| 1 | /* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved. |
| 2 | 2016,2018 MariaDB Corporation AB |
| 3 | |
| 4 | This library is free software; you can redistribute it and/or |
| 5 | modify it under the terms of the GNU Library General Public |
| 6 | License as published by the Free Software Foundation; version 2 |
| 7 | of the License. |
| 8 | |
| 9 | This program is distributed in the hope that it will be useful, |
| 10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | GNU General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU General Public License |
| 15 | along with this program; if not, write to the Free Software |
| 16 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 17 | |
| 18 | /**************************************************************** |
| 19 | |
| 20 | This file incorporates work covered by the following copyright and |
| 21 | permission notice: |
| 22 | |
| 23 | The author of this software is David M. Gay. |
| 24 | |
| 25 | Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 26 | |
| 27 | Permission to use, copy, modify, and distribute this software for any |
| 28 | purpose without fee is hereby granted, provided that this entire notice |
| 29 | is included in all copies of any software which is or includes a copy |
| 30 | or modification of this software and in all copies of the supporting |
| 31 | documentation for such software. |
| 32 | |
| 33 | THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 34 | WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 35 | REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 36 | OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 37 | |
| 38 | ***************************************************************/ |
| 39 | |
| 40 | //#include "strings_def.h" |
| 41 | //#include <my_base.h> /* for EOVERFLOW on Windows */ |
| 42 | #include <ma_global.h> |
| 43 | #include <memory.h> |
| 44 | #include "ma_string.h" |
| 45 | |
| 46 | /** |
| 47 | Appears to suffice to not call malloc() in most cases. |
| 48 | @todo |
| 49 | see if it is possible to get rid of malloc(). |
| 50 | this constant is sufficient to avoid malloc() on all inputs I have tried. |
| 51 | */ |
| 52 | #define DTOA_BUFF_SIZE (460 * sizeof(void *)) |
| 53 | |
| 54 | /* Magic value returned by dtoa() to indicate overflow */ |
| 55 | #define DTOA_OVERFLOW 9999 |
| 56 | |
| 57 | static char *dtoa(double, int, int, int *, int *, char **, char *, size_t); |
| 58 | static void dtoa_free(char *, char *, size_t); |
| 59 | |
| 60 | /** |
| 61 | @brief |
| 62 | Converts a given floating point number to a zero-terminated string |
| 63 | representation using the 'f' format. |
| 64 | |
| 65 | @details |
| 66 | This function is a wrapper around dtoa() to do the same as |
| 67 | sprintf(to, "%-.*f", precision, x), though the conversion is usually more |
| 68 | precise. The only difference is in handling [-,+]infinity and nan values, |
| 69 | in which case we print '0\0' to the output string and indicate an overflow. |
| 70 | |
| 71 | @param x the input floating point number. |
| 72 | @param precision the number of digits after the decimal point. |
| 73 | All properties of sprintf() apply: |
| 74 | - if the number of significant digits after the decimal |
| 75 | point is less than precision, the resulting string is |
| 76 | right-padded with zeros |
| 77 | - if the precision is 0, no decimal point appears |
| 78 | - if a decimal point appears, at least one digit appears |
| 79 | before it |
| 80 | @param to pointer to the output buffer. The longest string which |
| 81 | my_fcvt() can return is FLOATING_POINT_BUFFER bytes |
| 82 | (including the terminating '\0'). |
| 83 | @param error if not NULL, points to a location where the status of |
| 84 | conversion is stored upon return. |
| 85 | FALSE successful conversion |
| 86 | TRUE the input number is [-,+]infinity or nan. |
| 87 | The output string in this case is always '0'. |
| 88 | @return number of written characters (excluding terminating '\0') |
| 89 | */ |
| 90 | |
| 91 | size_t ma_fcvt(double x, int precision, char *to, my_bool *error) |
| 92 | { |
| 93 | int decpt, sign, len, i; |
| 94 | char *res, *src, *end, *dst= to; |
| 95 | char buf[DTOA_BUFF_SIZE]; |
| 96 | DBUG_ASSERT(precision >= 0 && precision < NOT_FIXED_DEC && to != NULL); |
| 97 | |
| 98 | res= dtoa(x, 5, precision, &decpt, &sign, &end, buf, sizeof(buf)); |
| 99 | |
| 100 | if (decpt == DTOA_OVERFLOW) |
| 101 | { |
| 102 | dtoa_free(res, buf, sizeof(buf)); |
| 103 | *to++= '0'; |
| 104 | *to= '\0'; |
| 105 | if (error != NULL) |
| 106 | *error= TRUE; |
| 107 | return 1; |
| 108 | } |
| 109 | |
| 110 | src= res; |
| 111 | len= (int)(end - src); |
| 112 | |
| 113 | if (sign) |
| 114 | *dst++= '-'; |
| 115 | |
| 116 | if (decpt <= 0) |
| 117 | { |
| 118 | *dst++= '0'; |
| 119 | *dst++= '.'; |
| 120 | for (i= decpt; i < 0; i++) |
| 121 | *dst++= '0'; |
| 122 | } |
| 123 | |
| 124 | for (i= 1; i <= len; i++) |
| 125 | { |
| 126 | *dst++= *src++; |
| 127 | if (i == decpt && i < len) |
| 128 | *dst++= '.'; |
| 129 | } |
| 130 | while (i++ <= decpt) |
| 131 | *dst++= '0'; |
| 132 | |
| 133 | if (precision > 0) |
| 134 | { |
| 135 | if (len <= decpt) |
| 136 | *dst++= '.'; |
| 137 | |
| 138 | for (i= precision - MAX(0, (len - decpt)); i > 0; i--) |
| 139 | *dst++= '0'; |
| 140 | } |
| 141 | |
| 142 | *dst= '\0'; |
| 143 | if (error != NULL) |
| 144 | *error= FALSE; |
| 145 | |
| 146 | dtoa_free(res, buf, sizeof(buf)); |
| 147 | |
| 148 | return dst - to; |
| 149 | } |
| 150 | |
| 151 | /** |
| 152 | @brief |
| 153 | Converts a given floating point number to a zero-terminated string |
| 154 | representation with a given field width using the 'e' format |
| 155 | (aka scientific notation) or the 'f' one. |
| 156 | |
| 157 | @details |
| 158 | The format is chosen automatically to provide the most number of significant |
| 159 | digits (and thus, precision) with a given field width. In many cases, the |
| 160 | result is similar to that of sprintf(to, "%g", x) with a few notable |
| 161 | differences: |
| 162 | - the conversion is usually more precise than C library functions. |
| 163 | - there is no 'precision' argument. instead, we specify the number of |
| 164 | characters available for conversion (i.e. a field width). |
| 165 | - the result never exceeds the specified field width. If the field is too |
| 166 | short to contain even a rounded decimal representation, ma_gcvt() |
| 167 | indicates overflow and truncates the output string to the specified width. |
| 168 | - float-type arguments are handled differently than double ones. For a |
| 169 | float input number (i.e. when the 'type' argument is MY_GCVT_ARG_FLOAT) |
| 170 | we deliberately limit the precision of conversion by FLT_DIG digits to |
| 171 | avoid garbage past the significant digits. |
| 172 | - unlike sprintf(), in cases where the 'e' format is preferred, we don't |
| 173 | zero-pad the exponent to save space for significant digits. The '+' sign |
| 174 | for a positive exponent does not appear for the same reason. |
| 175 | |
| 176 | @param x the input floating point number. |
| 177 | @param type is either MY_GCVT_ARG_FLOAT or MY_GCVT_ARG_DOUBLE. |
| 178 | Specifies the type of the input number (see notes above). |
| 179 | @param width field width in characters. The minimal field width to |
