| 1 | /* |
| 2 | * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <string.h> |
| 11 | #include <assert.h> |
| 12 | #include <openssl/opensslconf.h> |
| 13 | #include <openssl/crypto.h> |
| 14 | #include <openssl/evp.h> |
| 15 | #include <openssl/err.h> |
| 16 | #include <openssl/aes.h> |
| 17 | #include <openssl/rand.h> |
| 18 | #include <openssl/cmac.h> |
| 19 | #include "crypto/evp.h" |
| 20 | #include "internal/cryptlib.h" |
| 21 | #include "crypto/modes.h" |
| 22 | #include "crypto/siv.h" |
| 23 | #include "crypto/ciphermode_platform.h" |
| 24 | #include "evp_local.h" |
| 25 | |
| 26 | typedef struct { |
| 27 | union { |
| 28 | OSSL_UNION_ALIGN; |
| 29 | AES_KEY ks; |
| 30 | } ks; |
| 31 | block128_f block; |
| 32 | union { |
| 33 | cbc128_f cbc; |
| 34 | ctr128_f ctr; |
| 35 | } stream; |
| 36 | } EVP_AES_KEY; |
| 37 | |
| 38 | typedef struct { |
| 39 | union { |
| 40 | OSSL_UNION_ALIGN; |
| 41 | AES_KEY ks; |
| 42 | } ks; /* AES key schedule to use */ |
| 43 | int key_set; /* Set if key initialised */ |
| 44 | int iv_set; /* Set if an iv is set */ |
| 45 | GCM128_CONTEXT gcm; |
| 46 | unsigned char *iv; /* Temporary IV store */ |
| 47 | int ivlen; /* IV length */ |
| 48 | int taglen; |
| 49 | int iv_gen; /* It is OK to generate IVs */ |
| 50 | int iv_gen_rand; /* No IV was specified, so generate a rand IV */ |
| 51 | int tls_aad_len; /* TLS AAD length */ |
| 52 | uint64_t tls_enc_records; /* Number of TLS records encrypted */ |
| 53 | ctr128_f ctr; |
| 54 | } EVP_AES_GCM_CTX; |
| 55 | |
| 56 | typedef struct { |
| 57 | union { |
| 58 | OSSL_UNION_ALIGN; |
| 59 | AES_KEY ks; |
| 60 | } ks1, ks2; /* AES key schedules to use */ |
| 61 | XTS128_CONTEXT xts; |
| 62 | void (*stream) (const unsigned char *in, |
| 63 | unsigned char *out, size_t length, |
| 64 | const AES_KEY *key1, const AES_KEY *key2, |
| 65 | const unsigned char iv[16]); |
| 66 | } EVP_AES_XTS_CTX; |
| 67 | |
| 68 | #ifdef FIPS_MODE |
| 69 | static const int allow_insecure_decrypt = 0; |
| 70 | #else |
| 71 | static const int allow_insecure_decrypt = 1; |
| 72 | #endif |
| 73 | |
| 74 | typedef struct { |
| 75 | union { |
| 76 | OSSL_UNION_ALIGN; |
| 77 | AES_KEY ks; |
| 78 | } ks; /* AES key schedule to use */ |
| 79 | int key_set; /* Set if key initialised */ |
| 80 | int iv_set; /* Set if an iv is set */ |
| 81 | int tag_set; /* Set if tag is valid */ |
| 82 | int len_set; /* Set if message length set */ |
| 83 | int L, M; /* L and M parameters from RFC3610 */ |
| 84 | int tls_aad_len; /* TLS AAD length */ |
| 85 | CCM128_CONTEXT ccm; |
| 86 | ccm128_f str; |
| 87 | } EVP_AES_CCM_CTX; |
| 88 | |
| 89 | #ifndef OPENSSL_NO_OCB |
| 90 | typedef struct { |
| 91 | union { |
| 92 | OSSL_UNION_ALIGN; |
| 93 | AES_KEY ks; |
| 94 | } ksenc; /* AES key schedule to use for encryption */ |
| 95 | union { |
| 96 | OSSL_UNION_ALIGN; |
| 97 | AES_KEY ks; |
| 98 | } ksdec; /* AES key schedule to use for decryption */ |
| 99 | int key_set; /* Set if key initialised */ |
| 100 | int iv_set; /* Set if an iv is set */ |
| 101 | OCB128_CONTEXT ocb; |
| 102 | unsigned char *iv; /* Temporary IV store */ |
| 103 | unsigned char tag[16]; |
| 104 | unsigned char data_buf[16]; /* Store partial data blocks */ |
| 105 | unsigned char aad_buf[16]; /* Store partial AAD blocks */ |
| 106 | int data_buf_len; |
| 107 | int aad_buf_len; |
| 108 | int ivlen; /* IV length */ |
| 109 | int taglen; |
| 110 | } EVP_AES_OCB_CTX; |
| 111 | #endif |
| 112 | |
| 113 | #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) |
| 114 | |
| 115 | /* increment counter (64-bit int) by 1 */ |
| 116 | static void ctr64_inc(unsigned char *counter) |
| 117 | { |
| 118 | int n = 8; |
| 119 | unsigned char c; |
| 120 | |
| 121 | do { |
| 122 | --n; |
| 123 | c = counter[n]; |
| 124 | ++c; |
| 125 | counter[n] = c; |
| 126 | if (c) |
| 127 | return; |
| 128 | } while (n); |
| 129 | } |
| 130 | |
| 131 | #if defined(AESNI_CAPABLE) |
| 132 | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) |
| 133 | # define AES_gcm_encrypt aesni_gcm_encrypt |
| 134 | # define AES_gcm_decrypt aesni_gcm_decrypt |
| 135 | # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ |
| 136 | gctx->gcm.ghash==gcm_ghash_avx) |
| 137 | # undef AES_GCM_ASM2 /* minor size optimization */ |
| 138 | # endif |
| 139 | |
| 140 | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 141 | const unsigned char *iv, int enc) |
| 142 | { |
| 143 | int ret, mode; |
| 144 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 145 | |
| 146 | mode = EVP_CIPHER_CTX_mode(ctx); |
| 147 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 148 | && !enc) { |
| 149 | ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 150 | &dat->ks.ks); |
| 151 | dat->block = (block128_f) aesni_decrypt; |
| 152 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 153 | (cbc128_f) aesni_cbc_encrypt : NULL; |
| 154 | } else { |
| 155 | ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 156 | &dat->ks.ks); |
| 157 | dat->block = (block128_f) aesni_encrypt; |
| 158 | if (mode == EVP_CIPH_CBC_MODE) |
| 159 | dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; |
| 160 | else if (mode == EVP_CIPH_CTR_MODE) |
| 161 | dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; |
| 162 | else |
| 163 | dat->stream.cbc = NULL; |
| 164 | } |
| 165 | |
| 166 | if (ret < 0) { |
| 167 | EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | return 1; |
| 172 | } |
| 173 | |
| 174 | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 175 | const unsigned char *in, size_t len) |
| 176 | { |
| 177 | aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, |
| 178 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 179 | EVP_CIPHER_CTX_encrypting(ctx)); |
| 180 | |
| 181 | return 1; |
| 182 | } |
| 183 | |
| 184 | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 185 | const unsigned char *in, size_t len) |
| 186 | { |
| 187 | size_t bl = EVP_CIPHER_CTX_block_size(ctx); |
| 188 | |
| 189 | if (len < bl) |
| 190 | return 1; |
| 191 | |
| 192 | aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, |
| 193 | EVP_CIPHER_CTX_encrypting(ctx)); |
| 194 | |
| 195 | return 1; |
| 196 | } |
| 197 | |
| 198 | # define aesni_ofb_cipher aes_ofb_cipher |
| 199 | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 200 | const unsigned char *in, size_t len); |
| 201 | |
| 202 | # define aesni_cfb_cipher aes_cfb_cipher |
| 203 | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 204 | const unsigned char *in, size_t len); |
| 205 | |
| 206 | # define aesni_cfb8_cipher aes_cfb8_cipher |
| 207 | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 208 | const unsigned char *in, size_t len); |
| 209 | |
| 210 | # define aesni_cfb1_cipher aes_cfb1_cipher |
| 211 | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 212 | const unsigned char *in, size_t len); |
| 213 | |
| 214 | # define aesni_ctr_cipher aes_ctr_cipher |
| 215 | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 216 | const unsigned char *in, size_t len); |
| 217 | |
| 218 | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 219 | const unsigned char *iv, int enc) |
| 220 | { |
| 221 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 222 | if (!iv && !key) |
| 223 | return 1; |
| 224 | if (key) { |
| 225 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 226 | &gctx->ks.ks); |
| 227 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); |
| 228 | gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; |
| 229 | /* |
| 230 | * If we have an iv can set it directly, otherwise use saved IV. |
| 231 | */ |
| 232 | if (iv == NULL && gctx->iv_set) |
| 233 | iv = gctx->iv; |
| 234 | if (iv) { |
| 235 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 236 | gctx->iv_set = 1; |
| 237 | } |
| 238 | gctx->key_set = 1; |
| 239 | } else { |
| 240 | /* If key set use IV, otherwise copy */ |
| 241 | if (gctx->key_set) |
| 242 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 243 | else |
| 244 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 245 | gctx->iv_set = 1; |
| 246 | gctx->iv_gen = 0; |
| 247 | } |
| 248 | return 1; |
| 249 | } |
| 250 | |
| 251 | # define aesni_gcm_cipher aes_gcm_cipher |
| 252 | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 253 | const unsigned char *in, size_t len); |
| 254 | |
| 255 | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 256 | const unsigned char *iv, int enc) |
| 257 | { |
| 258 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 259 | |
| 260 | if (!iv && !key) |
| 261 | return 1; |
| 262 | |
| 263 | if (key) { |
| 264 | /* The key is two half length keys in reality */ |
| 265 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 266 | const int bits = bytes * 8; |
| 267 | |
| 268 | /* |
| 269 | * Verify that the two keys are different. |
| 270 | * |
| 271 | * This addresses Rogaway's vulnerability. |
| 272 | * See comment in aes_xts_init_key() below. |
| 273 | */ |
| 274 | if ((!allow_insecure_decrypt || enc) |
| 275 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
| 276 | EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | /* key_len is two AES keys */ |
| 281 | if (enc) { |
| 282 | aesni_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| 283 | xctx->xts.block1 = (block128_f) aesni_encrypt; |
| 284 | xctx->stream = aesni_xts_encrypt; |
| 285 | } else { |
| 286 | aesni_set_decrypt_key(key, bits, &xctx->ks1.ks); |
| 287 | xctx->xts.block1 = (block128_f) aesni_decrypt; |
| 288 | xctx->stream = aesni_xts_decrypt; |
| 289 | } |
| 290 | |
| 291 | aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
| 292 | xctx->xts.block2 = (block128_f) aesni_encrypt; |
| 293 | |
| 294 | xctx->xts.key1 = &xctx->ks1; |
| 295 | } |
| 296 | |
| 297 | if (iv) { |
| 298 | xctx->xts.key2 = &xctx->ks2; |
| 299 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); |
| 300 | } |
| 301 | |
| 302 | return 1; |
| 303 | } |
| 304 | |
| 305 | # define aesni_xts_cipher aes_xts_cipher |
| 306 | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 307 | const unsigned char *in, size_t len); |
| 308 | |
| 309 | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 310 | const unsigned char *iv, int enc) |
| 311 | { |
| 312 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 313 | if (!iv && !key) |
| 314 | return 1; |
| 315 | if (key) { |
| 316 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 317 | &cctx->ks.ks); |
| 318 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 319 | &cctx->ks, (block128_f) aesni_encrypt); |
| 320 | cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : |
| 321 | (ccm128_f) aesni_ccm64_decrypt_blocks; |
| 322 | cctx->key_set = 1; |
| 323 | } |
| 324 | if (iv) { |
| 325 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); |
| 326 | cctx->iv_set = 1; |
| 327 | } |
| 328 | return 1; |
| 329 | } |
| 330 | |
| 331 | # define aesni_ccm_cipher aes_ccm_cipher |
| 332 | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 333 | const unsigned char *in, size_t len); |
| 334 | |
| 335 | # ifndef OPENSSL_NO_OCB |
| 336 | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 337 | const unsigned char *iv, int enc) |
| 338 | { |
| 339 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 340 | if (!iv && !key) |
| 341 | return 1; |
| 342 | if (key) { |
| 343 | do { |
| 344 | /* |
| 345 | * We set both the encrypt and decrypt key here because decrypt |
| 346 | * needs both. We could possibly optimise to remove setting the |
| 347 | * decrypt for an encryption operation. |
| 348 | */ |
| 349 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 350 | &octx->ksenc.ks); |
| 351 | aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 352 | &octx->ksdec.ks); |
| 353 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 354 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 355 | (block128_f) aesni_encrypt, |
| 356 | (block128_f) aesni_decrypt, |
| 357 | enc ? aesni_ocb_encrypt |
| 358 | : aesni_ocb_decrypt)) |
| 359 | return 0; |
| 360 | } |
| 361 | while (0); |
| 362 | |
| 363 | /* |
| 364 | * If we have an iv we can set it directly, otherwise use saved IV. |
