1 | /* |
2 | * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * Copyright 2015-2016 Cryptography Research, Inc. |
4 | * |
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | * this file except in compliance with the License. You can obtain a copy |
7 | * in the file LICENSE in the source distribution or at |
8 | * https://www.openssl.org/source/license.html |
9 | * |
10 | * Originally written by Mike Hamburg |
11 | */ |
12 | #include <openssl/crypto.h> |
13 | #include "word.h" |
14 | #include "field.h" |
15 | |
16 | #include "point_448.h" |
17 | #include "ed448.h" |
18 | #include "curve448_local.h" |
19 | |
20 | #define COFACTOR 4 |
21 | |
22 | #define C448_WNAF_FIXED_TABLE_BITS 5 |
23 | #define C448_WNAF_VAR_TABLE_BITS 3 |
24 | |
25 | #define EDWARDS_D (-39081) |
26 | |
27 | static const curve448_scalar_t precomputed_scalarmul_adjustment = { |
28 | { |
29 | { |
30 | SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL), |
31 | SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) |
32 | } |
33 | } |
34 | }; |
35 | |
36 | #define TWISTED_D (EDWARDS_D - 1) |
37 | |
38 | #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */ |
39 | |
40 | /* Inverse. */ |
41 | static void gf_invert(gf y, const gf x, int assert_nonzero) |
42 | { |
43 | mask_t ret; |
44 | gf t1, t2; |
45 | |
46 | gf_sqr(t1, x); /* o^2 */ |
47 | ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */ |
48 | (void)ret; |
49 | if (assert_nonzero) |
50 | assert(ret); |
51 | gf_sqr(t1, t2); |
52 | gf_mul(t2, t1, x); /* not direct to y in case of alias. */ |
53 | gf_copy(y, t2); |
54 | } |
55 | |
56 | /** identity = (0,1) */ |
57 | const curve448_point_t curve448_point_identity = |
58 | { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} }; |
59 | |
60 | static void point_double_internal(curve448_point_t p, const curve448_point_t q, |
61 | int before_double) |
62 | { |
63 | gf a, b, c, d; |
64 | |
65 | gf_sqr(c, q->x); |
66 | gf_sqr(a, q->y); |
67 | gf_add_nr(d, c, a); /* 2+e */ |
68 | gf_add_nr(p->t, q->y, q->x); /* 2+e */ |
69 | gf_sqr(b, p->t); |
70 | gf_subx_nr(b, b, d, 3); /* 4+e */ |
71 | gf_sub_nr(p->t, a, c); /* 3+e */ |
72 | gf_sqr(p->x, q->z); |
73 | gf_add_nr(p->z, p->x, p->x); /* 2+e */ |
74 | gf_subx_nr(a, p->z, p->t, 4); /* 6+e */ |
75 | if (GF_HEADROOM == 5) |
76 | gf_weak_reduce(a); /* or 1+e */ |
77 | gf_mul(p->x, a, b); |
78 | gf_mul(p->z, p->t, a); |
79 | gf_mul(p->y, p->t, d); |
80 | if (!before_double) |
81 | gf_mul(p->t, b, d); |
82 | } |
83 | |
84 | void curve448_point_double(curve448_point_t p, const curve448_point_t q) |
85 | { |
86 | point_double_internal(p, q, 0); |
87 | } |
88 | |
89 | /* Operations on [p]niels */ |
90 | static ossl_inline void cond_neg_niels(niels_t n, mask_t neg) |
91 | { |
92 | gf_cond_swap(n->a, n->b, neg); |
93 | gf_cond_neg(n->c, neg); |
94 | } |
95 | |
96 | static void pt_to_pniels(pniels_t b, const curve448_point_t a) |
97 | { |
98 | gf_sub(b->n->a, a->y, a->x); |
99 | gf_add(b->n->b, a->x, a->y); |
100 | gf_mulw(b->n->c, a->t, 2 * TWISTED_D); |
101 | gf_add(b->z, a->z, a->z); |
102 | } |
103 | |
104 | static void pniels_to_pt(curve448_point_t e, const pniels_t d) |
105 | { |
106 | gf eu; |
107 | |
108 | gf_add(eu, d->n->b, d->n->a); |