| 180 | hold any number representation (albeit rounded) is 7 |
| 181 | characters ("-Ne-NNN"). |
| 182 | @param to pointer to the output buffer. The result is always |
| 183 | zero-terminated, and the longest returned string is thus |
| 184 | 'width + 1' bytes. |
| 185 | @param error if not NULL, points to a location where the status of |
| 186 | conversion is stored upon return. |
| 187 | FALSE successful conversion |
| 188 | TRUE the input number is [-,+]infinity or nan. |
| 189 | The output string in this case is always '0'. |
| 190 | @return number of written characters (excluding terminating '\0') |
| 191 | |
| 192 | @todo |
| 193 | Check if it is possible and makes sense to do our own rounding on top of |
| 194 | dtoa() instead of calling dtoa() twice in (rare) cases when the resulting |
| 195 | string representation does not fit in the specified field width and we want |
| 196 | to re-round the input number with fewer significant digits. Examples: |
| 197 | |
| 198 | ma_gcvt(-9e-3, ..., 4, ...); |
| 199 | ma_gcvt(-9e-3, ..., 2, ...); |
| 200 | ma_gcvt(1.87e-3, ..., 4, ...); |
| 201 | ma_gcvt(55, ..., 1, ...); |
| 202 | |
| 203 | We do our best to minimize such cases by: |
| 204 | |
| 205 | - passing to dtoa() the field width as the number of significant digits |
| 206 | |
| 207 | - removing the sign of the number early (and decreasing the width before |
| 208 | passing it to dtoa()) |
| 209 | |
| 210 | - choosing the proper format to preserve the most number of significant |
| 211 | digits. |
| 212 | */ |
| 213 | |
| 214 | size_t ma_gcvt(double x, my_gcvt_arg_type type, int width, char *to, |
| 215 | my_bool *error) |
| 216 | { |
| 217 | int decpt, sign, len, exp_len; |
| 218 | char *res, *src, *end, *dst= to, *dend= dst + width; |
| 219 | char buf[DTOA_BUFF_SIZE]; |
| 220 | my_bool have_space, force_e_format; |
| 221 | DBUG_ASSERT(width > 0 && to != NULL); |
| 222 | |
| 223 | /* We want to remove '-' from equations early */ |
| 224 | if (x < 0.) |
| 225 | width--; |
| 226 | |
| 227 | res= dtoa(x, 4, type == MY_GCVT_ARG_DOUBLE ? width : MIN(width, FLT_DIG), |
| 228 | &decpt, &sign, &end, buf, sizeof(buf)); |
| 229 | if (decpt == DTOA_OVERFLOW) |
| 230 | { |
| 231 | dtoa_free(res, buf, sizeof(buf)); |
| 232 | *to++= '0'; |
| 233 | *to= '\0'; |
| 234 | if (error != NULL) |
| 235 | *error= TRUE; |
| 236 | return 1; |
| 237 | } |
| 238 | |
| 239 | if (error != NULL) |
| 240 | *error= FALSE; |
| 241 | |
| 242 | src= res; |
| 243 | len= (int)(end - res); |
| 244 | |
| 245 | /* |
| 246 | Number of digits in the exponent from the 'e' conversion. |
| 247 | The sign of the exponent is taken into account separetely, we don't need |
| 248 | to count it here. |
| 249 | */ |
| 250 | exp_len= 1 + (decpt >= 101 || decpt <= -99) + (decpt >= 11 || decpt <= -9); |
| 251 | |
| 252 | /* |
| 253 | Do we have enough space for all digits in the 'f' format? |
| 254 | Let 'len' be the number of significant digits returned by dtoa, |
| 255 | and F be the length of the resulting decimal representation. |
| 256 | Consider the following cases: |
| 257 | 1. decpt <= 0, i.e. we have "0.NNN" => F = len - decpt + 2 |
| 258 | 2. 0 < decpt < len, i.e. we have "NNN.NNN" => F = len + 1 |
| 259 | 3. len <= decpt, i.e. we have "NNN00" => F = decpt |
| 260 | */ |
| 261 | have_space= (decpt <= 0 ? len - decpt + 2 : |
| 262 | decpt > 0 && decpt < len ? len + 1 : |
| 263 | decpt) <= width; |
| 264 | /* |
| 265 | The following is true when no significant digits can be placed with the |
| 266 | specified field width using the 'f' format, and the 'e' format |
| 267 | will not be truncated. |
| 268 | */ |
| 269 | force_e_format= (decpt <= 0 && width <= 2 - decpt && width >= 3 + exp_len); |
| 270 | /* |
| 271 | Assume that we don't have enough space to place all significant digits in |
| 272 | the 'f' format. We have to choose between the 'e' format and the 'f' one |
| 273 | to keep as many significant digits as possible. |
| 274 | Let E and F be the lengths of decimal representation in the 'e' and 'f' |
| 275 | formats, respectively. We want to use the 'f' format if, and only if F <= E. |
| 276 | Consider the following cases: |
| 277 | 1. decpt <= 0. |
| 278 | F = len - decpt + 2 (see above) |
| 279 | E = len + (len > 1) + 1 + 1 (decpt <= -99) + (decpt <= -9) + 1 |
| 280 | ("N.NNe-MMM") |
| 281 | (F <= E) <=> (len == 1 && decpt >= -1) || (len > 1 && decpt >= -2) |
| 282 | We also need to ensure that if the 'f' format is chosen, |
| 283 | the field width allows us to place at least one significant digit |
| 284 | (i.e. width > 2 - decpt). If not, we prefer the 'e' format. |
| 285 | 2. 0 < decpt < len |
| 286 | F = len + 1 (see above) |
| 287 | E = len + 1 + 1 + ... ("N.NNeMMM") |
| 288 | F is always less than E. |
| 289 | 3. len <= decpt <= width |
| 290 | In this case we have enough space to represent the number in the 'f' |
| 291 | format, so we prefer it with some exceptions. |
| 292 | 4. width < decpt |
| 293 | The number cannot be represented in the 'f' format at all, always use |
| 294 | the 'e' 'one. |
| 295 | */ |
| 296 | if ((have_space || |
| 297 | /* |
| 298 | Not enough space, let's see if the 'f' format provides the most number |
| 299 | of significant digits. |
| 300 | */ |
| 301 | ((decpt <= width && (decpt >= -1 || (decpt == -2 && |
| 302 | (len > 1 || !force_e_format)))) && |
| 303 | !force_e_format)) && |
| 304 | |
| 305 | /* |
| 306 | Use the 'e' format in some cases even if we have enough space for the |
| 307 | 'f' one. See comment for DBL_DIG. |
| 308 | */ |
| 309 | (!have_space || (decpt >= -DBL_DIG + 1 && |
| 310 | (decpt <= DBL_DIG || len > decpt)))) |
| 311 | { |
| 312 | /* 'f' format */ |
| 313 | int i; |
| 314 | |
| 315 | width-= (decpt < len) + (decpt <= 0 ? 1 - decpt : 0); |
| 316 | |
| 317 | /* Do we have to truncate any digits? */ |
| 318 | if (width < len) |
| 319 | { |
| 320 | if (width < decpt) |
| 321 | { |
| 322 | if (error != NULL) |
| 323 | *error= TRUE; |
| 324 | width= decpt; |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | We want to truncate (len - width) least significant digits after the |
| 329 | decimal point. For this we are calling dtoa with mode=5, passing the |
| 330 | number of significant digits = (len-decpt) - (len-width) = width-decpt |
| 331 | */ |
| 332 | dtoa_free(res, buf, sizeof(buf)); |
| 333 | res= dtoa(x, 5, width - decpt, &decpt, &sign, &end, buf, sizeof(buf)); |
| 334 | src= res; |
| 335 | len= (int)(end - res); |
| 336 | } |
| 337 | |
| 338 | if (len == 0) |
| 339 | { |
| 340 | /* Underflow. Just print '0' and exit */ |
| 341 | *dst++= '0'; |
| 342 | goto end; |
| 343 | } |
| 344 | |
| 345 | /* |
| 346 | At this point we are sure we have enough space to put all digits |
| 347 | returned by dtoa |
| 348 | */ |
| 349 | if (sign && dst < dend) |
| 350 | *dst++= '-'; |
| 351 | if (decpt <= 0) |
| 352 | { |
| 353 | if (dst < dend) |
| 354 | *dst++= '0'; |
| 355 | if (len > 0 && dst < dend) |
| 356 | *dst++= '.'; |
| 357 | for (; decpt < 0 && dst < dend; decpt++) |
| 358 | *dst++= '0'; |
| 359 | } |
| 360 | |
| 361 | for (i= 1; i <= len && dst < dend; i++) |
| 362 | { |
| 363 | *dst++= *src++; |
| 364 | if (i == decpt && i < len && dst < dend) |
| 365 | *dst++= '.'; |
| 366 | } |
| 367 | while (i++ <= decpt && dst < dend) |
