| 1 | /* |
| 2 | * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <openssl/err.h> |
| 12 | #include <openssl/symhacks.h> |
| 13 | |
| 14 | #include "ec_local.h" |
| 15 | |
| 16 | const EC_METHOD *EC_GFp_simple_method(void) |
| 17 | { |
| 18 | static const EC_METHOD ret = { |
| 19 | EC_FLAGS_DEFAULT_OCT, |
| 20 | NID_X9_62_prime_field, |
| 21 | ec_GFp_simple_group_init, |
| 22 | ec_GFp_simple_group_finish, |
| 23 | ec_GFp_simple_group_clear_finish, |
| 24 | ec_GFp_simple_group_copy, |
| 25 | ec_GFp_simple_group_set_curve, |
| 26 | ec_GFp_simple_group_get_curve, |
| 27 | ec_GFp_simple_group_get_degree, |
| 28 | ec_group_simple_order_bits, |
| 29 | ec_GFp_simple_group_check_discriminant, |
| 30 | ec_GFp_simple_point_init, |
| 31 | ec_GFp_simple_point_finish, |
| 32 | ec_GFp_simple_point_clear_finish, |
| 33 | ec_GFp_simple_point_copy, |
| 34 | ec_GFp_simple_point_set_to_infinity, |
| 35 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| 36 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| 37 | ec_GFp_simple_point_set_affine_coordinates, |
| 38 | ec_GFp_simple_point_get_affine_coordinates, |
| 39 | 0, 0, 0, |
| 40 | ec_GFp_simple_add, |
| 41 | ec_GFp_simple_dbl, |
| 42 | ec_GFp_simple_invert, |
| 43 | ec_GFp_simple_is_at_infinity, |
| 44 | ec_GFp_simple_is_on_curve, |
| 45 | ec_GFp_simple_cmp, |
| 46 | ec_GFp_simple_make_affine, |
| 47 | ec_GFp_simple_points_make_affine, |
| 48 | 0 /* mul */ , |
| 49 | 0 /* precompute_mult */ , |
| 50 | 0 /* have_precompute_mult */ , |
| 51 | ec_GFp_simple_field_mul, |
| 52 | ec_GFp_simple_field_sqr, |
| 53 | 0 /* field_div */ , |
| 54 | ec_GFp_simple_field_inv, |
| 55 | 0 /* field_encode */ , |
| 56 | 0 /* field_decode */ , |
| 57 | 0, /* field_set_to_one */ |
| 58 | ec_key_simple_priv2oct, |
| 59 | ec_key_simple_oct2priv, |
| 60 | 0, /* set private */ |
| 61 | ec_key_simple_generate_key, |
| 62 | ec_key_simple_check_key, |
| 63 | ec_key_simple_generate_public_key, |
| 64 | 0, /* keycopy */ |
| 65 | 0, /* keyfinish */ |
| 66 | ecdh_simple_compute_key, |
| 67 | ecdsa_simple_sign_setup, |
| 68 | ecdsa_simple_sign_sig, |
| 69 | ecdsa_simple_verify_sig, |
| 70 | 0, /* field_inverse_mod_ord */ |
| 71 | ec_GFp_simple_blind_coordinates, |
| 72 | ec_GFp_simple_ladder_pre, |
| 73 | ec_GFp_simple_ladder_step, |
| 74 | ec_GFp_simple_ladder_post |
| 75 | }; |
| 76 | |
| 77 | return &ret; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * Most method functions in this file are designed to work with |
| 82 | * non-trivial representations of field elements if necessary |
| 83 | * (see ecp_mont.c): while standard modular addition and subtraction |
| 84 | * are used, the field_mul and field_sqr methods will be used for |
| 85 | * multiplication, and field_encode and field_decode (if defined) |
| 86 | * will be used for converting between representations. |
| 87 | * |
| 88 | * Functions ec_GFp_simple_points_make_affine() and |
| 89 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume |
| 90 | * that if a non-trivial representation is used, it is a Montgomery |
| 91 | * representation (i.e. 'encoding' means multiplying by some factor R). |
| 92 | */ |
| 93 | |
| 94 | int ec_GFp_simple_group_init(EC_GROUP *group) |
| 95 | { |
| 96 | group->field = BN_new(); |
| 97 | group->a = BN_new(); |
| 98 | group->b = BN_new(); |
| 99 | if (group->field == NULL || group->a == NULL || group->b == NULL) { |
| 100 | BN_free(group->field); |
| 101 | BN_free(group->a); |
| 102 | BN_free(group->b); |
| 103 | return 0; |
| 104 | } |
| 105 | group->a_is_minus3 = 0; |
| 106 | return 1; |
| 107 | } |
| 108 | |
| 109 | void ec_GFp_simple_group_finish(EC_GROUP *group) |
| 110 | { |
| 111 | BN_free(group->field); |
| 112 | BN_free(group->a); |
| 113 | BN_free(group->b); |
| 114 | } |
| 115 | |
| 116 | void ec_GFp_simple_group_clear_finish(EC_GROUP *group) |
| 117 | { |
| 118 | BN_clear_free(group->field); |
| 119 | BN_clear_free(group->a); |
| 120 | BN_clear_free(group->b); |
| 121 | } |
| 122 | |
| 123 | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
| 124 | { |
| 125 | if (!BN_copy(dest->field, src->field)) |
| 126 | return 0; |
| 127 | if (!BN_copy(dest->a, src->a)) |
| 128 | return 0; |
| 129 | if (!BN_copy(dest->b, src->b)) |
| 130 | return 0; |
| 131 | |
| 132 | dest->a_is_minus3 = src->a_is_minus3; |
| 133 | |
| 134 | return 1; |
| 135 | } |
| 136 | |
| 137 | int ec_GFp_simple_group_set_curve(EC_GROUP *group, |
| 138 | const BIGNUM *p, const BIGNUM *a, |
| 139 | const BIGNUM *b, BN_CTX *ctx) |
| 140 | { |
| 141 | int ret = 0; |
| 142 | BN_CTX *new_ctx = NULL; |
| 143 | BIGNUM *tmp_a; |
| 144 | |
| 145 | /* p must be a prime > 3 */ |
| 146 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
| 147 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); |
| 148 | return 0; |
| 149 | } |
| 150 | |
| 151 | if (ctx == NULL) { |
| 152 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 153 | if (ctx == NULL) |
| 154 | return 0; |
| 155 | } |
| 156 | |
| 157 | BN_CTX_start(ctx); |
| 158 | tmp_a = BN_CTX_get(ctx); |
| 159 | if (tmp_a == NULL) |
| 160 | goto err; |
| 161 | |
| 162 | /* group->field */ |
| 163 | if (!BN_copy(group->field, p)) |
| 164 | goto err; |
| 165 | BN_set_negative(group->field, 0); |
| 166 | |
| 167 | /* group->a */ |
| 168 | if (!BN_nnmod(tmp_a, a, p, ctx)) |
| 169 | goto err; |
| 170 | if (group->meth->field_encode) { |
| 171 | if (!group->meth->field_encode(group, group->a, tmp_a, ctx)) |
| 172 | goto err; |
| 173 | } else if (!BN_copy(group->a, tmp_a)) |
| 174 | goto err; |
| 175 | |
| 176 | /* group->b */ |
| 177 | if (!BN_nnmod(group->b, b, p, ctx)) |
| 178 | goto err; |
| 179 | if (group->meth->field_encode) |
| 180 | if (!group->meth->field_encode(group, group->b, group->b, ctx)) |
| 181 | goto err; |
| 182 | |
| 183 | /* group->a_is_minus3 */ |
| 184 | if (!BN_add_word(tmp_a, 3)) |
| 185 | goto err; |
| 186 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field)); |
| 187 | |
| 188 | ret = 1; |
| 189 | |
| 190 | err: |
| 191 | BN_CTX_end(ctx); |
| 192 | BN_CTX_free(new_ctx); |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| 197 | BIGNUM *b, BN_CTX *ctx) |
| 198 | { |
| 199 | int ret = 0; |
| 200 | BN_CTX *new_ctx = NULL; |
| 201 | |
| 202 | if (p != NULL) { |
| 203 | if (!BN_copy(p, group->field)) |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | if (a != NULL || b != NULL) { |
| 208 | if (group->meth->field_decode) { |
| 209 | if (ctx == NULL) { |
| 210 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 211 | if (ctx == NULL) |
| 212 | return 0; |
| 213 | } |
| 214 | if (a != NULL) { |
| 215 | if (!group->meth->field_decode(group, a, group->a, ctx)) |
| 216 | goto err; |
| 217 | } |
| 218 | if (b != NULL) { |
| 219 | if (!group->meth->field_decode(group, b, group->b, ctx)) |
