1 | /* |
2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #ifndef OSSL_CRYPTO_BN_LOCAL_H |
11 | # define OSSL_CRYPTO_BN_LOCAL_H |
12 | |
13 | /* |
14 | * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or |
15 | * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our |
16 | * Configure script and needs to support both 32-bit and 64-bit. |
17 | */ |
18 | # include <openssl/opensslconf.h> |
19 | |
20 | # if !defined(OPENSSL_SYS_UEFI) |
21 | # include "crypto/bn_conf.h" |
22 | # endif |
23 | |
24 | # include "crypto/bn.h" |
25 | |
26 | /* |
27 | * These preprocessor symbols control various aspects of the bignum headers |
28 | * and library code. They're not defined by any "normal" configuration, as |
29 | * they are intended for development and testing purposes. NB: defining all |
30 | * three can be useful for debugging application code as well as openssl |
31 | * itself. BN_DEBUG - turn on various debugging alterations to the bignum |
32 | * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up |
33 | * mismanagement of bignum internals. You must also define BN_DEBUG. |
34 | */ |
35 | /* #define BN_DEBUG */ |
36 | /* #define BN_DEBUG_RAND */ |
37 | |
38 | # ifndef OPENSSL_SMALL_FOOTPRINT |
39 | # define BN_MUL_COMBA |
40 | # define BN_SQR_COMBA |
41 | # define BN_RECURSION |
42 | # endif |
43 | |
44 | /* |
45 | * This next option uses the C libraries (2 word)/(1 word) function. If it is |
46 | * not defined, I use my C version (which is slower). The reason for this |
47 | * flag is that when the particular C compiler library routine is used, and |
48 | * the library is linked with a different compiler, the library is missing. |
49 | * This mostly happens when the library is built with gcc and then linked |
50 | * using normal cc. This would be a common occurrence because gcc normally |
51 | * produces code that is 2 times faster than system compilers for the big |
52 | * number stuff. For machines with only one compiler (or shared libraries), |
53 | * this should be on. Again this in only really a problem on machines using |
54 | * "long long's", are 32bit, and are not using my assembler code. |
55 | */ |
56 | # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ |
57 | defined(OPENSSL_SYS_WIN32) || defined(linux) |
58 | # define BN_DIV2W |
59 | # endif |
60 | |
61 | /* |
62 | * 64-bit processor with LP64 ABI |
63 | */ |
64 | # ifdef SIXTY_FOUR_BIT_LONG |
65 | # define BN_ULLONG unsigned long long |
66 | # define BN_BITS4 32 |
67 | # define BN_MASK2 (0xffffffffffffffffL) |
68 | # define BN_MASK2l (0xffffffffL) |
69 | # define BN_MASK2h (0xffffffff00000000L) |
70 | # define BN_MASK2h1 (0xffffffff80000000L) |
71 | # define BN_DEC_CONV (10000000000000000000UL) |
72 | # define BN_DEC_NUM 19 |
73 | # define BN_DEC_FMT1 "%lu" |
74 | # define BN_DEC_FMT2 "%019lu" |
75 | # endif |
76 | |
77 | /* |
78 | * 64-bit processor other than LP64 ABI |
79 | */ |
80 | # ifdef SIXTY_FOUR_BIT |
81 | # undef BN_LLONG |
82 | # undef BN_ULLONG |
83 | # define BN_BITS4 32 |
84 | # define BN_MASK2 (0xffffffffffffffffLL) |
85 | # define BN_MASK2l (0xffffffffL) |
86 | # define BN_MASK2h (0xffffffff00000000LL) |
87 | # define BN_MASK2h1 (0xffffffff80000000LL) |
88 | # define BN_DEC_CONV (10000000000000000000ULL) |
89 | # define BN_DEC_NUM 19 |
90 | # define BN_DEC_FMT1 "%llu" |
91 | # define BN_DEC_FMT2 "%019llu" |
92 | # endif |
93 | |
94 | # ifdef THIRTY_TWO_BIT |
95 | # ifdef BN_LLONG |
96 | # if defined(_WIN32) && !defined(__GNUC__) |
97 | # define BN_ULLONG unsigned __int64 |
