 
| 784 |                PROCESS1_64; | 
| 785 |                PROCESS1_64; | 
| 786 |                return XXH64_avalanche(h64); | 
| 787 |  | 
| 788 |       case 31: PROCESS8_64; | 
| 789 |                     /* fallthrough */ | 
| 790 |       case 23: PROCESS8_64; | 
| 791 |                     /* fallthrough */ | 
| 792 |       case 15: PROCESS8_64; | 
| 793 |                     /* fallthrough */ | 
| 794 |       case  7: PROCESS4_64; | 
| 795 |                     /* fallthrough */ | 
| 796 |       case  3: PROCESS1_64; | 
| 797 |                     /* fallthrough */ | 
| 798 |       case  2: PROCESS1_64; | 
| 799 |                     /* fallthrough */ | 
| 800 |       case  1: PROCESS1_64; | 
| 801 |                     /* fallthrough */ | 
| 802 |       case  0: return XXH64_avalanche(h64); | 
| 803 |     } | 
| 804 |  | 
| 805 |     /* impossible to reach */ | 
| 806 |     assert(0); | 
| 807 |     return 0;  /* unreachable, but some compilers complain without it */ | 
| 808 | } | 
| 809 |  | 
| 810 | FORCE_INLINE U64 | 
| 811 | XXH64_endian_align(const void* input, size_t len, U64 seed, | 
| 812 |                 XXH_endianess endian, XXH_alignment align) | 
| 813 | { | 
| 814 |     const BYTE* p = (const BYTE*)input; | 
| 815 |     const BYTE* bEnd = p + len; | 
| 816 |     U64 h64; | 
| 817 |  | 
| 818 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) | 
| 819 |     if (p==NULL) { | 
| 820 |         len=0; | 
| 821 |         bEnd=p=(const BYTE*)(size_t)32; | 
| 822 |     } | 
| 823 | #endif | 
| 824 |  | 
| 825 |     if (len>=32) { | 
| 826 |         const BYTE* const limit = bEnd - 32; | 
| 827 |         U64 v1 = seed + PRIME64_1 + PRIME64_2; | 
| 828 |         U64 v2 = seed + PRIME64_2; | 
| 829 |         U64 v3 = seed + 0; | 
| 830 |         U64 v4 = seed - PRIME64_1; | 
| 831 |  | 
| 832 |         do { | 
| 833 |             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; | 
| 834 |             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; | 
| 835 |             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; | 
| 836 |             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; | 
| 837 |         } while (p<=limit); | 
| 838 |  | 
| 839 |         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); | 
| 840 |         h64 = XXH64_mergeRound(h64, v1); | 
| 841 |         h64 = XXH64_mergeRound(h64, v2); | 
| 842 |         h64 = XXH64_mergeRound(h64, v3); | 
| 843 |         h64 = XXH64_mergeRound(h64, v4); | 
| 844 |  | 
| 845 |     } else { | 
| 846 |         h64  = seed + PRIME64_5; | 
| 847 |     } | 
| 848 |  | 
| 849 |     h64 += (U64) len; | 
| 850 |  | 
| 851 |     return XXH64_finalize(h64, p, len, endian, align); | 
| 852 | } | 
| 853 |  | 
| 854 |  | 
| 855 | XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) | 
| 856 | { | 
| 857 | #if 0 | 
| 858 |     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ | 
| 859 |     XXH64_state_t state; | 
| 860 |     XXH64_reset(&state, seed); | 
| 861 |     XXH64_update(&state, input, len); | 
| 862 |     return XXH64_digest(&state); | 
| 863 | #else | 
| 864 |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | 
| 865 |  | 
| 866 |     if (XXH_FORCE_ALIGN_CHECK) { | 
| 867 |         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */ | 
| 868 |             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 869 |                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | 
| 870 |             else | 
| 871 |                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | 
| 872 |     }   } | 
| 873 |  | 
| 874 |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 875 |         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | 
| 876 |     else | 
| 877 |         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | 
| 878 | #endif | 
| 879 | } | 
| 880 |  | 
| 881 | /*======   Hash Streaming   ======*/ | 
| 882 |  | 
| 883 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) | 
| 884 | { | 
| 885 |     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); | 
| 886 | } | 
| 887 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) | 
| 888 | { | 
| 889 |     XXH_free(statePtr); | 
| 890 |     return XXH_OK; | 
| 891 | } | 
| 892 |  | 
| 893 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) | 
| 894 | { | 
| 895 |     memcpy(dstState, srcState, sizeof(*dstState)); | 
| 896 | } | 
| 897 |  | 
| 898 | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) | 
| 899 | { | 
| 900 |     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ | 
| 901 |     memset(&state, 0, sizeof(state)); | 
| 902 |     state.v1 = seed + PRIME64_1 + PRIME64_2; | 
| 903 |     state.v2 = seed + PRIME64_2; | 
| 904 |     state.v3 = seed + 0; | 
| 905 |     state.v4 = seed - PRIME64_1; | 
| 906 |      /* do not write into reserved, planned to be removed in a future version */ | 
| 907 |     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); | 