| 368 | *dst++= '0'; |
| 369 | } |
| 370 | else |
| 371 | { |
| 372 | /* 'e' format */ |
| 373 | int decpt_sign= 0; |
| 374 | |
| 375 | if (--decpt < 0) |
| 376 | { |
| 377 | decpt= -decpt; |
| 378 | width--; |
| 379 | decpt_sign= 1; |
| 380 | } |
| 381 | width-= 1 + exp_len; /* eNNN */ |
| 382 | |
| 383 | if (len > 1) |
| 384 | width--; |
| 385 | |
| 386 | if (width <= 0) |
| 387 | { |
| 388 | /* Overflow */ |
| 389 | if (error != NULL) |
| 390 | *error= TRUE; |
| 391 | width= 0; |
| 392 | } |
| 393 | |
| 394 | /* Do we have to truncate any digits? */ |
| 395 | if (width < len) |
| 396 | { |
| 397 | /* Yes, re-convert with a smaller width */ |
| 398 | dtoa_free(res, buf, sizeof(buf)); |
| 399 | res= dtoa(x, 4, width, &decpt, &sign, &end, buf, sizeof(buf)); |
| 400 | src= res; |
| 401 | len= (int)(end - res); |
| 402 | if (--decpt < 0) |
| 403 | decpt= -decpt; |
| 404 | } |
| 405 | /* |
| 406 | At this point we are sure we have enough space to put all digits |
| 407 | returned by dtoa |
| 408 | */ |
| 409 | if (sign && dst < dend) |
| 410 | *dst++= '-'; |
| 411 | if (dst < dend) |
| 412 | *dst++= *src++; |
| 413 | if (len > 1 && dst < dend) |
| 414 | { |
| 415 | *dst++= '.'; |
| 416 | while (src < end && dst < dend) |
| 417 | *dst++= *src++; |
| 418 | } |
| 419 | if (dst < dend) |
| 420 | *dst++= 'e'; |
| 421 | if (decpt_sign && dst < dend) |
| 422 | *dst++= '-'; |
| 423 | |
| 424 | if (decpt >= 100 && dst < dend) |
| 425 | { |
| 426 | *dst++= decpt / 100 + '0'; |
| 427 | decpt%= 100; |
| 428 | if (dst < dend) |
| 429 | *dst++= decpt / 10 + '0'; |
| 430 | } |
| 431 | else if (decpt >= 10 && dst < dend) |
| 432 | *dst++= decpt / 10 + '0'; |
| 433 | if (dst < dend) |
| 434 | *dst++= decpt % 10 + '0'; |
| 435 | |
| 436 | } |
| 437 | |
| 438 | end: |
| 439 | dtoa_free(res, buf, sizeof(buf)); |
| 440 | *dst= '\0'; |
| 441 | |
| 442 | return dst - to; |
| 443 | } |
| 444 | |
| 445 | /**************************************************************** |
| 446 | * |
| 447 | * The author of this software is David M. Gay. |
| 448 | * |
| 449 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 450 | * |
| 451 | * Permission to use, copy, modify, and distribute this software for any |
| 452 | * purpose without fee is hereby granted, provided that this entire notice |
| 453 | * is included in all copies of any software which is or includes a copy |
| 454 | * or modification of this software and in all copies of the supporting |
| 455 | * documentation for such software. |
| 456 | * |
| 457 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 458 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 459 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 460 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 461 | * |
| 462 | ***************************************************************/ |
| 463 | /* Please send bug reports to David M. Gay (dmg at acm dot org, |
| 464 | * with " at " changed at "@" and " dot " changed to "."). */ |
| 465 | |
| 466 | /* |
| 467 | Original copy of the software is located at http://www.netlib.org/fp/dtoa.c |
| 468 | It was adjusted to serve MySQL server needs: |
| 469 | * strtod() was modified to not expect a zero-terminated string. |
| 470 | It now honors 'se' (end of string) argument as the input parameter, |
| 471 | not just as the output one. |
| 472 | * in dtoa(), in case of overflow/underflow/NaN result string now contains "0"; |
| 473 | decpt is set to DTOA_OVERFLOW to indicate overflow. |
| 474 | * support for VAX, IBM mainframe and 16-bit hardware removed |
| 475 | * we always assume that 64-bit integer type is available |
| 476 | * support for Kernigan-Ritchie style headers (pre-ANSI compilers) |
| 477 | removed |
| 478 | * all gcc warnings ironed out |
| 479 | * we always assume multithreaded environment, so we had to change |
| 480 | memory allocation procedures to use stack in most cases; |
| 481 | malloc is used as the last resort. |
| 482 | * pow5mult rewritten to use pre-calculated pow5 list instead of |
| 483 | the one generated on the fly. |
| 484 | */ |
| 485 | |
| 486 | |
| 487 | /* |
| 488 | On a machine with IEEE extended-precision registers, it is |
| 489 | necessary to specify double-precision (53-bit) rounding precision |
| 490 | before invoking strtod or dtoa. If the machine uses (the equivalent |
| 491 | of) Intel 80x87 arithmetic, the call |
| 492 | _control87(PC_53, MCW_PC); |
| 493 | does this with many compilers. Whether this or another call is |
| 494 | appropriate depends on the compiler; for this to work, it may be |
| 495 | necessary to #include "float.h" or another system-dependent header |
| 496 | file. |
| 497 | */ |
| 498 | |
| 499 | /* |
| 500 | #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
| 501 | and dtoa should round accordingly. |
| 502 | #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
| 503 | and Honor_FLT_ROUNDS is not #defined. |
| 504 | |
| 505 | TODO: check if we can get rid of the above two |
| 506 | */ |
| 507 | |
| 508 | typedef int32 Long; |
| 509 | typedef uint32 ULong; |
| 510 | typedef int64 LLong; |
| 511 | typedef uint64 ULLong; |
| 512 | |
| 513 | typedef union { double d; ULong L[2]; } U; |
| 514 | |
| 515 | #if defined(HAVE_BIGENDIAN) || defined(WORDS_BIGENDIAN) || \ |
| 516 | (defined(__FLOAT_WORD_ORDER) && (__FLOAT_WORD_ORDER == __BIG_ENDIAN)) |
| 517 | #define word0(x) (x)->L[0] |
| 518 | #define word1(x) (x)->L[1] |
| 519 | #else |
| 520 | #define word0(x) (x)->L[1] |
| 521 | #define word1(x) (x)->L[0] |
| 522 | #endif |
| 523 | |
| 524 | #define dval(x) (x)->d |
| 525 | |
| 526 | /* #define P DBL_MANT_DIG */ |
| 527 | /* Ten_pmax= floor(P*log(2)/log(5)) */ |
| 528 | /* Bletch= (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
| 529 | /* Quick_max= floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
| 530 | /* Int_max= floor(P*log(FLT_RADIX)/log(10) - 1) */ |
| 531 | |
| 532 | #define Exp_shift 20 |
| 533 | #define Exp_shift1 20 |
| 534 | #define Exp_msk1 0x100000 |
| 535 | #define Exp_mask 0x7ff00000 |
| 536 | #define P 53 |
| 537 | #define Bias 1023 |
| 538 | #define Emin (-1022) |
| 539 | #define Exp_1 0x3ff00000 |
| 540 | #define Exp_11 0x3ff00000 |
| 541 | #define Ebits 11 |
| 542 | #define Frac_mask 0xfffff |
| 543 | #define Frac_mask1 0xfffff |
| 544 | #define Ten_pmax 22 |
| 545 | #define Bletch 0x10 |
| 546 | #define Bndry_mask 0xfffff |
| 547 | #define Bndry_mask1 0xfffff |
| 548 | #define LSB 1 |
| 549 | #define Sign_bit 0x80000000 |
| 550 | #define Log2P 1 |
| 551 | #define Tiny1 1 |
| 552 | #define Quick_max 14 |
| 553 | #define Int_max 14 |
| 554 | |
| 555 | #ifndef Flt_Rounds |
| 556 | #ifdef FLT_ROUNDS |
| 557 | #define Flt_Rounds FLT_ROUNDS |
| 558 | #else |
| 559 | #define Flt_Rounds 1 |
| 560 | #endif |
| 561 | #endif /*Flt_Rounds*/ |
| 562 | |
| 563 | #ifdef Honor_FLT_ROUNDS |
| 564 | #define Rounding rounding |
| 565 | #undef Check_FLT_ROUNDS |
| 566 | #define Check_FLT_ROUNDS |
| 567 | #else |
| 568 | #define Rounding Flt_Rounds |
| 569 | #endif |
| 570 | |
| 571 | #define rounded_product(a,b) a*= b |
| 572 | #define rounded_quotient(a,b) a/= b |
| 573 | |
| 574 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
| 575 | #define Big1 0xffffffff |
| 576 | #define FFFFFFFF 0xffffffffUL |
| 577 | |
| 578 | /* This is tested to be enough for dtoa */ |