98 | # else |
99 | # define BN_ULLONG unsigned long long |
100 | # endif |
101 | # endif |
102 | # define BN_BITS4 16 |
103 | # define BN_MASK2 (0xffffffffL) |
104 | # define BN_MASK2l (0xffff) |
105 | # define BN_MASK2h1 (0xffff8000L) |
106 | # define BN_MASK2h (0xffff0000L) |
107 | # define BN_DEC_CONV (1000000000L) |
108 | # define BN_DEC_NUM 9 |
109 | # define BN_DEC_FMT1 "%u" |
110 | # define BN_DEC_FMT2 "%09u" |
111 | # endif |
112 | |
113 | |
114 | /*- |
115 | * Bignum consistency macros |
116 | * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from |
117 | * bignum data after direct manipulations on the data. There is also an |
118 | * "internal" macro, bn_check_top(), for verifying that there are no leading |
119 | * zeroes. Unfortunately, some auditing is required due to the fact that |
120 | * bn_fix_top() has become an overabused duct-tape because bignum data is |
121 | * occasionally passed around in an inconsistent state. So the following |
122 | * changes have been made to sort this out; |
123 | * - bn_fix_top()s implementation has been moved to bn_correct_top() |
124 | * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and |
125 | * bn_check_top() is as before. |
126 | * - if BN_DEBUG *is* defined; |
127 | * - bn_check_top() tries to pollute unused words even if the bignum 'top' is |
128 | * consistent. (ed: only if BN_DEBUG_RAND is defined) |
129 | * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. |
130 | * The idea is to have debug builds flag up inconsistent bignums when they |
131 | * occur. If that occurs in a bn_fix_top(), we examine the code in question; if |
132 | * the use of bn_fix_top() was appropriate (ie. it follows directly after code |
133 | * that manipulates the bignum) it is converted to bn_correct_top(), and if it |
134 | * was not appropriate, we convert it permanently to bn_check_top() and track |
135 | * down the cause of the bug. Eventually, no internal code should be using the |
136 | * bn_fix_top() macro. External applications and libraries should try this with |
137 | * their own code too, both in terms of building against the openssl headers |
138 | * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it |
139 | * defined. This not only improves external code, it provides more test |
140 | * coverage for openssl's own code. |
141 | */ |
142 | |
143 | # ifdef BN_DEBUG |
144 | /* |
145 | * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with |
146 | * bn_correct_top, in other words such vectors are permitted to have zeros |
147 | * in most significant limbs. Such vectors are used internally to achieve |
148 | * execution time invariance for critical operations with private keys. |
149 | * It's BN_DEBUG-only flag, because user application is not supposed to |
150 | * observe it anyway. Moreover, optimizing compiler would actually remove |
151 | * all operations manipulating the bit in question in non-BN_DEBUG build. |
152 | */ |
153 | # define BN_FLG_FIXED_TOP 0x10000 |
154 | # ifdef BN_DEBUG_RAND |
155 | # define bn_pollute(a) \ |
156 | do { \ |
157 | const BIGNUM *_bnum1 = (a); \ |
158 | if (_bnum1->top < _bnum1->dmax) { \ |
159 | unsigned char _tmp_char; \ |
160 | /* We cast away const without the compiler knowing, any \ |
161 | * *genuinely* constant variables that aren't mutable \ |
162 | * wouldn't be constructed with top!=dmax. */ \ |
163 | BN_ULONG *_not_const; \ |
164 | memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \ |
165 | RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\ |
