| 1 | /* |
| 2 | * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* Copyright 2011 Google Inc. |
| 11 | * |
| 12 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 13 | * |
| 14 | * you may not use this file except in compliance with the License. |
| 15 | * You may obtain a copy of the License at |
| 16 | * |
| 17 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 18 | * |
| 19 | * Unless required by applicable law or agreed to in writing, software |
| 20 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 21 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 22 | * See the License for the specific language governing permissions and |
| 23 | * limitations under the License. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication |
| 28 | * |
| 29 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation |
| 30 | * and Adam Langley's public domain 64-bit C implementation of curve25519 |
| 31 | */ |
| 32 | |
| 33 | #include <openssl/opensslconf.h> |
| 34 | #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 35 | NON_EMPTY_TRANSLATION_UNIT |
| 36 | #else |
| 37 | |
| 38 | # include <stdint.h> |
| 39 | # include <string.h> |
| 40 | # include <openssl/err.h> |
| 41 | # include "ec_local.h" |
| 42 | |
| 43 | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 |
| 44 | /* even with gcc, the typedef won't work for 32-bit platforms */ |
| 45 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit |
| 46 | * platforms */ |
| 47 | # else |
| 48 | # error "Your compiler doesn't appear to support 128-bit integer types" |
| 49 | # endif |
| 50 | |
| 51 | typedef uint8_t u8; |
| 52 | typedef uint64_t u64; |
| 53 | |
| 54 | /******************************************************************************/ |
| 55 | /*- |
| 56 | * INTERNAL REPRESENTATION OF FIELD ELEMENTS |
| 57 | * |
| 58 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 |
| 59 | * using 64-bit coefficients called 'limbs', |
| 60 | * and sometimes (for multiplication results) as |
| 61 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 |
| 62 | * using 128-bit coefficients called 'widelimbs'. |
| 63 | * A 4-limb representation is an 'felem'; |
| 64 | * a 7-widelimb representation is a 'widefelem'. |
| 65 | * Even within felems, bits of adjacent limbs overlap, and we don't always |
| 66 | * reduce the representations: we ensure that inputs to each felem |
| 67 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, |
| 68 | * and fit into a 128-bit word without overflow. The coefficients are then |
| 69 | * again partially reduced to obtain an felem satisfying a_i < 2^57. |
| 70 | * We only reduce to the unique minimal representation at the end of the |
| 71 | * computation. |
| 72 | */ |
| 73 | |
| 74 | typedef uint64_t limb; |
| 75 | typedef uint128_t widelimb; |
| 76 | |
| 77 | typedef limb felem[4]; |
| 78 | typedef widelimb widefelem[7]; |
| 79 | |
| 80 | /* |
| 81 | * Field element represented as a byte array. 28*8 = 224 bits is also the |
| 82 | * group order size for the elliptic curve, and we also use this type for |
| 83 | * scalars for point multiplication. |
| 84 | */ |
| 85 | typedef u8 felem_bytearray[28]; |
| 86 | |
| 87 | static const felem_bytearray nistp224_curve_params[5] = { |
| 88 | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ |
| 89 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, |
| 90 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| 91 | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ |
| 92 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
| 93 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE}, |
| 94 | {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ |
| 95 | 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, |
| 96 | 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4}, |
| 97 | {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ |
| 98 | 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, |
| 99 | 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21}, |
| 100 | {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ |
| 101 | 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, |
| 102 | 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34} |
| 103 | }; |
| 104 | |
| 105 | /*- |
| 106 | * Precomputed multiples of the standard generator |
| 107 | * Points are given in coordinates (X, Y, Z) where Z normally is 1 |
| 108 | * (0 for the point at infinity). |
| 109 | * For each field element, slice a_0 is word 0, etc. |
| 110 | * |
| 111 | * The table has 2 * 16 elements, starting with the following: |
| 112 | * index | bits | point |
| 113 | * ------+---------+------------------------------ |
| 114 | * 0 | 0 0 0 0 | 0G |
| 115 | * 1 | 0 0 0 1 | 1G |
| 116 | * 2 | 0 0 1 0 | 2^56G |
| 117 | * 3 | 0 0 1 1 | (2^56 + 1)G |
| 118 | * 4 | 0 1 0 0 | 2^112G |
| 119 | * 5 | 0 1 0 1 | (2^112 + 1)G |
| 120 | * 6 | 0 1 1 0 | (2^112 + 2^56)G |
| 121 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G |
| 122 | * 8 | 1 0 0 0 | 2^168G |
| 123 | * 9 | 1 0 0 1 | (2^168 + 1)G |
| 124 | * 10 | 1 0 1 0 | (2^168 + 2^56)G |
| 125 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G |
| 126 | * 12 | 1 1 0 0 | (2^168 + 2^112)G |
| 127 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G |
| 128 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G |
| 129 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G |
| 130 | * followed by a copy of this with each element multiplied by 2^28. |
| 131 | * |
| 132 | * The reason for this is so that we can clock bits into four different |
| 133 | * locations when doing simple scalar multiplies against the base point, |
| 134 | * and then another four locations using the second 16 elements. |
| 135 | */ |
| 136 | static const felem gmul[2][16][3] = { |
| 137 | {{{0, 0, 0, 0}, |
| 138 | {0, 0, 0, 0}, |
| 139 | {0, 0, 0, 0}}, |
| 140 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, |
| 141 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, |
| 142 | {1, 0, 0, 0}}, |
| 143 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, |
| 144 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, |
| 145 | {1, 0, 0, 0}}, |
| 146 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, |
| 147 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, |
| 148 | {1, 0, 0, 0}}, |
| 149 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, |
| 150 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, |
| 151 | {1, 0, 0, 0}}, |
| 152 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, |
| 153 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, |
| 154 | {1, 0, 0, 0}}, |
| 155 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, |
| 156 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, |
| 157 | {1, 0, 0, 0}}, |
| 158 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, |
| 159 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, |
| 160 | {1, 0, 0, 0}}, |
| 161 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, |
| 162 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, |
| 163 | {1, 0, 0, 0}}, |
| 164 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, |
| 165 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, |
| 166 | {1, 0, 0, 0}}, |
| 167 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, |
| 168 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, |
| 169 | {1, 0, 0, 0}}, |
| 170 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, |
| 171 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, |
| 172 | {1, 0, 0, 0}}, |
| 173 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, |
| 174 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, |
| 175 | {1, 0, 0, 0}}, |
| 176 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, |
| 177 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, |
| 178 | {1, 0, 0, 0}}, |
| 179 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, |
| 180 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, |
| 181 | {1, 0, 0, 0}}, |
| 182 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, |
| 183 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, |
| 184 | {1, 0, 0, 0}}}, |
| 185 | {{{0, 0, 0, 0}, |