| 579 | |
| 580 | #define Kmax 15 |
| 581 | |
| 582 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
| 583 | 2*sizeof(int) + y->wds*sizeof(ULong)) |
| 584 | |
| 585 | /* Arbitrary-length integer */ |
| 586 | |
| 587 | typedef struct Bigint |
| 588 | { |
| 589 | union { |
| 590 | ULong *x; /* points right after this Bigint object */ |
| 591 | struct Bigint *next; /* to maintain free lists */ |
| 592 | } p; |
| 593 | int k; /* 2^k = maxwds */ |
| 594 | int maxwds; /* maximum length in 32-bit words */ |
| 595 | int sign; /* not zero if number is negative */ |
| 596 | int wds; /* current length in 32-bit words */ |
| 597 | } Bigint; |
| 598 | |
| 599 | |
| 600 | /* A simple stack-memory based allocator for Bigints */ |
| 601 | |
| 602 | typedef struct Stack_alloc |
| 603 | { |
| 604 | char *begin; |
| 605 | char *free; |
| 606 | char *end; |
| 607 | /* |
| 608 | Having list of free blocks lets us reduce maximum required amount |
| 609 | of memory from ~4000 bytes to < 1680 (tested on x86). |
| 610 | */ |
| 611 | Bigint *freelist[Kmax+1]; |
| 612 | } Stack_alloc; |
| 613 | |
| 614 | |
| 615 | /* |
| 616 | Try to allocate object on stack, and resort to malloc if all |
| 617 | stack memory is used. Ensure allocated objects to be aligned by the pointer |
| 618 | size in order to not break the alignment rules when storing a pointer to a |
| 619 | Bigint. |
| 620 | */ |
| 621 | |
| 622 | static Bigint *Balloc(int k, Stack_alloc *alloc) |
| 623 | { |
| 624 | Bigint *rv; |
| 625 | DBUG_ASSERT(k <= Kmax); |
| 626 | if (k <= Kmax && alloc->freelist[k]) |
| 627 | { |
| 628 | rv= alloc->freelist[k]; |
| 629 | alloc->freelist[k]= rv->p.next; |
| 630 | } |
| 631 | else |
| 632 | { |
| 633 | int x, len; |
| 634 | |
| 635 | x= 1 << k; |
| 636 | len= MY_ALIGN(sizeof(Bigint) + x * sizeof(ULong), SIZEOF_CHARP); |
| 637 | |
| 638 | if (alloc->free + len <= alloc->end) |
| 639 | { |
| 640 | rv= (Bigint*) alloc->free; |
| 641 | alloc->free+= len; |
| 642 | } |
| 643 | else |
| 644 | rv= (Bigint*) malloc(len); |
| 645 | |
| 646 | rv->k= k; |
| 647 | rv->maxwds= x; |
| 648 | } |
| 649 | rv->sign= rv->wds= 0; |
| 650 | rv->p.x= (ULong*) (rv + 1); |
| 651 | return rv; |
| 652 | } |
| 653 | |
| 654 | |
| 655 | /* |
| 656 | If object was allocated on stack, try putting it to the free |
| 657 | list. Otherwise call free(). |
| 658 | */ |
| 659 | |
| 660 | static void Bfree(Bigint *v, Stack_alloc *alloc) |
| 661 | { |
| 662 | char *gptr= (char*) v; /* generic pointer */ |
| 663 | if (gptr < alloc->begin || gptr >= alloc->end) |
| 664 | free(gptr); |
| 665 | else if (v->k <= Kmax) |
| 666 | { |
| 667 | /* |
| 668 | Maintain free lists only for stack objects: this way we don't |
| 669 | have to bother with freeing lists in the end of dtoa; |
| 670 | heap should not be used normally anyway. |
| 671 | */ |
| 672 | v->p.next= alloc->freelist[v->k]; |
| 673 | alloc->freelist[v->k]= v; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | |
| 678 | /* |
| 679 | This is to place return value of dtoa in: tries to use stack |
| 680 | as well, but passes by free lists management and just aligns len by |
| 681 | the pointer size in order to not break the alignment rules when storing a |
| 682 | pointer to a Bigint. |
| 683 | */ |
| 684 | |
| 685 | static char *dtoa_alloc(int i, Stack_alloc *alloc) |
| 686 | { |
| 687 | char *rv; |
| 688 | int aligned_size= MY_ALIGN(i, SIZEOF_CHARP); |
| 689 | if (alloc->free + aligned_size <= alloc->end) |
| 690 | { |
| 691 | rv= alloc->free; |
| 692 | alloc->free+= aligned_size; |
| 693 | } |
| 694 | else |
| 695 | rv= malloc(i); |
| 696 | return rv; |
| 697 | } |
| 698 | |
| 699 | |
| 700 | /* |
| 701 | dtoa_free() must be used to free values s returned by dtoa() |
| 702 | This is the counterpart of dtoa_alloc() |
| 703 | */ |
| 704 | |
| 705 | static void dtoa_free(char *gptr, char *buf, size_t buf_size) |
| 706 | { |
| 707 | if (gptr < buf || gptr >= buf + buf_size) |
| 708 | free(gptr); |
| 709 | } |
| 710 | |
| 711 | |
| 712 | /* Bigint arithmetic functions */ |
| 713 | |
| 714 | /* Multiply by m and add a */ |
| 715 | |
| 716 | static Bigint *multadd(Bigint *b, int m, int a, Stack_alloc *alloc) |
| 717 | { |
| 718 | int i, wds; |
| 719 | ULong *x; |
| 720 | ULLong carry, y; |
| 721 | Bigint *b1; |
| 722 | |
| 723 | wds= b->wds; |
| 724 | x= b->p.x; |
| 725 | i= 0; |
| 726 | carry= a; |
| 727 | do |
| 728 | { |
| 729 | y= *x * (ULLong)m + carry; |
| 730 | carry= y >> 32; |
| 731 | *x++= (ULong)(y & FFFFFFFF); |
| 732 | } |
| 733 | while (++i < wds); |
| 734 | if (carry) |
| 735 | { |
| 736 | if (wds >= b->maxwds) |
| 737 | { |
| 738 | b1= Balloc(b->k+1, alloc); |
| 739 | Bcopy(b1, b); |
| 740 | Bfree(b, alloc); |
| 741 | b= b1; |
| 742 | } |
| 743 | b->p.x[wds++]= (ULong) carry; |
| 744 | b->wds= wds; |
| 745 | } |
| 746 | return b; |
| 747 | } |
| 748 | |
| 749 | |
| 750 | static int hi0bits(register ULong x) |
| 751 | { |
| 752 | register int k= 0; |
| 753 | |
| 754 | if (!(x & 0xffff0000)) |
| 755 | { |
| 756 | k= 16; |
| 757 | x<<= 16; |
| 758 | } |
| 759 | if (!(x & 0xff000000)) |
| 760 | { |
| 761 | k+= 8; |
| 762 | x<<= 8; |
| 763 | } |
| 764 | if (!(x & 0xf0000000)) |
| 765 | { |
| 766 | k+= 4; |
| 767 | x<<= 4; |
| 768 | } |
| 769 | if (!(x & 0xc0000000)) |
| 770 | { |
| 771 | k+= 2; |
| 772 | x<<= 2; |
| 773 | } |
| 774 | if (!(x & 0x80000000)) |
| 775 | { |
| 776 | k++; |
| 777 | if (!(x & 0x40000000)) |
| 778 | return 32; |
| 779 | } |
| 780 | return k; |
| 781 | } |
| 782 | |
| 783 | |
| 784 | static int lo0bits(ULong *y) |
| 785 | { |
| 786 | register int k; |
| 787 | register ULong x= *y; |
| 788 | |
| 789 | if (x & 7) |
| 790 | { |
| 791 | if (x & 1) |
| 792 | return 0; |
| 793 | if (x & 2) |
| 794 | { |
| 795 | *y= x >> 1; |
| 796 | return 1; |
| 797 | } |
| 798 | *y= x >> 2; |
| 799 | return 2; |
| 800 | } |
| 801 | k= 0; |
| 802 | if (!(x & 0xffff)) |
| 803 | { |
| 804 | k= 16; |
| 805 | x>>= 16; |
| 806 | } |
| 807 | if (!(x & 0xff)) |
| 808 | { |
| 809 | k+= 8; |
| 810 | x>>= 8; |
| 811 | } |
| 812 | if (!(x & 0xf)) |
| 813 | { |
| 814 | k+= 4; |
| 815 | x>>= 4; |
| 816 | } |
| 817 | if (!(x & 0x3)) |
| 818 | { |
| 819 | k+= 2; |
| 820 | x>>= 2; |
| 821 | } |
| 822 | if (!(x & 1)) |
| 823 | { |
| 824 | k++; |
| 825 | x>>= 1; |
| 826 | if (!x) |
| 827 | return 32; |
| 828 | } |
| 829 | *y= x; |
| 830 | return k; |
| 831 | } |
| 832 | |
| 833 | |
| 834 | /* Convert integer to Bigint number */ |
| 835 | |
| 836 | static Bigint *i2b(int i, Stack_alloc *alloc) |
| 837 | { |
| 838 | Bigint *b; |
| 839 | |
| 840 | b= Balloc(1, alloc); |
| 841 | b->p.x[0]= i; |
| 842 | b->wds= 1; |
| 843 | return b; |
| 844 | } |
| 845 | |
| 846 | |
| 847 | /* Multiply two Bigint numbers */ |
| 848 | |
| 849 | static Bigint *mult(Bigint *a, Bigint *b, Stack_alloc *alloc) |
| 850 | { |
| 851 | Bigint *c; |
| 852 | int k, wa, wb, wc; |
| 853 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
| 854 | ULong y; |
| 855 | ULLong carry, z; |
| 856 | |
| 857 | if (a->wds < b->wds) |
| 858 | { |
| 859 | c= a; |
| 860 | a= b; |
| 861 | b= c; |
| 862 | } |
| 863 | k= a->k; |
| 864 | wa= a->wds; |
| 865 | wb= b->wds; |
| 866 | wc= wa + wb; |
| 867 | if (wc > a->maxwds) |
| 868 | k++; |
| 869 | c= Balloc(k, alloc); |
| 870 | for (x= c->p.x, xa= x + wc; x < xa; x++) |
| 871 | *x= 0; |
| 872 | xa= a->p.x; |