166 | memset(_not_const + _bnum1->top, _tmp_char, \ |
167 | sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \ |
168 | } \ |
169 | } while(0) |
170 | # else |
171 | # define bn_pollute(a) |
172 | # endif |
173 | # define bn_check_top(a) \ |
174 | do { \ |
175 | const BIGNUM *_bnum2 = (a); \ |
176 | if (_bnum2 != NULL) { \ |
177 | int _top = _bnum2->top; \ |
178 | (void)ossl_assert((_top == 0 && !_bnum2->neg) || \ |
179 | (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \ |
180 | || _bnum2->d[_top - 1] != 0))); \ |
181 | bn_pollute(_bnum2); \ |
182 | } \ |
183 | } while(0) |
184 | |
185 | # define bn_fix_top(a) bn_check_top(a) |
186 | |
187 | # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) |
188 | # define bn_wcheck_size(bn, words) \ |
189 | do { \ |
190 | const BIGNUM *_bnum2 = (bn); \ |
191 | assert((words) <= (_bnum2)->dmax && \ |
192 | (words) >= (_bnum2)->top); \ |
193 | /* avoid unused variable warning with NDEBUG */ \ |
194 | (void)(_bnum2); \ |
195 | } while(0) |
196 | |
197 | # else /* !BN_DEBUG */ |
198 | |
199 | # define BN_FLG_FIXED_TOP 0 |
200 | # define bn_pollute(a) |
201 | # define bn_check_top(a) |
202 | # define bn_fix_top(a) bn_correct_top(a) |
203 | # define bn_check_size(bn, bits) |
204 | # define bn_wcheck_size(bn, words) |
205 | |
206 | # endif |
207 | |
208 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, |
209 | BN_ULONG w); |
210 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); |
211 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); |
212 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); |
213 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
214 | int num); |
215 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
216 | int num); |
217 | |
218 | struct bignum_st { |
219 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit |
220 | * chunks. */ |
221 | int top; /* Index of last used d +1. */ |
222 | /* The next are internal book keeping for bn_expand. */ |
223 | int dmax; /* Size of the d array. */ |
224 | int neg; /* one if the number is negative */ |
225 | int flags; |
226 | }; |
227 | |
228 | /* Used for montgomery multiplication */ |
229 | struct bn_mont_ctx_st { |
230 | int ri; /* number of bits in R */ |
231 | BIGNUM RR; /* used to convert to montgomery form, |
232 | possibly zero-padded */ |
233 | BIGNUM N; /* The modulus */ |
234 | BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only |
235 | * stored for bignum algorithm) */ |
236 | BN_ULONG n0[2]; /* least significant word(s) of Ni; (type |
237 | * changed with 0.9.9, was "BN_ULONG n0;" |
238 | * before) */ |
239 | int flags; |
240 | }; |
241 | |
242 | /* |
243 | * Used for reciprocal division/mod functions It cannot be shared between |
244 | * threads |
245 | */ |
246 | struct bn_recp_ctx_st { |
247 | BIGNUM N; /* the divisor */ |
248 | BIGNUM Nr; /* the reciprocal */ |
249 | int num_bits; |
250 | int shift; |
251 | int flags; |
252 | }; |
253 | |
254 | /* Used for slow "generation" functions. */ |
255 | struct bn_gencb_st { |
256 | unsigned int ver; /* To handle binary (in)compatibility */ |
257 | void *arg; /* callback-specific data */ |
258 | union { |
259 | /* if (ver==1) - handles old style callbacks */ |
260 | void (*cb_1) (int, int, void *); |
261 | /* if (ver==2) - new callback style */ |
262 | int (*cb_2) (int, int, BN_GENCB *); |
263 | } cb; |
264 | }; |
265 | |
266 | /*- |
267 | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions |
268 | * |
269 | * |
270 | * For window size 'w' (w >= 2) and a random 'b' bits exponent, |