| 365 | */ |
| 366 | if (iv == NULL && octx->iv_set) |
| 367 | iv = octx->iv; |
| 368 | if (iv) { |
| 369 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| 370 | != 1) |
| 371 | return 0; |
| 372 | octx->iv_set = 1; |
| 373 | } |
| 374 | octx->key_set = 1; |
| 375 | } else { |
| 376 | /* If key set use IV, otherwise copy */ |
| 377 | if (octx->key_set) |
| 378 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| 379 | else |
| 380 | memcpy(octx->iv, iv, octx->ivlen); |
| 381 | octx->iv_set = 1; |
| 382 | } |
| 383 | return 1; |
| 384 | } |
| 385 | |
| 386 | # define aesni_ocb_cipher aes_ocb_cipher |
| 387 | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 388 | const unsigned char *in, size_t len); |
| 389 | # endif /* OPENSSL_NO_OCB */ |
| 390 | |
| 391 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| 392 | static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
| 393 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| 394 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 395 | aesni_init_key, \ |
| 396 | aesni_##mode##_cipher, \ |
| 397 | NULL, \ |
| 398 | sizeof(EVP_AES_KEY), \ |
| 399 | NULL,NULL,NULL,NULL }; \ |
| 400 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 401 | nid##_##keylen##_##nmode,blocksize, \ |
| 402 | keylen/8,ivlen, \ |
| 403 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 404 | aes_init_key, \ |
| 405 | aes_##mode##_cipher, \ |
| 406 | NULL, \ |
| 407 | sizeof(EVP_AES_KEY), \ |
| 408 | NULL,NULL,NULL,NULL }; \ |
| 409 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 410 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 411 | |
| 412 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| 413 | static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
| 414 | nid##_##keylen##_##mode,blocksize, \ |
| 415 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ |
| 416 | ivlen, \ |
| 417 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 418 | aesni_##mode##_init_key, \ |
| 419 | aesni_##mode##_cipher, \ |
| 420 | aes_##mode##_cleanup, \ |
| 421 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 422 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 423 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 424 | nid##_##keylen##_##mode,blocksize, \ |
| 425 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ |
| 426 | ivlen, \ |
| 427 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 428 | aes_##mode##_init_key, \ |
| 429 | aes_##mode##_cipher, \ |
| 430 | aes_##mode##_cleanup, \ |
| 431 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 432 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 433 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 434 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 435 | |
| 436 | #elif defined(SPARC_AES_CAPABLE) |
| 437 | |
| 438 | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 439 | const unsigned char *iv, int enc) |
| 440 | { |
| 441 | int ret, mode, bits; |
| 442 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 443 | |
| 444 | mode = EVP_CIPHER_CTX_mode(ctx); |
| 445 | bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 446 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 447 | && !enc) { |
| 448 | ret = 0; |
| 449 | aes_t4_set_decrypt_key(key, bits, &dat->ks.ks); |
| 450 | dat->block = (block128_f) aes_t4_decrypt; |
| 451 | switch (bits) { |
| 452 | case 128: |
| 453 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 454 | (cbc128_f) aes128_t4_cbc_decrypt : NULL; |
| 455 | break; |
| 456 | case 192: |
| 457 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 458 | (cbc128_f) aes192_t4_cbc_decrypt : NULL; |
| 459 | break; |
| 460 | case 256: |
| 461 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 462 | (cbc128_f) aes256_t4_cbc_decrypt : NULL; |
| 463 | break; |
| 464 | default: |
| 465 | ret = -1; |
| 466 | } |
| 467 | } else { |
| 468 | ret = 0; |
| 469 | aes_t4_set_encrypt_key(key, bits, &dat->ks.ks); |
| 470 | dat->block = (block128_f) aes_t4_encrypt; |
| 471 | switch (bits) { |
| 472 | case 128: |
| 473 | if (mode == EVP_CIPH_CBC_MODE) |
| 474 | dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; |
| 475 | else if (mode == EVP_CIPH_CTR_MODE) |
| 476 | dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; |
| 477 | else |
| 478 | dat->stream.cbc = NULL; |
| 479 | break; |
| 480 | case 192: |
| 481 | if (mode == EVP_CIPH_CBC_MODE) |
| 482 | dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; |
| 483 | else if (mode == EVP_CIPH_CTR_MODE) |
| 484 | dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; |
| 485 | else |
| 486 | dat->stream.cbc = NULL; |
| 487 | break; |
| 488 | case 256: |
| 489 | if (mode == EVP_CIPH_CBC_MODE) |
| 490 | dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; |
| 491 | else if (mode == EVP_CIPH_CTR_MODE) |
| 492 | dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; |
| 493 | else |
| 494 | dat->stream.cbc = NULL; |
| 495 | break; |
| 496 | default: |
| 497 | ret = -1; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | if (ret < 0) { |
| 502 | EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| 503 | return 0; |
| 504 | } |
| 505 | |
| 506 | return 1; |
| 507 | } |
| 508 | |
| 509 | # define aes_t4_cbc_cipher aes_cbc_cipher |
| 510 | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 511 | const unsigned char *in, size_t len); |
| 512 | |
| 513 | # define aes_t4_ecb_cipher aes_ecb_cipher |
| 514 | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 515 | const unsigned char *in, size_t len); |
| 516 | |
| 517 | # define aes_t4_ofb_cipher aes_ofb_cipher |
| 518 | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 519 | const unsigned char *in, size_t len); |
| 520 | |
| 521 | # define aes_t4_cfb_cipher aes_cfb_cipher |
| 522 | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 523 | const unsigned char *in, size_t len); |
| 524 | |
| 525 | # define aes_t4_cfb8_cipher aes_cfb8_cipher |
| 526 | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 527 | const unsigned char *in, size_t len); |
| 528 | |
| 529 | # define aes_t4_cfb1_cipher aes_cfb1_cipher |
| 530 | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 531 | const unsigned char *in, size_t len); |
| 532 | |
| 533 | # define aes_t4_ctr_cipher aes_ctr_cipher |
| 534 | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 535 | const unsigned char *in, size_t len); |
| 536 | |
| 537 | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 538 | const unsigned char *iv, int enc) |
| 539 | { |
| 540 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 541 | if (!iv && !key) |
| 542 | return 1; |
| 543 | if (key) { |
| 544 | int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 545 | aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); |
| 546 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 547 | (block128_f) aes_t4_encrypt); |
| 548 | switch (bits) { |
| 549 | case 128: |
| 550 | gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; |
| 551 | break; |
| 552 | case 192: |
| 553 | gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; |
| 554 | break; |
| 555 | case 256: |
| 556 | gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; |
| 557 | break; |
| 558 | default: |
| 559 | return 0; |
| 560 | } |
| 561 | /* |
| 562 | * If we have an iv can set it directly, otherwise use saved IV. |
| 563 | */ |
| 564 | if (iv == NULL && gctx->iv_set) |
| 565 | iv = gctx->iv; |
| 566 | if (iv) { |
| 567 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 568 | gctx->iv_set = 1; |
| 569 | } |
| 570 | gctx->key_set = 1; |
| 571 | } else { |
| 572 | /* If key set use IV, otherwise copy */ |
| 573 | if (gctx->key_set) |
| 574 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 575 | else |
| 576 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 577 | gctx->iv_set = 1; |
| 578 | gctx->iv_gen = 0; |
| 579 | } |
| 580 | return 1; |
| 581 | } |
| 582 | |
| 583 | # define aes_t4_gcm_cipher aes_gcm_cipher |
| 584 | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 585 | const unsigned char *in, size_t len); |
| 586 | |
| 587 | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 588 | const unsigned char *iv, int enc) |
| 589 | { |
| 590 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 591 | |
| 592 | if (!iv && !key) |
| 593 | return 1; |
| 594 | |
| 595 | if (key) { |
| 596 | /* The key is two half length keys in reality */ |
| 597 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 598 | const int bits = bytes * 8; |
| 599 | |
| 600 | /* |
| 601 | * Verify that the two keys are different. |
| 602 | * |
| 603 | * This addresses Rogaway's vulnerability. |
| 604 | * See comment in aes_xts_init_key() below. |
| 605 | */ |
| 606 | if ((!allow_insecure_decrypt || enc) |
| 607 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
| 608 | EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); |
| 609 | return 0; |
| 610 | } |
| 611 | |
| 612 | xctx->stream = NULL; |
| 613 | /* key_len is two AES keys */ |
| 614 | if (enc) { |
| 615 | aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| 616 | xctx->xts.block1 = (block128_f) aes_t4_encrypt; |
| 617 | switch (bits) { |
| 618 | case 128: |
| 619 | xctx->stream = aes128_t4_xts_encrypt; |
| 620 | break; |
| 621 | case 256: |
| 622 | xctx->stream = aes256_t4_xts_encrypt; |
| 623 | break; |
| 624 | default: |
| 625 | return 0; |
| 626 | } |
| 627 | } else { |
| 628 | aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks); |
| 629 | xctx->xts.block1 = (block128_f) aes_t4_decrypt; |
| 630 | switch (bits) { |
| 631 | case 128: |
| 632 | xctx->stream = aes128_t4_xts_decrypt; |
| 633 | break; |
| 634 | case 256: |
| 635 | xctx->stream = aes256_t4_xts_decrypt; |
| 636 | break; |
| 637 | default: |
| 638 | return 0; |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
| 643 | xctx->xts.block2 = (block128_f) aes_t4_encrypt; |
| 644 | |
| 645 | xctx->xts.key1 = &xctx->ks1; |
| 646 | } |
| 647 | |
| 648 | if (iv) { |
| 649 | xctx->xts.key2 = &xctx->ks2; |
| 650 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); |
| 651 | } |
| 652 | |
| 653 | return 1; |
| 654 | } |
| 655 | |
| 656 | # define aes_t4_xts_cipher aes_xts_cipher |
| 657 | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 658 | const unsigned char *in, size_t len); |
| 659 | |
| 660 | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 661 | const unsigned char *iv, int enc) |
| 662 | { |
| 663 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 664 | if (!iv && !key) |
| 665 | return 1; |
| 666 | if (key) { |
| 667 | int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 668 | aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); |
| 669 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 670 | &cctx->ks, (block128_f) aes_t4_encrypt); |
| 671 | cctx->str = NULL; |
| 672 | cctx->key_set = 1; |
| 673 | } |
| 674 | if (iv) { |
| 675 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); |
| 676 | cctx->iv_set = 1; |
| 677 | } |
| 678 | return 1; |
| 679 | } |
| 680 | |
| 681 | # define aes_t4_ccm_cipher aes_ccm_cipher |
| 682 | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 683 | const unsigned char *in, size_t len); |
| 684 | |
| 685 | # ifndef OPENSSL_NO_OCB |
| 686 | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 687 | const unsigned char *iv, int enc) |
| 688 | { |
| 689 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 690 | if (!iv && !key) |
| 691 | return 1; |
| 692 | if (key) { |
| 693 | do { |
| 694 | /* |
| 695 | * We set both the encrypt and decrypt key here because decrypt |
| 696 | * needs both. We could possibly optimise to remove setting the |
| 697 | * decrypt for an encryption operation. |
| 698 | */ |
| 699 | aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 700 | &octx->ksenc.ks); |
| 701 | aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 702 | &octx->ksdec.ks); |
| 703 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 704 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 705 | (block128_f) aes_t4_encrypt, |
| 706 | (block128_f) aes_t4_decrypt, |
| 707 | NULL)) |
| 708 | return 0; |