| 873 | xae= xa + wa; |
| 874 | xb= b->p.x; |
| 875 | xbe= xb + wb; |
| 876 | xc0= c->p.x; |
| 877 | for (; xb < xbe; xc0++) |
| 878 | { |
| 879 | if ((y= *xb++)) |
| 880 | { |
| 881 | x= xa; |
| 882 | xc= xc0; |
| 883 | carry= 0; |
| 884 | do |
| 885 | { |
| 886 | z= *x++ * (ULLong)y + *xc + carry; |
| 887 | carry= z >> 32; |
| 888 | *xc++= (ULong) (z & FFFFFFFF); |
| 889 | } |
| 890 | while (x < xae); |
| 891 | *xc= (ULong) carry; |
| 892 | } |
| 893 | } |
| 894 | for (xc0= c->p.x, xc= xc0 + wc; wc > 0 && !*--xc; --wc) ; |
| 895 | c->wds= wc; |
| 896 | return c; |
| 897 | } |
| 898 | |
| 899 | |
| 900 | /* |
| 901 | Precalculated array of powers of 5: tested to be enough for |
| 902 | vasting majority of dtoa_r cases. |
| 903 | */ |
| 904 | |
| 905 | static ULong powers5[]= |
| 906 | { |
| 907 | 625UL, |
| 908 | |
| 909 | 390625UL, |
| 910 | |
| 911 | 2264035265UL, 35UL, |
| 912 | |
| 913 | 2242703233UL, 762134875UL, 1262UL, |
| 914 | |
| 915 | 3211403009UL, 1849224548UL, 3668416493UL, 3913284084UL, 1593091UL, |
| 916 | |
| 917 | 781532673UL, 64985353UL, 253049085UL, 594863151UL, 3553621484UL, |
| 918 | 3288652808UL, 3167596762UL, 2788392729UL, 3911132675UL, 590UL, |
| 919 | |
| 920 | 2553183233UL, 3201533787UL, 3638140786UL, 303378311UL, 1809731782UL, |
| 921 | 3477761648UL, 3583367183UL, 649228654UL, 2915460784UL, 487929380UL, |
| 922 | 1011012442UL, 1677677582UL, 3428152256UL, 1710878487UL, 1438394610UL, |
| 923 | 2161952759UL, 4100910556UL, 1608314830UL, 349175UL |
| 924 | }; |
| 925 | |
| 926 | |
| 927 | static Bigint p5_a[]= |
| 928 | { |
| 929 | /* { x } - k - maxwds - sign - wds */ |
| 930 | { { powers5 }, 1, 1, 0, 1 }, |
| 931 | { { powers5 + 1 }, 1, 1, 0, 1 }, |
| 932 | { { powers5 + 2 }, 1, 2, 0, 2 }, |
| 933 | { { powers5 + 4 }, 2, 3, 0, 3 }, |
| 934 | { { powers5 + 7 }, 3, 5, 0, 5 }, |
| 935 | { { powers5 + 12 }, 4, 10, 0, 10 }, |
| 936 | { { powers5 + 22 }, 5, 19, 0, 19 } |
| 937 | }; |
| 938 | |
| 939 | #define P5A_MAX (sizeof(p5_a)/sizeof(*p5_a) - 1) |
| 940 | |
| 941 | static Bigint *pow5mult(Bigint *b, int k, Stack_alloc *alloc) |
| 942 | { |
| 943 | Bigint *b1, *p5, *p51=NULL; |
| 944 | int i; |
| 945 | static int p05[3]= { 5, 25, 125 }; |
| 946 | my_bool overflow= FALSE; |
| 947 | |
| 948 | if ((i= k & 3)) |
| 949 | b= multadd(b, p05[i-1], 0, alloc); |
| 950 | |
| 951 | if (!(k>>= 2)) |
| 952 | return b; |
| 953 | p5= p5_a; |
| 954 | for (;;) |
| 955 | { |
| 956 | if (k & 1) |
| 957 | { |
| 958 | b1= mult(b, p5, alloc); |
| 959 | Bfree(b, alloc); |
| 960 | b= b1; |
| 961 | } |
| 962 | if (!(k>>= 1)) |
| 963 | break; |
| 964 | /* Calculate next power of 5 */ |
| 965 | if (overflow) |
| 966 | { |
| 967 | p51= mult(p5, p5, alloc); |
| 968 | Bfree(p5, alloc); |
| 969 | p5= p51; |
| 970 | } |
| 971 | else if (p5 < p5_a + P5A_MAX) |
| 972 | ++p5; |
| 973 | else if (p5 == p5_a + P5A_MAX) |
| 974 | { |
| 975 | p5= mult(p5, p5, alloc); |
| 976 | overflow= TRUE; |
| 977 | } |
| 978 | } |
| 979 | if (p51) |
| 980 | Bfree(p51, alloc); |
| 981 | return b; |
| 982 | } |
| 983 | |
| 984 | |
| 985 | static Bigint *lshift(Bigint *b, int k, Stack_alloc *alloc) |
| 986 | { |
| 987 | int i, k1, n, n1; |
| 988 | Bigint *b1; |
| 989 | ULong *x, *x1, *xe, z; |
| 990 | |
| 991 | n= k >> 5; |
| 992 | k1= b->k; |
| 993 | n1= n + b->wds + 1; |
| 994 | for (i= b->maxwds; n1 > i; i<<= 1) |
| 995 | k1++; |
| 996 | b1= Balloc(k1, alloc); |
| 997 | x1= b1->p.x; |
| 998 | for (i= 0; i < n; i++) |
| 999 | *x1++= 0; |
| 1000 | x= b->p.x; |
| 1001 | xe= x + b->wds; |
| 1002 | if (k&= 0x1f) |
| 1003 | { |
| 1004 | k1= 32 - k; |
| 1005 | z= 0; |
| 1006 | do |
| 1007 | { |
| 1008 | *x1++= *x << k | z; |
| 1009 | z= *x++ >> k1; |
| 1010 | } |
| 1011 | while (x < xe); |
| 1012 | if ((*x1= z)) |
| 1013 | ++n1; |
| 1014 | } |
| 1015 | else |
| 1016 | do |
| 1017 | *x1++= *x++; |
| 1018 | while (x < xe); |
| 1019 | b1->wds= n1 - 1; |
| 1020 | Bfree(b, alloc); |
| 1021 | return b1; |
| 1022 | } |
| 1023 | |
| 1024 | |
| 1025 | static int cmp(Bigint *a, Bigint *b) |
| 1026 | { |
| 1027 | ULong *xa, *xa0, *xb, *xb0; |
| 1028 | int i, j; |
| 1029 | |
| 1030 | i= a->wds; |
| 1031 | j= b->wds; |
| 1032 | if (i-= j) |
| 1033 | return i; |
| 1034 | xa0= a->p.x; |
| 1035 | xa= xa0 + j; |
| 1036 | xb0= b->p.x; |
| 1037 | xb= xb0 + j; |
| 1038 | for (;;) |
| 1039 | { |
| 1040 | if (*--xa != *--xb) |
| 1041 | return *xa < *xb ? -1 : 1; |
| 1042 | if (xa <= xa0) |
| 1043 | break; |
| 1044 | } |
| 1045 | return 0; |
| 1046 | } |
| 1047 | |
| 1048 | |
| 1049 | static Bigint *diff(Bigint *a, Bigint *b, Stack_alloc *alloc) |
| 1050 | { |
| 1051 | Bigint *c; |
| 1052 | int i, wa, wb; |
| 1053 | ULong *xa, *xae, *xb, *xbe, *xc; |
| 1054 | ULLong borrow, y; |
| 1055 | |
| 1056 | i= cmp(a,b); |
| 1057 | if (!i) |
| 1058 | { |
| 1059 | c= Balloc(0, alloc); |
| 1060 | c->wds= 1; |
| 1061 | c->p.x[0]= 0; |
| 1062 | return c; |
| 1063 | } |
| 1064 | if (i < 0) |
| 1065 | { |
| 1066 | c= a; |
| 1067 | a= b; |
| 1068 | b= c; |
| 1069 | i= 1; |
| 1070 | } |
| 1071 | else |
| 1072 | i= 0; |
| 1073 | c= Balloc(a->k, alloc); |
| 1074 | c->sign= i; |
| 1075 | wa= a->wds; |
| 1076 | xa= a->p.x; |
| 1077 | xae= xa + wa; |
| 1078 | wb= b->wds; |
| 1079 | xb= b->p.x; |
| 1080 | xbe= xb + wb; |
| 1081 | xc= c->p.x; |
| 1082 | borrow= 0; |
| 1083 | do |
| 1084 | { |
| 1085 | y= (ULLong)*xa++ - *xb++ - borrow; |
| 1086 | borrow= y >> 32 & (ULong)1; |
| 1087 | *xc++= (ULong) (y & FFFFFFFF); |
| 1088 | } |
| 1089 | while (xb < xbe); |
| 1090 | while (xa < xae) |
| 1091 | { |
| 1092 | y= *xa++ - borrow; |
| 1093 | borrow= y >> 32 & (ULong)1; |
| 1094 | *xc++= (ULong) (y & FFFFFFFF); |
| 1095 | } |
| 1096 | while (!*--xc) |
| 1097 | wa--; |
| 1098 | c->wds= wa; |
| 1099 | return c; |
| 1100 | } |
| 1101 | |
| 1102 | |
| 1103 | static Bigint *d2b(U *d, int *e, int *bits, Stack_alloc *alloc) |
| 1104 | { |
| 1105 | Bigint *b; |
| 1106 | int de, k; |
| 1107 | ULong *x, y, z; |
| 1108 | int i; |
| 1109 | #define d0 word0(d) |
| 1110 | #define d1 word1(d) |
| 1111 | |
| 1112 | b= Balloc(1, alloc); |
| 1113 | x= b->p.x; |
| 1114 | |
| 1115 | z= d0 & Frac_mask; |
| 1116 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
| 1117 | if ((de= (int)(d0 >> Exp_shift))) |
| 1118 | z|= Exp_msk1; |
| 1119 | if ((y= d1)) |
| 1120 | { |
| 1121 | if ((k= lo0bits(&y))) |
| 1122 | { |
| 1123 | x[0]= y | z << (32 - k); |
| 1124 | z>>= k; |
| 1125 | } |
| 1126 | else |
| 1127 | x[0]= y; |
| 1128 | i= b->wds= (x[1]= z) ? 2 : 1; |
| 1129 | } |
| 1130 | else |
| 1131 | { |
| 1132 | k= lo0bits(&z); |
| 1133 | x[0]= z; |
| 1134 | i= b->wds= 1; |
| 1135 | k+= 32; |
| 1136 | } |
| 1137 | if (de) |
| 1138 | { |
| 1139 | *e= de - Bias - (P-1) + k; |
| 1140 | *bits= P - k; |
| 1141 | } |
| 1142 | else |
| 1143 | { |
| 1144 | *e= de - Bias - (P-1) + 1 + k; |
| 1145 | *bits= 32*i - hi0bits(x[i-1]); |
| 1146 | } |
| 1147 | return b; |
| 1148 | #undef d0 |
| 1149 | #undef d1 |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | static const double tens[] = |
| 1154 | { |
| 1155 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1156 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| 1157 | 1e20, 1e21, 1e22 |
| 1158 | }; |
| 1159 | |
| 1160 | static const double bigtens[]= { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
| 1161 | /* |