271 | * the number of multiplications is a constant plus on average |
272 | * |
273 | * 2^(w-1) + (b-w)/(w+1); |
274 | * |
275 | * here 2^(w-1) is for precomputing the table (we actually need |
276 | * entries only for windows that have the lowest bit set), and |
277 | * (b-w)/(w+1) is an approximation for the expected number of |
278 | * w-bit windows, not counting the first one. |
279 | * |
280 | * Thus we should use |
281 | * |
282 | * w >= 6 if b > 671 |
283 | * w = 5 if 671 > b > 239 |
284 | * w = 4 if 239 > b > 79 |
285 | * w = 3 if 79 > b > 23 |
286 | * w <= 2 if 23 > b |
287 | * |
288 | * (with draws in between). Very small exponents are often selected |
289 | * with low Hamming weight, so we use w = 1 for b <= 23. |
290 | */ |
291 | # define BN_window_bits_for_exponent_size(b) \ |
292 | ((b) > 671 ? 6 : \ |
293 | (b) > 239 ? 5 : \ |
294 | (b) > 79 ? 4 : \ |
295 | (b) > 23 ? 3 : 1) |
296 | |
297 | /* |
298 | * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache |
299 | * line width of the target processor is at least the following value. |
300 | */ |
301 | # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) |
302 | # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
303 | |
304 | /* |
305 | * Window sizes optimized for fixed window size modular exponentiation |
306 | * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of |
307 | * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed |
308 | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are |
309 | * defined for cache line sizes of 32 and 64, cache line sizes where |
310 | * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be |
311 | * used on processors that have a 128 byte or greater cache line size. |
312 | */ |
313 | # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
314 | |
315 | # define BN_window_bits_for_ctime_exponent_size(b) \ |
316 | ((b) > 937 ? 6 : \ |
317 | (b) > 306 ? 5 : \ |
318 | (b) > 89 ? 4 : \ |
319 | (b) > 22 ? 3 : 1) |
320 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
321 | |
322 | # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
323 | |
324 | # define BN_window_bits_for_ctime_exponent_size(b) \ |
325 | ((b) > 306 ? 5 : \ |
326 | (b) > 89 ? 4 : \ |
327 | (b) > 22 ? 3 : 1) |
328 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
329 | |
330 | # endif |
331 | |
332 | /* Pentium pro 16,16,16,32,64 */ |
333 | /* Alpha 16,16,16,16.64 */ |
334 | # define BN_MULL_SIZE_NORMAL (16)/* 32 */ |
335 | # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */ |
336 | # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */ |
337 | # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */ |
338 | # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */ |
339 | |
340 | /* |
341 | * 2011-02-22 SMS. In various places, a size_t variable or a type cast to |
342 | * size_t was used to perform integer-only operations on pointers. This |
343 | * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t |
344 | * is still only 32 bits. What's needed in these cases is an integer type |
345 | * with the same size as a pointer, which size_t is not certain to be. The |
346 | * only fix here is VMS-specific. |
347 | */ |
348 | # if defined(OPENSSL_SYS_VMS) |
349 | # if __INITIAL_POINTER_SIZE == 64 |
350 | # define PTR_SIZE_INT long long |
351 | # else /* __INITIAL_POINTER_SIZE == 64 */ |
352 | # define PTR_SIZE_INT int |
353 | # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ |
354 | # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */ |
355 | # define PTR_SIZE_INT size_t |