109 | gf_sub(e->y, d->n->b, d->n->a); |
110 | gf_mul(e->t, e->y, eu); |
111 | gf_mul(e->x, d->z, e->y); |
112 | gf_mul(e->y, d->z, eu); |
113 | gf_sqr(e->z, d->z); |
114 | } |
115 | |
116 | static void niels_to_pt(curve448_point_t e, const niels_t n) |
117 | { |
118 | gf_add(e->y, n->b, n->a); |
119 | gf_sub(e->x, n->b, n->a); |
120 | gf_mul(e->t, e->y, e->x); |
121 | gf_copy(e->z, ONE); |
122 | } |
123 | |
124 | static void add_niels_to_pt(curve448_point_t d, const niels_t e, |
125 | int before_double) |
126 | { |
127 | gf a, b, c; |
128 | |
129 | gf_sub_nr(b, d->y, d->x); /* 3+e */ |
130 | gf_mul(a, e->a, b); |
131 | gf_add_nr(b, d->x, d->y); /* 2+e */ |
132 | gf_mul(d->y, e->b, b); |
133 | gf_mul(d->x, e->c, d->t); |
134 | gf_add_nr(c, a, d->y); /* 2+e */ |
135 | gf_sub_nr(b, d->y, a); /* 3+e */ |
136 | gf_sub_nr(d->y, d->z, d->x); /* 3+e */ |
137 | gf_add_nr(a, d->x, d->z); /* 2+e */ |
138 | gf_mul(d->z, a, d->y); |
139 | gf_mul(d->x, d->y, b); |
140 | gf_mul(d->y, a, c); |
141 | if (!before_double) |
142 | gf_mul(d->t, b, c); |
143 | } |
144 | |
145 | static void sub_niels_from_pt(curve448_point_t d, const niels_t e, |
146 | int before_double) |
147 | { |
148 | gf a, b, c; |
149 | |
150 | gf_sub_nr(b, d->y, d->x); /* 3+e */ |
151 | gf_mul(a, e->b, b); |
152 | gf_add_nr(b, d->x, d->y); /* 2+e */ |
153 | gf_mul(d->y, e->a, b); |
154 | gf_mul(d->x, e->c, d->t); |
155 | gf_add_nr(c, a, d->y); /* 2+e */ |
156 | gf_sub_nr(b, d->y, a); /* 3+e */ |
157 | gf_add_nr(d->y, d->z, d->x); /* 2+e */ |
158 | gf_sub_nr(a, d->z, d->x); /* 3+e */ |
159 | gf_mul(d->z, a, d->y); |
160 | gf_mul(d->x, d->y, b); |
161 | gf_mul(d->y, a, c); |
162 | if (!before_double) |
163 | gf_mul(d->t, b, c); |
164 | } |
165 | |
166 | static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn, |
167 | int before_double) |
168 | { |
169 | gf L0; |
170 | |
171 | gf_mul(L0, p->z, pn->z); |
172 | gf_copy(p->z, L0); |
173 | add_niels_to_pt(p, pn->n, before_double); |
174 | } |
175 | |
176 | static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn, |
177 | int before_double) |
178 | { |
179 | gf L0; |
180 | |
181 | gf_mul(L0, p->z, pn->z); |
182 | gf_copy(p->z, L0); |
183 | sub_niels_from_pt(p, pn->n, before_double); |
184 | } |
185 | |
186 | c448_bool_t curve448_point_eq(const curve448_point_t p, |
187 | const curve448_point_t q) |
188 | { |
189 | mask_t succ; |
190 | gf a, b; |
191 | |
192 | /* equality mod 2-torsion compares x/y */ |
193 | gf_mul(a, p->y, q->x); |
194 | gf_mul(b, q->y, p->x); |
195 | succ = gf_eq(a, b); |
196 | |
197 | return mask_to_bool(succ); |
198 | } |
199 | |
200 | c448_bool_t curve448_point_valid(const curve448_point_t p) |
201 | { |
202 | mask_t out; |
203 | gf a, b, c; |
204 | |
205 | gf_mul(a, p->x, p->y); |
206 | gf_mul(b, p->z, p->t); |
207 | out = gf_eq(a, b); |
208 | gf_sqr(a, p->x); |
209 | gf_sqr(b, p->y); |
210 | gf_sub(a, b, a); |
211 | gf_sqr(b, p->t); |
212 | gf_mulw(c, b, TWISTED_D); |
213 | gf_sqr(b, p->z); |
214 | gf_add(b, b, c); |
215 | out &= gf_eq(a, b); |
216 | out &= ~gf_eq(p->z, ZERO); |
217 | return mask_to_bool(out); |
218 | } |
219 | |
220 | static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni, |