| 1162 | The factor of 2^53 in tinytens[4] helps us avoid setting the underflow |
| 1163 | flag unnecessarily. It leads to a song and dance at the end of strtod. |
| 1164 | */ |
| 1165 | #define Scale_Bit 0x10 |
| 1166 | #define n_bigtens 5 |
| 1167 | |
| 1168 | |
| 1169 | static int quorem(Bigint *b, Bigint *S) |
| 1170 | { |
| 1171 | int n; |
| 1172 | ULong *bx, *bxe, q, *sx, *sxe; |
| 1173 | ULLong borrow, carry, y, ys; |
| 1174 | |
| 1175 | n= S->wds; |
| 1176 | if (b->wds < n) |
| 1177 | return 0; |
| 1178 | sx= S->p.x; |
| 1179 | sxe= sx + --n; |
| 1180 | bx= b->p.x; |
| 1181 | bxe= bx + n; |
| 1182 | q= *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
| 1183 | if (q) |
| 1184 | { |
| 1185 | borrow= 0; |
| 1186 | carry= 0; |
| 1187 | do |
| 1188 | { |
| 1189 | ys= *sx++ * (ULLong)q + carry; |
| 1190 | carry= ys >> 32; |
| 1191 | y= *bx - (ys & FFFFFFFF) - borrow; |
| 1192 | borrow= y >> 32 & (ULong)1; |
| 1193 | *bx++= (ULong) (y & FFFFFFFF); |
| 1194 | } |
| 1195 | while (sx <= sxe); |
| 1196 | if (!*bxe) |
| 1197 | { |
| 1198 | bx= b->p.x; |
| 1199 | while (--bxe > bx && !*bxe) |
| 1200 | --n; |
| 1201 | b->wds= n; |
| 1202 | } |
| 1203 | } |
| 1204 | if (cmp(b, S) >= 0) |
| 1205 | { |
| 1206 | q++; |
| 1207 | borrow= 0; |
| 1208 | carry= 0; |
| 1209 | bx= b->p.x; |
| 1210 | sx= S->p.x; |
| 1211 | do |
| 1212 | { |
| 1213 | ys= *sx++ + carry; |
| 1214 | carry= ys >> 32; |
| 1215 | y= *bx - (ys & FFFFFFFF) - borrow; |
| 1216 | borrow= y >> 32 & (ULong)1; |
| 1217 | *bx++= (ULong) (y & FFFFFFFF); |
| 1218 | } |
| 1219 | while (sx <= sxe); |
| 1220 | bx= b->p.x; |
| 1221 | bxe= bx + n; |
| 1222 | if (!*bxe) |
| 1223 | { |
| 1224 | while (--bxe > bx && !*bxe) |
| 1225 | --n; |
| 1226 | b->wds= n; |
| 1227 | } |
| 1228 | } |
| 1229 | return q; |
| 1230 | } |
| 1231 | |
| 1232 | |
| 1233 | /* |
| 1234 | dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| 1235 | |
| 1236 | Inspired by "How to Print Floating-Point Numbers Accurately" by |
| 1237 | Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| 1238 | |
| 1239 | Modifications: |
| 1240 | 1. Rather than iterating, we use a simple numeric overestimate |
| 1241 | to determine k= floor(log10(d)). We scale relevant |
| 1242 | quantities using O(log2(k)) rather than O(k) multiplications. |
| 1243 | 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| 1244 | try to generate digits strictly left to right. Instead, we |
| 1245 | compute with fewer bits and propagate the carry if necessary |
| 1246 | when rounding the final digit up. This is often faster. |
| 1247 | 3. Under the assumption that input will be rounded nearest, |
| 1248 | mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| 1249 | That is, we allow equality in stopping tests when the |
| 1250 | round-nearest rule will give the same floating-point value |
| 1251 | as would satisfaction of the stopping test with strict |
| 1252 | inequality. |
| 1253 | 4. We remove common factors of powers of 2 from relevant |
| 1254 | quantities. |
| 1255 | 5. When converting floating-point integers less than 1e16, |
| 1256 | we use floating-point arithmetic rather than resorting |
| 1257 | to multiple-precision integers. |
| 1258 | 6. When asked to produce fewer than 15 digits, we first try |
| 1259 | to get by with floating-point arithmetic; we resort to |
| 1260 | multiple-precision integer arithmetic only if we cannot |
| 1261 | guarantee that the floating-point calculation has given |
| 1262 | the correctly rounded result. For k requested digits and |
| 1263 | "uniformly" distributed input, the probability is |
| 1264 | something like 10^(k-15) that we must resort to the Long |
| 1265 | calculation. |
| 1266 | */ |
| 1267 | |
| 1268 | static char *dtoa(double dd, int mode, int ndigits, int *decpt, int *sign, |
| 1269 | char **rve, char *buf, size_t buf_size) |
| 1270 | { |
| 1271 | /* |
| 1272 | Arguments ndigits, decpt, sign are similar to those |
| 1273 | of ecvt and fcvt; trailing zeros are suppressed from |
| 1274 | the returned string. If not null, *rve is set to point |
| 1275 | to the end of the return value. If d is +-Infinity or NaN, |
| 1276 | then *decpt is set to DTOA_OVERFLOW. |
| 1277 | |
| 1278 | mode: |
| 1279 | 0 ==> shortest string that yields d when read in |
| 1280 | and rounded to nearest. |
| 1281 | 1 ==> like 0, but with Steele & White stopping rule; |
| 1282 | e.g. with IEEE P754 arithmetic , mode 0 gives |
| 1283 | 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 1284 | 2 ==> MAX(1,ndigits) significant digits. This gives a |
| 1285 | return value similar to that of ecvt, except |
| 1286 | that trailing zeros are suppressed. |
| 1287 | 3 ==> through ndigits past the decimal point. This |
| 1288 | gives a return value similar to that from fcvt, |
| 1289 | except that trailing zeros are suppressed, and |
| 1290 | ndigits can be negative. |
| 1291 | 4,5 ==> similar to 2 and 3, respectively, but (in |
| 1292 | round-nearest mode) with the tests of mode 0 to |
| 1293 | possibly return a shorter string that rounds to d. |
| 1294 | With IEEE arithmetic and compilation with |
| 1295 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
| 1296 | as modes 2 and 3 when FLT_ROUNDS != 1. |
| 1297 | 6-9 ==> Debugging modes similar to mode - 4: don't try |
| 1298 | fast floating-point estimate (if applicable). |
| 1299 | |
| 1300 | Values of mode other than 0-9 are treated as mode 0. |
| 1301 | |
| 1302 | Sufficient space is allocated to the return value |
| 1303 | to hold the suppressed trailing zeros. |
| 1304 | */ |
| 1305 | |
| 1306 | int bbits, b2, b5, be, dig, i, ieps, UNINIT_VAR(ilim), ilim0, |
| 1307 | UNINIT_VAR(ilim1), j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
| 1308 | spec_case, try_quick; |
| 1309 | Long L; |
| 1310 | int denorm; |
| 1311 | ULong x; |
| 1312 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
| 1313 | U d2, eps, u; |
| 1314 | double ds; |
| 1315 | char *s, *s0; |
| 1316 | #ifdef Honor_FLT_ROUNDS |
| 1317 | int rounding; |
| 1318 | #endif |
| 1319 | Stack_alloc alloc; |
| 1320 | |
| 1321 | alloc.begin= alloc.free= buf; |
| 1322 | alloc.end= buf + buf_size; |
| 1323 | memset(alloc.freelist, 0, sizeof(alloc.freelist)); |
| 1324 | |
| 1325 | u.d= dd; |
| 1326 | if (word0(&u) & Sign_bit) |
| 1327 | { |
| 1328 | /* set sign for everything, including 0's and NaNs */ |
| 1329 | *sign= 1; |
| 1330 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
| 1331 | } |
| 1332 | else |
| 1333 | *sign= 0; |
| 1334 | |
| 1335 | /* If infinity, set decpt to DTOA_OVERFLOW, if 0 set it to 1 */ |
| 1336 | /* coverity[assign_where_compare_meant] */ |
| 1337 | if (((word0(&u) & Exp_mask) == Exp_mask && (*decpt= DTOA_OVERFLOW)) || |
| 1338 | /* coverity[assign_where_compare_meant] */ |
| 1339 | (!dval(&u) && (*decpt= 1))) |
| 1340 | { |
| 1341 | /* Infinity, NaN, 0 */ |
| 1342 | char *res= (char*) dtoa_alloc(2, &alloc); |
| 1343 | res[0]= '0'; |
| 1344 | res[1]= '\0'; |
| 1345 | if (rve) |
| 1346 | *rve= res + 1; |
| 1347 | return res; |
| 1348 | } |
| 1349 | |
| 1350 | #ifdef Honor_FLT_ROUNDS |
| 1351 | if ((rounding= Flt_Rounds) >= 2) |
| 1352 | { |
| 1353 | if (*sign) |
| 1354 | rounding= rounding == 2 ? 0 : 2; |
| 1355 | else |
| 1356 | if (rounding != 2) |
| 1357 | rounding= 0; |
| 1358 | } |
| 1359 | #endif |
| 1360 | |
| 1361 | b= d2b(&u, &be, &bbits, &alloc); |
