1/*
2 * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright 2015-2016 Cryptography Research, Inc.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 * Originally written by Mike Hamburg
11 */
12#include "field.h"
13
14static const gf MODULUS = {
15 FIELD_LITERAL(0xffffffffffffffULL, 0xffffffffffffffULL, 0xffffffffffffffULL,
16 0xffffffffffffffULL, 0xfffffffffffffeULL, 0xffffffffffffffULL,
17 0xffffffffffffffULL, 0xffffffffffffffULL)
18};
19
20/* Serialize to wire format. */
21void gf_serialize(uint8_t serial[SER_BYTES], const gf x, int with_hibit)
22{
23 unsigned int j = 0, fill = 0;
24 dword_t buffer = 0;
25 int i;
26 gf red;
27
28 gf_copy(red, x);
29 gf_strong_reduce(red);
30 if (!with_hibit)
31 assert(gf_hibit(red) == 0);
32
33 for (i = 0; i < (with_hibit ? X_SER_BYTES : SER_BYTES); i++) {
34 if (fill < 8 && j < NLIMBS) {
35 buffer |= ((dword_t) red->limb[LIMBPERM(j)]) << fill;
36 fill += LIMB_PLACE_VALUE(LIMBPERM(j));
37 j++;
38 }
39 serial[i] = (uint8_t)buffer;
40 fill -= 8;
41 buffer >>= 8;
42 }
43}
44
45/* Return high bit of x = low bit of 2x mod p */
46mask_t gf_hibit(const gf x)
47{
48 gf y;
49
50 gf_add(y, x, x);
51 gf_strong_reduce(y);
52 return 0 - (y->limb[0] & 1);
53}
54
55/* Return high bit of x = low bit of 2x mod p */
56mask_t gf_lobit(const gf x)
57{
58 gf y;
59
60 gf_copy(y, x);
61 gf_strong_reduce(y);
62 return 0 - (y->limb[0] & 1);
63}
64
65/* Deserialize from wire format; return -1 on success and 0 on failure. */
66mask_t gf_deserialize(gf x, const uint8_t serial[SER_BYTES], int with_hibit,
67 uint8_t hi_nmask)
68{
69 unsigned int j = 0, fill = 0;
70 dword_t buffer = 0;
71 dsword_t scarry = 0;
72 const unsigned nbytes = with_hibit ? X_SER_BYTES : SER_BYTES;
73 unsigned int i;
74 mask_t succ;
75
76 for (i = 0; i < NLIMBS; i++) {
77 while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < nbytes) {
78 uint8_t sj;
79
80 sj = serial[j];
81 if (j == nbytes - 1)
82 sj &= ~hi_nmask;
83 buffer |= ((dword_t) sj) << fill;
84 fill += 8;
85 j++;
86 }
87 x->limb[LIMBPERM(i)] = (word_t)
88 ((i < NLIMBS - 1) ? buffer & LIMB_MASK(LIMBPERM(i)) : buffer);
89 fill -= LIMB_PLACE_VALUE(LIMBPERM(i));
90 buffer >>= LIMB_PLACE_VALUE(LIMBPERM(i));
91 scarry =
92 (scarry + x->limb[LIMBPERM(i)] -
93 MODULUS->limb[LIMBPERM(i)]) >> (8 * sizeof(word_t));
94 }
95 succ = with_hibit ? 0 - (mask_t) 1 : ~gf_hibit(x);
96 return succ & word_is_zero((word_t)buffer) & ~word_is_zero((word_t)scarry);
97}
98
99/* Reduce to canonical form. */
100void gf_strong_reduce(gf a)
101{
102 dsword_t scarry;
103 word_t scarry_0;
104 dword_t carry = 0;
105 unsigned int i;
106
107 /* first, clear high */
108 gf_weak_reduce(a); /* Determined to have negligible perf impact. */
109
110 /* now the total is less than 2p */
111
112 /* compute total_value - p. No need to reduce mod p. */
113 scarry = 0;
114 for (i = 0; i < NLIMBS; i++) {
115 scarry = scarry + a->limb[LIMBPERM(i)] - MODULUS->limb[LIMBPERM(i)];
116 a->limb[LIMBPERM(i)] = scarry & LIMB_MASK(LIMBPERM(i));
117 scarry >>= LIMB_PLACE_VALUE(LIMBPERM(i));
118 }
119
120 /*
121 * uncommon case: it was >= p, so now scarry = 0 and this = x common case:
122 * it was < p, so now scarry = -1 and this = x - p + 2^255 so let's add
123 * back in p. will carry back off the top for 2^255.
124 */
125 assert(scarry == 0 || scarry == -1);
126
127 scarry_0 = (word_t)scarry;
128
129 /* add it back */
130 for (i = 0; i < NLIMBS; i++) {
131 carry =
132 carry + a->limb[LIMBPERM(i)] +
133 (scarry_0 & MODULUS->limb[LIMBPERM(i)]);
134 a->limb[LIMBPERM(i)] = carry & LIMB_MASK(LIMBPERM(i));
135 carry >>= LIMB_PLACE_VALUE(LIMBPERM(i));
136 }
137
138 assert(carry < 2 && ((word_t)carry + scarry_0) == 0);
139}
140
141/* Subtract two gf elements d=a-b */
142void gf_sub(gf d, const gf a, const gf b)
143{
144 gf_sub_RAW(d, a, b);
145 gf_bias(d, 2);
146 gf_weak_reduce(d);
147}
148
149/* Add two field elements d = a+b */
150void gf_add(gf d, const gf a, const gf b)
151{
152 gf_add_RAW(d, a, b);
153 gf_weak_reduce(d);
154}
155
156/* Compare a==b */
157mask_t gf_eq(const gf a, const gf b)
158{
159 gf c;
160 mask_t ret = 0;
161 unsigned int i;
162
163 gf_sub(c, a, b);
164 gf_strong_reduce(c);
165
166 for (i = 0; i < NLIMBS; i++)
167 ret |= c->limb[LIMBPERM(i)];
168
169 return word_is_zero(ret);
170}
171
172mask_t gf_isr(gf a, const gf x)
173{
174 gf L0, L1, L2;
175
176 gf_sqr(L1, x);
177 gf_mul(L2, x, L1);
178 gf_sqr(L1, L2);
179 gf_mul(L2, x, L1);
180 gf_sqrn(L1, L2, 3);
181 gf_mul(L0, L2, L1);
182 gf_sqrn(L1, L0, 3);
183 gf_mul(L0, L2, L1);
184 gf_sqrn(L2, L0, 9);
185 gf_mul(L1, L0, L2);
186 gf_sqr(L0, L1);
187 gf_mul(L2, x, L0);
188 gf_sqrn(L0, L2, 18);
189 gf_mul(L2, L1, L0);
190 gf_sqrn(L0, L2, 37);
191 gf_mul(L1, L2, L0);
192 gf_sqrn(L0, L1, 37);
193 gf_mul(L1, L2, L0);
194 gf_sqrn(L0, L1, 111);
195 gf_mul(L2, L1, L0);
196 gf_sqr(L0, L2);
197 gf_mul(L1, x, L0);
198 gf_sqrn(L0, L1, 223);
199 gf_mul(L1, L2, L0);
200 gf_sqr(L2, L1);
201 gf_mul(L0, L2, x);
202 gf_copy(a, L1);
203 return gf_eq(L0, ONE);
204}
205