| 220 | goto err; |
| 221 | } |
| 222 | } else { |
| 223 | if (a != NULL) { |
| 224 | if (!BN_copy(a, group->a)) |
| 225 | goto err; |
| 226 | } |
| 227 | if (b != NULL) { |
| 228 | if (!BN_copy(b, group->b)) |
| 229 | goto err; |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | ret = 1; |
| 235 | |
| 236 | err: |
| 237 | BN_CTX_free(new_ctx); |
| 238 | return ret; |
| 239 | } |
| 240 | |
| 241 | int ec_GFp_simple_group_get_degree(const EC_GROUP *group) |
| 242 | { |
| 243 | return BN_num_bits(group->field); |
| 244 | } |
| 245 | |
| 246 | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) |
| 247 | { |
| 248 | int ret = 0; |
| 249 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; |
| 250 | const BIGNUM *p = group->field; |
| 251 | BN_CTX *new_ctx = NULL; |
| 252 | |
| 253 | if (ctx == NULL) { |
| 254 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 255 | if (ctx == NULL) { |
| 256 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, |
| 257 | ERR_R_MALLOC_FAILURE); |
| 258 | goto err; |
| 259 | } |
| 260 | } |
| 261 | BN_CTX_start(ctx); |
| 262 | a = BN_CTX_get(ctx); |
| 263 | b = BN_CTX_get(ctx); |
| 264 | tmp_1 = BN_CTX_get(ctx); |
| 265 | tmp_2 = BN_CTX_get(ctx); |
| 266 | order = BN_CTX_get(ctx); |
| 267 | if (order == NULL) |
| 268 | goto err; |
| 269 | |
| 270 | if (group->meth->field_decode) { |
| 271 | if (!group->meth->field_decode(group, a, group->a, ctx)) |
| 272 | goto err; |
| 273 | if (!group->meth->field_decode(group, b, group->b, ctx)) |
| 274 | goto err; |
| 275 | } else { |
| 276 | if (!BN_copy(a, group->a)) |
| 277 | goto err; |
| 278 | if (!BN_copy(b, group->b)) |
| 279 | goto err; |
| 280 | } |
| 281 | |
| 282 | /*- |
| 283 | * check the discriminant: |
| 284 | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) |
| 285 | * 0 =< a, b < p |
| 286 | */ |
| 287 | if (BN_is_zero(a)) { |
| 288 | if (BN_is_zero(b)) |
| 289 | goto err; |
| 290 | } else if (!BN_is_zero(b)) { |
| 291 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) |
| 292 | goto err; |
| 293 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) |
| 294 | goto err; |
| 295 | if (!BN_lshift(tmp_1, tmp_2, 2)) |
| 296 | goto err; |
| 297 | /* tmp_1 = 4*a^3 */ |
| 298 | |
| 299 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) |
| 300 | goto err; |
| 301 | if (!BN_mul_word(tmp_2, 27)) |
| 302 | goto err; |
| 303 | /* tmp_2 = 27*b^2 */ |
| 304 | |
| 305 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) |
| 306 | goto err; |
| 307 | if (BN_is_zero(a)) |
| 308 | goto err; |
| 309 | } |
| 310 | ret = 1; |
| 311 | |
| 312 | err: |
| 313 | BN_CTX_end(ctx); |
| 314 | BN_CTX_free(new_ctx); |
| 315 | return ret; |
| 316 | } |
| 317 | |
| 318 | int ec_GFp_simple_point_init(EC_POINT *point) |
| 319 | { |
| 320 | point->X = BN_new(); |
| 321 | point->Y = BN_new(); |
| 322 | point->Z = BN_new(); |
| 323 | point->Z_is_one = 0; |
| 324 | |
| 325 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) { |
| 326 | BN_free(point->X); |
| 327 | BN_free(point->Y); |
| 328 | BN_free(point->Z); |
| 329 | return 0; |
| 330 | } |
| 331 | return 1; |
| 332 | } |
| 333 | |
| 334 | void ec_GFp_simple_point_finish(EC_POINT *point) |
| 335 | { |
| 336 | BN_free(point->X); |
| 337 | BN_free(point->Y); |
| 338 | BN_free(point->Z); |
| 339 | } |
| 340 | |
| 341 | void ec_GFp_simple_point_clear_finish(EC_POINT *point) |
| 342 | { |
| 343 | BN_clear_free(point->X); |
| 344 | BN_clear_free(point->Y); |
| 345 | BN_clear_free(point->Z); |
| 346 | point->Z_is_one = 0; |
| 347 | } |
| 348 | |
| 349 | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
| 350 | { |
| 351 | if (!BN_copy(dest->X, src->X)) |
| 352 | return 0; |
| 353 | if (!BN_copy(dest->Y, src->Y)) |
| 354 | return 0; |
| 355 | if (!BN_copy(dest->Z, src->Z)) |
| 356 | return 0; |
| 357 | dest->Z_is_one = src->Z_is_one; |
| 358 | dest->curve_name = src->curve_name; |
| 359 | |
| 360 | return 1; |
| 361 | } |
| 362 | |
| 363 | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
| 364 | EC_POINT *point) |
| 365 | { |
| 366 | point->Z_is_one = 0; |
| 367 | BN_zero(point->Z); |
| 368 | return 1; |
| 369 | } |
| 370 | |
| 371 | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| 372 | EC_POINT *point, |
| 373 | const BIGNUM *x, |
| 374 | const BIGNUM *y, |
| 375 | const BIGNUM *z, |
| 376 | BN_CTX *ctx) |
| 377 | { |
| 378 | BN_CTX *new_ctx = NULL; |
| 379 | int ret = 0; |
| 380 | |
| 381 | if (ctx == NULL) { |
| 382 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 383 | if (ctx == NULL) |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | if (x != NULL) { |
| 388 | if (!BN_nnmod(point->X, x, group->field, ctx)) |
| 389 | goto err; |
| 390 | if (group->meth->field_encode) { |
| 391 | if (!group->meth->field_encode(group, point->X, point->X, ctx)) |
| 392 | goto err; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | if (y != NULL) { |
| 397 | if (!BN_nnmod(point->Y, y, group->field, ctx)) |
| 398 | goto err; |
| 399 | if (group->meth->field_encode) { |
| 400 | if (!group->meth->field_encode(group, point->Y, point->Y, ctx)) |
| 401 | goto err; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | if (z != NULL) { |
| 406 | int Z_is_one; |
| 407 | |
| 408 | if (!BN_nnmod(point->Z, z, group->field, ctx)) |
| 409 | goto err; |
| 410 | Z_is_one = BN_is_one(point->Z); |
| 411 | if (group->meth->field_encode) { |
| 412 | if (Z_is_one && (group->meth->field_set_to_one != 0)) { |
| 413 | if (!group->meth->field_set_to_one(group, point->Z, ctx)) |
| 414 | goto err; |
| 415 | } else { |
| 416 | if (!group-> |
| 417 | meth->field_encode(group, point->Z, point->Z, ctx)) |
| 418 | goto err; |
| 419 | } |
| 420 | } |
| 421 | point->Z_is_one = Z_is_one; |
| 422 | } |
| 423 | |
| 424 | ret = 1; |
| 425 | |
| 426 | err: |
| 427 | BN_CTX_free(new_ctx); |
| 428 | return ret; |
| 429 | } |
| 430 | |
| 431 | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| 432 | const EC_POINT *point, |
| 433 | BIGNUM *x, BIGNUM *y, |
| 434 | BIGNUM *z, BN_CTX *ctx) |
| 435 | { |
| 436 | BN_CTX *new_ctx = NULL; |
| 437 | int ret = 0; |
| 438 | |
| 439 | if (group->meth->field_decode != 0) { |
| 440 | if (ctx == NULL) { |
| 441 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 442 | if (ctx == NULL) |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | if (x != NULL) { |
| 447 | if (!group->meth->field_decode(group, x, point->X, ctx)) |
| 448 | goto err; |
| 449 | } |
| 450 | if (y != NULL) { |
| 451 | if (!group->meth->field_decode(group, y, point->Y, ctx)) |
| 452 | goto err; |
| 453 | } |
| 454 | if (z != NULL) { |
| 455 | if (!group->meth->field_decode(group, z, point->Z, ctx)) |
| 456 | goto err; |
| 457 | } |
| 458 | } else { |
| 459 | if (x != NULL) { |
| 460 | if (!BN_copy(x, point->X)) |
| 461 | goto err; |
| 462 | } |