| 709 | } |
| 710 | while (0); |
| 711 | |
| 712 | /* |
| 713 | * If we have an iv we can set it directly, otherwise use saved IV. |
| 714 | */ |
| 715 | if (iv == NULL && octx->iv_set) |
| 716 | iv = octx->iv; |
| 717 | if (iv) { |
| 718 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| 719 | != 1) |
| 720 | return 0; |
| 721 | octx->iv_set = 1; |
| 722 | } |
| 723 | octx->key_set = 1; |
| 724 | } else { |
| 725 | /* If key set use IV, otherwise copy */ |
| 726 | if (octx->key_set) |
| 727 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| 728 | else |
| 729 | memcpy(octx->iv, iv, octx->ivlen); |
| 730 | octx->iv_set = 1; |
| 731 | } |
| 732 | return 1; |
| 733 | } |
| 734 | |
| 735 | # define aes_t4_ocb_cipher aes_ocb_cipher |
| 736 | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 737 | const unsigned char *in, size_t len); |
| 738 | # endif /* OPENSSL_NO_OCB */ |
| 739 | |
| 740 | # ifndef OPENSSL_NO_SIV |
| 741 | # define aes_t4_siv_init_key aes_siv_init_key |
| 742 | # define aes_t4_siv_cipher aes_siv_cipher |
| 743 | # endif /* OPENSSL_NO_SIV */ |
| 744 | |
| 745 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| 746 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
| 747 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| 748 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 749 | aes_t4_init_key, \ |
| 750 | aes_t4_##mode##_cipher, \ |
| 751 | NULL, \ |
| 752 | sizeof(EVP_AES_KEY), \ |
| 753 | NULL,NULL,NULL,NULL }; \ |
| 754 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 755 | nid##_##keylen##_##nmode,blocksize, \ |
| 756 | keylen/8,ivlen, \ |
| 757 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 758 | aes_init_key, \ |
| 759 | aes_##mode##_cipher, \ |
| 760 | NULL, \ |
| 761 | sizeof(EVP_AES_KEY), \ |
| 762 | NULL,NULL,NULL,NULL }; \ |
| 763 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 764 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 765 | |
| 766 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| 767 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
| 768 | nid##_##keylen##_##mode,blocksize, \ |
| 769 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ |
| 770 | ivlen, \ |
| 771 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 772 | aes_t4_##mode##_init_key, \ |
| 773 | aes_t4_##mode##_cipher, \ |
| 774 | aes_##mode##_cleanup, \ |
| 775 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 776 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 777 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 778 | nid##_##keylen##_##mode,blocksize, \ |
| 779 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ |
| 780 | ivlen, \ |
| 781 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 782 | aes_##mode##_init_key, \ |
| 783 | aes_##mode##_cipher, \ |
| 784 | aes_##mode##_cleanup, \ |
| 785 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 786 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 787 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 788 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 789 | |
| 790 | #elif defined(S390X_aes_128_CAPABLE) |
| 791 | /* IBM S390X support */ |
| 792 | typedef struct { |
| 793 | union { |
| 794 | OSSL_UNION_ALIGN; |
| 795 | /*- |
| 796 | * KM-AES parameter block - begin |
| 797 | * (see z/Architecture Principles of Operation >= SA22-7832-06) |
| 798 | */ |
| 799 | struct { |
| 800 | unsigned char k[32]; |
| 801 | } param; |
| 802 | /* KM-AES parameter block - end */ |
| 803 | } km; |
| 804 | unsigned int fc; |
| 805 | } S390X_AES_ECB_CTX; |
| 806 | |
| 807 | typedef struct { |
| 808 | union { |
| 809 | OSSL_UNION_ALIGN; |
| 810 | /*- |
| 811 | * KMO-AES parameter block - begin |
| 812 | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
| 813 | */ |
| 814 | struct { |
| 815 | unsigned char cv[16]; |
| 816 | unsigned char k[32]; |
| 817 | } param; |
| 818 | /* KMO-AES parameter block - end */ |
| 819 | } kmo; |
| 820 | unsigned int fc; |
| 821 | |
| 822 | int res; |
| 823 | } S390X_AES_OFB_CTX; |
| 824 | |
| 825 | typedef struct { |
| 826 | union { |
| 827 | OSSL_UNION_ALIGN; |
| 828 | /*- |
| 829 | * KMF-AES parameter block - begin |
| 830 | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
| 831 | */ |
| 832 | struct { |
| 833 | unsigned char cv[16]; |
| 834 | unsigned char k[32]; |
| 835 | } param; |
| 836 | /* KMF-AES parameter block - end */ |
| 837 | } kmf; |
| 838 | unsigned int fc; |
| 839 | |
| 840 | int res; |
| 841 | } S390X_AES_CFB_CTX; |
| 842 | |
| 843 | typedef struct { |
| 844 | union { |
| 845 | OSSL_UNION_ALIGN; |
| 846 | /*- |
| 847 | * KMA-GCM-AES parameter block - begin |
| 848 | * (see z/Architecture Principles of Operation >= SA22-7832-11) |
| 849 | */ |
| 850 | struct { |
| 851 | unsigned char reserved[12]; |
| 852 | union { |
| 853 | unsigned int w; |
| 854 | unsigned char b[4]; |
| 855 | } cv; |
| 856 | union { |
| 857 | unsigned long long g[2]; |
| 858 | unsigned char b[16]; |
| 859 | } t; |
| 860 | unsigned char h[16]; |
| 861 | unsigned long long taadl; |
| 862 | unsigned long long tpcl; |
| 863 | union { |
| 864 | unsigned long long g[2]; |
| 865 | unsigned int w[4]; |
| 866 | } j0; |
| 867 | unsigned char k[32]; |
| 868 | } param; |
| 869 | /* KMA-GCM-AES parameter block - end */ |
| 870 | } kma; |
| 871 | unsigned int fc; |
| 872 | int key_set; |
| 873 | |
| 874 | unsigned char *iv; |
| 875 | int ivlen; |
| 876 | int iv_set; |
| 877 | int iv_gen; |
| 878 | |
| 879 | int taglen; |
| 880 | |
| 881 | unsigned char ares[16]; |
| 882 | unsigned char mres[16]; |
| 883 | unsigned char kres[16]; |
| 884 | int areslen; |
| 885 | int mreslen; |
| 886 | int kreslen; |
| 887 | |
| 888 | int tls_aad_len; |
| 889 | uint64_t tls_enc_records; /* Number of TLS records encrypted */ |
| 890 | } S390X_AES_GCM_CTX; |
| 891 | |
| 892 | typedef struct { |
| 893 | union { |
| 894 | OSSL_UNION_ALIGN; |
| 895 | /*- |
| 896 | * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and |
| 897 | * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's |
| 898 | * rounds field is used to store the function code and that the key |
| 899 | * schedule is not stored (if aes hardware support is detected). |
| 900 | */ |
| 901 | struct { |
| 902 | unsigned char pad[16]; |
| 903 | AES_KEY k; |
| 904 | } key; |
| 905 | |
| 906 | struct { |
| 907 | /*- |
| 908 | * KMAC-AES parameter block - begin |
| 909 | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
| 910 | */ |
| 911 | struct { |
| 912 | union { |
| 913 | unsigned long long g[2]; |
| 914 | unsigned char b[16]; |
| 915 | } icv; |
| 916 | unsigned char k[32]; |
| 917 | } kmac_param; |
| 918 | /* KMAC-AES parameter block - end */ |
| 919 | |
| 920 | union { |
| 921 | unsigned long long g[2]; |
| 922 | unsigned char b[16]; |
| 923 | } nonce; |
| 924 | union { |
| 925 | unsigned long long g[2]; |
| 926 | unsigned char b[16]; |
| 927 | } buf; |
| 928 | |
| 929 | unsigned long long blocks; |
| 930 | int l; |
| 931 | int m; |
| 932 | int tls_aad_len; |
| 933 | int iv_set; |
| 934 | int tag_set; |
| 935 | int len_set; |
| 936 | int key_set; |
| 937 | |
| 938 | unsigned char pad[140]; |
| 939 | unsigned int fc; |
| 940 | } ccm; |
| 941 | } aes; |
| 942 | } S390X_AES_CCM_CTX; |
| 943 | |
| 944 | # define s390x_aes_init_key aes_init_key |
| 945 | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 946 | const unsigned char *iv, int enc); |
| 947 | |
| 948 | # define S390X_AES_CBC_CTX EVP_AES_KEY |
| 949 | |
| 950 | # define s390x_aes_cbc_init_key aes_init_key |
| 951 | |
| 952 | # define s390x_aes_cbc_cipher aes_cbc_cipher |
| 953 | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 954 | const unsigned char *in, size_t len); |
| 955 | |
| 956 | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx, |
| 957 | const unsigned char *key, |
| 958 | const unsigned char *iv, int enc) |
| 959 | { |
| 960 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); |
| 961 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 962 | |
| 963 | cctx->fc = S390X_AES_FC(keylen); |
| 964 | if (!enc) |
| 965 | cctx->fc |= S390X_DECRYPT; |
| 966 | |
| 967 | memcpy(cctx->km.param.k, key, keylen); |
| 968 | return 1; |
| 969 | } |
| 970 | |
| 971 | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 972 | const unsigned char *in, size_t len) |
| 973 | { |
| 974 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); |
| 975 | |
| 976 | s390x_km(in, len, out, cctx->fc, &cctx->km.param); |
| 977 | return 1; |
| 978 | } |
| 979 | |
| 980 | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx, |
| 981 | const unsigned char *key, |
| 982 | const unsigned char *ivec, int enc) |
| 983 | { |
| 984 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); |
| 985 | const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx); |
| 986 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 987 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 988 | |
| 989 | memcpy(cctx->kmo.param.cv, iv, ivlen); |
| 990 | memcpy(cctx->kmo.param.k, key, keylen); |
| 991 | cctx->fc = S390X_AES_FC(keylen); |
| 992 | cctx->res = 0; |
| 993 | return 1; |
| 994 | } |
| 995 | |
| 996 | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 997 | const unsigned char *in, size_t len) |
| 998 | { |
| 999 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); |
| 1000 | int n = cctx->res; |
| 1001 | int rem; |
| 1002 | |
| 1003 | while (n && len) { |
| 1004 | *out = *in ^ cctx->kmo.param.cv[n]; |
| 1005 | n = (n + 1) & 0xf; |
| 1006 | --len; |
| 1007 | ++in; |
| 1008 | ++out; |
| 1009 | } |
| 1010 | |
| 1011 | rem = len & 0xf; |
| 1012 | |
| 1013 | len &= ~(size_t)0xf; |
| 1014 | if (len) { |
| 1015 | s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param); |
| 1016 | |
| 1017 | out += len; |
| 1018 | in += len; |
| 1019 | } |
| 1020 | |
| 1021 | if (rem) { |
| 1022 | s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc, |
| 1023 | cctx->kmo.param.k); |
| 1024 | |
| 1025 | while (rem--) { |
| 1026 | out[n] = in[n] ^ cctx->kmo.param.cv[n]; |
| 1027 | ++n; |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | cctx->res = n; |
| 1032 | return 1; |
| 1033 | } |
| 1034 | |
| 1035 | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx, |
| 1036 | const unsigned char *key, |
| 1037 | const unsigned char *ivec, int enc) |
| 1038 | { |
| 1039 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1040 | const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx); |
| 1041 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1042 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1043 | |
| 1044 | cctx->fc = S390X_AES_FC(keylen); |
| 1045 | cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */ |
| 1046 | if (!enc) |
| 1047 | cctx->fc |= S390X_DECRYPT; |
| 1048 | |
| 1049 | cctx->res = 0; |
| 1050 | memcpy(cctx->kmf.param.cv, iv, ivlen); |
| 1051 | memcpy(cctx->kmf.param.k, key, keylen); |
| 1052 | return 1; |
| 1053 | } |
| 1054 | |
| 1055 | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1056 | const unsigned char *in, size_t len) |
| 1057 | { |
| 1058 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1059 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1060 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1061 | int n = cctx->res; |
| 1062 | int rem; |
| 1063 | unsigned char tmp; |
| 1064 | |
| 1065 | while (n && len) { |
| 1066 | tmp = *in; |
| 1067 | *out = cctx->kmf.param.cv[n] ^ tmp; |
| 1068 | cctx->kmf.param.cv[n] = enc ? *out : tmp; |
| 1069 | n = (n + 1) & 0xf; |
| 1070 | --len; |
| 1071 | ++in; |
| 1072 | ++out; |
| 1073 | } |
| 1074 | |
| 1075 | rem = len & 0xf; |
| 1076 | |
| 1077 | len &= ~(size_t)0xf; |
| 1078 | if (len) { |
| 1079 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); |
| 1080 | |
| 1081 | out += len; |
| 1082 | in += len; |
| 1083 | } |
| 1084 | |
| 1085 | if (rem) { |
| 1086 | s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv, |
| 1087 | S390X_AES_FC(keylen), cctx->kmf.param.k); |
| 1088 | |
| 1089 | while (rem--) { |
| 1090 | tmp = in[n]; |
| 1091 | out[n] = cctx->kmf.param.cv[n] ^ tmp; |
| 1092 | cctx->kmf.param.cv[n] = enc ? out[n] : tmp; |