| 186 | {0, 0, 0, 0}, |
| 187 | {0, 0, 0, 0}}, |
| 188 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, |
| 189 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, |
| 190 | {1, 0, 0, 0}}, |
| 191 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, |
| 192 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, |
| 193 | {1, 0, 0, 0}}, |
| 194 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, |
| 195 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, |
| 196 | {1, 0, 0, 0}}, |
| 197 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, |
| 198 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, |
| 199 | {1, 0, 0, 0}}, |
| 200 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, |
| 201 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, |
| 202 | {1, 0, 0, 0}}, |
| 203 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, |
| 204 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, |
| 205 | {1, 0, 0, 0}}, |
| 206 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, |
| 207 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, |
| 208 | {1, 0, 0, 0}}, |
| 209 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, |
| 210 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, |
| 211 | {1, 0, 0, 0}}, |
| 212 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, |
| 213 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, |
| 214 | {1, 0, 0, 0}}, |
| 215 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, |
| 216 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, |
| 217 | {1, 0, 0, 0}}, |
| 218 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, |
| 219 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, |
| 220 | {1, 0, 0, 0}}, |
| 221 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, |
| 222 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, |
| 223 | {1, 0, 0, 0}}, |
| 224 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, |
| 225 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, |
| 226 | {1, 0, 0, 0}}, |
| 227 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, |
| 228 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, |
| 229 | {1, 0, 0, 0}}, |
| 230 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, |
| 231 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, |
| 232 | {1, 0, 0, 0}}} |
| 233 | }; |
| 234 | |
| 235 | /* Precomputation for the group generator. */ |
| 236 | struct nistp224_pre_comp_st { |
| 237 | felem g_pre_comp[2][16][3]; |
| 238 | CRYPTO_REF_COUNT references; |
| 239 | CRYPTO_RWLOCK *lock; |
| 240 | }; |
| 241 | |
| 242 | const EC_METHOD *EC_GFp_nistp224_method(void) |
| 243 | { |
| 244 | static const EC_METHOD ret = { |
| 245 | EC_FLAGS_DEFAULT_OCT, |
| 246 | NID_X9_62_prime_field, |
| 247 | ec_GFp_nistp224_group_init, |
| 248 | ec_GFp_simple_group_finish, |
| 249 | ec_GFp_simple_group_clear_finish, |
| 250 | ec_GFp_nist_group_copy, |
| 251 | ec_GFp_nistp224_group_set_curve, |
| 252 | ec_GFp_simple_group_get_curve, |
| 253 | ec_GFp_simple_group_get_degree, |
| 254 | ec_group_simple_order_bits, |
| 255 | ec_GFp_simple_group_check_discriminant, |
| 256 | ec_GFp_simple_point_init, |
| 257 | ec_GFp_simple_point_finish, |
| 258 | ec_GFp_simple_point_clear_finish, |
| 259 | ec_GFp_simple_point_copy, |
| 260 | ec_GFp_simple_point_set_to_infinity, |
| 261 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| 262 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| 263 | ec_GFp_simple_point_set_affine_coordinates, |
| 264 | ec_GFp_nistp224_point_get_affine_coordinates, |
| 265 | 0 /* point_set_compressed_coordinates */ , |
| 266 | 0 /* point2oct */ , |
| 267 | 0 /* oct2point */ , |
| 268 | ec_GFp_simple_add, |
| 269 | ec_GFp_simple_dbl, |
| 270 | ec_GFp_simple_invert, |
| 271 | ec_GFp_simple_is_at_infinity, |
| 272 | ec_GFp_simple_is_on_curve, |
| 273 | ec_GFp_simple_cmp, |
| 274 | ec_GFp_simple_make_affine, |
| 275 | ec_GFp_simple_points_make_affine, |
| 276 | ec_GFp_nistp224_points_mul, |
| 277 | ec_GFp_nistp224_precompute_mult, |
| 278 | ec_GFp_nistp224_have_precompute_mult, |
| 279 | ec_GFp_nist_field_mul, |
| 280 | ec_GFp_nist_field_sqr, |
| 281 | 0 /* field_div */ , |
| 282 | ec_GFp_simple_field_inv, |
| 283 | 0 /* field_encode */ , |
| 284 | 0 /* field_decode */ , |
| 285 | 0, /* field_set_to_one */ |
| 286 | ec_key_simple_priv2oct, |
| 287 | ec_key_simple_oct2priv, |
| 288 | 0, /* set private */ |
| 289 | ec_key_simple_generate_key, |
| 290 | ec_key_simple_check_key, |
| 291 | ec_key_simple_generate_public_key, |
| 292 | 0, /* keycopy */ |
| 293 | 0, /* keyfinish */ |
| 294 | ecdh_simple_compute_key, |
| 295 | ecdsa_simple_sign_setup, |
| 296 | ecdsa_simple_sign_sig, |
| 297 | ecdsa_simple_verify_sig, |
| 298 | 0, /* field_inverse_mod_ord */ |
| 299 | 0, /* blind_coordinates */ |
| 300 | 0, /* ladder_pre */ |
| 301 | 0, /* ladder_step */ |
| 302 | 0 /* ladder_post */ |
| 303 | }; |
| 304 | |
| 305 | return &ret; |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Helper functions to convert field elements to/from internal representation |
| 310 | */ |
| 311 | static void bin28_to_felem(felem out, const u8 in[28]) |
| 312 | { |
| 313 | out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff; |
| 314 | out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff; |
| 315 | out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff; |
| 316 | out[3] = (*((const uint64_t *)(in+20))) >> 8; |
| 317 | } |
| 318 | |
| 319 | static void felem_to_bin28(u8 out[28], const felem in) |
| 320 | { |
| 321 | unsigned i; |
| 322 | for (i = 0; i < 7; ++i) { |
| 323 | out[i] = in[0] >> (8 * i); |
| 324 | out[i + 7] = in[1] >> (8 * i); |
| 325 | out[i + 14] = in[2] >> (8 * i); |
| 326 | out[i + 21] = in[3] >> (8 * i); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | /* From OpenSSL BIGNUM to internal representation */ |
| 331 | static int BN_to_felem(felem out, const BIGNUM *bn) |
| 332 | { |
| 333 | felem_bytearray b_out; |
| 334 | int num_bytes; |
| 335 | |
| 336 | if (BN_is_negative(bn)) { |
| 337 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| 338 | return 0; |
| 339 | } |
| 340 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); |
| 341 | if (num_bytes < 0) { |
| 342 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| 343 | return 0; |
| 344 | } |
| 345 | bin28_to_felem(out, b_out); |
| 346 | return 1; |
| 347 | } |
| 348 | |
| 349 | /* From internal representation to OpenSSL BIGNUM */ |
| 350 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) |
| 351 | { |
| 352 | felem_bytearray b_out; |
| 353 | felem_to_bin28(b_out, in); |
| 354 | return BN_lebin2bn(b_out, sizeof(b_out), out); |
| 355 | } |
| 356 | |
| 357 | /******************************************************************************/ |
| 358 | /*- |
| 359 | * FIELD OPERATIONS |
| 360 | * |
| 361 | * Field operations, using the internal representation of field elements. |
| 362 | * NB! These operations are specific to our point multiplication and cannot be |
| 363 | * expected to be correct in general - e.g., multiplication with a large scalar |
| 364 | * will cause an overflow. |
| 365 | * |
| 366 | */ |
| 367 | |
| 368 | static void felem_one(felem out) |
| 369 | { |
| 370 | out[0] = 1; |
| 371 | out[1] = 0; |
| 372 | out[2] = 0; |
| 373 | out[3] = 0; |
| 374 | } |
| 375 | |
| 376 | static void felem_assign(felem out, const felem in) |
| 377 | { |
| 378 | out[0] = in[0]; |
| 379 | out[1] = in[1]; |
| 380 | out[2] = in[2]; |
| 381 | out[3] = in[3]; |
| 382 | } |
| 383 | |
| 384 | /* Sum two field elements: out += in */ |
| 385 | static void felem_sum(felem out, const felem in) |
| 386 | { |
| 387 | out[0] += in[0]; |
| 388 | out[1] += in[1]; |
| 389 | out[2] += in[2]; |
| 390 | out[3] += in[3]; |
| 391 | } |
| 392 | |
| 393 | /* Subtract field elements: out -= in */ |
| 394 | /* Assumes in[i] < 2^57 */ |
| 395 | static void felem_diff(felem out, const felem in) |
| 396 | { |
| 397 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); |
| 398 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); |
| 399 | static const limb two58m42m2 = (((limb) 1) << 58) - |
| 400 | (((limb) 1) << 42) - (((limb) 1) << 2); |