356 | # endif /* defined(OPENSSL_SYS_VMS) [else] */ |
357 | |
358 | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) |
359 | /* |
360 | * BN_UMULT_HIGH section. |
361 | * If the compiler doesn't support 2*N integer type, then you have to |
362 | * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some |
363 | * shifts and additions which unavoidably results in severe performance |
364 | * penalties. Of course provided that the hardware is capable of producing |
365 | * 2*N result... That's when you normally start considering assembler |
366 | * implementation. However! It should be pointed out that some CPUs (e.g., |
367 | * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating |
368 | * the upper half of the product placing the result into a general |
369 | * purpose register. Now *if* the compiler supports inline assembler, |
370 | * then it's not impossible to implement the "bignum" routines (and have |
371 | * the compiler optimize 'em) exhibiting "native" performance in C. That's |
372 | * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do |
373 | * support 2*64 integer type, which is also used here. |
374 | */ |
375 | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \ |
376 | (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
377 | # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) |
378 | # define BN_UMULT_LOHI(low,high,a,b) ({ \ |
379 | __uint128_t ret=(__uint128_t)(a)*(b); \ |
380 | (high)=ret>>64; (low)=ret; }) |
381 | # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
382 | # if defined(__DECC) |
383 | # include <c_asm.h> |
384 | # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) |
385 | # elif defined(__GNUC__) && __GNUC__>=2 |
386 | # define BN_UMULT_HIGH(a,b) ({ \ |
387 | register BN_ULONG ret; \ |
388 | asm ("umulh %1,%2,%0" \ |
389 | : "=r"(ret) \ |
390 | : "r"(a), "r"(b)); \ |
391 | ret; }) |
392 | # endif /* compiler */ |
393 | # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG) |
394 | # if defined(__GNUC__) && __GNUC__>=2 |
395 | # define BN_UMULT_HIGH(a,b) ({ \ |
396 | register BN_ULONG ret; \ |
397 | asm ("mulhdu %0,%1,%2" \ |
398 | : "=r"(ret) \ |
399 | : "r"(a), "r"(b)); \ |
400 | ret; }) |
401 | # endif /* compiler */ |
402 | # elif (defined(__x86_64) || defined(__x86_64__)) && \ |
403 | (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
404 | # if defined(__GNUC__) && __GNUC__>=2 |
405 | # define BN_UMULT_HIGH(a,b) ({ \ |
406 | register BN_ULONG ret,discard; \ |
407 | asm ("mulq %3" \ |
408 | : "=a"(discard),"=d"(ret) \ |
409 | : "a"(a), "g"(b) \ |
410 | : "cc"); \ |
411 | ret; }) |
412 | # define BN_UMULT_LOHI(low,high,a,b) \ |
413 | asm ("mulq %3" \ |
414 | : "=a"(low),"=d"(high) \ |
415 | : "a"(a),"g"(b) \ |
416 | : "cc"); |
417 | # endif |
418 | # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) |
419 | # if defined(_MSC_VER) && _MSC_VER>=1400 |
420 | unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); |
421 | unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, |
422 | unsigned __int64 *h); |
423 | # pragma intrinsic(__umulh,_umul128) |
424 | # define BN_UMULT_HIGH(a,b) __umulh((a),(b)) |
425 | # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) |
426 | # endif |
427 | # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
428 | # if defined(__GNUC__) && __GNUC__>=2 |
429 | # define BN_UMULT_HIGH(a,b) ({ \ |
430 | register BN_ULONG ret; \ |
431 | asm ("dmultu %1,%2" \ |
432 | : "=h"(ret) \ |
433 | : "r"(a), "r"(b) : "l"); \ |
434 | ret; }) |
435 | # define BN_UMULT_LOHI(low,high,a,b) \ |