| 1362 | if ((i= (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) |
| 1363 | { |
| 1364 | dval(&d2)= dval(&u); |
| 1365 | word0(&d2) &= Frac_mask1; |
| 1366 | word0(&d2) |= Exp_11; |
| 1367 | |
| 1368 | /* |
| 1369 | log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| 1370 | log10(x) = log(x) / log(10) |
| 1371 | ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| 1372 | log10(d)= (i-Bias)*log(2)/log(10) + log10(d2) |
| 1373 | |
| 1374 | This suggests computing an approximation k to log10(d) by |
| 1375 | |
| 1376 | k= (i - Bias)*0.301029995663981 |
| 1377 | + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| 1378 | |
| 1379 | We want k to be too large rather than too small. |
| 1380 | The error in the first-order Taylor series approximation |
| 1381 | is in our favor, so we just round up the constant enough |
| 1382 | to compensate for any error in the multiplication of |
| 1383 | (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| 1384 | and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| 1385 | adding 1e-13 to the constant term more than suffices. |
| 1386 | Hence we adjust the constant term to 0.1760912590558. |
| 1387 | (We could get a more accurate k by invoking log10, |
| 1388 | but this is probably not worthwhile.) |
| 1389 | */ |
| 1390 | |
| 1391 | i-= Bias; |
| 1392 | denorm= 0; |
| 1393 | } |
| 1394 | else |
| 1395 | { |
| 1396 | /* d is denormalized */ |
| 1397 | |
| 1398 | i= bbits + be + (Bias + (P-1) - 1); |
| 1399 | x= i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
| 1400 | : word1(&u) << (32 - i); |
| 1401 | dval(&d2)= x; |
| 1402 | word0(&d2)-= 31*Exp_msk1; /* adjust exponent */ |
| 1403 | i-= (Bias + (P-1) - 1) + 1; |
| 1404 | denorm= 1; |
| 1405 | } |
| 1406 | ds= (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
| 1407 | k= (int)ds; |
| 1408 | if (ds < 0. && ds != k) |
| 1409 | k--; /* want k= floor(ds) */ |
| 1410 | k_check= 1; |
| 1411 | if (k >= 0 && k <= Ten_pmax) |
| 1412 | { |
| 1413 | if (dval(&u) < tens[k]) |
| 1414 | k--; |
| 1415 | k_check= 0; |
| 1416 | } |
| 1417 | j= bbits - i - 1; |
| 1418 | if (j >= 0) |
| 1419 | { |
| 1420 | b2= 0; |
| 1421 | s2= j; |
| 1422 | } |
| 1423 | else |
| 1424 | { |
| 1425 | b2= -j; |
| 1426 | s2= 0; |
| 1427 | } |
| 1428 | if (k >= 0) |
| 1429 | { |
| 1430 | b5= 0; |
| 1431 | s5= k; |
| 1432 | s2+= k; |
| 1433 | } |
| 1434 | else |
| 1435 | { |
| 1436 | b2-= k; |
| 1437 | b5= -k; |
| 1438 | s5= 0; |
| 1439 | } |
| 1440 | if (mode < 0 || mode > 9) |
| 1441 | mode= 0; |
| 1442 | |
| 1443 | #ifdef Check_FLT_ROUNDS |
| 1444 | try_quick= Rounding == 1; |
| 1445 | #else |
| 1446 | try_quick= 1; |
| 1447 | #endif |
| 1448 | |
| 1449 | if (mode > 5) |
| 1450 | { |
| 1451 | mode-= 4; |
| 1452 | try_quick= 0; |
| 1453 | } |
| 1454 | leftright= 1; |
| 1455 | switch (mode) { |
| 1456 | case 0: |
| 1457 | case 1: |
| 1458 | ilim= ilim1= -1; |
| 1459 | i= 18; |
| 1460 | ndigits= 0; |
| 1461 | break; |
| 1462 | case 2: |
| 1463 | leftright= 0; |
| 1464 | /* fall through */ |
| 1465 | case 4: |
| 1466 | if (ndigits <= 0) |
| 1467 | ndigits= 1; |
| 1468 | ilim= ilim1= i= ndigits; |
| 1469 | break; |
| 1470 | case 3: |
| 1471 | leftright= 0; |
| 1472 | /* fall through */ |
| 1473 | case 5: |
| 1474 | i= ndigits + k + 1; |
| 1475 | ilim= i; |
| 1476 | ilim1= i - 1; |
| 1477 | if (i <= 0) |
| 1478 | i= 1; |
| 1479 | } |
| 1480 | s= s0= dtoa_alloc(i, &alloc); |
| 1481 | |
| 1482 | #ifdef Honor_FLT_ROUNDS |
| 1483 | if (mode > 1 && rounding != 1) |
| 1484 | leftright= 0; |
| 1485 | #endif |
| 1486 | |
| 1487 | if (ilim >= 0 && ilim <= Quick_max && try_quick) |
| 1488 | { |
| 1489 | /* Try to get by with floating-point arithmetic. */ |
| 1490 | i= 0; |
| 1491 | dval(&d2)= dval(&u); |
| 1492 | k0= k; |
| 1493 | ilim0= ilim; |
| 1494 | ieps= 2; /* conservative */ |
| 1495 | if (k > 0) |
| 1496 | { |
| 1497 | ds= tens[k&0xf]; |
| 1498 | j= k >> 4; |
| 1499 | if (j & Bletch) |
| 1500 | { |
| 1501 | /* prevent overflows */ |
| 1502 | j&= Bletch - 1; |
| 1503 | dval(&u)/= bigtens[n_bigtens-1]; |
| 1504 | ieps++; |
| 1505 | } |
| 1506 | for (; j; j>>= 1, i++) |
| 1507 | { |
| 1508 | if (j & 1) |
| 1509 | { |
| 1510 | ieps++; |
| 1511 | ds*= bigtens[i]; |
| 1512 | } |
| 1513 | } |
| 1514 | dval(&u)/= ds; |
| 1515 | } |
| 1516 | else if ((j1= -k)) |
| 1517 | { |
| 1518 | dval(&u)*= tens[j1 & 0xf]; |
| 1519 | for (j= j1 >> 4; j; j>>= 1, i++) |
| 1520 | { |
| 1521 | if (j & 1) |
| 1522 | { |
| 1523 | ieps++; |
| 1524 | dval(&u)*= bigtens[i]; |
| 1525 | } |
| 1526 | } |
| 1527 | } |
| 1528 | if (k_check && dval(&u) < 1. && ilim > 0) |
| 1529 | { |
| 1530 | if (ilim1 <= 0) |
| 1531 | goto fast_failed; |
| 1532 | ilim= ilim1; |
| 1533 | k--; |
| 1534 | dval(&u)*= 10.; |
| 1535 | ieps++; |
| 1536 | } |
| 1537 | dval(&eps)= ieps*dval(&u) + 7.; |
| 1538 | word0(&eps)-= (P-1)*Exp_msk1; |
| 1539 | if (ilim == 0) |
| 1540 | { |
| 1541 | S= mhi= 0; |
| 1542 | dval(&u)-= 5.; |
| 1543 | if (dval(&u) > dval(&eps)) |
| 1544 | goto one_digit; |
| 1545 | if (dval(&u) < -dval(&eps)) |
| 1546 | goto no_digits; |
| 1547 | goto fast_failed; |
| 1548 | } |
| 1549 | if (leftright) |
| 1550 | { |
| 1551 | /* Use Steele & White method of only generating digits needed. */ |
| 1552 | dval(&eps)= 0.5/tens[ilim-1] - dval(&eps); |
| 1553 | for (i= 0;;) |
| 1554 | { |
| 1555 | L= (Long) dval(&u); |
| 1556 | dval(&u)-= L; |
| 1557 | *s++= '0' + (int)L; |
| 1558 | if (dval(&u) < dval(&eps)) |
| 1559 | goto ret1; |
| 1560 | if (1. - dval(&u) < dval(&eps)) |
| 1561 | goto bump_up; |
| 1562 | if (++i >= ilim) |
| 1563 | break; |
| 1564 | dval(&eps)*= 10.; |
| 1565 | dval(&u)*= 10.; |
| 1566 | } |
| 1567 | } |
| 1568 | else |
| 1569 | { |
| 1570 | /* Generate ilim digits, then fix them up. */ |
| 1571 | dval(&eps)*= tens[ilim-1]; |
| 1572 | for (i= 1;; i++, dval(&u)*= 10.) |
| 1573 | { |
| 1574 | L= (Long)(dval(&u)); |
| 1575 | if (!(dval(&u)-= L)) |
| 1576 | ilim= i; |
| 1577 | *s++= '0' + (int)L; |
| 1578 | if (i == ilim) |
| 1579 | { |
| 1580 | if (dval(&u) > 0.5 + dval(&eps)) |
| 1581 | goto bump_up; |
| 1582 | else if (dval(&u) < 0.5 - dval(&eps)) |
| 1583 | { |
| 1584 | while (*--s == '0'); |
| 1585 | s++; |
| 1586 | goto ret1; |
| 1587 | } |
| 1588 | break; |
| 1589 | } |
| 1590 | } |
| 1591 | } |
| 1592 | fast_failed: |
| 1593 | s= s0; |
| 1594 | dval(&u)= dval(&d2); |
| 1595 | k= k0; |
| 1596 | ilim= ilim0; |
| 1597 | } |
| 1598 | |
| 1599 | /* Do we have a "small" integer? */ |
| 1600 | |
| 1601 | if (be >= 0 && k <= Int_max) |
| 1602 | { |
| 1603 | /* Yes. */ |
| 1604 | ds= tens[k]; |
| 1605 | if (ndigits < 0 && ilim <= 0) |
| 1606 | { |
| 1607 | S= mhi= 0; |
| 1608 | if (ilim < 0 || dval(&u) <= 5*ds) |
| 1609 | goto no_digits; |
| 1610 | goto one_digit; |
| 1611 | } |
| 1612 | for (i= 1;; i++, dval(&u)*= 10.) |
| 1613 | { |
| 1614 | L= (Long)(dval(&u) / ds); |
| 1615 | dval(&u)-= L*ds; |
| 1616 | #ifdef Check_FLT_ROUNDS |
| 1617 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
| 1618 | if (dval(&u) < 0) |
| 1619 | { |
| 1620 | L--; |
| 1621 | dval(&u)+= ds; |
| 1622 | } |
| 1623 | #endif |
| 1624 | *s++= '0' + (int)L; |
| 1625 | if (!dval(&u)) |
| 1626 | { |
| 1627 | break; |
| 1628 | } |
| 1629 | if (i == ilim) |
| 1630 | { |
| 1631 | #ifdef Honor_FLT_ROUNDS |
| 1632 | if (mode > 1) |
| 1633 | { |
| 1634 | switch (rounding) { |