| 463 | if (y != NULL) { |
| 464 | if (!BN_copy(y, point->Y)) |
| 465 | goto err; |
| 466 | } |
| 467 | if (z != NULL) { |
| 468 | if (!BN_copy(z, point->Z)) |
| 469 | goto err; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | ret = 1; |
| 474 | |
| 475 | err: |
| 476 | BN_CTX_free(new_ctx); |
| 477 | return ret; |
| 478 | } |
| 479 | |
| 480 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| 481 | EC_POINT *point, |
| 482 | const BIGNUM *x, |
| 483 | const BIGNUM *y, BN_CTX *ctx) |
| 484 | { |
| 485 | if (x == NULL || y == NULL) { |
| 486 | /* |
| 487 | * unlike for projective coordinates, we do not tolerate this |
| 488 | */ |
| 489 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, |
| 490 | ERR_R_PASSED_NULL_PARAMETER); |
| 491 | return 0; |
| 492 | } |
| 493 | |
| 494 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, |
| 495 | BN_value_one(), ctx); |
| 496 | } |
| 497 | |
| 498 | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, |
| 499 | const EC_POINT *point, |
| 500 | BIGNUM *x, BIGNUM *y, |
| 501 | BN_CTX *ctx) |
| 502 | { |
| 503 | BN_CTX *new_ctx = NULL; |
| 504 | BIGNUM *Z, *Z_1, *Z_2, *Z_3; |
| 505 | const BIGNUM *Z_; |
| 506 | int ret = 0; |
| 507 | |
| 508 | if (EC_POINT_is_at_infinity(group, point)) { |
| 509 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| 510 | EC_R_POINT_AT_INFINITY); |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | if (ctx == NULL) { |
| 515 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 516 | if (ctx == NULL) |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | BN_CTX_start(ctx); |
| 521 | Z = BN_CTX_get(ctx); |
| 522 | Z_1 = BN_CTX_get(ctx); |
| 523 | Z_2 = BN_CTX_get(ctx); |
| 524 | Z_3 = BN_CTX_get(ctx); |
| 525 | if (Z_3 == NULL) |
| 526 | goto err; |
| 527 | |
| 528 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ |
| 529 | |
| 530 | if (group->meth->field_decode) { |
| 531 | if (!group->meth->field_decode(group, Z, point->Z, ctx)) |
| 532 | goto err; |
| 533 | Z_ = Z; |
| 534 | } else { |
| 535 | Z_ = point->Z; |
| 536 | } |
| 537 | |
| 538 | if (BN_is_one(Z_)) { |
| 539 | if (group->meth->field_decode) { |
| 540 | if (x != NULL) { |
| 541 | if (!group->meth->field_decode(group, x, point->X, ctx)) |
| 542 | goto err; |
| 543 | } |
| 544 | if (y != NULL) { |
| 545 | if (!group->meth->field_decode(group, y, point->Y, ctx)) |
| 546 | goto err; |
| 547 | } |
| 548 | } else { |
| 549 | if (x != NULL) { |
| 550 | if (!BN_copy(x, point->X)) |
| 551 | goto err; |
| 552 | } |
| 553 | if (y != NULL) { |
| 554 | if (!BN_copy(y, point->Y)) |
| 555 | goto err; |
| 556 | } |
| 557 | } |
| 558 | } else { |
| 559 | if (!group->meth->field_inv(group, Z_1, Z_, ctx)) { |
| 560 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| 561 | ERR_R_BN_LIB); |
| 562 | goto err; |
| 563 | } |
| 564 | |
| 565 | if (group->meth->field_encode == 0) { |
| 566 | /* field_sqr works on standard representation */ |
| 567 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) |
| 568 | goto err; |
| 569 | } else { |
| 570 | if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx)) |
| 571 | goto err; |
| 572 | } |
| 573 | |
| 574 | if (x != NULL) { |
| 575 | /* |
| 576 | * in the Montgomery case, field_mul will cancel out Montgomery |
| 577 | * factor in X: |
| 578 | */ |
| 579 | if (!group->meth->field_mul(group, x, point->X, Z_2, ctx)) |
| 580 | goto err; |
| 581 | } |
| 582 | |
| 583 | if (y != NULL) { |
| 584 | if (group->meth->field_encode == 0) { |
| 585 | /* |
| 586 | * field_mul works on standard representation |
| 587 | */ |
| 588 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) |
| 589 | goto err; |
| 590 | } else { |
| 591 | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx)) |
| 592 | goto err; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * in the Montgomery case, field_mul will cancel out Montgomery |
| 597 | * factor in Y: |
| 598 | */ |
| 599 | if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx)) |
| 600 | goto err; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | ret = 1; |
| 605 | |
| 606 | err: |
| 607 | BN_CTX_end(ctx); |
| 608 | BN_CTX_free(new_ctx); |
| 609 | return ret; |
| 610 | } |
| 611 | |
| 612 | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 613 | const EC_POINT *b, BN_CTX *ctx) |
| 614 | { |
| 615 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 616 | const BIGNUM *, BN_CTX *); |
| 617 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 618 | const BIGNUM *p; |
| 619 | BN_CTX *new_ctx = NULL; |
| 620 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; |
| 621 | int ret = 0; |
| 622 | |
| 623 | if (a == b) |
| 624 | return EC_POINT_dbl(group, r, a, ctx); |
| 625 | if (EC_POINT_is_at_infinity(group, a)) |
| 626 | return EC_POINT_copy(r, b); |
| 627 | if (EC_POINT_is_at_infinity(group, b)) |
| 628 | return EC_POINT_copy(r, a); |
| 629 | |
| 630 | field_mul = group->meth->field_mul; |
| 631 | field_sqr = group->meth->field_sqr; |
| 632 | p = group->field; |
| 633 | |
| 634 | if (ctx == NULL) { |
| 635 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 636 | if (ctx == NULL) |
| 637 | return 0; |
| 638 | } |
| 639 | |
| 640 | BN_CTX_start(ctx); |
| 641 | n0 = BN_CTX_get(ctx); |
| 642 | n1 = BN_CTX_get(ctx); |
| 643 | n2 = BN_CTX_get(ctx); |
| 644 | n3 = BN_CTX_get(ctx); |
| 645 | n4 = BN_CTX_get(ctx); |
| 646 | n5 = BN_CTX_get(ctx); |
| 647 | n6 = BN_CTX_get(ctx); |
| 648 | if (n6 == NULL) |
| 649 | goto end; |
| 650 | |
| 651 | /* |
| 652 | * Note that in this function we must not read components of 'a' or 'b' |
| 653 | * once we have written the corresponding components of 'r'. ('r' might |
| 654 | * be one of 'a' or 'b'.) |
| 655 | */ |
| 656 | |
| 657 | /* n1, n2 */ |
| 658 | if (b->Z_is_one) { |
| 659 | if (!BN_copy(n1, a->X)) |
| 660 | goto end; |
| 661 | if (!BN_copy(n2, a->Y)) |
| 662 | goto end; |
| 663 | /* n1 = X_a */ |
| 664 | /* n2 = Y_a */ |
| 665 | } else { |
| 666 | if (!field_sqr(group, n0, b->Z, ctx)) |
| 667 | goto end; |
| 668 | if (!field_mul(group, n1, a->X, n0, ctx)) |
| 669 | goto end; |
| 670 | /* n1 = X_a * Z_b^2 */ |
| 671 | |
| 672 | if (!field_mul(group, n0, n0, b->Z, ctx)) |
| 673 | goto end; |
| 674 | if (!field_mul(group, n2, a->Y, n0, ctx)) |
| 675 | goto end; |
| 676 | /* n2 = Y_a * Z_b^3 */ |
| 677 | } |
| 678 | |
| 679 | /* n3, n4 */ |
| 680 | if (a->Z_is_one) { |
| 681 | if (!BN_copy(n3, b->X)) |
| 682 | goto end; |
| 683 | if (!BN_copy(n4, b->Y)) |
| 684 | goto end; |
| 685 | /* n3 = X_b */ |
| 686 | /* n4 = Y_b */ |
| 687 | } else { |
| 688 | if (!field_sqr(group, n0, a->Z, ctx)) |
| 689 | goto end; |
| 690 | if (!field_mul(group, n3, b->X, n0, ctx)) |
| 691 | goto end; |
| 692 | /* n3 = X_b * Z_a^2 */ |
| 693 | |
| 694 | if (!field_mul(group, n0, n0, a->Z, ctx)) |