221 | const niels_t * table, |
222 | int nelts, int idx) |
223 | { |
224 | constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx); |
225 | } |
226 | |
227 | void curve448_precomputed_scalarmul(curve448_point_t out, |
228 | const curve448_precomputed_s * table, |
229 | const curve448_scalar_t scalar) |
230 | { |
231 | unsigned int i, j, k; |
232 | const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S; |
233 | niels_t ni; |
234 | curve448_scalar_t scalar1x; |
235 | |
236 | curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment); |
237 | curve448_scalar_halve(scalar1x, scalar1x); |
238 | |
239 | for (i = s; i > 0; i--) { |
240 | if (i != s) |
241 | point_double_internal(out, out, 0); |
242 | |
243 | for (j = 0; j < n; j++) { |
244 | int tab = 0; |
245 | mask_t invert; |
246 | |
247 | for (k = 0; k < t; k++) { |
248 | unsigned int bit = (i - 1) + s * (k + j * t); |
249 | |
250 | if (bit < C448_SCALAR_BITS) |
251 | tab |= |
252 | (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k; |
253 | } |
254 | |
255 | invert = (tab >> (t - 1)) - 1; |
256 | tab ^= invert; |
257 | tab &= (1 << (t - 1)) - 1; |
258 | |
259 | constant_time_lookup_niels(ni, &table->table[j << (t - 1)], |
260 | 1 << (t - 1), tab); |
261 | |
262 | cond_neg_niels(ni, invert); |
263 | if ((i != s) || j != 0) |
264 | add_niels_to_pt(out, ni, j == n - 1 && i != 1); |
265 | else |
266 | niels_to_pt(out, ni); |
267 | } |
268 | } |
269 | |
270 | OPENSSL_cleanse(ni, sizeof(ni)); |
271 | OPENSSL_cleanse(scalar1x, sizeof(scalar1x)); |
272 | } |
273 | |
274 | void curve448_point_mul_by_ratio_and_encode_like_eddsa( |
275 | uint8_t enc[EDDSA_448_PUBLIC_BYTES], |
276 | const curve448_point_t p) |
277 | { |
278 | gf x, y, z, t; |
279 | curve448_point_t q; |
280 | |
281 | /* The point is now on the twisted curve. Move it to untwisted. */ |
282 | curve448_point_copy(q, p); |
283 | |
284 | { |
285 | /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */ |
286 | gf u; |
287 | |
288 | gf_sqr(x, q->x); |
289 | gf_sqr(t, q->y); |
290 | gf_add(u, x, t); |
291 | gf_add(z, q->y, q->x); |
292 | gf_sqr(y, z); |
293 | gf_sub(y, y, u); |
294 | gf_sub(z, t, x); |
295 | gf_sqr(x, q->z); |
296 | gf_add(t, x, x); |
297 | gf_sub(t, t, z); |
298 | gf_mul(x, t, y); |
299 | gf_mul(y, z, u); |
300 | gf_mul(z, u, t); |
301 | OPENSSL_cleanse(u, sizeof(u)); |
302 | } |
303 | |
304 | /* Affinize */ |
305 | gf_invert(z, z, 1); |
306 | gf_mul(t, x, z); |
307 | gf_mul(x, y, z); |
308 | |
309 | /* Encode */ |
310 | enc[EDDSA_448_PRIVATE_BYTES - 1] = 0; |
311 | gf_serialize(enc, x, 1); |
312 | enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t); |
313 | |
314 | OPENSSL_cleanse(x, sizeof(x)); |
315 | OPENSSL_cleanse(y, sizeof(y)); |
316 | OPENSSL_cleanse(z, sizeof(z)); |
317 | OPENSSL_cleanse(t, sizeof(t)); |
318 | curve448_point_destroy(q); |
319 | } |
320 | |
321 | c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio( |
322 | curve448_point_t p, |
323 | const uint8_t enc[EDDSA_448_PUBLIC_BYTES]) |
324 | { |
325 | uint8_t enc2[EDDSA_448_PUBLIC_BYTES]; |
326 | mask_t low; |
327 | mask_t succ; |
328 | |
329 | memcpy(enc2, enc, sizeof(enc2)); |
330 | |
331 | low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80); |