| 1093 | ++n; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | cctx->res = n; |
| 1098 | return 1; |
| 1099 | } |
| 1100 | |
| 1101 | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx, |
| 1102 | const unsigned char *key, |
| 1103 | const unsigned char *ivec, int enc) |
| 1104 | { |
| 1105 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1106 | const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx); |
| 1107 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1108 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1109 | |
| 1110 | cctx->fc = S390X_AES_FC(keylen); |
| 1111 | cctx->fc |= 1 << 24; /* 1 byte cipher feedback */ |
| 1112 | if (!enc) |
| 1113 | cctx->fc |= S390X_DECRYPT; |
| 1114 | |
| 1115 | memcpy(cctx->kmf.param.cv, iv, ivlen); |
| 1116 | memcpy(cctx->kmf.param.k, key, keylen); |
| 1117 | return 1; |
| 1118 | } |
| 1119 | |
| 1120 | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1121 | const unsigned char *in, size_t len) |
| 1122 | { |
| 1123 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1124 | |
| 1125 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); |
| 1126 | return 1; |
| 1127 | } |
| 1128 | |
| 1129 | # define s390x_aes_cfb1_init_key aes_init_key |
| 1130 | |
| 1131 | # define s390x_aes_cfb1_cipher aes_cfb1_cipher |
| 1132 | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1133 | const unsigned char *in, size_t len); |
| 1134 | |
| 1135 | # define S390X_AES_CTR_CTX EVP_AES_KEY |
| 1136 | |
| 1137 | # define s390x_aes_ctr_init_key aes_init_key |
| 1138 | |
| 1139 | # define s390x_aes_ctr_cipher aes_ctr_cipher |
| 1140 | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1141 | const unsigned char *in, size_t len); |
| 1142 | |
| 1143 | /* iv + padding length for iv lengths != 12 */ |
| 1144 | # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16) |
| 1145 | |
| 1146 | /*- |
| 1147 | * Process additional authenticated data. Returns 0 on success. Code is |
| 1148 | * big-endian. |
| 1149 | */ |
| 1150 | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad, |
| 1151 | size_t len) |
| 1152 | { |
| 1153 | unsigned long long alen; |
| 1154 | int n, rem; |
| 1155 | |
| 1156 | if (ctx->kma.param.tpcl) |
| 1157 | return -2; |
| 1158 | |
| 1159 | alen = ctx->kma.param.taadl + len; |
| 1160 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
| 1161 | return -1; |
| 1162 | ctx->kma.param.taadl = alen; |
| 1163 | |
| 1164 | n = ctx->areslen; |
| 1165 | if (n) { |
| 1166 | while (n && len) { |
| 1167 | ctx->ares[n] = *aad; |
| 1168 | n = (n + 1) & 0xf; |
| 1169 | ++aad; |
| 1170 | --len; |
| 1171 | } |
| 1172 | /* ctx->ares contains a complete block if offset has wrapped around */ |
| 1173 | if (!n) { |
| 1174 | s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param); |
| 1175 | ctx->fc |= S390X_KMA_HS; |
| 1176 | } |
| 1177 | ctx->areslen = n; |
| 1178 | } |
| 1179 | |
| 1180 | rem = len & 0xf; |
| 1181 | |
| 1182 | len &= ~(size_t)0xf; |
| 1183 | if (len) { |
| 1184 | s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param); |
| 1185 | aad += len; |
| 1186 | ctx->fc |= S390X_KMA_HS; |
| 1187 | } |
| 1188 | |
| 1189 | if (rem) { |
| 1190 | ctx->areslen = rem; |
| 1191 | |
| 1192 | do { |
| 1193 | --rem; |
| 1194 | ctx->ares[rem] = aad[rem]; |
| 1195 | } while (rem); |
| 1196 | } |
| 1197 | return 0; |
| 1198 | } |
| 1199 | |
| 1200 | /*- |
| 1201 | * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for |
| 1202 | * success. Code is big-endian. |
| 1203 | */ |
| 1204 | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in, |
| 1205 | unsigned char *out, size_t len) |
| 1206 | { |
| 1207 | const unsigned char *inptr; |
| 1208 | unsigned long long mlen; |
| 1209 | union { |
| 1210 | unsigned int w[4]; |
| 1211 | unsigned char b[16]; |
| 1212 | } buf; |
| 1213 | size_t inlen; |
| 1214 | int n, rem, i; |
| 1215 | |
| 1216 | mlen = ctx->kma.param.tpcl + len; |
| 1217 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| 1218 | return -1; |
| 1219 | ctx->kma.param.tpcl = mlen; |
| 1220 | |
| 1221 | n = ctx->mreslen; |
| 1222 | if (n) { |
| 1223 | inptr = in; |
| 1224 | inlen = len; |
| 1225 | while (n && inlen) { |
| 1226 | ctx->mres[n] = *inptr; |
| 1227 | n = (n + 1) & 0xf; |
| 1228 | ++inptr; |
| 1229 | --inlen; |
| 1230 | } |
| 1231 | /* ctx->mres contains a complete block if offset has wrapped around */ |
| 1232 | if (!n) { |
| 1233 | s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b, |
| 1234 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); |
| 1235 | ctx->fc |= S390X_KMA_HS; |
| 1236 | ctx->areslen = 0; |
| 1237 | |
| 1238 | /* previous call already encrypted/decrypted its remainder, |
| 1239 | * see comment below */ |
| 1240 | n = ctx->mreslen; |
| 1241 | while (n) { |
| 1242 | *out = buf.b[n]; |
| 1243 | n = (n + 1) & 0xf; |
| 1244 | ++out; |
| 1245 | ++in; |
| 1246 | --len; |
| 1247 | } |
| 1248 | ctx->mreslen = 0; |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | rem = len & 0xf; |
| 1253 | |
| 1254 | len &= ~(size_t)0xf; |
| 1255 | if (len) { |
| 1256 | s390x_kma(ctx->ares, ctx->areslen, in, len, out, |
| 1257 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); |
| 1258 | in += len; |
| 1259 | out += len; |
| 1260 | ctx->fc |= S390X_KMA_HS; |
| 1261 | ctx->areslen = 0; |
| 1262 | } |
| 1263 | |
| 1264 | /*- |
| 1265 | * If there is a remainder, it has to be saved such that it can be |
| 1266 | * processed by kma later. However, we also have to do the for-now |
| 1267 | * unauthenticated encryption/decryption part here and now... |
| 1268 | */ |
| 1269 | if (rem) { |
| 1270 | if (!ctx->mreslen) { |
| 1271 | buf.w[0] = ctx->kma.param.j0.w[0]; |
| 1272 | buf.w[1] = ctx->kma.param.j0.w[1]; |
| 1273 | buf.w[2] = ctx->kma.param.j0.w[2]; |
| 1274 | buf.w[3] = ctx->kma.param.cv.w + 1; |
| 1275 | s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k); |
| 1276 | } |
| 1277 | |
| 1278 | n = ctx->mreslen; |
| 1279 | for (i = 0; i < rem; i++) { |
| 1280 | ctx->mres[n + i] = in[i]; |
| 1281 | out[i] = in[i] ^ ctx->kres[n + i]; |
| 1282 | } |
| 1283 | |
| 1284 | ctx->mreslen += rem; |
| 1285 | } |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | /*- |
| 1290 | * Initialize context structure. Code is big-endian. |
| 1291 | */ |
| 1292 | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx, |
| 1293 | const unsigned char *iv) |
| 1294 | { |
| 1295 | ctx->kma.param.t.g[0] = 0; |
| 1296 | ctx->kma.param.t.g[1] = 0; |
| 1297 | ctx->kma.param.tpcl = 0; |
| 1298 | ctx->kma.param.taadl = 0; |
| 1299 | ctx->mreslen = 0; |
| 1300 | ctx->areslen = 0; |
| 1301 | ctx->kreslen = 0; |
| 1302 | |
| 1303 | if (ctx->ivlen == 12) { |
| 1304 | memcpy(&ctx->kma.param.j0, iv, ctx->ivlen); |
| 1305 | ctx->kma.param.j0.w[3] = 1; |
| 1306 | ctx->kma.param.cv.w = 1; |
| 1307 | } else { |
| 1308 | /* ctx->iv has the right size and is already padded. */ |
| 1309 | memcpy(ctx->iv, iv, ctx->ivlen); |
| 1310 | s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL, |
| 1311 | ctx->fc, &ctx->kma.param); |
| 1312 | ctx->fc |= S390X_KMA_HS; |
| 1313 | |
| 1314 | ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0]; |
| 1315 | ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1]; |
| 1316 | ctx->kma.param.cv.w = ctx->kma.param.j0.w[3]; |
| 1317 | ctx->kma.param.t.g[0] = 0; |
| 1318 | ctx->kma.param.t.g[1] = 0; |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | /*- |
| 1323 | * Performs various operations on the context structure depending on control |
| 1324 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type. |
| 1325 | * Code is big-endian. |
| 1326 | */ |
| 1327 | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 1328 | { |
| 1329 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); |
| 1330 | S390X_AES_GCM_CTX *gctx_out; |
| 1331 | EVP_CIPHER_CTX *out; |
| 1332 | unsigned char *buf, *iv; |
| 1333 | int ivlen, enc, len; |
| 1334 | |
| 1335 | switch (type) { |
| 1336 | case EVP_CTRL_INIT: |
| 1337 | ivlen = EVP_CIPHER_iv_length(c->cipher); |
| 1338 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 1339 | gctx->key_set = 0; |
| 1340 | gctx->iv_set = 0; |
| 1341 | gctx->ivlen = ivlen; |
| 1342 | gctx->iv = iv; |
| 1343 | gctx->taglen = -1; |
| 1344 | gctx->iv_gen = 0; |
| 1345 | gctx->tls_aad_len = -1; |
| 1346 | return 1; |
| 1347 | |
| 1348 | case EVP_CTRL_GET_IVLEN: |
| 1349 | *(int *)ptr = gctx->ivlen; |
| 1350 | return 1; |
| 1351 | |
| 1352 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 1353 | if (arg <= 0) |
| 1354 | return 0; |
| 1355 | |
| 1356 | if (arg != 12) { |
| 1357 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 1358 | len = S390X_gcm_ivpadlen(arg); |
| 1359 | |
| 1360 | /* Allocate memory for iv if needed. */ |
| 1361 | if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { |
| 1362 | if (gctx->iv != iv) |
| 1363 | OPENSSL_free(gctx->iv); |
| 1364 | |
| 1365 | if ((gctx->iv = OPENSSL_malloc(len)) == NULL) { |
| 1366 | EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 1367 | return 0; |
| 1368 | } |
| 1369 | } |
| 1370 | /* Add padding. */ |
| 1371 | memset(gctx->iv + arg, 0, len - arg - 8); |
| 1372 | *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3; |
| 1373 | } |
| 1374 | gctx->ivlen = arg; |
| 1375 | return 1; |
| 1376 | |
| 1377 | case EVP_CTRL_AEAD_SET_TAG: |
| 1378 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 1379 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1380 | if (arg <= 0 || arg > 16 || enc) |
| 1381 | return 0; |
| 1382 | |
| 1383 | memcpy(buf, ptr, arg); |
| 1384 | gctx->taglen = arg; |
| 1385 | return 1; |
| 1386 | |
| 1387 | case EVP_CTRL_AEAD_GET_TAG: |
| 1388 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1389 | if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0) |
| 1390 | return 0; |
| 1391 | |
| 1392 | memcpy(ptr, gctx->kma.param.t.b, arg); |
| 1393 | return 1; |
| 1394 | |
| 1395 | case EVP_CTRL_GCM_SET_IV_FIXED: |
| 1396 | /* Special case: -1 length restores whole iv */ |
| 1397 | if (arg == -1) { |
| 1398 | memcpy(gctx->iv, ptr, gctx->ivlen); |
| 1399 | gctx->iv_gen = 1; |
| 1400 | return 1; |
| 1401 | } |
| 1402 | /* |
| 1403 | * Fixed field must be at least 4 bytes and invocation field at least |
| 1404 | * 8. |
| 1405 | */ |
| 1406 | if ((arg < 4) || (gctx->ivlen - arg) < 8) |
| 1407 | return 0; |
| 1408 | |
| 1409 | if (arg) |
| 1410 | memcpy(gctx->iv, ptr, arg); |
| 1411 | |
| 1412 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1413 | if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
| 1414 | return 0; |
| 1415 | |
| 1416 | gctx->iv_gen = 1; |
| 1417 | return 1; |
| 1418 | |
| 1419 | case EVP_CTRL_GCM_IV_GEN: |
| 1420 | if (gctx->iv_gen == 0 || gctx->key_set == 0) |
| 1421 | return 0; |
| 1422 | |
| 1423 | s390x_aes_gcm_setiv(gctx, gctx->iv); |
| 1424 | |
| 1425 | if (arg <= 0 || arg > gctx->ivlen) |
| 1426 | arg = gctx->ivlen; |
| 1427 | |
| 1428 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| 1429 | /* |
| 1430 | * Invocation field will be at least 8 bytes in size and so no need |
| 1431 | * to check wrap around or increment more than last 8 bytes. |
| 1432 | */ |
| 1433 | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| 1434 | gctx->iv_set = 1; |
| 1435 | return 1; |
| 1436 | |
| 1437 | case EVP_CTRL_GCM_SET_IV_INV: |
| 1438 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1439 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc) |
| 1440 | return 0; |
| 1441 | |
| 1442 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| 1443 | s390x_aes_gcm_setiv(gctx, gctx->iv); |
| 1444 | gctx->iv_set = 1; |
| 1445 | return 1; |
| 1446 | |
| 1447 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 1448 | /* Save the aad for later use. */ |
| 1449 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 1450 | return 0; |
| 1451 | |
| 1452 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 1453 | memcpy(buf, ptr, arg); |
| 1454 | gctx->tls_aad_len = arg; |
| 1455 | gctx->tls_enc_records = 0; |
| 1456 | |
| 1457 | len = buf[arg - 2] << 8 | buf[arg - 1]; |
| 1458 | /* Correct length for explicit iv. */ |