| 401 | |
| 402 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
| 403 | out[0] += two58p2; |
| 404 | out[1] += two58m42m2; |
| 405 | out[2] += two58m2; |
| 406 | out[3] += two58m2; |
| 407 | |
| 408 | out[0] -= in[0]; |
| 409 | out[1] -= in[1]; |
| 410 | out[2] -= in[2]; |
| 411 | out[3] -= in[3]; |
| 412 | } |
| 413 | |
| 414 | /* Subtract in unreduced 128-bit mode: out -= in */ |
| 415 | /* Assumes in[i] < 2^119 */ |
| 416 | static void widefelem_diff(widefelem out, const widefelem in) |
| 417 | { |
| 418 | static const widelimb two120 = ((widelimb) 1) << 120; |
| 419 | static const widelimb two120m64 = (((widelimb) 1) << 120) - |
| 420 | (((widelimb) 1) << 64); |
| 421 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - |
| 422 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); |
| 423 | |
| 424 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
| 425 | out[0] += two120; |
| 426 | out[1] += two120m64; |
| 427 | out[2] += two120m64; |
| 428 | out[3] += two120; |
| 429 | out[4] += two120m104m64; |
| 430 | out[5] += two120m64; |
| 431 | out[6] += two120m64; |
| 432 | |
| 433 | out[0] -= in[0]; |
| 434 | out[1] -= in[1]; |
| 435 | out[2] -= in[2]; |
| 436 | out[3] -= in[3]; |
| 437 | out[4] -= in[4]; |
| 438 | out[5] -= in[5]; |
| 439 | out[6] -= in[6]; |
| 440 | } |
| 441 | |
| 442 | /* Subtract in mixed mode: out128 -= in64 */ |
| 443 | /* in[i] < 2^63 */ |
| 444 | static void felem_diff_128_64(widefelem out, const felem in) |
| 445 | { |
| 446 | static const widelimb two64p8 = (((widelimb) 1) << 64) + |
| 447 | (((widelimb) 1) << 8); |
| 448 | static const widelimb two64m8 = (((widelimb) 1) << 64) - |
| 449 | (((widelimb) 1) << 8); |
| 450 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - |
| 451 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); |
| 452 | |
| 453 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
| 454 | out[0] += two64p8; |
| 455 | out[1] += two64m48m8; |
| 456 | out[2] += two64m8; |
| 457 | out[3] += two64m8; |
| 458 | |
| 459 | out[0] -= in[0]; |
| 460 | out[1] -= in[1]; |
| 461 | out[2] -= in[2]; |
| 462 | out[3] -= in[3]; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Multiply a field element by a scalar: out = out * scalar The scalars we |
| 467 | * actually use are small, so results fit without overflow |
| 468 | */ |
| 469 | static void felem_scalar(felem out, const limb scalar) |
| 470 | { |
| 471 | out[0] *= scalar; |
| 472 | out[1] *= scalar; |
| 473 | out[2] *= scalar; |
| 474 | out[3] *= scalar; |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * Multiply an unreduced field element by a scalar: out = out * scalar The |
| 479 | * scalars we actually use are small, so results fit without overflow |
| 480 | */ |
| 481 | static void widefelem_scalar(widefelem out, const widelimb scalar) |
| 482 | { |
| 483 | out[0] *= scalar; |
| 484 | out[1] *= scalar; |
| 485 | out[2] *= scalar; |
| 486 | out[3] *= scalar; |
| 487 | out[4] *= scalar; |
| 488 | out[5] *= scalar; |
| 489 | out[6] *= scalar; |
| 490 | } |
| 491 | |
| 492 | /* Square a field element: out = in^2 */ |
| 493 | static void felem_square(widefelem out, const felem in) |
| 494 | { |
| 495 | limb tmp0, tmp1, tmp2; |
| 496 | tmp0 = 2 * in[0]; |
| 497 | tmp1 = 2 * in[1]; |
| 498 | tmp2 = 2 * in[2]; |
| 499 | out[0] = ((widelimb) in[0]) * in[0]; |
| 500 | out[1] = ((widelimb) in[0]) * tmp1; |
| 501 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; |
| 502 | out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2; |
| 503 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; |
| 504 | out[5] = ((widelimb) in[3]) * tmp2; |
| 505 | out[6] = ((widelimb) in[3]) * in[3]; |
| 506 | } |
| 507 | |
| 508 | /* Multiply two field elements: out = in1 * in2 */ |
| 509 | static void felem_mul(widefelem out, const felem in1, const felem in2) |
| 510 | { |
| 511 | out[0] = ((widelimb) in1[0]) * in2[0]; |
| 512 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; |
| 513 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + |
| 514 | ((widelimb) in1[2]) * in2[0]; |
| 515 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + |
| 516 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; |
| 517 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + |
| 518 | ((widelimb) in1[3]) * in2[1]; |
| 519 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; |
| 520 | out[6] = ((widelimb) in1[3]) * in2[3]; |
| 521 | } |
| 522 | |
| 523 | /*- |
| 524 | * Reduce seven 128-bit coefficients to four 64-bit coefficients. |
| 525 | * Requires in[i] < 2^126, |
| 526 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ |
| 527 | static void felem_reduce(felem out, const widefelem in) |
| 528 | { |
| 529 | static const widelimb two127p15 = (((widelimb) 1) << 127) + |
| 530 | (((widelimb) 1) << 15); |
| 531 | static const widelimb two127m71 = (((widelimb) 1) << 127) - |
| 532 | (((widelimb) 1) << 71); |
| 533 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - |
| 534 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); |
| 535 | widelimb output[5]; |
| 536 | |
| 537 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ |
| 538 | output[0] = in[0] + two127p15; |
| 539 | output[1] = in[1] + two127m71m55; |
| 540 | output[2] = in[2] + two127m71; |
| 541 | output[3] = in[3]; |
| 542 | output[4] = in[4]; |
| 543 | |
| 544 | /* Eliminate in[4], in[5], in[6] */ |
| 545 | output[4] += in[6] >> 16; |
| 546 | output[3] += (in[6] & 0xffff) << 40; |
| 547 | output[2] -= in[6]; |
| 548 | |
| 549 | output[3] += in[5] >> 16; |
| 550 | output[2] += (in[5] & 0xffff) << 40; |
| 551 | output[1] -= in[5]; |
| 552 | |
| 553 | output[2] += output[4] >> 16; |
| 554 | output[1] += (output[4] & 0xffff) << 40; |
| 555 | output[0] -= output[4]; |
| 556 | |
| 557 | /* Carry 2 -> 3 -> 4 */ |
| 558 | output[3] += output[2] >> 56; |
| 559 | output[2] &= 0x00ffffffffffffff; |
| 560 | |
| 561 | output[4] = output[3] >> 56; |
| 562 | output[3] &= 0x00ffffffffffffff; |
| 563 | |
| 564 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ |
| 565 | |
| 566 | /* Eliminate output[4] */ |
| 567 | output[2] += output[4] >> 16; |
| 568 | /* output[2] < 2^56 + 2^56 = 2^57 */ |
| 569 | output[1] += (output[4] & 0xffff) << 40; |
| 570 | output[0] -= output[4]; |
| 571 | |
| 572 | /* Carry 0 -> 1 -> 2 -> 3 */ |
| 573 | output[1] += output[0] >> 56; |
| 574 | out[0] = output[0] & 0x00ffffffffffffff; |
| 575 | |
| 576 | output[2] += output[1] >> 56; |
| 577 | /* output[2] < 2^57 + 2^72 */ |
| 578 | out[1] = output[1] & 0x00ffffffffffffff; |
| 579 | output[3] += output[2] >> 56; |
| 580 | /* output[3] <= 2^56 + 2^16 */ |
| 581 | out[2] = output[2] & 0x00ffffffffffffff; |
| 582 | |
| 583 | /*- |
| 584 | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, |
| 585 | * out[3] <= 2^56 + 2^16 (due to final carry), |
| 586 | * so out < 2*p |
| 587 | */ |
| 588 | out[3] = output[3]; |
| 589 | } |
| 590 | |
| 591 | static void felem_square_reduce(felem out, const felem in) |
| 592 | { |
| 593 | widefelem tmp; |
| 594 | felem_square(tmp, in); |
| 595 | felem_reduce(out, tmp); |
| 596 | } |
| 597 | |
| 598 | static void felem_mul_reduce(felem out, const felem in1, const felem in2) |
| 599 | { |
| 600 | widefelem tmp; |
| 601 | felem_mul(tmp, in1, in2); |
| 602 | felem_reduce(out, tmp); |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always |
| 607 | * call felem_reduce first) |
| 608 | */ |
| 609 | static void felem_contract(felem out, const felem in) |
| 610 | { |
| 611 | static const int64_t two56 = ((limb) 1) << 56; |
| 612 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ |
| 613 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ |
| 614 | int64_t tmp[4], a; |
| 615 | tmp[0] = in[0]; |
| 616 | tmp[1] = in[1]; |
| 617 | tmp[2] = in[2]; |
| 618 | tmp[3] = in[3]; |
| 619 | /* Case 1: a = 1 iff in >= 2^224 */ |
| 620 | a = (in[3] >> 56); |
| 621 | tmp[0] -= a; |
| 622 | tmp[1] += a << 40; |
| 623 | tmp[3] &= 0x00ffffffffffffff; |
| 624 | /* |
| 625 | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 |
| 626 | * and the lower part is non-zero |
| 627 | */ |
| 628 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | |
| 629 | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); |
| 630 | a &= 0x00ffffffffffffff; |
| 631 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ |
| 632 | a = (a - 1) >> 63; |
| 633 | /* subtract 2^224 - 2^96 + 1 if a is all-one */ |
| 634 | tmp[3] &= a ^ 0xffffffffffffffff; |
| 635 | tmp[2] &= a ^ 0xffffffffffffffff; |
| 636 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; |
| 637 | tmp[0] -= 1 & a; |
| 638 | |
| 639 | /* |
| 640 | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be |
| 641 | * non-zero, so we only need one step |
| 642 | */ |
| 643 | a = tmp[0] >> 63; |
| 644 | tmp[0] += two56 & a; |
| 645 | tmp[1] -= 1 & a; |
| 646 | |
| 647 | /* carry 1 -> 2 -> 3 */ |
| 648 | tmp[2] += tmp[1] >> 56; |
| 649 | tmp[1] &= 0x00ffffffffffffff; |
| 650 | |
| 651 | tmp[3] += tmp[2] >> 56; |
| 652 | tmp[2] &= 0x00ffffffffffffff; |
| 653 | |
| 654 | /* Now 0 <= out < p */ |
| 655 | out[0] = tmp[0]; |
| 656 | out[1] = tmp[1]; |
| 657 | out[2] = tmp[2]; |
| 658 | out[3] = tmp[3]; |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * Get negative value: out = -in |
| 663 | * Requires in[i] < 2^63, |
| 664 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
| 665 | */ |
| 666 | static void felem_neg(felem out, const felem in) |
| 667 | { |
| 668 | widefelem tmp; |
| 669 | |
| 670 | memset(tmp, 0, sizeof(tmp)); |
| 671 | felem_diff_128_64(tmp, in); |
| 672 | felem_reduce(out, tmp); |
| 673 | } |
| 674 | |
| 675 | /* |
| 676 | * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field |
| 677 | * elements are reduced to in < 2^225, so we only need to check three cases: |
| 678 | * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 |
| 679 | */ |
| 680 | static limb felem_is_zero(const felem in) |
| 681 | { |
| 682 | limb zero, two224m96p1, two225m97p2; |
| 683 | |
| 684 | zero = in[0] | in[1] | in[2] | in[3]; |
| 685 | zero = (((int64_t) (zero) - 1) >> 63) & 1; |
| 686 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
| 687 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); |
| 688 | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; |
| 689 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
| 690 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); |
| 691 | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; |
| 692 | return (zero | two224m96p1 | two225m97p2); |
| 693 | } |
| 694 | |
| 695 | static int felem_is_zero_int(const void *in) |
| 696 | { |
| 697 | return (int)(felem_is_zero(in) & ((limb) 1)); |
| 698 | } |
| 699 | |
| 700 | /* Invert a field element */ |
| 701 | /* Computation chain copied from djb's code */ |
| 702 | static void felem_inv(felem out, const felem in) |
| 703 | { |
| 704 | felem ftmp, ftmp2, ftmp3, ftmp4; |
| 705 | widefelem tmp; |
| 706 | unsigned i; |
| 707 | |
| 708 | felem_square(tmp, in); |
| 709 | felem_reduce(ftmp, tmp); /* 2 */ |
| 710 | felem_mul(tmp, in, ftmp); |
| 711 | felem_reduce(ftmp, tmp); /* 2^2 - 1 */ |
| 712 | felem_square(tmp, ftmp); |
| 713 | felem_reduce(ftmp, tmp); /* 2^3 - 2 */ |
| 714 | felem_mul(tmp, in, ftmp); |
| 715 | felem_reduce(ftmp, tmp); /* 2^3 - 1 */ |
| 716 | felem_square(tmp, ftmp); |
| 717 | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ |
| 718 | felem_square(tmp, ftmp2); |
| 719 | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ |
| 720 | felem_square(tmp, ftmp2); |
| 721 | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ |
| 722 | felem_mul(tmp, ftmp2, ftmp); |
| 723 | felem_reduce(ftmp, tmp); /* 2^6 - 1 */ |
| 724 | felem_square(tmp, ftmp); |
| 725 | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ |
| 726 | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ |
| 727 | felem_square(tmp, ftmp2); |
| 728 | felem_reduce(ftmp2, tmp); |
| 729 | } |
| 730 | felem_mul(tmp, ftmp2, ftmp); |
| 731 | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ |
| 732 | felem_square(tmp, ftmp2); |
| 733 | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ |
| 734 | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ |
| 735 | felem_square(tmp, ftmp3); |
| 736 | felem_reduce(ftmp3, tmp); |
| 737 | } |
| 738 | felem_mul(tmp, ftmp3, ftmp2); |
| 739 | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ |
| 740 | felem_square(tmp, ftmp2); |
| 741 | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ |
| 742 | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ |
| 743 | felem_square(tmp, ftmp3); |
| 744 | felem_reduce(ftmp3, tmp); |
| 745 | } |
| 746 | felem_mul(tmp, ftmp3, ftmp2); |
| 747 | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ |
| 748 | felem_square(tmp, ftmp3); |
| 749 | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ |
| 750 | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ |
| 751 | felem_square(tmp, ftmp4); |
| 752 | felem_reduce(ftmp4, tmp); |
| 753 | } |
| 754 | felem_mul(tmp, ftmp3, ftmp4); |
| 755 | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ |
| 756 | felem_square(tmp, ftmp3); |
| 757 | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ |
| 758 | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ |
| 759 | felem_square(tmp, ftmp4); |
| 760 | felem_reduce(ftmp4, tmp); |
| 761 | } |
| 762 | felem_mul(tmp, ftmp2, ftmp4); |
| 763 | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ |
| 764 | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ |
| 765 | felem_square(tmp, ftmp2); |
| 766 | felem_reduce(ftmp2, tmp); |
| 767 | } |
| 768 | felem_mul(tmp, ftmp2, ftmp); |
| 769 | felem_reduce(ftmp, tmp); /* 2^126 - 1 */ |
| 770 | felem_square(tmp, ftmp); |
| 771 | felem_reduce(ftmp, tmp); /* 2^127 - 2 */ |
| 772 | felem_mul(tmp, ftmp, in); |
| 773 | felem_reduce(ftmp, tmp); /* 2^127 - 1 */ |
| 774 | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ |
| 775 | felem_square(tmp, ftmp); |
| 776 | felem_reduce(ftmp, tmp); |
| 777 | } |
| 778 | felem_mul(tmp, ftmp, ftmp3); |
| 779 | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy |
| 784 | * out to itself. |
| 785 | */ |
| 786 | static void copy_conditional(felem out, const felem in, limb icopy) |
| 787 | { |
| 788 | unsigned i; |
| 789 | /* |
| 790 | * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one |
| 791 | */ |
| 792 | const limb copy = -icopy; |
| 793 | for (i = 0; i < 4; ++i) { |
| 794 | const limb tmp = copy & (in[i] ^ out[i]); |
| 795 | out[i] ^= tmp; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | /******************************************************************************/ |
| 800 | /*- |
| 801 | * ELLIPTIC CURVE POINT OPERATIONS |
| 802 | * |
| 803 | * Points are represented in Jacobian projective coordinates: |
| 804 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), |
| 805 | * or to the point at infinity if Z == 0. |
| 806 | * |
| 807 | */ |
| 808 | |
| 809 | /*- |
| 810 | * Double an elliptic curve point: |
| 811 | * (X', Y', Z') = 2 * (X, Y, Z), where |
| 812 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 |
| 813 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4 |
| 814 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z |
| 815 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, |
| 816 | * while x_out == y_in is not (maybe this works, but it's not tested). |
| 817 | */ |
| 818 | static void |
| 819 | point_double(felem x_out, felem y_out, felem z_out, |
| 820 | const felem x_in, const felem y_in, const felem z_in) |
| 821 | { |
| 822 | widefelem tmp, tmp2; |
| 823 | felem delta, gamma, beta, alpha, ftmp, ftmp2; |
| 824 | |
| 825 | felem_assign(ftmp, x_in); |
| 826 | felem_assign(ftmp2, x_in); |
| 827 | |
| 828 | /* delta = z^2 */ |
| 829 | felem_square(tmp, z_in); |
| 830 | felem_reduce(delta, tmp); |
| 831 | |
| 832 | /* gamma = y^2 */ |
| 833 | felem_square(tmp, y_in); |
| 834 | felem_reduce(gamma, tmp); |
| 835 | |
| 836 | /* beta = x*gamma */ |
| 837 | felem_mul(tmp, x_in, gamma); |
| 838 | felem_reduce(beta, tmp); |
| 839 | |
| 840 | /* alpha = 3*(x-delta)*(x+delta) */ |
| 841 | felem_diff(ftmp, delta); |
| 842 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ |
| 843 | felem_sum(ftmp2, delta); |
| 844 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ |
| 845 | felem_scalar(ftmp2, 3); |