436 | asm ("dmultu %2,%3" \ |
437 | : "=l"(low),"=h"(high) \ |
438 | : "r"(a), "r"(b)); |
439 | # endif |
440 | # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) |
441 | # if defined(__GNUC__) && __GNUC__>=2 |
442 | # define BN_UMULT_HIGH(a,b) ({ \ |
443 | register BN_ULONG ret; \ |
444 | asm ("umulh %0,%1,%2" \ |
445 | : "=r"(ret) \ |
446 | : "r"(a), "r"(b)); \ |
447 | ret; }) |
448 | # endif |
449 | # endif /* cpu */ |
450 | # endif /* OPENSSL_NO_ASM */ |
451 | |
452 | # ifdef BN_DEBUG_RAND |
453 | # define bn_clear_top2max(a) \ |
454 | { \ |
455 | int ind = (a)->dmax - (a)->top; \ |
456 | BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ |
457 | for (; ind != 0; ind--) \ |
458 | *(++ftl) = 0x0; \ |
459 | } |
460 | # else |
461 | # define bn_clear_top2max(a) |
462 | # endif |
463 | |
464 | # ifdef BN_LLONG |
465 | /******************************************************************* |
466 | * Using the long long type, has to be twice as wide as BN_ULONG... |
467 | */ |
468 | # define Lw(t) (((BN_ULONG)(t))&BN_MASK2) |
469 | # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) |
470 | |
471 | # define mul_add(r,a,w,c) { \ |
472 | BN_ULLONG t; \ |
473 | t=(BN_ULLONG)w * (a) + (r) + (c); \ |
474 | (r)= Lw(t); \ |
475 | (c)= Hw(t); \ |
476 | } |
477 | |
478 | # define mul(r,a,w,c) { \ |
479 | BN_ULLONG t; \ |
480 | t=(BN_ULLONG)w * (a) + (c); \ |
481 | (r)= Lw(t); \ |
482 | (c)= Hw(t); \ |
483 | } |
484 | |
485 | # define sqr(r0,r1,a) { \ |
486 | BN_ULLONG t; \ |
487 | t=(BN_ULLONG)(a)*(a); \ |
488 | (r0)=Lw(t); \ |
489 | (r1)=Hw(t); \ |
490 | } |
491 | |
492 | # elif defined(BN_UMULT_LOHI) |
493 | # define mul_add(r,a,w,c) { \ |
494 | BN_ULONG high,low,ret,tmp=(a); \ |
495 | ret = (r); \ |
496 | BN_UMULT_LOHI(low,high,w,tmp); \ |
497 | ret += (c); \ |
498 | (c) = (ret<(c))?1:0; \ |
499 | (c) += high; \ |
500 | ret += low; \ |
501 | (c) += (ret<low)?1:0; \ |
502 | (r) = ret; \ |
503 | } |
504 | |
505 | # define mul(r,a,w,c) { \ |
506 | BN_ULONG high,low,ret,ta=(a); \ |
507 | BN_UMULT_LOHI(low,high,w,ta); \ |
508 | ret = low + (c); \ |
509 | (c) = high; \ |
510 | (c) += (ret<low)?1:0; \ |
511 | (r) = ret; \ |
512 | } |
513 | |
514 | # define sqr(r0,r1,a) { \ |
515 | BN_ULONG tmp=(a); \ |
516 | BN_UMULT_LOHI(r0,r1,tmp,tmp); \ |
517 | } |
518 | |
519 | # elif defined(BN_UMULT_HIGH) |
520 | # define mul_add(r,a,w,c) { \ |
521 | BN_ULONG high,low,ret,tmp=(a); \ |
522 | ret = (r); \ |
523 | high= BN_UMULT_HIGH(w,tmp); \ |
524 | ret += (c); \ |
525 | low = (w) * tmp; \ |
526 | (c) = (ret<(c))?1:0; \ |
527 | (c) += high; \ |
528 | ret += low; \ |
529 | (c) += (ret<low)?1:0; \ |
530 | (r) = ret; \ |
531 | } |
532 | |
533 | # define mul(r,a,w,c) { \ |
534 | BN_ULONG high,low,ret,ta=(a); \ |
535 | low = (w) * ta; \ |
536 | high= BN_UMULT_HIGH(w,ta); \ |
537 | ret = low + (c); \ |
538 | (c) = high; \ |
539 | (c) += (ret<low)?1:0; \ |
540 | (r) = ret; \ |
541 | } |
542 | |
543 | # define sqr(r0,r1,a) { \ |
544 | BN_ULONG tmp=(a); \ |
545 | (r0) = tmp * tmp; \ |
546 | (r1) = BN_UMULT_HIGH(tmp,tmp); \ |
547 | } |
548 | |
549 | # else |
550 | /************************************************************* |
551 | * No long long type |
552 | */ |
553 | |
554 | # define LBITS(a) ((a)&BN_MASK2l) |
555 | # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) |
556 | # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) |
557 | |
558 | # define LLBITS(a) ((a)&BN_MASKl) |
559 | # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl) |