332 | enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80; |
333 | |
334 | succ = gf_deserialize(p->y, enc2, 1, 0); |
335 | succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]); |
336 | |
337 | gf_sqr(p->x, p->y); |
338 | gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */ |
339 | gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */ |
340 | gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */ |
341 | |
342 | gf_mul(p->x, p->z, p->t); |
343 | succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */ |
344 | |
345 | gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */ |
346 | gf_cond_neg(p->x, gf_lobit(p->x) ^ low); |
347 | gf_copy(p->z, ONE); |
348 | |
349 | { |
350 | gf a, b, c, d; |
351 | |
352 | /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */ |
353 | gf_sqr(c, p->x); |
354 | gf_sqr(a, p->y); |
355 | gf_add(d, c, a); |
356 | gf_add(p->t, p->y, p->x); |
357 | gf_sqr(b, p->t); |
358 | gf_sub(b, b, d); |
359 | gf_sub(p->t, a, c); |
360 | gf_sqr(p->x, p->z); |
361 | gf_add(p->z, p->x, p->x); |
362 | gf_sub(a, p->z, d); |
363 | gf_mul(p->x, a, b); |
364 | gf_mul(p->z, p->t, a); |
365 | gf_mul(p->y, p->t, d); |
366 | gf_mul(p->t, b, d); |
367 | OPENSSL_cleanse(a, sizeof(a)); |
368 | OPENSSL_cleanse(b, sizeof(b)); |
369 | OPENSSL_cleanse(c, sizeof(c)); |
370 | OPENSSL_cleanse(d, sizeof(d)); |
371 | } |
372 | |
373 | OPENSSL_cleanse(enc2, sizeof(enc2)); |
374 | assert(curve448_point_valid(p) || ~succ); |
375 | |
376 | return c448_succeed_if(mask_to_bool(succ)); |
377 | } |
378 | |
379 | c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES], |
380 | const uint8_t base[X_PUBLIC_BYTES], |
381 | const uint8_t scalar[X_PRIVATE_BYTES]) |
382 | { |
383 | gf x1, x2, z2, x3, z3, t1, t2; |
384 | int t; |
385 | mask_t swap = 0; |
386 | mask_t nz; |
387 | |
388 | (void)gf_deserialize(x1, base, 1, 0); |
389 | gf_copy(x2, ONE); |
390 | gf_copy(z2, ZERO); |
391 | gf_copy(x3, x1); |
392 | gf_copy(z3, ONE); |
393 | |
394 | for (t = X_PRIVATE_BITS - 1; t >= 0; t--) { |
395 | uint8_t sb = scalar[t / 8]; |
396 | mask_t k_t; |
397 | |
398 | /* Scalar conditioning */ |
399 | if (t / 8 == 0) |
400 | sb &= -(uint8_t)COFACTOR; |
401 | else if (t == X_PRIVATE_BITS - 1) |
402 | sb = -1; |
403 | |
404 | k_t = (sb >> (t % 8)) & 1; |
405 | k_t = 0 - k_t; /* set to all 0s or all 1s */ |
406 | |
407 | swap ^= k_t; |
408 | gf_cond_swap(x2, x3, swap); |
409 | gf_cond_swap(z2, z3, swap); |
410 | swap = k_t; |
411 | |
412 | /* |
413 | * The "_nr" below skips coefficient reduction. In the following |
414 | * comments, "2+e" is saying that the coefficients are at most 2+epsilon |
415 | * times the reduction limit. |
416 | */ |
417 | gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */ |
418 | gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */ |
419 | gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */ |
420 | gf_mul(x2, t1, z2); /* DA */ |
421 | gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */ |
422 | gf_mul(x3, t2, z2); /* CB */ |
423 | gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */ |
424 | gf_sqr(z2, z3); /* (DA-CB)^2 */ |
425 | gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */ |
426 | gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */ |
427 | gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */ |
428 | |
429 | gf_sqr(z2, t1); /* AA = A^2 */ |
430 | gf_sqr(t1, t2); /* BB = B^2 */ |
431 | gf_mul(x2, z2, t1); /* x2 = AA*BB */ |
432 | gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */ |
433 | |
434 | gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */ |
435 | gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */ |
436 | gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */ |
437 | } |
438 | |
439 | /* Finish */ |
440 | gf_cond_swap(x2, x3, swap); |
441 | gf_cond_swap(z2, z3, swap); |
442 | gf_invert(z2, z2, 0); |
443 | gf_mul(x1, x2, z2); |
444 | gf_serialize(out, x1, 1); |
445 | nz = ~gf_eq(x1, ZERO); |
446 | |
447 | OPENSSL_cleanse(x1, sizeof(x1)); |
448 | OPENSSL_cleanse(x2, sizeof(x2)); |
449 | OPENSSL_cleanse(z2, sizeof(z2)); |
450 | OPENSSL_cleanse(x3, sizeof(x3)); |
451 | OPENSSL_cleanse(z3, sizeof(z3)); |
452 | OPENSSL_cleanse(t1, sizeof(t1)); |
453 | OPENSSL_cleanse(t2, sizeof(t2)); |
454 | |
455 | return c448_succeed_if(mask_to_bool(nz)); |
456 | } |
457 | |
458 | void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t |
459 | out[X_PUBLIC_BYTES], |
460 | const curve448_point_t p) |
461 | { |
462 | curve448_point_t q; |
463 | |
464 | curve448_point_copy(q, p); |
465 | gf_invert(q->t, q->x, 0); /* 1/x */ |
466 | gf_mul(q->z, q->t, q->y); /* y/x */ |
467 | gf_sqr(q->y, q->z); /* (y/x)^2 */ |
468 | gf_serialize(out, q->y, 1); |
469 | curve448_point_destroy(q); |
470 | } |
471 | |
472 | void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES], |
473 | const uint8_t scalar[X_PRIVATE_BYTES]) |
474 | { |
475 | /* Scalar conditioning */ |
476 | uint8_t scalar2[X_PRIVATE_BYTES]; |
477 | curve448_scalar_t the_scalar; |
478 | curve448_point_t p; |
479 | unsigned int i; |
480 | |
481 | memcpy(scalar2, scalar, sizeof(scalar2)); |
482 | scalar2[0] &= -(uint8_t)COFACTOR; |
483 | |
484 | scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8)); |
485 | scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8); |
486 | |
487 | curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2)); |
488 | |
489 | /* Compensate for the encoding ratio */ |
490 | for (i = 1; i < X448_ENCODE_RATIO; i <<= 1) |
491 | curve448_scalar_halve(the_scalar, the_scalar); |
492 | |
493 | curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar); |
494 | curve448_point_mul_by_ratio_and_encode_like_x448(out, p); |
495 | curve448_point_destroy(p); |
496 | } |
497 | |
498 | /* Control for variable-time scalar multiply algorithms. */ |
499 | struct smvt_control { |
500 | int power, addend; |
501 | }; |
502 | |
503 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)) |
504 | # define NUMTRAILINGZEROS __builtin_ctz |
505 | #else |
506 | # define NUMTRAILINGZEROS numtrailingzeros |
507 | static uint32_t numtrailingzeros(uint32_t i) |
508 | { |
509 | uint32_t tmp; |
510 | uint32_t num = 31; |
511 | |
512 | if (i == 0) |
513 | return 32; |
514 | |
515 | tmp = i << 16; |
516 | if (tmp != 0) { |
517 | i = tmp; |
518 | num -= 16; |
519 | } |
520 | tmp = i << 8; |
521 | if (tmp != 0) { |
522 | i = tmp; |
523 | num -= 8; |
524 | } |