| 846 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ |
| 847 | felem_mul(tmp, ftmp, ftmp2); |
| 848 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ |
| 849 | felem_reduce(alpha, tmp); |
| 850 | |
| 851 | /* x' = alpha^2 - 8*beta */ |
| 852 | felem_square(tmp, alpha); |
| 853 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| 854 | felem_assign(ftmp, beta); |
| 855 | felem_scalar(ftmp, 8); |
| 856 | /* ftmp[i] < 8 * 2^57 = 2^60 */ |
| 857 | felem_diff_128_64(tmp, ftmp); |
| 858 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| 859 | felem_reduce(x_out, tmp); |
| 860 | |
| 861 | /* z' = (y + z)^2 - gamma - delta */ |
| 862 | felem_sum(delta, gamma); |
| 863 | /* delta[i] < 2^57 + 2^57 = 2^58 */ |
| 864 | felem_assign(ftmp, y_in); |
| 865 | felem_sum(ftmp, z_in); |
| 866 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ |
| 867 | felem_square(tmp, ftmp); |
| 868 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ |
| 869 | felem_diff_128_64(tmp, delta); |
| 870 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ |
| 871 | felem_reduce(z_out, tmp); |
| 872 | |
| 873 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
| 874 | felem_scalar(beta, 4); |
| 875 | /* beta[i] < 4 * 2^57 = 2^59 */ |
| 876 | felem_diff(beta, x_out); |
| 877 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ |
| 878 | felem_mul(tmp, alpha, beta); |
| 879 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ |
| 880 | felem_square(tmp2, gamma); |
| 881 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| 882 | widefelem_scalar(tmp2, 8); |
| 883 | /* tmp2[i] < 8 * 2^116 = 2^119 */ |
| 884 | widefelem_diff(tmp, tmp2); |
| 885 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ |
| 886 | felem_reduce(y_out, tmp); |
| 887 | } |
| 888 | |
| 889 | /*- |
| 890 | * Add two elliptic curve points: |
| 891 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where |
| 892 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - |
| 893 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 |
| 894 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - |
| 895 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 |
| 896 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) |
| 897 | * |
| 898 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. |
| 899 | */ |
| 900 | |
| 901 | /* |
| 902 | * This function is not entirely constant-time: it includes a branch for |
| 903 | * checking whether the two input points are equal, (while not equal to the |
| 904 | * point at infinity). This case never happens during single point |
| 905 | * multiplication, so there is no timing leak for ECDH or ECDSA signing. |
| 906 | */ |
| 907 | static void point_add(felem x3, felem y3, felem z3, |
| 908 | const felem x1, const felem y1, const felem z1, |
| 909 | const int mixed, const felem x2, const felem y2, |
| 910 | const felem z2) |
| 911 | { |
| 912 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; |
| 913 | widefelem tmp, tmp2; |
| 914 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; |
| 915 | |
| 916 | if (!mixed) { |
| 917 | /* ftmp2 = z2^2 */ |
| 918 | felem_square(tmp, z2); |
| 919 | felem_reduce(ftmp2, tmp); |
| 920 | |
| 921 | /* ftmp4 = z2^3 */ |
| 922 | felem_mul(tmp, ftmp2, z2); |
| 923 | felem_reduce(ftmp4, tmp); |
| 924 | |
| 925 | /* ftmp4 = z2^3*y1 */ |
| 926 | felem_mul(tmp2, ftmp4, y1); |
| 927 | felem_reduce(ftmp4, tmp2); |
| 928 | |
| 929 | /* ftmp2 = z2^2*x1 */ |
| 930 | felem_mul(tmp2, ftmp2, x1); |
| 931 | felem_reduce(ftmp2, tmp2); |
| 932 | } else { |
| 933 | /* |
| 934 | * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
| 935 | */ |
| 936 | |
| 937 | /* ftmp4 = z2^3*y1 */ |
| 938 | felem_assign(ftmp4, y1); |
| 939 | |
| 940 | /* ftmp2 = z2^2*x1 */ |
| 941 | felem_assign(ftmp2, x1); |
| 942 | } |
| 943 | |
| 944 | /* ftmp = z1^2 */ |
| 945 | felem_square(tmp, z1); |
| 946 | felem_reduce(ftmp, tmp); |
| 947 | |
| 948 | /* ftmp3 = z1^3 */ |
| 949 | felem_mul(tmp, ftmp, z1); |
| 950 | felem_reduce(ftmp3, tmp); |
| 951 | |
| 952 | /* tmp = z1^3*y2 */ |
| 953 | felem_mul(tmp, ftmp3, y2); |
| 954 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| 955 | |
| 956 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ |
| 957 | felem_diff_128_64(tmp, ftmp4); |
| 958 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| 959 | felem_reduce(ftmp3, tmp); |
| 960 | |
| 961 | /* tmp = z1^2*x2 */ |
| 962 | felem_mul(tmp, ftmp, x2); |
| 963 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| 964 | |
| 965 | /* ftmp = z1^2*x2 - z2^2*x1 */ |
| 966 | felem_diff_128_64(tmp, ftmp2); |
| 967 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| 968 | felem_reduce(ftmp, tmp); |
| 969 | |
| 970 | /* |
| 971 | * the formulae are incorrect if the points are equal so we check for |
| 972 | * this and do doubling if this happens |
| 973 | */ |
| 974 | x_equal = felem_is_zero(ftmp); |
| 975 | y_equal = felem_is_zero(ftmp3); |
| 976 | z1_is_zero = felem_is_zero(z1); |
| 977 | z2_is_zero = felem_is_zero(z2); |
| 978 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ |
| 979 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { |
| 980 | point_double(x3, y3, z3, x1, y1, z1); |
| 981 | return; |
| 982 | } |
| 983 | |
| 984 | /* ftmp5 = z1*z2 */ |
| 985 | if (!mixed) { |
| 986 | felem_mul(tmp, z1, z2); |
| 987 | felem_reduce(ftmp5, tmp); |
| 988 | } else { |
| 989 | /* special case z2 = 0 is handled later */ |
| 990 | felem_assign(ftmp5, z1); |
| 991 | } |
| 992 | |
| 993 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ |
| 994 | felem_mul(tmp, ftmp, ftmp5); |
| 995 | felem_reduce(z_out, tmp); |
| 996 | |
| 997 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ |
| 998 | felem_assign(ftmp5, ftmp); |
| 999 | felem_square(tmp, ftmp); |
| 1000 | felem_reduce(ftmp, tmp); |
| 1001 | |
| 1002 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ |
| 1003 | felem_mul(tmp, ftmp, ftmp5); |
| 1004 | felem_reduce(ftmp5, tmp); |
| 1005 | |
| 1006 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
| 1007 | felem_mul(tmp, ftmp2, ftmp); |
| 1008 | felem_reduce(ftmp2, tmp); |
| 1009 | |
| 1010 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
| 1011 | felem_mul(tmp, ftmp4, ftmp5); |
| 1012 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| 1013 | |
| 1014 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ |
| 1015 | felem_square(tmp2, ftmp3); |
| 1016 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ |
| 1017 | |
| 1018 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ |
| 1019 | felem_diff_128_64(tmp2, ftmp5); |
| 1020 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| 1021 | |
| 1022 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
| 1023 | felem_assign(ftmp5, ftmp2); |
| 1024 | felem_scalar(ftmp5, 2); |
| 1025 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ |
| 1026 | |
| 1027 | /*- |
| 1028 | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - |
| 1029 | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
| 1030 | */ |
| 1031 | felem_diff_128_64(tmp2, ftmp5); |
| 1032 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ |
| 1033 | felem_reduce(x_out, tmp2); |
| 1034 | |
| 1035 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ |
| 1036 | felem_diff(ftmp2, x_out); |
| 1037 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ |
| 1038 | |
| 1039 | /* |
| 1040 | * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) |
| 1041 | */ |
| 1042 | felem_mul(tmp2, ftmp3, ftmp2); |
| 1043 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ |
| 1044 | |
| 1045 | /*- |
| 1046 | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - |
| 1047 | * z2^3*y1*(z1^2*x2 - z2^2*x1)^3 |
| 1048 | */ |
| 1049 | widefelem_diff(tmp2, tmp); |
| 1050 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ |
| 1051 | felem_reduce(y_out, tmp2); |
| 1052 | |
| 1053 | /* |
| 1054 | * the result (x_out, y_out, z_out) is incorrect if one of the inputs is |
| 1055 | * the point at infinity, so we need to check for this separately |
| 1056 | */ |
| 1057 | |
| 1058 | /* |
| 1059 | * if point 1 is at infinity, copy point 2 to output, and vice versa |
| 1060 | */ |