| 695 | goto end; |
| 696 | if (!field_mul(group, n4, b->Y, n0, ctx)) |
| 697 | goto end; |
| 698 | /* n4 = Y_b * Z_a^3 */ |
| 699 | } |
| 700 | |
| 701 | /* n5, n6 */ |
| 702 | if (!BN_mod_sub_quick(n5, n1, n3, p)) |
| 703 | goto end; |
| 704 | if (!BN_mod_sub_quick(n6, n2, n4, p)) |
| 705 | goto end; |
| 706 | /* n5 = n1 - n3 */ |
| 707 | /* n6 = n2 - n4 */ |
| 708 | |
| 709 | if (BN_is_zero(n5)) { |
| 710 | if (BN_is_zero(n6)) { |
| 711 | /* a is the same point as b */ |
| 712 | BN_CTX_end(ctx); |
| 713 | ret = EC_POINT_dbl(group, r, a, ctx); |
| 714 | ctx = NULL; |
| 715 | goto end; |
| 716 | } else { |
| 717 | /* a is the inverse of b */ |
| 718 | BN_zero(r->Z); |
| 719 | r->Z_is_one = 0; |
| 720 | ret = 1; |
| 721 | goto end; |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /* 'n7', 'n8' */ |
| 726 | if (!BN_mod_add_quick(n1, n1, n3, p)) |
| 727 | goto end; |
| 728 | if (!BN_mod_add_quick(n2, n2, n4, p)) |
| 729 | goto end; |
| 730 | /* 'n7' = n1 + n3 */ |
| 731 | /* 'n8' = n2 + n4 */ |
| 732 | |
| 733 | /* Z_r */ |
| 734 | if (a->Z_is_one && b->Z_is_one) { |
| 735 | if (!BN_copy(r->Z, n5)) |
| 736 | goto end; |
| 737 | } else { |
| 738 | if (a->Z_is_one) { |
| 739 | if (!BN_copy(n0, b->Z)) |
| 740 | goto end; |
| 741 | } else if (b->Z_is_one) { |
| 742 | if (!BN_copy(n0, a->Z)) |
| 743 | goto end; |
| 744 | } else { |
| 745 | if (!field_mul(group, n0, a->Z, b->Z, ctx)) |
| 746 | goto end; |
| 747 | } |
| 748 | if (!field_mul(group, r->Z, n0, n5, ctx)) |
| 749 | goto end; |
| 750 | } |
| 751 | r->Z_is_one = 0; |
| 752 | /* Z_r = Z_a * Z_b * n5 */ |
| 753 | |
| 754 | /* X_r */ |
| 755 | if (!field_sqr(group, n0, n6, ctx)) |
| 756 | goto end; |
| 757 | if (!field_sqr(group, n4, n5, ctx)) |
| 758 | goto end; |
| 759 | if (!field_mul(group, n3, n1, n4, ctx)) |
| 760 | goto end; |
| 761 | if (!BN_mod_sub_quick(r->X, n0, n3, p)) |
| 762 | goto end; |
| 763 | /* X_r = n6^2 - n5^2 * 'n7' */ |
| 764 | |
| 765 | /* 'n9' */ |
| 766 | if (!BN_mod_lshift1_quick(n0, r->X, p)) |
| 767 | goto end; |
| 768 | if (!BN_mod_sub_quick(n0, n3, n0, p)) |
| 769 | goto end; |
| 770 | /* n9 = n5^2 * 'n7' - 2 * X_r */ |
| 771 | |
| 772 | /* Y_r */ |
| 773 | if (!field_mul(group, n0, n0, n6, ctx)) |
| 774 | goto end; |
| 775 | if (!field_mul(group, n5, n4, n5, ctx)) |
| 776 | goto end; /* now n5 is n5^3 */ |
| 777 | if (!field_mul(group, n1, n2, n5, ctx)) |
| 778 | goto end; |
| 779 | if (!BN_mod_sub_quick(n0, n0, n1, p)) |
| 780 | goto end; |
| 781 | if (BN_is_odd(n0)) |
| 782 | if (!BN_add(n0, n0, p)) |
| 783 | goto end; |
| 784 | /* now 0 <= n0 < 2*p, and n0 is even */ |
| 785 | if (!BN_rshift1(r->Y, n0)) |
| 786 | goto end; |
| 787 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ |
| 788 | |
| 789 | ret = 1; |
| 790 | |
| 791 | end: |
| 792 | BN_CTX_end(ctx); |
| 793 | BN_CTX_free(new_ctx); |
| 794 | return ret; |
| 795 | } |
| 796 | |
| 797 | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 798 | BN_CTX *ctx) |
| 799 | { |
| 800 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 801 | const BIGNUM *, BN_CTX *); |
| 802 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 803 | const BIGNUM *p; |
| 804 | BN_CTX *new_ctx = NULL; |
| 805 | BIGNUM *n0, *n1, *n2, *n3; |
| 806 | int ret = 0; |
| 807 | |
| 808 | if (EC_POINT_is_at_infinity(group, a)) { |
| 809 | BN_zero(r->Z); |
| 810 | r->Z_is_one = 0; |
| 811 | return 1; |
| 812 | } |
| 813 | |
| 814 | field_mul = group->meth->field_mul; |
| 815 | field_sqr = group->meth->field_sqr; |
| 816 | p = group->field; |
| 817 | |
| 818 | if (ctx == NULL) { |
| 819 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 820 | if (ctx == NULL) |
| 821 | return 0; |
| 822 | } |
| 823 | |
| 824 | BN_CTX_start(ctx); |
| 825 | n0 = BN_CTX_get(ctx); |
| 826 | n1 = BN_CTX_get(ctx); |
| 827 | n2 = BN_CTX_get(ctx); |
| 828 | n3 = BN_CTX_get(ctx); |
| 829 | if (n3 == NULL) |
| 830 | goto err; |
| 831 | |
| 832 | /* |
| 833 | * Note that in this function we must not read components of 'a' once we |
| 834 | * have written the corresponding components of 'r'. ('r' might the same |
| 835 | * as 'a'.) |
| 836 | */ |
| 837 | |
| 838 | /* n1 */ |
| 839 | if (a->Z_is_one) { |
| 840 | if (!field_sqr(group, n0, a->X, ctx)) |
| 841 | goto err; |
| 842 | if (!BN_mod_lshift1_quick(n1, n0, p)) |
| 843 | goto err; |
| 844 | if (!BN_mod_add_quick(n0, n0, n1, p)) |
| 845 | goto err; |
| 846 | if (!BN_mod_add_quick(n1, n0, group->a, p)) |
| 847 | goto err; |
| 848 | /* n1 = 3 * X_a^2 + a_curve */ |
| 849 | } else if (group->a_is_minus3) { |
| 850 | if (!field_sqr(group, n1, a->Z, ctx)) |
| 851 | goto err; |
| 852 | if (!BN_mod_add_quick(n0, a->X, n1, p)) |
| 853 | goto err; |
| 854 | if (!BN_mod_sub_quick(n2, a->X, n1, p)) |
| 855 | goto err; |
| 856 | if (!field_mul(group, n1, n0, n2, ctx)) |
| 857 | goto err; |
| 858 | if (!BN_mod_lshift1_quick(n0, n1, p)) |
| 859 | goto err; |
| 860 | if (!BN_mod_add_quick(n1, n0, n1, p)) |
| 861 | goto err; |
| 862 | /*- |
| 863 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) |
| 864 | * = 3 * X_a^2 - 3 * Z_a^4 |
| 865 | */ |
| 866 | } else { |
| 867 | if (!field_sqr(group, n0, a->X, ctx)) |
| 868 | goto err; |
| 869 | if (!BN_mod_lshift1_quick(n1, n0, p)) |
| 870 | goto err; |
| 871 | if (!BN_mod_add_quick(n0, n0, n1, p)) |
| 872 | goto err; |
| 873 | if (!field_sqr(group, n1, a->Z, ctx)) |
| 874 | goto err; |
| 875 | if (!field_sqr(group, n1, n1, ctx)) |
| 876 | goto err; |
| 877 | if (!field_mul(group, n1, n1, group->a, ctx)) |
| 878 | goto err; |
| 879 | if (!BN_mod_add_quick(n1, n1, n0, p)) |
| 880 | goto err; |
| 881 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ |
| 882 | } |
| 883 | |
| 884 | /* Z_r */ |
| 885 | if (a->Z_is_one) { |
| 886 | if (!BN_copy(n0, a->Y)) |
| 887 | goto err; |
| 888 | } else { |
| 889 | if (!field_mul(group, n0, a->Y, a->Z, ctx)) |
| 890 | goto err; |
| 891 | } |
| 892 | if (!BN_mod_lshift1_quick(r->Z, n0, p)) |
| 893 | goto err; |
| 894 | r->Z_is_one = 0; |
| 895 | /* Z_r = 2 * Y_a * Z_a */ |
| 896 | |
| 897 | /* n2 */ |
| 898 | if (!field_sqr(group, n3, a->Y, ctx)) |
| 899 | goto err; |
| 900 | if (!field_mul(group, n2, a->X, n3, ctx)) |
| 901 | goto err; |
| 902 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) |
| 903 | goto err; |
| 904 | /* n2 = 4 * X_a * Y_a^2 */ |
| 905 | |
| 906 | /* X_r */ |
| 907 | if (!BN_mod_lshift1_quick(n0, n2, p)) |
| 908 | goto err; |
| 909 | if (!field_sqr(group, r->X, n1, ctx)) |
| 910 | goto err; |
| 911 | if (!BN_mod_sub_quick(r->X, r->X, n0, p)) |
| 912 | goto err; |
| 913 | /* X_r = n1^2 - 2 * n2 */ |
| 914 | |
| 915 | /* n3 */ |
| 916 | if (!field_sqr(group, n0, n3, ctx)) |
| 917 | goto err; |
| 918 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) |
| 919 | goto err; |
| 920 | /* n3 = 8 * Y_a^4 */ |