525 | tmp = i << 4; |
526 | if (tmp != 0) { |
527 | i = tmp; |
528 | num -= 4; |
529 | } |
530 | tmp = i << 2; |
531 | if (tmp != 0) { |
532 | i = tmp; |
533 | num -= 2; |
534 | } |
535 | tmp = i << 1; |
536 | if (tmp != 0) |
537 | num--; |
538 | |
539 | return num; |
540 | } |
541 | #endif |
542 | |
543 | static int recode_wnaf(struct smvt_control *control, |
544 | /* [nbits/(table_bits + 1) + 3] */ |
545 | const curve448_scalar_t scalar, |
546 | unsigned int table_bits) |
547 | { |
548 | unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3; |
549 | int position = table_size - 1; /* at the end */ |
550 | uint64_t current = scalar->limb[0] & 0xFFFF; |
551 | uint32_t mask = (1 << (table_bits + 1)) - 1; |
552 | unsigned int w; |
553 | const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2; |
554 | unsigned int n, i; |
555 | |
556 | /* place the end marker */ |
557 | control[position].power = -1; |
558 | control[position].addend = 0; |
559 | position--; |
560 | |
561 | /* |
562 | * PERF: Could negate scalar if it's large. But then would need more cases |
563 | * in the actual code that uses it, all for an expected reduction of like |
564 | * 1/5 op. Probably not worth it. |
565 | */ |
566 | |
567 | for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) { |
568 | if (w < (C448_SCALAR_BITS - 1) / 16 + 1) { |
569 | /* Refill the 16 high bits of current */ |
570 | current += (uint32_t)((scalar->limb[w / B_OVER_16] |
571 | >> (16 * (w % B_OVER_16))) << 16); |
572 | } |
573 | |
574 | while (current & 0xFFFF) { |
575 | uint32_t pos = NUMTRAILINGZEROS((uint32_t)current); |
576 | uint32_t odd = (uint32_t)current >> pos; |
577 | int32_t delta = odd & mask; |
578 | |
579 | assert(position >= 0); |
580 | if (odd & (1 << (table_bits + 1))) |
581 | delta -= (1 << (table_bits + 1)); |
582 | current -= delta * (1 << pos); |
583 | control[position].power = pos + 16 * (w - 1); |
584 | control[position].addend = delta; |
585 | position--; |
586 | } |
587 | current >>= 16; |
588 | } |
589 | assert(current == 0); |
590 | |
591 | position++; |
592 | n = table_size - position; |
593 | for (i = 0; i < n; i++) |
594 | control[i] = control[i + position]; |
595 | |
596 | return n - 1; |
597 | } |
598 | |
599 | static void prepare_wnaf_table(pniels_t * output, |
600 | const curve448_point_t working, |
601 | unsigned int tbits) |
602 | { |
603 | curve448_point_t tmp; |
604 | int i; |
605 | pniels_t twop; |
606 | |
607 | pt_to_pniels(output[0], working); |
608 | |
609 | if (tbits == 0) |
610 | return; |
611 | |
612 | curve448_point_double(tmp, working); |
613 | pt_to_pniels(twop, tmp); |
614 | |
615 | add_pniels_to_pt(tmp, output[0], 0); |
616 | pt_to_pniels(output[1], tmp); |
617 | |
618 | for (i = 2; i < 1 << tbits; i++) { |
619 | add_pniels_to_pt(tmp, twop, 0); |
620 | pt_to_pniels(output[i], tmp); |
621 | } |
622 | |
623 | curve448_point_destroy(tmp); |
624 | OPENSSL_cleanse(twop, sizeof(twop)); |
625 | } |
626 | |
627 | void curve448_base_double_scalarmul_non_secret(curve448_point_t combo, |
628 | const curve448_scalar_t scalar1, |
629 | const curve448_point_t base2, |
630 | const curve448_scalar_t scalar2) |
631 | { |
632 | const int table_bits_var = C448_WNAF_VAR_TABLE_BITS; |