| 1459 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
| 1460 | return 0; |
| 1461 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1462 | |
| 1463 | /* If decrypting correct for tag too. */ |
| 1464 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1465 | if (!enc) { |
| 1466 | if (len < EVP_GCM_TLS_TAG_LEN) |
| 1467 | return 0; |
| 1468 | len -= EVP_GCM_TLS_TAG_LEN; |
| 1469 | } |
| 1470 | buf[arg - 2] = len >> 8; |
| 1471 | buf[arg - 1] = len & 0xff; |
| 1472 | /* Extra padding: tag appended to record. */ |
| 1473 | return EVP_GCM_TLS_TAG_LEN; |
| 1474 | |
| 1475 | case EVP_CTRL_COPY: |
| 1476 | out = ptr; |
| 1477 | gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out); |
| 1478 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 1479 | |
| 1480 | if (gctx->iv == iv) { |
| 1481 | gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out); |
| 1482 | } else { |
| 1483 | len = S390X_gcm_ivpadlen(gctx->ivlen); |
| 1484 | |
| 1485 | if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) { |
| 1486 | EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 1487 | return 0; |
| 1488 | } |
| 1489 | |
| 1490 | memcpy(gctx_out->iv, gctx->iv, len); |
| 1491 | } |
| 1492 | return 1; |
| 1493 | |
| 1494 | default: |
| 1495 | return -1; |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | /*- |
| 1500 | * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned. |
| 1501 | */ |
| 1502 | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx, |
| 1503 | const unsigned char *key, |
| 1504 | const unsigned char *iv, int enc) |
| 1505 | { |
| 1506 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
| 1507 | int keylen; |
| 1508 | |
| 1509 | if (iv == NULL && key == NULL) |
| 1510 | return 1; |
| 1511 | |
| 1512 | if (key != NULL) { |
| 1513 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1514 | memcpy(&gctx->kma.param.k, key, keylen); |
| 1515 | |
| 1516 | gctx->fc = S390X_AES_FC(keylen); |
| 1517 | if (!enc) |
| 1518 | gctx->fc |= S390X_DECRYPT; |
| 1519 | |
| 1520 | if (iv == NULL && gctx->iv_set) |
| 1521 | iv = gctx->iv; |
| 1522 | |
| 1523 | if (iv != NULL) { |
| 1524 | s390x_aes_gcm_setiv(gctx, iv); |
| 1525 | gctx->iv_set = 1; |
| 1526 | } |
| 1527 | gctx->key_set = 1; |
| 1528 | } else { |
| 1529 | if (gctx->key_set) |
| 1530 | s390x_aes_gcm_setiv(gctx, iv); |
| 1531 | else |
| 1532 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 1533 | |
| 1534 | gctx->iv_set = 1; |
| 1535 | gctx->iv_gen = 0; |
| 1536 | } |
| 1537 | return 1; |
| 1538 | } |
| 1539 | |
| 1540 | /*- |
| 1541 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written |
| 1542 | * if successful. Otherwise -1 is returned. Code is big-endian. |
| 1543 | */ |
| 1544 | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1545 | const unsigned char *in, size_t len) |
| 1546 | { |
| 1547 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
| 1548 | const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 1549 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1550 | int rv = -1; |
| 1551 | |
| 1552 | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
| 1553 | return -1; |
| 1554 | |
| 1555 | /* |
| 1556 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness |
| 1557 | * Requirements from SP 800-38D". The requirements is for one party to the |
| 1558 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting |
| 1559 | * side only. |
| 1560 | */ |
| 1561 | if (ctx->encrypt && ++gctx->tls_enc_records == 0) { |
| 1562 | EVPerr(EVP_F_S390X_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS); |
| 1563 | goto err; |
| 1564 | } |
| 1565 | |
| 1566 | if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN |
| 1567 | : EVP_CTRL_GCM_SET_IV_INV, |
| 1568 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) |
| 1569 | goto err; |
| 1570 | |
| 1571 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1572 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1573 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 1574 | |
| 1575 | gctx->kma.param.taadl = gctx->tls_aad_len << 3; |
| 1576 | gctx->kma.param.tpcl = len << 3; |
| 1577 | s390x_kma(buf, gctx->tls_aad_len, in, len, out, |
| 1578 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); |
| 1579 | |
| 1580 | if (enc) { |
| 1581 | memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN); |
| 1582 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 1583 | } else { |
| 1584 | if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len, |
| 1585 | EVP_GCM_TLS_TAG_LEN)) { |
| 1586 | OPENSSL_cleanse(out, len); |
| 1587 | goto err; |
| 1588 | } |
| 1589 | rv = len; |
| 1590 | } |
| 1591 | err: |
| 1592 | gctx->iv_set = 0; |
| 1593 | gctx->tls_aad_len = -1; |
| 1594 | return rv; |
| 1595 | } |
| 1596 | |
| 1597 | /*- |
| 1598 | * Called from EVP layer to initialize context, process additional |
| 1599 | * authenticated data, en/de-crypt plain/cipher-text and authenticate |
| 1600 | * ciphertext or process a TLS packet, depending on context. Returns bytes |
| 1601 | * written on success. Otherwise -1 is returned. Code is big-endian. |
| 1602 | */ |
| 1603 | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1604 | const unsigned char *in, size_t len) |
| 1605 | { |
| 1606 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
| 1607 | unsigned char *buf, tmp[16]; |
| 1608 | int enc; |
| 1609 | |
| 1610 | if (!gctx->key_set) |
| 1611 | return -1; |
| 1612 | |
| 1613 | if (gctx->tls_aad_len >= 0) |
| 1614 | return s390x_aes_gcm_tls_cipher(ctx, out, in, len); |
| 1615 | |
| 1616 | if (!gctx->iv_set) |
| 1617 | return -1; |
| 1618 | |
| 1619 | if (in != NULL) { |
| 1620 | if (out == NULL) { |
| 1621 | if (s390x_aes_gcm_aad(gctx, in, len)) |
| 1622 | return -1; |
| 1623 | } else { |
| 1624 | if (s390x_aes_gcm(gctx, in, out, len)) |
| 1625 | return -1; |
| 1626 | } |
| 1627 | return len; |
| 1628 | } else { |
| 1629 | gctx->kma.param.taadl <<= 3; |
| 1630 | gctx->kma.param.tpcl <<= 3; |
| 1631 | s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp, |
| 1632 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); |
| 1633 | /* recall that we already did en-/decrypt gctx->mres |
| 1634 | * and returned it to caller... */ |
| 1635 | OPENSSL_cleanse(tmp, gctx->mreslen); |
| 1636 | gctx->iv_set = 0; |
| 1637 | |
| 1638 | enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1639 | if (enc) { |
| 1640 | gctx->taglen = 16; |
| 1641 | } else { |
| 1642 | if (gctx->taglen < 0) |
| 1643 | return -1; |
| 1644 | |
| 1645 | buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 1646 | if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen)) |
| 1647 | return -1; |
| 1648 | } |
| 1649 | return 0; |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
| 1654 | { |
| 1655 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); |
| 1656 | const unsigned char *iv; |
| 1657 | |
| 1658 | if (gctx == NULL) |
| 1659 | return 0; |
| 1660 | |
| 1661 | iv = EVP_CIPHER_CTX_iv(c); |
| 1662 | if (iv != gctx->iv) |
| 1663 | OPENSSL_free(gctx->iv); |
| 1664 | |
| 1665 | OPENSSL_cleanse(gctx, sizeof(*gctx)); |
| 1666 | return 1; |
| 1667 | } |
| 1668 | |
| 1669 | # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX |
| 1670 | |
| 1671 | # define s390x_aes_xts_init_key aes_xts_init_key |
| 1672 | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx, |
| 1673 | const unsigned char *key, |
| 1674 | const unsigned char *iv, int enc); |
| 1675 | # define s390x_aes_xts_cipher aes_xts_cipher |
| 1676 | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1677 | const unsigned char *in, size_t len); |
| 1678 | # define s390x_aes_xts_ctrl aes_xts_ctrl |
| 1679 | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); |
| 1680 | # define s390x_aes_xts_cleanup aes_xts_cleanup |
| 1681 | |
| 1682 | /*- |
| 1683 | * Set nonce and length fields. Code is big-endian. |
| 1684 | */ |
| 1685 | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx, |
| 1686 | const unsigned char *nonce, |
| 1687 | size_t mlen) |
| 1688 | { |
| 1689 | ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG; |
| 1690 | ctx->aes.ccm.nonce.g[1] = mlen; |
| 1691 | memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l); |
| 1692 | } |
| 1693 | |
| 1694 | /*- |
| 1695 | * Process additional authenticated data. Code is big-endian. |
| 1696 | */ |
| 1697 | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad, |
| 1698 | size_t alen) |
| 1699 | { |
| 1700 | unsigned char *ptr; |
| 1701 | int i, rem; |
| 1702 | |
| 1703 | if (!alen) |
| 1704 | return; |
| 1705 | |
| 1706 | ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG; |
| 1707 | |
| 1708 | /* Suppress 'type-punned pointer dereference' warning. */ |
| 1709 | ptr = ctx->aes.ccm.buf.b; |
| 1710 | |
| 1711 | if (alen < ((1 << 16) - (1 << 8))) { |
| 1712 | *(uint16_t *)ptr = alen; |
| 1713 | i = 2; |
| 1714 | } else if (sizeof(alen) == 8 |
| 1715 | && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { |
| 1716 | *(uint16_t *)ptr = 0xffff; |
| 1717 | *(uint64_t *)(ptr + 2) = alen; |
| 1718 | i = 10; |
| 1719 | } else { |
| 1720 | *(uint16_t *)ptr = 0xfffe; |
| 1721 | *(uint32_t *)(ptr + 2) = alen; |
| 1722 | i = 6; |
| 1723 | } |
| 1724 | |
| 1725 | while (i < 16 && alen) { |
| 1726 | ctx->aes.ccm.buf.b[i] = *aad; |
| 1727 | ++aad; |
| 1728 | --alen; |
| 1729 | ++i; |
| 1730 | } |
| 1731 | while (i < 16) { |
| 1732 | ctx->aes.ccm.buf.b[i] = 0; |
| 1733 | ++i; |
| 1734 | } |
| 1735 | |
| 1736 | ctx->aes.ccm.kmac_param.icv.g[0] = 0; |
| 1737 | ctx->aes.ccm.kmac_param.icv.g[1] = 0; |
| 1738 | s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc, |
| 1739 | &ctx->aes.ccm.kmac_param); |
| 1740 | ctx->aes.ccm.blocks += 2; |
| 1741 | |
| 1742 | rem = alen & 0xf; |
| 1743 | alen &= ~(size_t)0xf; |
| 1744 | if (alen) { |
| 1745 | s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
| 1746 | ctx->aes.ccm.blocks += alen >> 4; |
| 1747 | aad += alen; |
| 1748 | } |
| 1749 | if (rem) { |
| 1750 | for (i = 0; i < rem; i++) |
| 1751 | ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i]; |
| 1752 | |
| 1753 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
| 1754 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
| 1755 | ctx->aes.ccm.kmac_param.k); |
| 1756 | ctx->aes.ccm.blocks++; |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | /*- |
| 1761 | * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for |
| 1762 | * success. |
| 1763 | */ |
| 1764 | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in, |
| 1765 | unsigned char *out, size_t len, int enc) |
| 1766 | { |
| 1767 | size_t n, rem; |
| 1768 | unsigned int i, l, num; |
| 1769 | unsigned char flags; |
| 1770 | |
| 1771 | flags = ctx->aes.ccm.nonce.b[0]; |
| 1772 | if (!(flags & S390X_CCM_AAD_FLAG)) { |
| 1773 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b, |
| 1774 | ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); |
| 1775 | ctx->aes.ccm.blocks++; |
| 1776 | } |
| 1777 | l = flags & 0x7; |
| 1778 | ctx->aes.ccm.nonce.b[0] = l; |
| 1779 | |
| 1780 | /*- |
| 1781 | * Reconstruct length from encoded length field |
| 1782 | * and initialize it with counter value. |
| 1783 | */ |
| 1784 | n = 0; |
| 1785 | for (i = 15 - l; i < 15; i++) { |
| 1786 | n |= ctx->aes.ccm.nonce.b[i]; |
| 1787 | ctx->aes.ccm.nonce.b[i] = 0; |
| 1788 | n <<= 8; |
| 1789 | } |
| 1790 | n |= ctx->aes.ccm.nonce.b[15]; |
| 1791 | ctx->aes.ccm.nonce.b[15] = 1; |
| 1792 | |
| 1793 | if (n != len) |
| 1794 | return -1; /* length mismatch */ |
| 1795 | |
| 1796 | if (enc) { |
| 1797 | /* Two operations per block plus one for tag encryption */ |
| 1798 | ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1; |
| 1799 | if (ctx->aes.ccm.blocks > (1ULL << 61)) |
| 1800 | return -2; /* too much data */ |
| 1801 | } |
| 1802 | |
| 1803 | num = 0; |
| 1804 | rem = len & 0xf; |
| 1805 | len &= ~(size_t)0xf; |
| 1806 | |
| 1807 | if (enc) { |
| 1808 | /* mac-then-encrypt */ |
| 1809 | if (len) |
| 1810 | s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
| 1811 | if (rem) { |
| 1812 | for (i = 0; i < rem; i++) |
| 1813 | ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i]; |