| 921 | |
| 922 | /* Y_r */ |
| 923 | if (!BN_mod_sub_quick(n0, n2, r->X, p)) |
| 924 | goto err; |
| 925 | if (!field_mul(group, n0, n1, n0, ctx)) |
| 926 | goto err; |
| 927 | if (!BN_mod_sub_quick(r->Y, n0, n3, p)) |
| 928 | goto err; |
| 929 | /* Y_r = n1 * (n2 - X_r) - n3 */ |
| 930 | |
| 931 | ret = 1; |
| 932 | |
| 933 | err: |
| 934 | BN_CTX_end(ctx); |
| 935 | BN_CTX_free(new_ctx); |
| 936 | return ret; |
| 937 | } |
| 938 | |
| 939 | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| 940 | { |
| 941 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) |
| 942 | /* point is its own inverse */ |
| 943 | return 1; |
| 944 | |
| 945 | return BN_usub(point->Y, group->field, point->Y); |
| 946 | } |
| 947 | |
| 948 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) |
| 949 | { |
| 950 | return BN_is_zero(point->Z); |
| 951 | } |
| 952 | |
| 953 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| 954 | BN_CTX *ctx) |
| 955 | { |
| 956 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 957 | const BIGNUM *, BN_CTX *); |
| 958 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 959 | const BIGNUM *p; |
| 960 | BN_CTX *new_ctx = NULL; |
| 961 | BIGNUM *rh, *tmp, *Z4, *Z6; |
| 962 | int ret = -1; |
| 963 | |
| 964 | if (EC_POINT_is_at_infinity(group, point)) |
| 965 | return 1; |
| 966 | |
| 967 | field_mul = group->meth->field_mul; |
| 968 | field_sqr = group->meth->field_sqr; |
| 969 | p = group->field; |
| 970 | |
| 971 | if (ctx == NULL) { |
| 972 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 973 | if (ctx == NULL) |
| 974 | return -1; |
| 975 | } |
| 976 | |
| 977 | BN_CTX_start(ctx); |
| 978 | rh = BN_CTX_get(ctx); |
| 979 | tmp = BN_CTX_get(ctx); |
| 980 | Z4 = BN_CTX_get(ctx); |
| 981 | Z6 = BN_CTX_get(ctx); |
| 982 | if (Z6 == NULL) |
| 983 | goto err; |
| 984 | |
| 985 | /*- |
| 986 | * We have a curve defined by a Weierstrass equation |
| 987 | * y^2 = x^3 + a*x + b. |
| 988 | * The point to consider is given in Jacobian projective coordinates |
| 989 | * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
| 990 | * Substituting this and multiplying by Z^6 transforms the above equation into |
| 991 | * Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
| 992 | * To test this, we add up the right-hand side in 'rh'. |
| 993 | */ |
| 994 | |
| 995 | /* rh := X^2 */ |
| 996 | if (!field_sqr(group, rh, point->X, ctx)) |
| 997 | goto err; |
| 998 | |
| 999 | if (!point->Z_is_one) { |
| 1000 | if (!field_sqr(group, tmp, point->Z, ctx)) |
| 1001 | goto err; |
| 1002 | if (!field_sqr(group, Z4, tmp, ctx)) |
| 1003 | goto err; |
| 1004 | if (!field_mul(group, Z6, Z4, tmp, ctx)) |
| 1005 | goto err; |
| 1006 | |
| 1007 | /* rh := (rh + a*Z^4)*X */ |
| 1008 | if (group->a_is_minus3) { |
| 1009 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) |
| 1010 | goto err; |
| 1011 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) |
| 1012 | goto err; |
| 1013 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) |
| 1014 | goto err; |
| 1015 | if (!field_mul(group, rh, rh, point->X, ctx)) |
| 1016 | goto err; |
| 1017 | } else { |
| 1018 | if (!field_mul(group, tmp, Z4, group->a, ctx)) |
| 1019 | goto err; |
| 1020 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
| 1021 | goto err; |
| 1022 | if (!field_mul(group, rh, rh, point->X, ctx)) |
| 1023 | goto err; |
| 1024 | } |
| 1025 | |
| 1026 | /* rh := rh + b*Z^6 */ |
| 1027 | if (!field_mul(group, tmp, group->b, Z6, ctx)) |
| 1028 | goto err; |
| 1029 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
| 1030 | goto err; |
| 1031 | } else { |
| 1032 | /* point->Z_is_one */ |
| 1033 | |
| 1034 | /* rh := (rh + a)*X */ |
| 1035 | if (!BN_mod_add_quick(rh, rh, group->a, p)) |
| 1036 | goto err; |
| 1037 | if (!field_mul(group, rh, rh, point->X, ctx)) |
| 1038 | goto err; |
| 1039 | /* rh := rh + b */ |
| 1040 | if (!BN_mod_add_quick(rh, rh, group->b, p)) |
| 1041 | goto err; |
| 1042 | } |
| 1043 | |
| 1044 | /* 'lh' := Y^2 */ |
| 1045 | if (!field_sqr(group, tmp, point->Y, ctx)) |
| 1046 | goto err; |
| 1047 | |
| 1048 | ret = (0 == BN_ucmp(tmp, rh)); |
| 1049 | |
| 1050 | err: |
| 1051 | BN_CTX_end(ctx); |
| 1052 | BN_CTX_free(new_ctx); |
| 1053 | return ret; |
| 1054 | } |
| 1055 | |
| 1056 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
| 1057 | const EC_POINT *b, BN_CTX *ctx) |
| 1058 | { |
| 1059 | /*- |
| 1060 | * return values: |
| 1061 | * -1 error |
| 1062 | * 0 equal (in affine coordinates) |
| 1063 | * 1 not equal |
| 1064 | */ |
| 1065 | |
| 1066 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 1067 | const BIGNUM *, BN_CTX *); |
| 1068 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 1069 | BN_CTX *new_ctx = NULL; |
| 1070 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; |
| 1071 | const BIGNUM *tmp1_, *tmp2_; |
| 1072 | int ret = -1; |
| 1073 | |
| 1074 | if (EC_POINT_is_at_infinity(group, a)) { |
| 1075 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
| 1076 | } |
| 1077 | |
| 1078 | if (EC_POINT_is_at_infinity(group, b)) |
| 1079 | return 1; |
| 1080 | |
| 1081 | if (a->Z_is_one && b->Z_is_one) { |
| 1082 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; |
| 1083 | } |
| 1084 | |
| 1085 | field_mul = group->meth->field_mul; |
| 1086 | field_sqr = group->meth->field_sqr; |
| 1087 | |
| 1088 | if (ctx == NULL) { |
| 1089 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 1090 | if (ctx == NULL) |
| 1091 | return -1; |
| 1092 | } |
| 1093 | |
| 1094 | BN_CTX_start(ctx); |
| 1095 | tmp1 = BN_CTX_get(ctx); |
| 1096 | tmp2 = BN_CTX_get(ctx); |
| 1097 | Za23 = BN_CTX_get(ctx); |
| 1098 | Zb23 = BN_CTX_get(ctx); |
| 1099 | if (Zb23 == NULL) |
| 1100 | goto end; |
| 1101 | |
| 1102 | /*- |
| 1103 | * We have to decide whether |
| 1104 | * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
| 1105 | * or equivalently, whether |
| 1106 | * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
| 1107 | */ |
| 1108 | |
| 1109 | if (!b->Z_is_one) { |
| 1110 | if (!field_sqr(group, Zb23, b->Z, ctx)) |
| 1111 | goto end; |
| 1112 | if (!field_mul(group, tmp1, a->X, Zb23, ctx)) |
| 1113 | goto end; |
| 1114 | tmp1_ = tmp1; |
| 1115 | } else |
| 1116 | tmp1_ = a->X; |
| 1117 | if (!a->Z_is_one) { |
| 1118 | if (!field_sqr(group, Za23, a->Z, ctx)) |
| 1119 | goto end; |
| 1120 | if (!field_mul(group, tmp2, b->X, Za23, ctx)) |
| 1121 | goto end; |
| 1122 | tmp2_ = tmp2; |
| 1123 | } else |
| 1124 | tmp2_ = b->X; |
| 1125 | |
| 1126 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ |
| 1127 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
| 1128 | ret = 1; /* points differ */ |
| 1129 | goto end; |
| 1130 | } |
| 1131 | |
| 1132 | if (!b->Z_is_one) { |
| 1133 | if (!field_mul(group, Zb23, Zb23, b->Z, ctx)) |
| 1134 | goto end; |