633 | const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS; |
634 | struct smvt_control control_var[C448_SCALAR_BITS / |
635 | (C448_WNAF_VAR_TABLE_BITS + 1) + 3]; |
636 | struct smvt_control control_pre[C448_SCALAR_BITS / |
637 | (C448_WNAF_FIXED_TABLE_BITS + 1) + 3]; |
638 | int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre); |
639 | int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var); |
640 | pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS]; |
641 | int contp = 0, contv = 0, i; |
642 | |
643 | prepare_wnaf_table(precmp_var, base2, table_bits_var); |
644 | i = control_var[0].power; |
645 | |
646 | if (i < 0) { |
647 | curve448_point_copy(combo, curve448_point_identity); |
648 | return; |
649 | } |
650 | if (i > control_pre[0].power) { |
651 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); |
652 | contv++; |
653 | } else if (i == control_pre[0].power && i >= 0) { |
654 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); |
655 | add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1], |
656 | i); |
657 | contv++; |
658 | contp++; |
659 | } else { |
660 | i = control_pre[0].power; |
661 | niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]); |
662 | contp++; |
663 | } |
664 | |
665 | for (i--; i >= 0; i--) { |
666 | int cv = (i == control_var[contv].power); |
667 | int cp = (i == control_pre[contp].power); |
668 | |
669 | point_double_internal(combo, combo, i && !(cv || cp)); |
670 | |
671 | if (cv) { |
672 | assert(control_var[contv].addend); |
673 | |
674 | if (control_var[contv].addend > 0) |
675 | add_pniels_to_pt(combo, |
676 | precmp_var[control_var[contv].addend >> 1], |
677 | i && !cp); |
678 | else |
679 | sub_pniels_from_pt(combo, |
680 | precmp_var[(-control_var[contv].addend) |
681 | >> 1], i && !cp); |
682 | contv++; |
683 | } |
684 | |
685 | if (cp) { |
686 | assert(control_pre[contp].addend); |
687 | |
688 | if (control_pre[contp].addend > 0) |
689 | add_niels_to_pt(combo, |
690 | curve448_wnaf_base[control_pre[contp].addend |
691 | >> 1], i); |
692 | else |
693 | sub_niels_from_pt(combo, |
694 | curve448_wnaf_base[(-control_pre |
695 | [contp].addend) >> 1], i); |
696 | contp++; |
697 | } |
698 | } |
699 | |
700 | /* This function is non-secret, but whatever this is cheap. */ |
701 | OPENSSL_cleanse(control_var, sizeof(control_var)); |
702 | OPENSSL_cleanse(control_pre, sizeof(control_pre)); |
703 | OPENSSL_cleanse(precmp_var, sizeof(precmp_var)); |
704 | |
705 | assert(contv == ncb_var); |
706 | (void)ncb_var; |
707 | assert(contp == ncb_pre); |
708 | (void)ncb_pre; |
709 | } |
710 | |
711 | void curve448_point_destroy(curve448_point_t point) |
712 | { |
713 | OPENSSL_cleanse(point, sizeof(curve448_point_t)); |
714 | } |
715 | |
716 | int X448(uint8_t out_shared_key[56], const uint8_t private_key[56], |
717 | const uint8_t peer_public_value[56]) |
718 | { |
719 | return x448_int(out_shared_key, peer_public_value, private_key) |
720 | == C448_SUCCESS; |
721 | } |
722 | |
723 | void X448_public_from_private(uint8_t out_public_value[56], |
724 | const uint8_t private_key[56]) |
725 | { |
726 | x448_derive_public_key(out_public_value, private_key); |
727 | } |
728 | |