| 1061 | copy_conditional(x_out, x2, z1_is_zero); |
| 1062 | copy_conditional(x_out, x1, z2_is_zero); |
| 1063 | copy_conditional(y_out, y2, z1_is_zero); |
| 1064 | copy_conditional(y_out, y1, z2_is_zero); |
| 1065 | copy_conditional(z_out, z2, z1_is_zero); |
| 1066 | copy_conditional(z_out, z1, z2_is_zero); |
| 1067 | felem_assign(x3, x_out); |
| 1068 | felem_assign(y3, y_out); |
| 1069 | felem_assign(z3, z_out); |
| 1070 | } |
| 1071 | |
| 1072 | /* |
| 1073 | * select_point selects the |idx|th point from a precomputation table and |
| 1074 | * copies it to out. |
| 1075 | * The pre_comp array argument should be size of |size| argument |
| 1076 | */ |
| 1077 | static void select_point(const u64 idx, unsigned int size, |
| 1078 | const felem pre_comp[][3], felem out[3]) |
| 1079 | { |
| 1080 | unsigned i, j; |
| 1081 | limb *outlimbs = &out[0][0]; |
| 1082 | |
| 1083 | memset(out, 0, sizeof(*out) * 3); |
| 1084 | for (i = 0; i < size; i++) { |
| 1085 | const limb *inlimbs = &pre_comp[i][0][0]; |
| 1086 | u64 mask = i ^ idx; |
| 1087 | mask |= mask >> 4; |
| 1088 | mask |= mask >> 2; |
| 1089 | mask |= mask >> 1; |
| 1090 | mask &= 1; |
| 1091 | mask--; |
| 1092 | for (j = 0; j < 4 * 3; j++) |
| 1093 | outlimbs[j] |= inlimbs[j] & mask; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | /* get_bit returns the |i|th bit in |in| */ |
| 1098 | static char get_bit(const felem_bytearray in, unsigned i) |
| 1099 | { |
| 1100 | if (i >= 224) |
| 1101 | return 0; |
| 1102 | return (in[i >> 3] >> (i & 7)) & 1; |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * Interleaved point multiplication using precomputed point multiples: The |
| 1107 | * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars |
| 1108 | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
| 1109 | * generator, using certain (large) precomputed multiples in g_pre_comp. |
| 1110 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
| 1111 | */ |
| 1112 | static void batch_mul(felem x_out, felem y_out, felem z_out, |
| 1113 | const felem_bytearray scalars[], |
| 1114 | const unsigned num_points, const u8 *g_scalar, |
| 1115 | const int mixed, const felem pre_comp[][17][3], |
| 1116 | const felem g_pre_comp[2][16][3]) |
| 1117 | { |
| 1118 | int i, skip; |
| 1119 | unsigned num; |
| 1120 | unsigned gen_mul = (g_scalar != NULL); |
| 1121 | felem nq[3], tmp[4]; |
| 1122 | u64 bits; |
| 1123 | u8 sign, digit; |
| 1124 | |
| 1125 | /* set nq to the point at infinity */ |
| 1126 | memset(nq, 0, sizeof(nq)); |
| 1127 | |
| 1128 | /* |
| 1129 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
| 1130 | * of the generator (two in each of the last 28 rounds) and additions of |
| 1131 | * other points multiples (every 5th round). |
| 1132 | */ |
| 1133 | skip = 1; /* save two point operations in the first |
| 1134 | * round */ |
| 1135 | for (i = (num_points ? 220 : 27); i >= 0; --i) { |
| 1136 | /* double */ |
| 1137 | if (!skip) |
| 1138 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
| 1139 | |
| 1140 | /* add multiples of the generator */ |
| 1141 | if (gen_mul && (i <= 27)) { |
| 1142 | /* first, look 28 bits upwards */ |
| 1143 | bits = get_bit(g_scalar, i + 196) << 3; |
| 1144 | bits |= get_bit(g_scalar, i + 140) << 2; |
| 1145 | bits |= get_bit(g_scalar, i + 84) << 1; |
| 1146 | bits |= get_bit(g_scalar, i + 28); |
| 1147 | /* select the point to add, in constant time */ |
| 1148 | select_point(bits, 16, g_pre_comp[1], tmp); |
| 1149 | |
| 1150 | if (!skip) { |
| 1151 | /* value 1 below is argument for "mixed" */ |
| 1152 | point_add(nq[0], nq[1], nq[2], |
| 1153 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
| 1154 | } else { |
| 1155 | memcpy(nq, tmp, 3 * sizeof(felem)); |
| 1156 | skip = 0; |
| 1157 | } |
| 1158 | |
| 1159 | /* second, look at the current position */ |
| 1160 | bits = get_bit(g_scalar, i + 168) << 3; |
| 1161 | bits |= get_bit(g_scalar, i + 112) << 2; |
| 1162 | bits |= get_bit(g_scalar, i + 56) << 1; |
| 1163 | bits |= get_bit(g_scalar, i); |
| 1164 | /* select the point to add, in constant time */ |
| 1165 | select_point(bits, 16, g_pre_comp[0], tmp); |
| 1166 | point_add(nq[0], nq[1], nq[2], |
| 1167 | nq[0], nq[1], nq[2], |
| 1168 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); |
| 1169 | } |
| 1170 | |
| 1171 | /* do other additions every 5 doublings */ |
| 1172 | if (num_points && (i % 5 == 0)) { |
| 1173 | /* loop over all scalars */ |
| 1174 | for (num = 0; num < num_points; ++num) { |
| 1175 | bits = get_bit(scalars[num], i + 4) << 5; |
| 1176 | bits |= get_bit(scalars[num], i + 3) << 4; |
| 1177 | bits |= get_bit(scalars[num], i + 2) << 3; |
| 1178 | bits |= get_bit(scalars[num], i + 1) << 2; |
| 1179 | bits |= get_bit(scalars[num], i) << 1; |
| 1180 | bits |= get_bit(scalars[num], i - 1); |
| 1181 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
| 1182 | |
| 1183 | /* select the point to add or subtract */ |
| 1184 | select_point(digit, 17, pre_comp[num], tmp); |
| 1185 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative |
| 1186 | * point */ |
| 1187 | copy_conditional(tmp[1], tmp[3], sign); |
| 1188 | |
| 1189 | if (!skip) { |
| 1190 | point_add(nq[0], nq[1], nq[2], |
| 1191 | nq[0], nq[1], nq[2], |
| 1192 | mixed, tmp[0], tmp[1], tmp[2]); |
| 1193 | } else { |
| 1194 | memcpy(nq, tmp, 3 * sizeof(felem)); |
| 1195 | skip = 0; |
| 1196 | } |
| 1197 | } |
| 1198 | } |
| 1199 | } |
| 1200 | felem_assign(x_out, nq[0]); |
| 1201 | felem_assign(y_out, nq[1]); |
| 1202 | felem_assign(z_out, nq[2]); |
| 1203 | } |
| 1204 | |
| 1205 | /******************************************************************************/ |
| 1206 | /* |
| 1207 | * FUNCTIONS TO MANAGE PRECOMPUTATION |
| 1208 | */ |
| 1209 | |
| 1210 | static NISTP224_PRE_COMP *nistp224_pre_comp_new(void) |
| 1211 | { |
| 1212 | NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
| 1213 | |
| 1214 | if (!ret) { |
| 1215 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1216 | return ret; |
| 1217 | } |
| 1218 | |
| 1219 | ret->references = 1; |
| 1220 | |
| 1221 | ret->lock = CRYPTO_THREAD_lock_new(); |
| 1222 | if (ret->lock == NULL) { |
| 1223 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1224 | OPENSSL_free(ret); |
| 1225 | return NULL; |
| 1226 | } |
| 1227 | return ret; |
| 1228 | } |
| 1229 | |
| 1230 | NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p) |
| 1231 | { |
| 1232 | int i; |
| 1233 | if (p != NULL) |
| 1234 | CRYPTO_UP_REF(&p->references, &i, p->lock); |
| 1235 | return p; |
| 1236 | } |
| 1237 | |
| 1238 | void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p) |
| 1239 | { |
| 1240 | int i; |
| 1241 | |
| 1242 | if (p == NULL) |
| 1243 | return; |
| 1244 | |
| 1245 | CRYPTO_DOWN_REF(&p->references, &i, p->lock); |
| 1246 | REF_PRINT_COUNT("EC_nistp224" , x); |
| 1247 | if (i > 0) |
| 1248 | return; |
| 1249 | REF_ASSERT_ISNT(i < 0); |
| 1250 | |
| 1251 | CRYPTO_THREAD_lock_free(p->lock); |
| 1252 | OPENSSL_free(p); |
| 1253 | } |
| 1254 | |
| 1255 | /******************************************************************************/ |
| 1256 | /* |
| 1257 | * OPENSSL EC_METHOD FUNCTIONS |
| 1258 | */ |
| 1259 | |
| 1260 | int ec_GFp_nistp224_group_init(EC_GROUP *group) |
| 1261 | { |
| 1262 | int ret; |
| 1263 | ret = ec_GFp_simple_group_init(group); |
| 1264 | group->a_is_minus3 = 1; |
| 1265 | return ret; |
| 1266 | } |
| 1267 | |
| 1268 | int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| 1269 | const BIGNUM *a, const BIGNUM *b, |
| 1270 | BN_CTX *ctx) |
| 1271 | { |
| 1272 | int ret = 0; |
| 1273 | BIGNUM *curve_p, *curve_a, *curve_b; |
| 1274 | #ifndef FIPS_MODE |
| 1275 | BN_CTX *new_ctx = NULL; |
| 1276 | |
| 1277 | if (ctx == NULL) |
| 1278 | ctx = new_ctx = BN_CTX_new(); |
| 1279 | #endif |
| 1280 | if (ctx == NULL) |
| 1281 | return 0; |
| 1282 | |
| 1283 | BN_CTX_start(ctx); |
| 1284 | curve_p = BN_CTX_get(ctx); |
| 1285 | curve_a = BN_CTX_get(ctx); |
| 1286 | curve_b = BN_CTX_get(ctx); |
| 1287 | if (curve_b == NULL) |
| 1288 | goto err; |
| 1289 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); |
| 1290 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); |