| 1135 | if (!field_mul(group, tmp1, a->Y, Zb23, ctx)) |
| 1136 | goto end; |
| 1137 | /* tmp1_ = tmp1 */ |
| 1138 | } else |
| 1139 | tmp1_ = a->Y; |
| 1140 | if (!a->Z_is_one) { |
| 1141 | if (!field_mul(group, Za23, Za23, a->Z, ctx)) |
| 1142 | goto end; |
| 1143 | if (!field_mul(group, tmp2, b->Y, Za23, ctx)) |
| 1144 | goto end; |
| 1145 | /* tmp2_ = tmp2 */ |
| 1146 | } else |
| 1147 | tmp2_ = b->Y; |
| 1148 | |
| 1149 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ |
| 1150 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
| 1151 | ret = 1; /* points differ */ |
| 1152 | goto end; |
| 1153 | } |
| 1154 | |
| 1155 | /* points are equal */ |
| 1156 | ret = 0; |
| 1157 | |
| 1158 | end: |
| 1159 | BN_CTX_end(ctx); |
| 1160 | BN_CTX_free(new_ctx); |
| 1161 | return ret; |
| 1162 | } |
| 1163 | |
| 1164 | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
| 1165 | BN_CTX *ctx) |
| 1166 | { |
| 1167 | BN_CTX *new_ctx = NULL; |
| 1168 | BIGNUM *x, *y; |
| 1169 | int ret = 0; |
| 1170 | |
| 1171 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
| 1172 | return 1; |
| 1173 | |
| 1174 | if (ctx == NULL) { |
| 1175 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 1176 | if (ctx == NULL) |
| 1177 | return 0; |
| 1178 | } |
| 1179 | |
| 1180 | BN_CTX_start(ctx); |
| 1181 | x = BN_CTX_get(ctx); |
| 1182 | y = BN_CTX_get(ctx); |
| 1183 | if (y == NULL) |
| 1184 | goto err; |
| 1185 | |
| 1186 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
| 1187 | goto err; |
| 1188 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) |
| 1189 | goto err; |
| 1190 | if (!point->Z_is_one) { |
| 1191 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); |
| 1192 | goto err; |
| 1193 | } |
| 1194 | |
| 1195 | ret = 1; |
| 1196 | |
| 1197 | err: |
| 1198 | BN_CTX_end(ctx); |
| 1199 | BN_CTX_free(new_ctx); |
| 1200 | return ret; |
| 1201 | } |
| 1202 | |
| 1203 | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, |
| 1204 | EC_POINT *points[], BN_CTX *ctx) |
| 1205 | { |
| 1206 | BN_CTX *new_ctx = NULL; |
| 1207 | BIGNUM *tmp, *tmp_Z; |
| 1208 | BIGNUM **prod_Z = NULL; |
| 1209 | size_t i; |
| 1210 | int ret = 0; |
| 1211 | |
| 1212 | if (num == 0) |
| 1213 | return 1; |
| 1214 | |
| 1215 | if (ctx == NULL) { |
| 1216 | ctx = new_ctx = BN_CTX_new_ex(group->libctx); |
| 1217 | if (ctx == NULL) |
| 1218 | return 0; |
| 1219 | } |
| 1220 | |
| 1221 | BN_CTX_start(ctx); |
| 1222 | tmp = BN_CTX_get(ctx); |
| 1223 | tmp_Z = BN_CTX_get(ctx); |
| 1224 | if (tmp_Z == NULL) |
| 1225 | goto err; |
| 1226 | |
| 1227 | prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); |
| 1228 | if (prod_Z == NULL) |
| 1229 | goto err; |
| 1230 | for (i = 0; i < num; i++) { |
| 1231 | prod_Z[i] = BN_new(); |
| 1232 | if (prod_Z[i] == NULL) |
| 1233 | goto err; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, |
| 1238 | * skipping any zero-valued inputs (pretend that they're 1). |
| 1239 | */ |
| 1240 | |
| 1241 | if (!BN_is_zero(points[0]->Z)) { |
| 1242 | if (!BN_copy(prod_Z[0], points[0]->Z)) |
| 1243 | goto err; |
| 1244 | } else { |
| 1245 | if (group->meth->field_set_to_one != 0) { |
| 1246 | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) |
| 1247 | goto err; |
| 1248 | } else { |
| 1249 | if (!BN_one(prod_Z[0])) |
| 1250 | goto err; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | for (i = 1; i < num; i++) { |
| 1255 | if (!BN_is_zero(points[i]->Z)) { |
| 1256 | if (!group-> |
| 1257 | meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z, |
| 1258 | ctx)) |
| 1259 | goto err; |
| 1260 | } else { |
| 1261 | if (!BN_copy(prod_Z[i], prod_Z[i - 1])) |
| 1262 | goto err; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | /* |
| 1267 | * Now use a single explicit inversion to replace every non-zero |
| 1268 | * points[i]->Z by its inverse. |
| 1269 | */ |
| 1270 | |
| 1271 | if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) { |
| 1272 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); |
| 1273 | goto err; |
| 1274 | } |
| 1275 | if (group->meth->field_encode != 0) { |
| 1276 | /* |
| 1277 | * In the Montgomery case, we just turned R*H (representing H) into |
| 1278 | * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to |
| 1279 | * multiply by the Montgomery factor twice. |
| 1280 | */ |
| 1281 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) |
| 1282 | goto err; |
| 1283 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) |
| 1284 | goto err; |
| 1285 | } |
| 1286 | |
| 1287 | for (i = num - 1; i > 0; --i) { |
| 1288 | /* |
| 1289 | * Loop invariant: tmp is the product of the inverses of points[0]->Z |
| 1290 | * .. points[i]->Z (zero-valued inputs skipped). |
| 1291 | */ |
| 1292 | if (!BN_is_zero(points[i]->Z)) { |
| 1293 | /* |
| 1294 | * Set tmp_Z to the inverse of points[i]->Z (as product of Z |
| 1295 | * inverses 0 .. i, Z values 0 .. i - 1). |
| 1296 | */ |
| 1297 | if (!group-> |
| 1298 | meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) |
| 1299 | goto err; |
| 1300 | /* |
| 1301 | * Update tmp to satisfy the loop invariant for i - 1. |
| 1302 | */ |
| 1303 | if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx)) |
| 1304 | goto err; |
| 1305 | /* Replace points[i]->Z by its inverse. */ |
| 1306 | if (!BN_copy(points[i]->Z, tmp_Z)) |
| 1307 | goto err; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | if (!BN_is_zero(points[0]->Z)) { |
| 1312 | /* Replace points[0]->Z by its inverse. */ |
| 1313 | if (!BN_copy(points[0]->Z, tmp)) |
| 1314 | goto err; |
| 1315 | } |
| 1316 | |
| 1317 | /* Finally, fix up the X and Y coordinates for all points. */ |
| 1318 | |
| 1319 | for (i = 0; i < num; i++) { |
| 1320 | EC_POINT *p = points[i]; |
| 1321 | |
| 1322 | if (!BN_is_zero(p->Z)) { |
| 1323 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ |
| 1324 | |
| 1325 | if (!group->meth->field_sqr(group, tmp, p->Z, ctx)) |
| 1326 | goto err; |
| 1327 | if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx)) |
| 1328 | goto err; |
| 1329 | |
| 1330 | if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx)) |
| 1331 | goto err; |
| 1332 | if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx)) |
| 1333 | goto err; |
| 1334 | |
| 1335 | if (group->meth->field_set_to_one != 0) { |
| 1336 | if (!group->meth->field_set_to_one(group, p->Z, ctx)) |
| 1337 | goto err; |
| 1338 | } else { |
| 1339 | if (!BN_one(p->Z)) |
| 1340 | goto err; |
| 1341 | } |
| 1342 | p->Z_is_one = 1; |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | ret = 1; |
| 1347 | |
| 1348 | err: |
| 1349 | BN_CTX_end(ctx); |
| 1350 | BN_CTX_free(new_ctx); |
| 1351 | if (prod_Z != NULL) { |
| 1352 | for (i = 0; i < num; i++) { |
| 1353 | if (prod_Z[i] == NULL) |
| 1354 | break; |
| 1355 | BN_clear_free(prod_Z[i]); |