| 908 |     return XXH_OK; | 
| 909 | } | 
| 910 |  | 
| 911 | FORCE_INLINE XXH_errorcode | 
| 912 | XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) | 
| 913 | { | 
| 914 |     if (input==NULL) | 
| 915 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) | 
| 916 |         return XXH_OK; | 
| 917 | #else | 
| 918 |         return XXH_ERROR; | 
| 919 | #endif | 
| 920 |  | 
| 921 |     {   const BYTE* p = (const BYTE*)input; | 
| 922 |         const BYTE* const bEnd = p + len; | 
| 923 |  | 
| 924 |         state->total_len += len; | 
| 925 |  | 
| 926 |         if (state->memsize + len < 32) {  /* fill in tmp buffer */ | 
| 927 |             XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); | 
| 928 |             state->memsize += (U32)len; | 
| 929 |             return XXH_OK; | 
| 930 |         } | 
| 931 |  | 
| 932 |         if (state->memsize) {   /* tmp buffer is full */ | 
| 933 |             XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); | 
| 934 |             state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); | 
| 935 |             state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); | 
| 936 |             state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); | 
| 937 |             state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); | 
| 938 |             p += 32-state->memsize; | 
| 939 |             state->memsize = 0; | 
| 940 |         } | 
| 941 |  | 
| 942 |         if (p+32 <= bEnd) { | 
| 943 |             const BYTE* const limit = bEnd - 32; | 
| 944 |             U64 v1 = state->v1; | 
| 945 |             U64 v2 = state->v2; | 
| 946 |             U64 v3 = state->v3; | 
| 947 |             U64 v4 = state->v4; | 
| 948 |  | 
| 949 |             do { | 
| 950 |                 v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; | 
| 951 |                 v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; | 
| 952 |                 v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; | 
| 953 |                 v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; | 
| 954 |             } while (p<=limit); | 
| 955 |  | 
| 956 |             state->v1 = v1; | 
| 957 |             state->v2 = v2; | 
| 958 |             state->v3 = v3; | 
| 959 |             state->v4 = v4; | 
| 960 |         } | 
| 961 |  | 
| 962 |         if (p < bEnd) { | 
| 963 |             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); | 
| 964 |             state->memsize = (unsigned)(bEnd-p); | 
| 965 |         } | 
| 966 |     } | 
| 967 |  | 
| 968 |     return XXH_OK; | 
| 969 | } | 
| 970 |  | 
| 971 | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) | 
| 972 | { | 
| 973 |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | 
| 974 |  | 
| 975 |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 976 |         return XXH64_update_endian(state_in, input, len, XXH_littleEndian); | 
| 977 |     else | 
| 978 |         return XXH64_update_endian(state_in, input, len, XXH_bigEndian); | 
| 979 | } | 
| 980 |  | 
| 981 | FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) | 
| 982 | { | 
| 983 |     U64 h64; | 
| 984 |  | 
| 985 |     if (state->total_len >= 32) { | 
| 986 |         U64 const v1 = state->v1; | 
| 987 |         U64 const v2 = state->v2; | 
| 988 |         U64 const v3 = state->v3; | 
| 989 |         U64 const v4 = state->v4; | 
| 990 |  | 
| 991 |         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); | 
| 992 |         h64 = XXH64_mergeRound(h64, v1); | 
| 993 |         h64 = XXH64_mergeRound(h64, v2); | 
| 994 |         h64 = XXH64_mergeRound(h64, v3); | 
| 995 |         h64 = XXH64_mergeRound(h64, v4); | 
| 996 |     } else { | 
| 997 |         h64  = state->v3 /*seed*/ + PRIME64_5; | 
| 998 |     } | 
| 999 |  | 
| 1000 |     h64 += (U64) state->total_len; | 
| 1001 |  | 
| 1002 |     return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, endian, XXH_aligned); | 
| 1003 | } | 
| 1004 |  | 
| 1005 | XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) | 
| 1006 | { | 
| 1007 |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | 
| 1008 |  | 
| 1009 |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | 
| 1010 |         return XXH64_digest_endian(state_in, XXH_littleEndian); | 
| 1011 |     else | 
| 1012 |         return XXH64_digest_endian(state_in, XXH_bigEndian); | 
| 1013 | } | 
| 1014 |  | 
| 1015 |  | 
| 1016 | /*====== Canonical representation   ======*/ | 
| 1017 |  | 
| 1018 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) | 
| 1019 | { | 
| 1020 |     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); | 
| 1021 |     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); | 
| 1022 |     memcpy(dst, &hash, sizeof(*dst)); | 
| 1023 | } | 
| 1024 |  | 
| 1025 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) | 
| 1026 | { | 
| 1027 |     return XXH_readBE64(src); | 
| 1028 | } | 
| 1029 |  | 
| 1030 | #endif  /* XXH_NO_LONG_LONG */ | 
| 1031 |  |