| 1814 | |
| 1815 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
| 1816 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
| 1817 | ctx->aes.ccm.kmac_param.k); |
| 1818 | } |
| 1819 | |
| 1820 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, |
| 1821 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, |
| 1822 | &num, (ctr128_f)AES_ctr32_encrypt); |
| 1823 | } else { |
| 1824 | /* decrypt-then-mac */ |
| 1825 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, |
| 1826 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, |
| 1827 | &num, (ctr128_f)AES_ctr32_encrypt); |
| 1828 | |
| 1829 | if (len) |
| 1830 | s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
| 1831 | if (rem) { |
| 1832 | for (i = 0; i < rem; i++) |
| 1833 | ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i]; |
| 1834 | |
| 1835 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
| 1836 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
| 1837 | ctx->aes.ccm.kmac_param.k); |
| 1838 | } |
| 1839 | } |
| 1840 | /* encrypt tag */ |
| 1841 | for (i = 15 - l; i < 16; i++) |
| 1842 | ctx->aes.ccm.nonce.b[i] = 0; |
| 1843 | |
| 1844 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc, |
| 1845 | ctx->aes.ccm.kmac_param.k); |
| 1846 | ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0]; |
| 1847 | ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1]; |
| 1848 | |
| 1849 | ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */ |
| 1850 | return 0; |
| 1851 | } |
| 1852 | |
| 1853 | /*- |
| 1854 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written |
| 1855 | * if successful. Otherwise -1 is returned. |
| 1856 | */ |
| 1857 | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1858 | const unsigned char *in, size_t len) |
| 1859 | { |
| 1860 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
| 1861 | unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 1862 | unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 1863 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1864 | |
| 1865 | if (out != in |
| 1866 | || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m)) |
| 1867 | return -1; |
| 1868 | |
| 1869 | if (enc) { |
| 1870 | /* Set explicit iv (sequence number). */ |
| 1871 | memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 1872 | } |
| 1873 | |
| 1874 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; |
| 1875 | /*- |
| 1876 | * Get explicit iv (sequence number). We already have fixed iv |
| 1877 | * (server/client_write_iv) here. |
| 1878 | */ |
| 1879 | memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 1880 | s390x_aes_ccm_setiv(cctx, ivec, len); |
| 1881 | |
| 1882 | /* Process aad (sequence number|type|version|length) */ |
| 1883 | s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len); |
| 1884 | |
| 1885 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 1886 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 1887 | |
| 1888 | if (enc) { |
| 1889 | if (s390x_aes_ccm(cctx, in, out, len, enc)) |
| 1890 | return -1; |
| 1891 | |
| 1892 | memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); |
| 1893 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; |
| 1894 | } else { |
| 1895 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) { |
| 1896 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len, |
| 1897 | cctx->aes.ccm.m)) |
| 1898 | return len; |
| 1899 | } |
| 1900 | |
| 1901 | OPENSSL_cleanse(out, len); |
| 1902 | return -1; |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | /*- |
| 1907 | * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is |
| 1908 | * returned. |
| 1909 | */ |
| 1910 | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx, |
| 1911 | const unsigned char *key, |
| 1912 | const unsigned char *iv, int enc) |
| 1913 | { |
| 1914 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
| 1915 | unsigned char *ivec; |
| 1916 | int keylen; |
| 1917 | |
| 1918 | if (iv == NULL && key == NULL) |
| 1919 | return 1; |
| 1920 | |
| 1921 | if (key != NULL) { |
| 1922 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1923 | cctx->aes.ccm.fc = S390X_AES_FC(keylen); |
| 1924 | memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); |
| 1925 | |
| 1926 | /* Store encoded m and l. */ |
| 1927 | cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7) |
| 1928 | | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3; |
| 1929 | memset(cctx->aes.ccm.nonce.b + 1, 0, |
| 1930 | sizeof(cctx->aes.ccm.nonce.b)); |
| 1931 | cctx->aes.ccm.blocks = 0; |
| 1932 | |
| 1933 | cctx->aes.ccm.key_set = 1; |
| 1934 | } |
| 1935 | |
| 1936 | if (iv != NULL) { |
| 1937 | ivec = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 1938 | memcpy(ivec, iv, 15 - cctx->aes.ccm.l); |
| 1939 | |
| 1940 | cctx->aes.ccm.iv_set = 1; |
| 1941 | } |
| 1942 | |
| 1943 | return 1; |
| 1944 | } |
| 1945 | |
| 1946 | /*- |
| 1947 | * Called from EVP layer to initialize context, process additional |
| 1948 | * authenticated data, en/de-crypt plain/cipher-text and authenticate |
| 1949 | * plaintext or process a TLS packet, depending on context. Returns bytes |
| 1950 | * written on success. Otherwise -1 is returned. |
| 1951 | */ |
| 1952 | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1953 | const unsigned char *in, size_t len) |
| 1954 | { |
| 1955 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
| 1956 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1957 | int rv; |
| 1958 | unsigned char *buf, *ivec; |
| 1959 | |
| 1960 | if (!cctx->aes.ccm.key_set) |
| 1961 | return -1; |
| 1962 | |
| 1963 | if (cctx->aes.ccm.tls_aad_len >= 0) |
| 1964 | return s390x_aes_ccm_tls_cipher(ctx, out, in, len); |
| 1965 | |
| 1966 | /*- |
| 1967 | * Final(): Does not return any data. Recall that ccm is mac-then-encrypt |
| 1968 | * so integrity must be checked already at Update() i.e., before |
| 1969 | * potentially corrupted data is output. |
| 1970 | */ |
| 1971 | if (in == NULL && out != NULL) |
| 1972 | return 0; |
| 1973 | |
| 1974 | if (!cctx->aes.ccm.iv_set) |
| 1975 | return -1; |
| 1976 | |
| 1977 | if (out == NULL) { |
| 1978 | /* Update(): Pass message length. */ |
| 1979 | if (in == NULL) { |
| 1980 | ivec = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 1981 | s390x_aes_ccm_setiv(cctx, ivec, len); |
| 1982 | |
| 1983 | cctx->aes.ccm.len_set = 1; |
| 1984 | return len; |
| 1985 | } |
| 1986 | |
| 1987 | /* Update(): Process aad. */ |
| 1988 | if (!cctx->aes.ccm.len_set && len) |
| 1989 | return -1; |
| 1990 | |
| 1991 | s390x_aes_ccm_aad(cctx, in, len); |
| 1992 | return len; |
| 1993 | } |
| 1994 | |
| 1995 | /* The tag must be set before actually decrypting data */ |
| 1996 | if (!enc && !cctx->aes.ccm.tag_set) |
| 1997 | return -1; |
| 1998 | |
| 1999 | /* Update(): Process message. */ |
| 2000 | |
| 2001 | if (!cctx->aes.ccm.len_set) { |
| 2002 | /*- |
| 2003 | * In case message length was not previously set explicitly via |
| 2004 | * Update(), set it now. |
| 2005 | */ |
| 2006 | ivec = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 2007 | s390x_aes_ccm_setiv(cctx, ivec, len); |
| 2008 | |
| 2009 | cctx->aes.ccm.len_set = 1; |
| 2010 | } |
| 2011 | |
| 2012 | if (enc) { |
| 2013 | if (s390x_aes_ccm(cctx, in, out, len, enc)) |
| 2014 | return -1; |
| 2015 | |
| 2016 | cctx->aes.ccm.tag_set = 1; |
| 2017 | return len; |
| 2018 | } else { |
| 2019 | rv = -1; |
| 2020 | |
| 2021 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) { |
| 2022 | buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 2023 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf, |
| 2024 | cctx->aes.ccm.m)) |
| 2025 | rv = len; |
| 2026 | } |
| 2027 | |
| 2028 | if (rv == -1) |
| 2029 | OPENSSL_cleanse(out, len); |
| 2030 | |
| 2031 | cctx->aes.ccm.iv_set = 0; |
| 2032 | cctx->aes.ccm.tag_set = 0; |
| 2033 | cctx->aes.ccm.len_set = 0; |
| 2034 | return rv; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | /*- |
| 2039 | * Performs various operations on the context structure depending on control |
| 2040 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type. |
| 2041 | * Code is big-endian. |
| 2042 | */ |
| 2043 | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 2044 | { |
| 2045 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c); |
| 2046 | unsigned char *buf, *iv; |
| 2047 | int enc, len; |
| 2048 | |
| 2049 | switch (type) { |
| 2050 | case EVP_CTRL_INIT: |
| 2051 | cctx->aes.ccm.key_set = 0; |
| 2052 | cctx->aes.ccm.iv_set = 0; |
| 2053 | cctx->aes.ccm.l = 8; |
| 2054 | cctx->aes.ccm.m = 12; |
| 2055 | cctx->aes.ccm.tag_set = 0; |
| 2056 | cctx->aes.ccm.len_set = 0; |
| 2057 | cctx->aes.ccm.tls_aad_len = -1; |
| 2058 | return 1; |
| 2059 | |
| 2060 | case EVP_CTRL_GET_IVLEN: |
| 2061 | *(int *)ptr = 15 - cctx->aes.ccm.l; |
| 2062 | return 1; |
| 2063 | |
| 2064 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 2065 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 2066 | return 0; |
| 2067 | |
| 2068 | /* Save the aad for later use. */ |
| 2069 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 2070 | memcpy(buf, ptr, arg); |
| 2071 | cctx->aes.ccm.tls_aad_len = arg; |
| 2072 | |
| 2073 | len = buf[arg - 2] << 8 | buf[arg - 1]; |
| 2074 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) |
| 2075 | return 0; |
| 2076 | |
| 2077 | /* Correct length for explicit iv. */ |
| 2078 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 2079 | |
| 2080 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 2081 | if (!enc) { |
| 2082 | if (len < cctx->aes.ccm.m) |
| 2083 | return 0; |
| 2084 | |
| 2085 | /* Correct length for tag. */ |
| 2086 | len -= cctx->aes.ccm.m; |
| 2087 | } |
| 2088 | |
| 2089 | buf[arg - 2] = len >> 8; |
| 2090 | buf[arg - 1] = len & 0xff; |
| 2091 | |
| 2092 | /* Extra padding: tag appended to record. */ |
| 2093 | return cctx->aes.ccm.m; |
| 2094 | |
| 2095 | case EVP_CTRL_CCM_SET_IV_FIXED: |
| 2096 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN) |
| 2097 | return 0; |
| 2098 | |
| 2099 | /* Copy to first part of the iv. */ |
| 2100 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 2101 | memcpy(iv, ptr, arg); |
| 2102 | return 1; |
| 2103 | |
| 2104 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 2105 | arg = 15 - arg; |
| 2106 | /* fall-through */ |
| 2107 | |
| 2108 | case EVP_CTRL_CCM_SET_L: |
| 2109 | if (arg < 2 || arg > 8) |
| 2110 | return 0; |
| 2111 | |
| 2112 | cctx->aes.ccm.l = arg; |
| 2113 | return 1; |
| 2114 | |
| 2115 | case EVP_CTRL_AEAD_SET_TAG: |
| 2116 | if ((arg & 1) || arg < 4 || arg > 16) |
| 2117 | return 0; |
| 2118 | |
| 2119 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 2120 | if (enc && ptr) |
| 2121 | return 0; |
| 2122 | |
| 2123 | if (ptr) { |
| 2124 | cctx->aes.ccm.tag_set = 1; |
| 2125 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 2126 | memcpy(buf, ptr, arg); |
| 2127 | } |
| 2128 | |
| 2129 | cctx->aes.ccm.m = arg; |
| 2130 | return 1; |
| 2131 | |
| 2132 | case EVP_CTRL_AEAD_GET_TAG: |
| 2133 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 2134 | if (!enc || !cctx->aes.ccm.tag_set) |
| 2135 | return 0; |
| 2136 | |
| 2137 | if(arg < cctx->aes.ccm.m) |
| 2138 | return 0; |
| 2139 | |
| 2140 | memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); |
| 2141 | cctx->aes.ccm.tag_set = 0; |
| 2142 | cctx->aes.ccm.iv_set = 0; |
| 2143 | cctx->aes.ccm.len_set = 0; |
| 2144 | return 1; |
| 2145 | |
| 2146 | case EVP_CTRL_COPY: |
| 2147 | return 1; |
| 2148 | |
| 2149 | default: |
| 2150 | return -1; |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | # define s390x_aes_ccm_cleanup aes_ccm_cleanup |
| 2155 | |
| 2156 | # ifndef OPENSSL_NO_OCB |
| 2157 | # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX |
| 2158 | |
| 2159 | # define s390x_aes_ocb_init_key aes_ocb_init_key |
| 2160 | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 2161 | const unsigned char *iv, int enc); |
| 2162 | # define s390x_aes_ocb_cipher aes_ocb_cipher |
| 2163 | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2164 | const unsigned char *in, size_t len); |