560 | # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) |
561 | |
562 | # define mul64(l,h,bl,bh) \ |
563 | { \ |
564 | BN_ULONG m,m1,lt,ht; \ |
565 | \ |
566 | lt=l; \ |
567 | ht=h; \ |
568 | m =(bh)*(lt); \ |
569 | lt=(bl)*(lt); \ |
570 | m1=(bl)*(ht); \ |
571 | ht =(bh)*(ht); \ |
572 | m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ |
573 | ht+=HBITS(m); \ |
574 | m1=L2HBITS(m); \ |
575 | lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ |
576 | (l)=lt; \ |
577 | (h)=ht; \ |
578 | } |
579 | |
580 | # define sqr64(lo,ho,in) \ |
581 | { \ |
582 | BN_ULONG l,h,m; \ |
583 | \ |
584 | h=(in); \ |
585 | l=LBITS(h); \ |
586 | h=HBITS(h); \ |
587 | m =(l)*(h); \ |
588 | l*=l; \ |
589 | h*=h; \ |
590 | h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ |
591 | m =(m&BN_MASK2l)<<(BN_BITS4+1); \ |
592 | l=(l+m)&BN_MASK2; if (l < m) h++; \ |
593 | (lo)=l; \ |
594 | (ho)=h; \ |
595 | } |
596 | |
597 | # define mul_add(r,a,bl,bh,c) { \ |
598 | BN_ULONG l,h; \ |
599 | \ |
600 | h= (a); \ |
601 | l=LBITS(h); \ |
602 | h=HBITS(h); \ |
603 | mul64(l,h,(bl),(bh)); \ |
604 | \ |
605 | /* non-multiply part */ \ |
606 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
607 | (c)=(r); \ |
608 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
609 | (c)=h&BN_MASK2; \ |
610 | (r)=l; \ |
611 | } |
612 | |
613 | # define mul(r,a,bl,bh,c) { \ |
614 | BN_ULONG l,h; \ |
615 | \ |
616 | h= (a); \ |
617 | l=LBITS(h); \ |
618 | h=HBITS(h); \ |
619 | mul64(l,h,(bl),(bh)); \ |
620 | \ |
621 | /* non-multiply part */ \ |
622 | l+=(c); if ((l&BN_MASK2) < (c)) h++; \ |
623 | (c)=h&BN_MASK2; \ |
624 | (r)=l&BN_MASK2; \ |
625 | } |
626 | # endif /* !BN_LLONG */ |
627 | |
628 | void BN_RECP_CTX_init(BN_RECP_CTX *recp); |
629 | void BN_MONT_CTX_init(BN_MONT_CTX *ctx); |
630 | |
631 | void bn_init(BIGNUM *a); |
632 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); |
633 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
634 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
635 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); |
636 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); |
637 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); |
638 | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); |
639 | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); |
640 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
641 | int dna, int dnb, BN_ULONG *t); |
642 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
643 | int n, int tna, int tnb, BN_ULONG *t); |
644 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); |
645 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
646 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
647 | BN_ULONG *t); |
648 | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
649 | int cl, int dl); |
650 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
651 | const BN_ULONG *np, const BN_ULONG *n0, int num); |
652 | |
653 | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
654 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
655 | int *noinv); |
656 | |
657 | static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits) |
658 | { |
659 | if (bits > (INT_MAX - BN_BITS2 + 1)) |
660 | return NULL; |
661 | |
662 | if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax) |
663 | return a; |
664 | |
665 | return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2); |
666 | } |
667 | |
668 | int bn_check_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
669 | int do_trial_division, BN_GENCB *cb); |
670 | |
671 | #endif |
672 | |