| 1356 | } |
| 1357 | OPENSSL_free(prod_Z); |
| 1358 | } |
| 1359 | return ret; |
| 1360 | } |
| 1361 | |
| 1362 | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| 1363 | const BIGNUM *b, BN_CTX *ctx) |
| 1364 | { |
| 1365 | return BN_mod_mul(r, a, b, group->field, ctx); |
| 1366 | } |
| 1367 | |
| 1368 | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| 1369 | BN_CTX *ctx) |
| 1370 | { |
| 1371 | return BN_mod_sqr(r, a, group->field, ctx); |
| 1372 | } |
| 1373 | |
| 1374 | /*- |
| 1375 | * Computes the multiplicative inverse of a in GF(p), storing the result in r. |
| 1376 | * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. |
| 1377 | * Since we don't have a Mont structure here, SCA hardening is with blinding. |
| 1378 | */ |
| 1379 | int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| 1380 | BN_CTX *ctx) |
| 1381 | { |
| 1382 | BIGNUM *e = NULL; |
| 1383 | BN_CTX *new_ctx = NULL; |
| 1384 | int ret = 0; |
| 1385 | |
| 1386 | if (ctx == NULL |
| 1387 | && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL) |
| 1388 | return 0; |
| 1389 | |
| 1390 | BN_CTX_start(ctx); |
| 1391 | if ((e = BN_CTX_get(ctx)) == NULL) |
| 1392 | goto err; |
| 1393 | |
| 1394 | do { |
| 1395 | if (!BN_priv_rand_range_ex(e, group->field, ctx)) |
| 1396 | goto err; |
| 1397 | } while (BN_is_zero(e)); |
| 1398 | |
| 1399 | /* r := a * e */ |
| 1400 | if (!group->meth->field_mul(group, r, a, e, ctx)) |
| 1401 | goto err; |
| 1402 | /* r := 1/(a * e) */ |
| 1403 | if (!BN_mod_inverse(r, r, group->field, ctx)) { |
| 1404 | ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT); |
| 1405 | goto err; |
| 1406 | } |
| 1407 | /* r := e/(a * e) = 1/a */ |
| 1408 | if (!group->meth->field_mul(group, r, r, e, ctx)) |
| 1409 | goto err; |
| 1410 | |
| 1411 | ret = 1; |
| 1412 | |
| 1413 | err: |
| 1414 | BN_CTX_end(ctx); |
| 1415 | BN_CTX_free(new_ctx); |
| 1416 | return ret; |
| 1417 | } |
| 1418 | |
| 1419 | /*- |
| 1420 | * Apply randomization of EC point projective coordinates: |
| 1421 | * |
| 1422 | * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z) |
| 1423 | * lambda = [1,group->field) |
| 1424 | * |
| 1425 | */ |
| 1426 | int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, |
| 1427 | BN_CTX *ctx) |
| 1428 | { |
| 1429 | int ret = 0; |
| 1430 | BIGNUM *lambda = NULL; |
| 1431 | BIGNUM *temp = NULL; |
| 1432 | |
| 1433 | BN_CTX_start(ctx); |
| 1434 | lambda = BN_CTX_get(ctx); |
| 1435 | temp = BN_CTX_get(ctx); |
| 1436 | if (temp == NULL) { |
| 1437 | ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE); |
| 1438 | goto err; |
| 1439 | } |
| 1440 | |
| 1441 | /* make sure lambda is not zero */ |
| 1442 | do { |
| 1443 | if (!BN_priv_rand_range_ex(lambda, group->field, ctx)) { |
| 1444 | ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_BN_LIB); |
| 1445 | goto err; |
| 1446 | } |
| 1447 | } while (BN_is_zero(lambda)); |
| 1448 | |
| 1449 | /* if field_encode defined convert between representations */ |
| 1450 | if (group->meth->field_encode != NULL |
| 1451 | && !group->meth->field_encode(group, lambda, lambda, ctx)) |
| 1452 | goto err; |
| 1453 | if (!group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)) |
| 1454 | goto err; |
| 1455 | if (!group->meth->field_sqr(group, temp, lambda, ctx)) |
| 1456 | goto err; |
| 1457 | if (!group->meth->field_mul(group, p->X, p->X, temp, ctx)) |
| 1458 | goto err; |
| 1459 | if (!group->meth->field_mul(group, temp, temp, lambda, ctx)) |
| 1460 | goto err; |
| 1461 | if (!group->meth->field_mul(group, p->Y, p->Y, temp, ctx)) |
| 1462 | goto err; |
| 1463 | p->Z_is_one = 0; |
| 1464 | |
| 1465 | ret = 1; |
| 1466 | |
| 1467 | err: |
| 1468 | BN_CTX_end(ctx); |
| 1469 | return ret; |
| 1470 | } |
| 1471 | |
| 1472 | /*- |
| 1473 | * Set s := p, r := 2p. |
| 1474 | * |
| 1475 | * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve |
| 1476 | * multiplication resistant against side channel attacks" appendix, as described |
| 1477 | * at |
| 1478 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 |
| 1479 | * |
| 1480 | * The input point p will be in randomized Jacobian projective coords: |
| 1481 | * x = X/Z**2, y=Y/Z**3 |
| 1482 | * |
| 1483 | * The output points p, s, and r are converted to standard (homogeneous) |
| 1484 | * projective coords: |
| 1485 | * x = X/Z, y=Y/Z |
| 1486 | */ |
| 1487 | int ec_GFp_simple_ladder_pre(const EC_GROUP *group, |
| 1488 | EC_POINT *r, EC_POINT *s, |
| 1489 | EC_POINT *p, BN_CTX *ctx) |
| 1490 | { |
| 1491 | BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL; |
| 1492 | |
| 1493 | t1 = r->Z; |
| 1494 | t2 = r->Y; |
| 1495 | t3 = s->X; |
| 1496 | t4 = r->X; |
| 1497 | t5 = s->Y; |
| 1498 | t6 = s->Z; |
| 1499 | |
| 1500 | /* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */ |
| 1501 | if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx) |
| 1502 | || !group->meth->field_sqr(group, t1, p->Z, ctx) |
| 1503 | || !group->meth->field_mul(group, p->Z, p->Z, t1, ctx) |
| 1504 | /* r := 2p */ |
| 1505 | || !group->meth->field_sqr(group, t2, p->X, ctx) |
| 1506 | || !group->meth->field_sqr(group, t3, p->Z, ctx) |
| 1507 | || !group->meth->field_mul(group, t4, t3, group->a, ctx) |
| 1508 | || !BN_mod_sub_quick(t5, t2, t4, group->field) |
| 1509 | || !BN_mod_add_quick(t2, t2, t4, group->field) |
| 1510 | || !group->meth->field_sqr(group, t5, t5, ctx) |
| 1511 | || !group->meth->field_mul(group, t6, t3, group->b, ctx) |
| 1512 | || !group->meth->field_mul(group, t1, p->X, p->Z, ctx) |
| 1513 | || !group->meth->field_mul(group, t4, t1, t6, ctx) |
| 1514 | || !BN_mod_lshift_quick(t4, t4, 3, group->field) |
| 1515 | /* r->X coord output */ |
| 1516 | || !BN_mod_sub_quick(r->X, t5, t4, group->field) |
| 1517 | || !group->meth->field_mul(group, t1, t1, t2, ctx) |
| 1518 | || !group->meth->field_mul(group, t2, t3, t6, ctx) |
| 1519 | || !BN_mod_add_quick(t1, t1, t2, group->field) |
| 1520 | /* r->Z coord output */ |
| 1521 | || !BN_mod_lshift_quick(r->Z, t1, 2, group->field) |
| 1522 | || !EC_POINT_copy(s, p)) |
| 1523 | return 0; |
| 1524 | |
| 1525 | r->Z_is_one = 0; |
| 1526 | s->Z_is_one = 0; |
| 1527 | p->Z_is_one = 0; |
| 1528 | |
| 1529 | return 1; |
| 1530 | } |
| 1531 | |
| 1532 | /*- |
| 1533 | * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi |
| 1534 | * "A fast parallel elliptic curve multiplication resistant against side channel |
| 1535 | * attacks", as described at |
| 1536 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4 |
| 1537 | */ |
| 1538 | int ec_GFp_simple_ladder_step(const EC_GROUP *group, |
| 1539 | EC_POINT *r, EC_POINT *s, |
| 1540 | EC_POINT *p, BN_CTX *ctx) |
| 1541 | { |
| 1542 | int ret = 0; |
| 1543 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL; |
| 1544 | |
| 1545 | BN_CTX_start(ctx); |