| 1291 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); |
| 1292 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
| 1293 | ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, |
| 1294 | EC_R_WRONG_CURVE_PARAMETERS); |
| 1295 | goto err; |
| 1296 | } |
| 1297 | group->field_mod_func = BN_nist_mod_224; |
| 1298 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
| 1299 | err: |
| 1300 | BN_CTX_end(ctx); |
| 1301 | #ifndef FIPS_MODE |
| 1302 | BN_CTX_free(new_ctx); |
| 1303 | #endif |
| 1304 | return ret; |
| 1305 | } |
| 1306 | |
| 1307 | /* |
| 1308 | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
| 1309 | * (X/Z^2, Y/Z^3) |
| 1310 | */ |
| 1311 | int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, |
| 1312 | const EC_POINT *point, |
| 1313 | BIGNUM *x, BIGNUM *y, |
| 1314 | BN_CTX *ctx) |
| 1315 | { |
| 1316 | felem z1, z2, x_in, y_in, x_out, y_out; |
| 1317 | widefelem tmp; |
| 1318 | |
| 1319 | if (EC_POINT_is_at_infinity(group, point)) { |
| 1320 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
| 1321 | EC_R_POINT_AT_INFINITY); |
| 1322 | return 0; |
| 1323 | } |
| 1324 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || |
| 1325 | (!BN_to_felem(z1, point->Z))) |
| 1326 | return 0; |
| 1327 | felem_inv(z2, z1); |
| 1328 | felem_square(tmp, z2); |
| 1329 | felem_reduce(z1, tmp); |
| 1330 | felem_mul(tmp, x_in, z1); |
| 1331 | felem_reduce(x_in, tmp); |
| 1332 | felem_contract(x_out, x_in); |
| 1333 | if (x != NULL) { |
| 1334 | if (!felem_to_BN(x, x_out)) { |
| 1335 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
| 1336 | ERR_R_BN_LIB); |
| 1337 | return 0; |
| 1338 | } |
| 1339 | } |
| 1340 | felem_mul(tmp, z1, z2); |
| 1341 | felem_reduce(z1, tmp); |
| 1342 | felem_mul(tmp, y_in, z1); |
| 1343 | felem_reduce(y_in, tmp); |
| 1344 | felem_contract(y_out, y_in); |
| 1345 | if (y != NULL) { |
| 1346 | if (!felem_to_BN(y, y_out)) { |
| 1347 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
| 1348 | ERR_R_BN_LIB); |
| 1349 | return 0; |
| 1350 | } |
| 1351 | } |
| 1352 | return 1; |
| 1353 | } |
| 1354 | |
| 1355 | static void make_points_affine(size_t num, felem points[ /* num */ ][3], |
| 1356 | felem tmp_felems[ /* num+1 */ ]) |
| 1357 | { |
| 1358 | /* |
| 1359 | * Runs in constant time, unless an input is the point at infinity (which |
| 1360 | * normally shouldn't happen). |
| 1361 | */ |
| 1362 | ec_GFp_nistp_points_make_affine_internal(num, |
| 1363 | points, |
| 1364 | sizeof(felem), |
| 1365 | tmp_felems, |
| 1366 | (void (*)(void *))felem_one, |
| 1367 | felem_is_zero_int, |
| 1368 | (void (*)(void *, const void *)) |
| 1369 | felem_assign, |
| 1370 | (void (*)(void *, const void *)) |
| 1371 | felem_square_reduce, (void (*) |
| 1372 | (void *, |
| 1373 | const void |
| 1374 | *, |
| 1375 | const void |
| 1376 | *)) |
| 1377 | felem_mul_reduce, |
| 1378 | (void (*)(void *, const void *)) |
| 1379 | felem_inv, |
| 1380 | (void (*)(void *, const void *)) |
| 1381 | felem_contract); |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
| 1386 | * values Result is stored in r (r can equal one of the inputs). |
| 1387 | */ |
| 1388 | int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, |
| 1389 | const BIGNUM *scalar, size_t num, |
| 1390 | const EC_POINT *points[], |
| 1391 | const BIGNUM *scalars[], BN_CTX *ctx) |
| 1392 | { |
| 1393 | int ret = 0; |
| 1394 | int j; |
| 1395 | unsigned i; |
| 1396 | int mixed = 0; |
| 1397 | BIGNUM *x, *y, *z, *tmp_scalar; |
| 1398 | felem_bytearray g_secret; |
| 1399 | felem_bytearray *secrets = NULL; |
| 1400 | felem (*pre_comp)[17][3] = NULL; |
| 1401 | felem *tmp_felems = NULL; |
| 1402 | int num_bytes; |
| 1403 | int have_pre_comp = 0; |
| 1404 | size_t num_points = num; |
| 1405 | felem x_in, y_in, z_in, x_out, y_out, z_out; |
| 1406 | NISTP224_PRE_COMP *pre = NULL; |
| 1407 | const felem(*g_pre_comp)[16][3] = NULL; |
| 1408 | EC_POINT *generator = NULL; |
| 1409 | const EC_POINT *p = NULL; |
| 1410 | const BIGNUM *p_scalar = NULL; |
| 1411 | |
| 1412 | BN_CTX_start(ctx); |
| 1413 | x = BN_CTX_get(ctx); |
| 1414 | y = BN_CTX_get(ctx); |
| 1415 | z = BN_CTX_get(ctx); |
| 1416 | tmp_scalar = BN_CTX_get(ctx); |
| 1417 | if (tmp_scalar == NULL) |
| 1418 | goto err; |
| 1419 | |
| 1420 | if (scalar != NULL) { |
| 1421 | pre = group->pre_comp.nistp224; |
| 1422 | if (pre) |
| 1423 | /* we have precomputation, try to use it */ |
| 1424 | g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp; |
| 1425 | else |
| 1426 | /* try to use the standard precomputation */ |
| 1427 | g_pre_comp = &gmul[0]; |
| 1428 | generator = EC_POINT_new(group); |
| 1429 | if (generator == NULL) |
| 1430 | goto err; |
| 1431 | /* get the generator from precomputation */ |
| 1432 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || |
| 1433 | !felem_to_BN(y, g_pre_comp[0][1][1]) || |
| 1434 | !felem_to_BN(z, g_pre_comp[0][1][2])) { |
| 1435 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| 1436 | goto err; |
| 1437 | } |
| 1438 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, |
| 1439 | generator, x, y, z, |
| 1440 | ctx)) |
| 1441 | goto err; |
| 1442 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
| 1443 | /* precomputation matches generator */ |
| 1444 | have_pre_comp = 1; |
| 1445 | else |
| 1446 | /* |
| 1447 | * we don't have valid precomputation: treat the generator as a |
| 1448 | * random point |
| 1449 | */ |
| 1450 | num_points = num_points + 1; |
| 1451 | } |
| 1452 | |
| 1453 | if (num_points > 0) { |
| 1454 | if (num_points >= 3) { |
| 1455 | /* |
| 1456 | * unless we precompute multiples for just one or two points, |
| 1457 | * converting those into affine form is time well spent |
| 1458 | */ |
| 1459 | mixed = 1; |
| 1460 | } |
| 1461 | secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); |
| 1462 | pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); |
| 1463 | if (mixed) |
| 1464 | tmp_felems = |
| 1465 | OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1)); |
| 1466 | if ((secrets == NULL) || (pre_comp == NULL) |
| 1467 | || (mixed && (tmp_felems == NULL))) { |
| 1468 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 1469 | goto err; |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | * we treat NULL scalars as 0, and NULL points as points at infinity, |
| 1474 | * i.e., they contribute nothing to the linear combination |
| 1475 | */ |
| 1476 | for (i = 0; i < num_points; ++i) { |
| 1477 | if (i == num) { |
| 1478 | /* the generator */ |
| 1479 | p = EC_GROUP_get0_generator(group); |
| 1480 | p_scalar = scalar; |
| 1481 | } else { |
| 1482 | /* the i^th point */ |
| 1483 | p = points[i]; |
| 1484 | p_scalar = scalars[i]; |
| 1485 | } |
| 1486 | if ((p_scalar != NULL) && (p != NULL)) { |
| 1487 | /* reduce scalar to 0 <= scalar < 2^224 */ |
| 1488 | if ((BN_num_bits(p_scalar) > 224) |
| 1489 | || (BN_is_negative(p_scalar))) { |
| 1490 | /* |
| 1491 | * this is an unusual input, and we don't guarantee |
| 1492 | * constant-timeness |
| 1493 | */ |
| 1494 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
| 1495 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| 1496 | goto err; |
| 1497 | } |
| 1498 | num_bytes = BN_bn2lebinpad(tmp_scalar, |
| 1499 | secrets[i], sizeof(secrets[i])); |
| 1500 | } else { |
| 1501 | num_bytes = BN_bn2lebinpad(p_scalar, |
| 1502 | secrets[i], sizeof(secrets[i])); |
| 1503 | } |
| 1504 | if (num_bytes < 0) { |
| 1505 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| 1506 | goto err; |
| 1507 | } |
| 1508 | /* precompute multiples */ |
| 1509 | if ((!BN_to_felem(x_out, p->X)) || |
| 1510 | (!BN_to_felem(y_out, p->Y)) || |
| 1511 | (!BN_to_felem(z_out, p->Z))) |
| 1512 | goto err; |
| 1513 | felem_assign(pre_comp[i][1][0], x_out); |
| 1514 | felem_assign(pre_comp[i][1][1], y_out); |
| 1515 | felem_assign(pre_comp[i][1][2], z_out); |
| 1516 | for (j = 2; j <= 16; ++j) { |
| 1517 | if (j & 1) { |
| 1518 | point_add(pre_comp[i][j][0], pre_comp[i][j][1], |
| 1519 | pre_comp[i][j][2], pre_comp[i][1][0], |
| 1520 | pre_comp[i][1][1], pre_comp[i][1][2], 0, |
| 1521 | pre_comp[i][j - 1][0], |