| 2165 | # define s390x_aes_ocb_cleanup aes_ocb_cleanup |
| 2166 | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *); |
| 2167 | # define s390x_aes_ocb_ctrl aes_ocb_ctrl |
| 2168 | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); |
| 2169 | # endif |
| 2170 | |
| 2171 | # ifndef OPENSSL_NO_SIV |
| 2172 | # define S390X_AES_SIV_CTX EVP_AES_SIV_CTX |
| 2173 | |
| 2174 | # define s390x_aes_siv_init_key aes_siv_init_key |
| 2175 | # define s390x_aes_siv_cipher aes_siv_cipher |
| 2176 | # define s390x_aes_siv_cleanup aes_siv_cleanup |
| 2177 | # define s390x_aes_siv_ctrl aes_siv_ctrl |
| 2178 | # endif |
| 2179 | |
| 2180 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \ |
| 2181 | MODE,flags) \ |
| 2182 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ |
| 2183 | nid##_##keylen##_##nmode,blocksize, \ |
| 2184 | keylen / 8, \ |
| 2185 | ivlen, \ |
| 2186 | flags | EVP_CIPH_##MODE##_MODE, \ |
| 2187 | s390x_aes_##mode##_init_key, \ |
| 2188 | s390x_aes_##mode##_cipher, \ |
| 2189 | NULL, \ |
| 2190 | sizeof(S390X_AES_##MODE##_CTX), \ |
| 2191 | NULL, \ |
| 2192 | NULL, \ |
| 2193 | NULL, \ |
| 2194 | NULL \ |
| 2195 | }; \ |
| 2196 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2197 | nid##_##keylen##_##nmode, \ |
| 2198 | blocksize, \ |
| 2199 | keylen / 8, \ |
| 2200 | ivlen, \ |
| 2201 | flags | EVP_CIPH_##MODE##_MODE, \ |
| 2202 | aes_init_key, \ |
| 2203 | aes_##mode##_cipher, \ |
| 2204 | NULL, \ |
| 2205 | sizeof(EVP_AES_KEY), \ |
| 2206 | NULL, \ |
| 2207 | NULL, \ |
| 2208 | NULL, \ |
| 2209 | NULL \ |
| 2210 | }; \ |
| 2211 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2212 | { \ |
| 2213 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \ |
| 2214 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ |
| 2215 | } |
| 2216 | |
| 2217 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\ |
| 2218 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ |
| 2219 | nid##_##keylen##_##mode, \ |
| 2220 | blocksize, \ |
| 2221 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
| 2222 | ivlen, \ |
| 2223 | flags | EVP_CIPH_##MODE##_MODE, \ |
| 2224 | s390x_aes_##mode##_init_key, \ |
| 2225 | s390x_aes_##mode##_cipher, \ |
| 2226 | s390x_aes_##mode##_cleanup, \ |
| 2227 | sizeof(S390X_AES_##MODE##_CTX), \ |
| 2228 | NULL, \ |
| 2229 | NULL, \ |
| 2230 | s390x_aes_##mode##_ctrl, \ |
| 2231 | NULL \ |
| 2232 | }; \ |
| 2233 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2234 | nid##_##keylen##_##mode,blocksize, \ |
| 2235 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
| 2236 | ivlen, \ |
| 2237 | flags | EVP_CIPH_##MODE##_MODE, \ |
| 2238 | aes_##mode##_init_key, \ |
| 2239 | aes_##mode##_cipher, \ |
| 2240 | aes_##mode##_cleanup, \ |
| 2241 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 2242 | NULL, \ |
| 2243 | NULL, \ |
| 2244 | aes_##mode##_ctrl, \ |
| 2245 | NULL \ |
| 2246 | }; \ |
| 2247 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2248 | { \ |
| 2249 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \ |
| 2250 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ |
| 2251 | } |
| 2252 | |
| 2253 | #else |
| 2254 | |
| 2255 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| 2256 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2257 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| 2258 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 2259 | aes_init_key, \ |
| 2260 | aes_##mode##_cipher, \ |
| 2261 | NULL, \ |
| 2262 | sizeof(EVP_AES_KEY), \ |
| 2263 | NULL,NULL,NULL,NULL }; \ |
| 2264 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2265 | { return &aes_##keylen##_##mode; } |
| 2266 | |
| 2267 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| 2268 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2269 | nid##_##keylen##_##mode,blocksize, \ |
| 2270 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ |
| 2271 | ivlen, \ |
| 2272 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 2273 | aes_##mode##_init_key, \ |
| 2274 | aes_##mode##_cipher, \ |
| 2275 | aes_##mode##_cleanup, \ |
| 2276 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 2277 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 2278 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2279 | { return &aes_##keylen##_##mode; } |
| 2280 | |
| 2281 | #endif |
| 2282 | |
| 2283 | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ |
| 2284 | BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2285 | BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2286 | BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2287 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2288 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ |
| 2289 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ |
| 2290 | BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) |
| 2291 | |
| 2292 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 2293 | const unsigned char *iv, int enc) |
| 2294 | { |
| 2295 | int ret, mode; |
| 2296 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2297 | |
| 2298 | mode = EVP_CIPHER_CTX_mode(ctx); |
| 2299 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 2300 | && !enc) { |
| 2301 | #ifdef HWAES_CAPABLE |
| 2302 | if (HWAES_CAPABLE) { |
| 2303 | ret = HWAES_set_decrypt_key(key, |
| 2304 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2305 | &dat->ks.ks); |
| 2306 | dat->block = (block128_f) HWAES_decrypt; |
| 2307 | dat->stream.cbc = NULL; |
| 2308 | # ifdef HWAES_cbc_encrypt |
| 2309 | if (mode == EVP_CIPH_CBC_MODE) |
| 2310 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; |
| 2311 | # endif |
| 2312 | } else |
| 2313 | #endif |
| 2314 | #ifdef BSAES_CAPABLE |
| 2315 | if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { |
| 2316 | ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2317 | &dat->ks.ks); |
| 2318 | dat->block = (block128_f) AES_decrypt; |
| 2319 | dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt; |
| 2320 | } else |
| 2321 | #endif |
| 2322 | #ifdef VPAES_CAPABLE |
| 2323 | if (VPAES_CAPABLE) { |
| 2324 | ret = vpaes_set_decrypt_key(key, |
| 2325 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2326 | &dat->ks.ks); |
| 2327 | dat->block = (block128_f) vpaes_decrypt; |
| 2328 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2329 | (cbc128_f) vpaes_cbc_encrypt : NULL; |
| 2330 | } else |
| 2331 | #endif |
| 2332 | { |
| 2333 | ret = AES_set_decrypt_key(key, |
| 2334 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2335 | &dat->ks.ks); |
| 2336 | dat->block = (block128_f) AES_decrypt; |
| 2337 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2338 | (cbc128_f) AES_cbc_encrypt : NULL; |
| 2339 | } |
| 2340 | } else |
| 2341 | #ifdef HWAES_CAPABLE |
| 2342 | if (HWAES_CAPABLE) { |
| 2343 | ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2344 | &dat->ks.ks); |
| 2345 | dat->block = (block128_f) HWAES_encrypt; |
| 2346 | dat->stream.cbc = NULL; |
| 2347 | # ifdef HWAES_cbc_encrypt |
| 2348 | if (mode == EVP_CIPH_CBC_MODE) |
| 2349 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; |
| 2350 | else |
| 2351 | # endif |
| 2352 | # ifdef HWAES_ctr32_encrypt_blocks |
| 2353 | if (mode == EVP_CIPH_CTR_MODE) |
| 2354 | dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; |
| 2355 | else |
| 2356 | # endif |
| 2357 | (void)0; /* terminate potentially open 'else' */ |
| 2358 | } else |
| 2359 | #endif |
| 2360 | #ifdef BSAES_CAPABLE |
| 2361 | if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { |
| 2362 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2363 | &dat->ks.ks); |
| 2364 | dat->block = (block128_f) AES_encrypt; |
| 2365 | dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; |
| 2366 | } else |
| 2367 | #endif |
| 2368 | #ifdef VPAES_CAPABLE |
| 2369 | if (VPAES_CAPABLE) { |
| 2370 | ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2371 | &dat->ks.ks); |
| 2372 | dat->block = (block128_f) vpaes_encrypt; |
| 2373 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2374 | (cbc128_f) vpaes_cbc_encrypt : NULL; |
| 2375 | } else |
| 2376 | #endif |
| 2377 | { |
| 2378 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2379 | &dat->ks.ks); |
| 2380 | dat->block = (block128_f) AES_encrypt; |
| 2381 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2382 | (cbc128_f) AES_cbc_encrypt : NULL; |
| 2383 | #ifdef AES_CTR_ASM |
| 2384 | if (mode == EVP_CIPH_CTR_MODE) |
| 2385 | dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; |
| 2386 | #endif |
| 2387 | } |
| 2388 | |
| 2389 | if (ret < 0) { |
| 2390 | EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| 2391 | return 0; |
| 2392 | } |
| 2393 | |
| 2394 | return 1; |
| 2395 | } |
| 2396 | |
| 2397 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2398 | const unsigned char *in, size_t len) |
| 2399 | { |
| 2400 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2401 | |
| 2402 | if (dat->stream.cbc) |
| 2403 | (*dat->stream.cbc) (in, out, len, &dat->ks, |
| 2404 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 2405 | EVP_CIPHER_CTX_encrypting(ctx)); |
| 2406 | else if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 2407 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, |
| 2408 | EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); |
| 2409 | else |
| 2410 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, |
| 2411 | EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); |
| 2412 | |
| 2413 | return 1; |
| 2414 | } |
| 2415 | |
| 2416 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2417 | const unsigned char *in, size_t len) |
| 2418 | { |
| 2419 | size_t bl = EVP_CIPHER_CTX_block_size(ctx); |
| 2420 | size_t i; |
| 2421 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2422 | |
| 2423 | if (len < bl) |
| 2424 | return 1; |
| 2425 | |
| 2426 | for (i = 0, len -= bl; i <= len; i += bl) |
| 2427 | (*dat->block) (in + i, out + i, &dat->ks); |
| 2428 | |
| 2429 | return 1; |
| 2430 | } |
| 2431 | |
| 2432 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2433 | const unsigned char *in, size_t len) |
| 2434 | { |
| 2435 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2436 | |
| 2437 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2438 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, |
| 2439 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block); |
| 2440 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2441 | return 1; |
| 2442 | } |
| 2443 | |
| 2444 | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2445 | const unsigned char *in, size_t len) |
| 2446 | { |
| 2447 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2448 | |
| 2449 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2450 | CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, |
| 2451 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2452 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2453 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2454 | return 1; |
| 2455 | } |
| 2456 | |
| 2457 | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2458 | const unsigned char *in, size_t len) |
| 2459 | { |
| 2460 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2461 | |
| 2462 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2463 | CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, |
| 2464 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2465 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2466 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2467 | return 1; |
| 2468 | } |
| 2469 | |
| 2470 | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2471 | const unsigned char *in, size_t len) |
| 2472 | { |
| 2473 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2474 | |
| 2475 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { |
| 2476 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2477 | CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, |
| 2478 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2479 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2480 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2481 | return 1; |