| 1546 | t0 = BN_CTX_get(ctx); |
| 1547 | t1 = BN_CTX_get(ctx); |
| 1548 | t2 = BN_CTX_get(ctx); |
| 1549 | t3 = BN_CTX_get(ctx); |
| 1550 | t4 = BN_CTX_get(ctx); |
| 1551 | t5 = BN_CTX_get(ctx); |
| 1552 | t6 = BN_CTX_get(ctx); |
| 1553 | t7 = BN_CTX_get(ctx); |
| 1554 | |
| 1555 | if (t7 == NULL |
| 1556 | || !group->meth->field_mul(group, t0, r->X, s->X, ctx) |
| 1557 | || !group->meth->field_mul(group, t1, r->Z, s->Z, ctx) |
| 1558 | || !group->meth->field_mul(group, t2, r->X, s->Z, ctx) |
| 1559 | || !group->meth->field_mul(group, t3, r->Z, s->X, ctx) |
| 1560 | || !group->meth->field_mul(group, t4, group->a, t1, ctx) |
| 1561 | || !BN_mod_add_quick(t0, t0, t4, group->field) |
| 1562 | || !BN_mod_add_quick(t4, t3, t2, group->field) |
| 1563 | || !group->meth->field_mul(group, t0, t4, t0, ctx) |
| 1564 | || !group->meth->field_sqr(group, t1, t1, ctx) |
| 1565 | || !BN_mod_lshift_quick(t7, group->b, 2, group->field) |
| 1566 | || !group->meth->field_mul(group, t1, t7, t1, ctx) |
| 1567 | || !BN_mod_lshift1_quick(t0, t0, group->field) |
| 1568 | || !BN_mod_add_quick(t0, t1, t0, group->field) |
| 1569 | || !BN_mod_sub_quick(t1, t2, t3, group->field) |
| 1570 | || !group->meth->field_sqr(group, t1, t1, ctx) |
| 1571 | || !group->meth->field_mul(group, t3, t1, p->X, ctx) |
| 1572 | || !group->meth->field_mul(group, t0, p->Z, t0, ctx) |
| 1573 | /* s->X coord output */ |
| 1574 | || !BN_mod_sub_quick(s->X, t0, t3, group->field) |
| 1575 | /* s->Z coord output */ |
| 1576 | || !group->meth->field_mul(group, s->Z, p->Z, t1, ctx) |
| 1577 | || !group->meth->field_sqr(group, t3, r->X, ctx) |
| 1578 | || !group->meth->field_sqr(group, t2, r->Z, ctx) |
| 1579 | || !group->meth->field_mul(group, t4, t2, group->a, ctx) |
| 1580 | || !BN_mod_add_quick(t5, r->X, r->Z, group->field) |
| 1581 | || !group->meth->field_sqr(group, t5, t5, ctx) |
| 1582 | || !BN_mod_sub_quick(t5, t5, t3, group->field) |
| 1583 | || !BN_mod_sub_quick(t5, t5, t2, group->field) |
| 1584 | || !BN_mod_sub_quick(t6, t3, t4, group->field) |
| 1585 | || !group->meth->field_sqr(group, t6, t6, ctx) |
| 1586 | || !group->meth->field_mul(group, t0, t2, t5, ctx) |
| 1587 | || !group->meth->field_mul(group, t0, t7, t0, ctx) |
| 1588 | /* r->X coord output */ |
| 1589 | || !BN_mod_sub_quick(r->X, t6, t0, group->field) |
| 1590 | || !BN_mod_add_quick(t6, t3, t4, group->field) |
| 1591 | || !group->meth->field_sqr(group, t3, t2, ctx) |
| 1592 | || !group->meth->field_mul(group, t7, t3, t7, ctx) |
| 1593 | || !group->meth->field_mul(group, t5, t5, t6, ctx) |
| 1594 | || !BN_mod_lshift1_quick(t5, t5, group->field) |
| 1595 | /* r->Z coord output */ |
| 1596 | || !BN_mod_add_quick(r->Z, t7, t5, group->field)) |
| 1597 | goto err; |
| 1598 | |
| 1599 | ret = 1; |
| 1600 | |
| 1601 | err: |
| 1602 | BN_CTX_end(ctx); |
| 1603 | return ret; |
| 1604 | } |
| 1605 | |
| 1606 | /*- |
| 1607 | * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass |
| 1608 | * Elliptic Curves and Side-Channel Attacks", modified to work in projective |
| 1609 | * coordinates and return r in Jacobian projective coordinates. |
| 1610 | * |
| 1611 | * X4 = two*Y1*X2*Z3*Z2*Z1; |
| 1612 | * Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1); |
| 1613 | * Z4 = two*Y1*Z3*SQR(Z2)*Z1; |
| 1614 | * |
| 1615 | * Z4 != 0 because: |
| 1616 | * - Z1==0 implies p is at infinity, which would have caused an early exit in |
| 1617 | * the caller; |
| 1618 | * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch); |
| 1619 | * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch); |
| 1620 | * - Y1==0 implies p has order 2, so either r or s are infinity and handled by |
| 1621 | * one of the BN_is_zero(...) branches. |
| 1622 | */ |
| 1623 | int ec_GFp_simple_ladder_post(const EC_GROUP *group, |
| 1624 | EC_POINT *r, EC_POINT *s, |
| 1625 | EC_POINT *p, BN_CTX *ctx) |
| 1626 | { |
| 1627 | int ret = 0; |
| 1628 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL; |
| 1629 | |
| 1630 | if (BN_is_zero(r->Z)) |
| 1631 | return EC_POINT_set_to_infinity(group, r); |
| 1632 | |
| 1633 | if (BN_is_zero(s->Z)) { |
| 1634 | /* (X,Y,Z) -> (XZ,YZ**2,Z) */ |
| 1635 | if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx) |
| 1636 | || !group->meth->field_sqr(group, r->Z, p->Z, ctx) |
| 1637 | || !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx) |
| 1638 | || !BN_copy(r->Z, p->Z) |
| 1639 | || !EC_POINT_invert(group, r, ctx)) |
| 1640 | return 0; |
| 1641 | return 1; |
| 1642 | } |
| 1643 | |
| 1644 | BN_CTX_start(ctx); |
| 1645 | t0 = BN_CTX_get(ctx); |
| 1646 | t1 = BN_CTX_get(ctx); |
| 1647 | t2 = BN_CTX_get(ctx); |
| 1648 | t3 = BN_CTX_get(ctx); |
| 1649 | t4 = BN_CTX_get(ctx); |
| 1650 | t5 = BN_CTX_get(ctx); |
| 1651 | t6 = BN_CTX_get(ctx); |
| 1652 | |
| 1653 | if (t6 == NULL |
| 1654 | || !BN_mod_lshift1_quick(t0, p->Y, group->field) |
| 1655 | || !group->meth->field_mul(group, t1, r->X, p->Z, ctx) |
| 1656 | || !group->meth->field_mul(group, t2, r->Z, s->Z, ctx) |
| 1657 | || !group->meth->field_mul(group, t2, t1, t2, ctx) |
| 1658 | || !group->meth->field_mul(group, t3, t2, t0, ctx) |
| 1659 | || !group->meth->field_mul(group, t2, r->Z, p->Z, ctx) |
| 1660 | || !group->meth->field_sqr(group, t4, t2, ctx) |
| 1661 | || !BN_mod_lshift1_quick(t5, group->b, group->field) |
| 1662 | || !group->meth->field_mul(group, t4, t4, t5, ctx) |
| 1663 | || !group->meth->field_mul(group, t6, t2, group->a, ctx) |
| 1664 | || !group->meth->field_mul(group, t5, r->X, p->X, ctx) |
| 1665 | || !BN_mod_add_quick(t5, t6, t5, group->field) |
| 1666 | || !group->meth->field_mul(group, t6, r->Z, p->X, ctx) |
| 1667 | || !BN_mod_add_quick(t2, t6, t1, group->field) |
| 1668 | || !group->meth->field_mul(group, t5, t5, t2, ctx) |
| 1669 | || !BN_mod_sub_quick(t6, t6, t1, group->field) |
| 1670 | || !group->meth->field_sqr(group, t6, t6, ctx) |
| 1671 | || !group->meth->field_mul(group, t6, t6, s->X, ctx) |
| 1672 | || !BN_mod_add_quick(t4, t5, t4, group->field) |
| 1673 | || !group->meth->field_mul(group, t4, t4, s->Z, ctx) |
| 1674 | || !BN_mod_sub_quick(t4, t4, t6, group->field) |
| 1675 | || !group->meth->field_sqr(group, t5, r->Z, ctx) |
| 1676 | || !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx) |
| 1677 | || !group->meth->field_mul(group, r->Z, t5, r->Z, ctx) |
| 1678 | || !group->meth->field_mul(group, r->Z, r->Z, t0, ctx) |
| 1679 | /* t3 := X, t4 := Y */ |
| 1680 | /* (X,Y,Z) -> (XZ,YZ**2,Z) */ |
| 1681 | || !group->meth->field_mul(group, r->X, t3, r->Z, ctx) |
| 1682 | || !group->meth->field_sqr(group, t3, r->Z, ctx) |
| 1683 | || !group->meth->field_mul(group, r->Y, t4, t3, ctx)) |
| 1684 | goto err; |
| 1685 | |
| 1686 | ret = 1; |
| 1687 | |
| 1688 | err: |
| 1689 | BN_CTX_end(ctx); |
| 1690 | return ret; |
| 1691 | } |
| 1692 | |