| 1522 | pre_comp[i][j - 1][1], |
| 1523 | pre_comp[i][j - 1][2]); |
| 1524 | } else { |
| 1525 | point_double(pre_comp[i][j][0], pre_comp[i][j][1], |
| 1526 | pre_comp[i][j][2], pre_comp[i][j / 2][0], |
| 1527 | pre_comp[i][j / 2][1], |
| 1528 | pre_comp[i][j / 2][2]); |
| 1529 | } |
| 1530 | } |
| 1531 | } |
| 1532 | } |
| 1533 | if (mixed) |
| 1534 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); |
| 1535 | } |
| 1536 | |
| 1537 | /* the scalar for the generator */ |
| 1538 | if ((scalar != NULL) && (have_pre_comp)) { |
| 1539 | memset(g_secret, 0, sizeof(g_secret)); |
| 1540 | /* reduce scalar to 0 <= scalar < 2^224 */ |
| 1541 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { |
| 1542 | /* |
| 1543 | * this is an unusual input, and we don't guarantee |
| 1544 | * constant-timeness |
| 1545 | */ |
| 1546 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
| 1547 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| 1548 | goto err; |
| 1549 | } |
| 1550 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); |
| 1551 | } else { |
| 1552 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); |
| 1553 | } |
| 1554 | /* do the multiplication with generator precomputation */ |
| 1555 | batch_mul(x_out, y_out, z_out, |
| 1556 | (const felem_bytearray(*))secrets, num_points, |
| 1557 | g_secret, |
| 1558 | mixed, (const felem(*)[17][3])pre_comp, g_pre_comp); |
| 1559 | } else { |
| 1560 | /* do the multiplication without generator precomputation */ |
| 1561 | batch_mul(x_out, y_out, z_out, |
| 1562 | (const felem_bytearray(*))secrets, num_points, |
| 1563 | NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); |
| 1564 | } |
| 1565 | /* reduce the output to its unique minimal representation */ |
| 1566 | felem_contract(x_in, x_out); |
| 1567 | felem_contract(y_in, y_out); |
| 1568 | felem_contract(z_in, z_out); |
| 1569 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || |
| 1570 | (!felem_to_BN(z, z_in))) { |
| 1571 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| 1572 | goto err; |
| 1573 | } |
| 1574 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); |
| 1575 | |
| 1576 | err: |
| 1577 | BN_CTX_end(ctx); |
| 1578 | EC_POINT_free(generator); |
| 1579 | OPENSSL_free(secrets); |
| 1580 | OPENSSL_free(pre_comp); |
| 1581 | OPENSSL_free(tmp_felems); |
| 1582 | return ret; |
| 1583 | } |
| 1584 | |
| 1585 | int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| 1586 | { |
| 1587 | int ret = 0; |
| 1588 | NISTP224_PRE_COMP *pre = NULL; |
| 1589 | int i, j; |
| 1590 | BIGNUM *x, *y; |
| 1591 | EC_POINT *generator = NULL; |
| 1592 | felem tmp_felems[32]; |
| 1593 | #ifndef FIPS_MODE |
| 1594 | BN_CTX *new_ctx = NULL; |
| 1595 | #endif |
| 1596 | |
| 1597 | /* throw away old precomputation */ |
| 1598 | EC_pre_comp_free(group); |
| 1599 | |
| 1600 | #ifndef FIPS_MODE |
| 1601 | if (ctx == NULL) |
| 1602 | ctx = new_ctx = BN_CTX_new(); |
| 1603 | #endif |
| 1604 | if (ctx == NULL) |
| 1605 | return 0; |
| 1606 | |
| 1607 | BN_CTX_start(ctx); |
| 1608 | x = BN_CTX_get(ctx); |
| 1609 | y = BN_CTX_get(ctx); |
| 1610 | if (y == NULL) |
| 1611 | goto err; |
| 1612 | /* get the generator */ |
| 1613 | if (group->generator == NULL) |
| 1614 | goto err; |
| 1615 | generator = EC_POINT_new(group); |
| 1616 | if (generator == NULL) |
| 1617 | goto err; |
| 1618 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); |
| 1619 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); |
| 1620 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
| 1621 | goto err; |
| 1622 | if ((pre = nistp224_pre_comp_new()) == NULL) |
| 1623 | goto err; |
| 1624 | /* |
| 1625 | * if the generator is the standard one, use built-in precomputation |
| 1626 | */ |
| 1627 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
| 1628 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
| 1629 | goto done; |
| 1630 | } |
| 1631 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || |
| 1632 | (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || |
| 1633 | (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z))) |
| 1634 | goto err; |
| 1635 | /* |
| 1636 | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G, |
| 1637 | * 2^140*G, 2^196*G for the second one |
| 1638 | */ |
| 1639 | for (i = 1; i <= 8; i <<= 1) { |
| 1640 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
| 1641 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], |
| 1642 | pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); |
| 1643 | for (j = 0; j < 27; ++j) { |
| 1644 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
| 1645 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], |
| 1646 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); |
| 1647 | } |
| 1648 | if (i == 8) |
| 1649 | break; |
| 1650 | point_double(pre->g_pre_comp[0][2 * i][0], |
| 1651 | pre->g_pre_comp[0][2 * i][1], |
| 1652 | pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], |
| 1653 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); |
| 1654 | for (j = 0; j < 27; ++j) { |
| 1655 | point_double(pre->g_pre_comp[0][2 * i][0], |
| 1656 | pre->g_pre_comp[0][2 * i][1], |
| 1657 | pre->g_pre_comp[0][2 * i][2], |
| 1658 | pre->g_pre_comp[0][2 * i][0], |
| 1659 | pre->g_pre_comp[0][2 * i][1], |
| 1660 | pre->g_pre_comp[0][2 * i][2]); |
| 1661 | } |
| 1662 | } |
| 1663 | for (i = 0; i < 2; i++) { |
| 1664 | /* g_pre_comp[i][0] is the point at infinity */ |
| 1665 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); |
| 1666 | /* the remaining multiples */ |
| 1667 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ |
| 1668 | point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], |
| 1669 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], |
| 1670 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], |
| 1671 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
| 1672 | pre->g_pre_comp[i][2][2]); |
| 1673 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ |
| 1674 | point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], |
| 1675 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], |
| 1676 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
| 1677 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
| 1678 | pre->g_pre_comp[i][2][2]); |
| 1679 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ |
| 1680 | point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], |
| 1681 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], |
| 1682 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
| 1683 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], |
| 1684 | pre->g_pre_comp[i][4][2]); |
| 1685 | /* |
| 1686 | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G |
| 1687 | */ |
| 1688 | point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], |
| 1689 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], |
| 1690 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], |
| 1691 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
| 1692 | pre->g_pre_comp[i][2][2]); |
| 1693 | for (j = 1; j < 8; ++j) { |
| 1694 | /* odd multiples: add G resp. 2^28*G */ |
| 1695 | point_add(pre->g_pre_comp[i][2 * j + 1][0], |
| 1696 | pre->g_pre_comp[i][2 * j + 1][1], |
| 1697 | pre->g_pre_comp[i][2 * j + 1][2], |
| 1698 | pre->g_pre_comp[i][2 * j][0], |
| 1699 | pre->g_pre_comp[i][2 * j][1], |
| 1700 | pre->g_pre_comp[i][2 * j][2], 0, |
| 1701 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], |
| 1702 | pre->g_pre_comp[i][1][2]); |
| 1703 | } |
| 1704 | } |
| 1705 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); |
| 1706 | |
| 1707 | done: |
| 1708 | SETPRECOMP(group, nistp224, pre); |
| 1709 | pre = NULL; |
| 1710 | ret = 1; |
| 1711 | err: |
| 1712 | BN_CTX_end(ctx); |
| 1713 | EC_POINT_free(generator); |
| 1714 | #ifndef FIPS_MODE |
| 1715 | BN_CTX_free(new_ctx); |
| 1716 | #endif |
| 1717 | EC_nistp224_pre_comp_free(pre); |
| 1718 | return ret; |
| 1719 | } |
| 1720 | |
| 1721 | int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) |
| 1722 | { |
| 1723 | return HAVEPRECOMP(group, nistp224); |
| 1724 | } |
| 1725 | |
| 1726 | #endif |
| 1727 | |