| 1635 | case 0: goto ret1; |
| 1636 | case 2: goto bump_up; |
| 1637 | } |
| 1638 | } |
| 1639 | #endif |
| 1640 | dval(&u)+= dval(&u); |
| 1641 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) |
| 1642 | { |
| 1643 | bump_up: |
| 1644 | while (*--s == '9') |
| 1645 | if (s == s0) |
| 1646 | { |
| 1647 | k++; |
| 1648 | *s= '0'; |
| 1649 | break; |
| 1650 | } |
| 1651 | ++*s++; |
| 1652 | } |
| 1653 | break; |
| 1654 | } |
| 1655 | } |
| 1656 | goto ret1; |
| 1657 | } |
| 1658 | |
| 1659 | m2= b2; |
| 1660 | m5= b5; |
| 1661 | mhi= mlo= 0; |
| 1662 | if (leftright) |
| 1663 | { |
| 1664 | i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits; |
| 1665 | b2+= i; |
| 1666 | s2+= i; |
| 1667 | mhi= i2b(1, &alloc); |
| 1668 | } |
| 1669 | if (m2 > 0 && s2 > 0) |
| 1670 | { |
| 1671 | i= m2 < s2 ? m2 : s2; |
| 1672 | b2-= i; |
| 1673 | m2-= i; |
| 1674 | s2-= i; |
| 1675 | } |
| 1676 | if (b5 > 0) |
| 1677 | { |
| 1678 | if (leftright) |
| 1679 | { |
| 1680 | if (m5 > 0) |
| 1681 | { |
| 1682 | mhi= pow5mult(mhi, m5, &alloc); |
| 1683 | b1= mult(mhi, b, &alloc); |
| 1684 | Bfree(b, &alloc); |
| 1685 | b= b1; |
| 1686 | } |
| 1687 | if ((j= b5 - m5)) |
| 1688 | b= pow5mult(b, j, &alloc); |
| 1689 | } |
| 1690 | else |
| 1691 | b= pow5mult(b, b5, &alloc); |
| 1692 | } |
| 1693 | S= i2b(1, &alloc); |
| 1694 | if (s5 > 0) |
| 1695 | S= pow5mult(S, s5, &alloc); |
| 1696 | |
| 1697 | /* Check for special case that d is a normalized power of 2. */ |
| 1698 | |
| 1699 | spec_case= 0; |
| 1700 | if ((mode < 2 || leftright) |
| 1701 | #ifdef Honor_FLT_ROUNDS |
| 1702 | && rounding == 1 |
| 1703 | #endif |
| 1704 | ) |
| 1705 | { |
| 1706 | if (!word1(&u) && !(word0(&u) & Bndry_mask) && |
| 1707 | word0(&u) & (Exp_mask & ~Exp_msk1) |
| 1708 | ) |
| 1709 | { |
| 1710 | /* The special case */ |
| 1711 | b2+= Log2P; |
| 1712 | s2+= Log2P; |
| 1713 | spec_case= 1; |
| 1714 | } |
| 1715 | } |
| 1716 | |
| 1717 | /* |
| 1718 | Arrange for convenient computation of quotients: |
| 1719 | shift left if necessary so divisor has 4 leading 0 bits. |
| 1720 | |
| 1721 | Perhaps we should just compute leading 28 bits of S once |
| 1722 | a nd for all and pass them and a shift to quorem, so it |
| 1723 | can do shifts and ors to compute the numerator for q. |
| 1724 | */ |
| 1725 | if ((i= ((s5 ? 32 - hi0bits(S->p.x[S->wds-1]) : 1) + s2) & 0x1f)) |
| 1726 | i= 32 - i; |
| 1727 | if (i > 4) |
| 1728 | { |
| 1729 | i-= 4; |
| 1730 | b2+= i; |
| 1731 | m2+= i; |
| 1732 | s2+= i; |
| 1733 | } |
| 1734 | else if (i < 4) |
| 1735 | { |
| 1736 | i+= 28; |
| 1737 | b2+= i; |
| 1738 | m2+= i; |
| 1739 | s2+= i; |
| 1740 | } |
| 1741 | if (b2 > 0) |
| 1742 | b= lshift(b, b2, &alloc); |
| 1743 | if (s2 > 0) |
| 1744 | S= lshift(S, s2, &alloc); |
| 1745 | if (k_check) |
| 1746 | { |
| 1747 | if (cmp(b,S) < 0) |
| 1748 | { |
| 1749 | k--; |
| 1750 | /* we botched the k estimate */ |
| 1751 | b= multadd(b, 10, 0, &alloc); |
| 1752 | if (leftright) |
| 1753 | mhi= multadd(mhi, 10, 0, &alloc); |
| 1754 | ilim= ilim1; |
| 1755 | } |
| 1756 | } |
| 1757 | if (ilim <= 0 && (mode == 3 || mode == 5)) |
| 1758 | { |
| 1759 | if (ilim < 0 || cmp(b,S= multadd(S,5,0, &alloc)) <= 0) |
| 1760 | { |
| 1761 | /* no digits, fcvt style */ |
| 1762 | no_digits: |
| 1763 | k= -1 - ndigits; |
| 1764 | goto ret; |
| 1765 | } |
| 1766 | one_digit: |
| 1767 | *s++= '1'; |
| 1768 | k++; |
| 1769 | goto ret; |
| 1770 | } |
| 1771 | if (leftright) |
| 1772 | { |
| 1773 | if (m2 > 0) |
| 1774 | mhi= lshift(mhi, m2, &alloc); |
| 1775 | |
| 1776 | /* |
| 1777 | Compute mlo -- check for special case that d is a normalized power of 2. |
| 1778 | */ |
| 1779 | |
| 1780 | mlo= mhi; |
| 1781 | if (spec_case) |
| 1782 | { |
| 1783 | mhi= Balloc(mhi->k, &alloc); |
| 1784 | Bcopy(mhi, mlo); |
| 1785 | mhi= lshift(mhi, Log2P, &alloc); |
| 1786 | } |
| 1787 | |
| 1788 | for (i= 1;;i++) |
| 1789 | { |
| 1790 | dig= quorem(b,S) + '0'; |
| 1791 | /* Do we yet have the shortest decimal string that will round to d? */ |
| 1792 | j= cmp(b, mlo); |
| 1793 | delta= diff(S, mhi, &alloc); |
| 1794 | j1= delta->sign ? 1 : cmp(b, delta); |
| 1795 | Bfree(delta, &alloc); |
| 1796 | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
| 1797 | #ifdef Honor_FLT_ROUNDS |
| 1798 | && rounding >= 1 |
| 1799 | #endif |
| 1800 | ) |
| 1801 | { |
| 1802 | if (dig == '9') |
| 1803 | goto round_9_up; |
| 1804 | if (j > 0) |
| 1805 | dig++; |
| 1806 | *s++= dig; |
| 1807 | goto ret; |
| 1808 | } |
| 1809 | if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1))) |
| 1810 | { |
| 1811 | if (!b->p.x[0] && b->wds <= 1) |
| 1812 | { |
| 1813 | goto accept_dig; |
| 1814 | } |
| 1815 | #ifdef Honor_FLT_ROUNDS |
| 1816 | if (mode > 1) |
| 1817 | switch (rounding) { |
| 1818 | case 0: goto accept_dig; |
| 1819 | case 2: goto keep_dig; |
| 1820 | } |
| 1821 | #endif /*Honor_FLT_ROUNDS*/ |
| 1822 | if (j1 > 0) |
| 1823 | { |
| 1824 | b= lshift(b, 1, &alloc); |
| 1825 | j1= cmp(b, S); |
| 1826 | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
| 1827 | && dig++ == '9') |
| 1828 | goto round_9_up; |
| 1829 | } |
| 1830 | accept_dig: |
| 1831 | *s++= dig; |
| 1832 | goto ret; |
| 1833 | } |
| 1834 | if (j1 > 0) |
| 1835 | { |
| 1836 | #ifdef Honor_FLT_ROUNDS |
| 1837 | if (!rounding) |
| 1838 | goto accept_dig; |
| 1839 | #endif |
| 1840 | if (dig == '9') |
| 1841 | { /* possible if i == 1 */ |
| 1842 | round_9_up: |
| 1843 | *s++= '9'; |
| 1844 | goto roundoff; |
| 1845 | } |
| 1846 | *s++= dig + 1; |
| 1847 | goto ret; |
| 1848 | } |
| 1849 | #ifdef Honor_FLT_ROUNDS |
| 1850 | keep_dig: |
| 1851 | #endif |
| 1852 | *s++= dig; |
| 1853 | if (i == ilim) |
| 1854 | break; |
| 1855 | b= multadd(b, 10, 0, &alloc); |
| 1856 | if (mlo == mhi) |
| 1857 | mlo= mhi= multadd(mhi, 10, 0, &alloc); |
| 1858 | else |
| 1859 | { |
| 1860 | mlo= multadd(mlo, 10, 0, &alloc); |
| 1861 | mhi= multadd(mhi, 10, 0, &alloc); |
| 1862 | } |
| 1863 | } |
| 1864 | } |
| 1865 | else |
| 1866 | for (i= 1;; i++) |
| 1867 | { |
| 1868 | *s++= dig= quorem(b,S) + '0'; |
| 1869 | if (!b->p.x[0] && b->wds <= 1) |
| 1870 | { |
| 1871 | goto ret; |
| 1872 | } |
| 1873 | if (i >= ilim) |
| 1874 | break; |
| 1875 | b= multadd(b, 10, 0, &alloc); |
| 1876 | } |
| 1877 | |
| 1878 | /* Round off last digit */ |
| 1879 | |
| 1880 | #ifdef Honor_FLT_ROUNDS |
| 1881 | switch (rounding) { |
| 1882 | case 0: goto trimzeros; |
| 1883 | case 2: goto roundoff; |
| 1884 | } |
| 1885 | #endif |
| 1886 | b= lshift(b, 1, &alloc); |
| 1887 | j= cmp(b, S); |
| 1888 | if (j > 0 || (j == 0 && dig & 1)) |
| 1889 | { |
| 1890 | roundoff: |
| 1891 | while (*--s == '9') |
| 1892 | if (s == s0) |
| 1893 | { |
| 1894 | k++; |
| 1895 | *s++= '1'; |
| 1896 | goto ret; |
| 1897 | } |
| 1898 | ++*s++; |
| 1899 | } |
| 1900 | else |
| 1901 | { |
| 1902 | #ifdef Honor_FLT_ROUNDS |
| 1903 | trimzeros: |
| 1904 | #endif |
| 1905 | while (*--s == '0'); |
| 1906 | s++; |
| 1907 | } |
| 1908 | ret: |
| 1909 | Bfree(S, &alloc); |
| 1910 | if (mhi) |
| 1911 | { |
| 1912 | if (mlo && mlo != mhi) |
| 1913 | Bfree(mlo, &alloc); |
| 1914 | Bfree(mhi, &alloc); |
| 1915 | } |
| 1916 | ret1: |
| 1917 | Bfree(b, &alloc); |
| 1918 | *s= 0; |
| 1919 | *decpt= k + 1; |
| 1920 | if (rve) |
| 1921 | *rve= s; |
| 1922 | return s0; |
| 1923 | } |
| 1924 | |