| 2482 | } |
| 2483 | |
| 2484 | while (len >= MAXBITCHUNK) { |
| 2485 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2486 | CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, |
| 2487 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2488 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2489 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2490 | len -= MAXBITCHUNK; |
| 2491 | out += MAXBITCHUNK; |
| 2492 | in += MAXBITCHUNK; |
| 2493 | } |
| 2494 | if (len) { |
| 2495 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2496 | CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, |
| 2497 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2498 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2499 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2500 | } |
| 2501 | |
| 2502 | return 1; |
| 2503 | } |
| 2504 | |
| 2505 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2506 | const unsigned char *in, size_t len) |
| 2507 | { |
| 2508 | unsigned int num = EVP_CIPHER_CTX_num(ctx); |
| 2509 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2510 | |
| 2511 | if (dat->stream.ctr) |
| 2512 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, |
| 2513 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 2514 | EVP_CIPHER_CTX_buf_noconst(ctx), |
| 2515 | &num, dat->stream.ctr); |
| 2516 | else |
| 2517 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, |
| 2518 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 2519 | EVP_CIPHER_CTX_buf_noconst(ctx), &num, |
| 2520 | dat->block); |
| 2521 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2522 | return 1; |
| 2523 | } |
| 2524 | |
| 2525 | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) |
| 2526 | BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) |
| 2527 | BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) |
| 2528 | |
| 2529 | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
| 2530 | { |
| 2531 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); |
| 2532 | if (gctx == NULL) |
| 2533 | return 0; |
| 2534 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| 2535 | if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c)) |
| 2536 | OPENSSL_free(gctx->iv); |
| 2537 | return 1; |
| 2538 | } |
| 2539 | |
| 2540 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 2541 | { |
| 2542 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); |
| 2543 | switch (type) { |
| 2544 | case EVP_CTRL_INIT: |
| 2545 | gctx->key_set = 0; |
| 2546 | gctx->iv_set = 0; |
| 2547 | gctx->ivlen = EVP_CIPHER_iv_length(c->cipher); |
| 2548 | gctx->iv = c->iv; |
| 2549 | gctx->taglen = -1; |
| 2550 | gctx->iv_gen = 0; |
| 2551 | gctx->tls_aad_len = -1; |
| 2552 | return 1; |
| 2553 | |
| 2554 | case EVP_CTRL_GET_IVLEN: |
| 2555 | *(int *)ptr = gctx->ivlen; |
| 2556 | return 1; |
| 2557 | |
| 2558 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 2559 | if (arg <= 0) |
| 2560 | return 0; |
| 2561 | /* Allocate memory for IV if needed */ |
| 2562 | if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { |
| 2563 | if (gctx->iv != c->iv) |
| 2564 | OPENSSL_free(gctx->iv); |
| 2565 | if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) { |
| 2566 | EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 2567 | return 0; |
| 2568 | } |
| 2569 | } |
| 2570 | gctx->ivlen = arg; |
| 2571 | return 1; |
| 2572 | |
| 2573 | case EVP_CTRL_AEAD_SET_TAG: |
| 2574 | if (arg <= 0 || arg > 16 || c->encrypt) |
| 2575 | return 0; |
| 2576 | memcpy(c->buf, ptr, arg); |
| 2577 | gctx->taglen = arg; |
| 2578 | return 1; |
| 2579 | |
| 2580 | case EVP_CTRL_AEAD_GET_TAG: |
| 2581 | if (arg <= 0 || arg > 16 || !c->encrypt |
| 2582 | || gctx->taglen < 0) |
| 2583 | return 0; |
| 2584 | memcpy(ptr, c->buf, arg); |
| 2585 | return 1; |
| 2586 | |
| 2587 | case EVP_CTRL_GET_IV: |
| 2588 | if (gctx->iv_gen != 1 && gctx->iv_gen_rand != 1) |
| 2589 | return 0; |
| 2590 | if (gctx->ivlen != arg) |
| 2591 | return 0; |
| 2592 | memcpy(ptr, gctx->iv, arg); |
| 2593 | return 1; |
| 2594 | |
| 2595 | case EVP_CTRL_GCM_SET_IV_FIXED: |
| 2596 | /* Special case: -1 length restores whole IV */ |
| 2597 | if (arg == -1) { |
| 2598 | memcpy(gctx->iv, ptr, gctx->ivlen); |
| 2599 | gctx->iv_gen = 1; |
| 2600 | return 1; |
| 2601 | } |
| 2602 | /* |
| 2603 | * Fixed field must be at least 4 bytes and invocation field at least |
| 2604 | * 8. |
| 2605 | */ |
| 2606 | if ((arg < 4) || (gctx->ivlen - arg) < 8) |
| 2607 | return 0; |
| 2608 | if (arg) |
| 2609 | memcpy(gctx->iv, ptr, arg); |
| 2610 | if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
| 2611 | return 0; |
| 2612 | gctx->iv_gen = 1; |
| 2613 | return 1; |
| 2614 | |
| 2615 | case EVP_CTRL_GCM_IV_GEN: |
| 2616 | if (gctx->iv_gen == 0 || gctx->key_set == 0) |
| 2617 | return 0; |
| 2618 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| 2619 | if (arg <= 0 || arg > gctx->ivlen) |
| 2620 | arg = gctx->ivlen; |
| 2621 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| 2622 | /* |
| 2623 | * Invocation field will be at least 8 bytes in size and so no need |
| 2624 | * to check wrap around or increment more than last 8 bytes. |
| 2625 | */ |
| 2626 | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| 2627 | gctx->iv_set = 1; |
| 2628 | return 1; |
| 2629 | |
| 2630 | case EVP_CTRL_GCM_SET_IV_INV: |
| 2631 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) |
| 2632 | return 0; |
| 2633 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| 2634 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| 2635 | gctx->iv_set = 1; |
| 2636 | return 1; |
| 2637 | |
| 2638 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 2639 | /* Save the AAD for later use */ |
| 2640 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 2641 | return 0; |
| 2642 | memcpy(c->buf, ptr, arg); |
| 2643 | gctx->tls_aad_len = arg; |
| 2644 | gctx->tls_enc_records = 0; |
| 2645 | { |
| 2646 | unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; |
| 2647 | /* Correct length for explicit IV */ |
| 2648 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
| 2649 | return 0; |
| 2650 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 2651 | /* If decrypting correct for tag too */ |
| 2652 | if (!c->encrypt) { |
| 2653 | if (len < EVP_GCM_TLS_TAG_LEN) |
| 2654 | return 0; |
| 2655 | len -= EVP_GCM_TLS_TAG_LEN; |
| 2656 | } |
| 2657 | c->buf[arg - 2] = len >> 8; |
| 2658 | c->buf[arg - 1] = len & 0xff; |
| 2659 | } |
| 2660 | /* Extra padding: tag appended to record */ |
| 2661 | return EVP_GCM_TLS_TAG_LEN; |
| 2662 | |
| 2663 | case EVP_CTRL_COPY: |
| 2664 | { |
| 2665 | EVP_CIPHER_CTX *out = ptr; |
| 2666 | EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out); |
| 2667 | if (gctx->gcm.key) { |
| 2668 | if (gctx->gcm.key != &gctx->ks) |
| 2669 | return 0; |
| 2670 | gctx_out->gcm.key = &gctx_out->ks; |
| 2671 | } |
| 2672 | if (gctx->iv == c->iv) |
| 2673 | gctx_out->iv = out->iv; |
| 2674 | else { |
| 2675 | if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) { |
| 2676 | EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 2677 | return 0; |
| 2678 | } |
| 2679 | memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
| 2680 | } |
| 2681 | return 1; |
| 2682 | } |
| 2683 | |
| 2684 | default: |
| 2685 | return -1; |
| 2686 | |
| 2687 | } |
| 2688 | } |
| 2689 | |
| 2690 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 2691 | const unsigned char *iv, int enc) |
| 2692 | { |
| 2693 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 2694 | if (!iv && !key) |
| 2695 | return 1; |
| 2696 | if (key) { |
| 2697 | do { |
| 2698 | #ifdef HWAES_CAPABLE |
| 2699 | if (HWAES_CAPABLE) { |
| 2700 | HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 2701 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 2702 | (block128_f) HWAES_encrypt); |
| 2703 | # ifdef HWAES_ctr32_encrypt_blocks |
| 2704 | gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; |
| 2705 | # else |
| 2706 | gctx->ctr = NULL; |
| 2707 | # endif |
| 2708 | break; |
| 2709 | } else |
| 2710 | #endif |
| 2711 | #ifdef BSAES_CAPABLE |
| 2712 | if (BSAES_CAPABLE) { |
| 2713 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 2714 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 2715 | (block128_f) AES_encrypt); |
| 2716 | gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; |
| 2717 | break; |
| 2718 | } else |
| 2719 | #endif |
| 2720 | #ifdef VPAES_CAPABLE |
| 2721 | if (VPAES_CAPABLE) { |
| 2722 | vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 2723 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 2724 | (block128_f) vpaes_encrypt); |
| 2725 | gctx->ctr = NULL; |
| 2726 | break; |
| 2727 | } else |
| 2728 | #endif |
| 2729 | (void)0; /* terminate potentially open 'else' */ |
| 2730 | |
| 2731 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 2732 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 2733 | (block128_f) AES_encrypt); |
| 2734 | #ifdef AES_CTR_ASM |
| 2735 | gctx->ctr = (ctr128_f) AES_ctr32_encrypt; |
| 2736 | #else |
| 2737 | gctx->ctr = NULL; |
| 2738 | #endif |
| 2739 | } while (0); |
| 2740 | |
| 2741 | /* |
| 2742 | * If we have an iv can set it directly, otherwise use saved IV. |
| 2743 | */ |
| 2744 | if (iv == NULL && gctx->iv_set) |
| 2745 | iv = gctx->iv; |
| 2746 | if (iv) { |
| 2747 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 2748 | gctx->iv_set = 1; |
| 2749 | } |
| 2750 | gctx->key_set = 1; |
| 2751 | } else { |
| 2752 | /* If key set use IV, otherwise copy */ |
| 2753 | if (gctx->key_set) |
| 2754 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 2755 | else |
| 2756 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 2757 | gctx->iv_set = 1; |
| 2758 | gctx->iv_gen = 0; |
| 2759 | } |
| 2760 | return 1; |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * Handle TLS GCM packet format. This consists of the last portion of the IV |
| 2765 | * followed by the payload and finally the tag. On encrypt generate IV, |
| 2766 | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload |
| 2767 | * and verify tag. |
| 2768 | */ |
| 2769 | |
| 2770 | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2771 | const unsigned char *in, size_t len) |
| 2772 | { |
| 2773 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 2774 | int rv = -1; |
| 2775 | /* Encrypt/decrypt must be performed in place */ |
| 2776 | if (out != in |
| 2777 | || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
| 2778 | return -1; |
| 2779 | |
| 2780 | /* |
| 2781 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness |
| 2782 | * Requirements from SP 800-38D". The requirements is for one party to the |
| 2783 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting |
| 2784 | * side only. |
| 2785 | */ |
| 2786 | if (ctx->encrypt && ++gctx->tls_enc_records == 0) { |
| 2787 | EVPerr(EVP_F_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS); |
| 2788 | goto err; |
| 2789 | } |
| 2790 | |
| 2791 | /* |
| 2792 | * Set IV from start of buffer or generate IV and write to start of |
| 2793 | * buffer. |
| 2794 | */ |
| 2795 | if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN |
| 2796 | : EVP_CTRL_GCM_SET_IV_INV, |
| 2797 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) |
| 2798 | goto err; |
| 2799 | /* Use saved AAD */ |
| 2800 | if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) |
| 2801 | goto err; |
| 2802 | /* Fix buffer and length to point to payload */ |
| 2803 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 2804 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 2805 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 2806 | if (ctx->encrypt) { |
| 2807 | /* Encrypt payload */ |
| 2808 | if (gctx->ctr) { |
| 2809 | size_t bulk = 0; |
| 2810 | #if defined(AES_GCM_ASM) |
| 2811 | if (len >= 32 && AES_GCM_ASM(gctx)) { |
| 2812 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
| 2813 | return -1; |
| 2814 | |
| 2815 | bulk = AES_gcm_encrypt(in, out, len, |
| 2816 | gctx->gcm.key, |
| 2817 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 2818 | gctx->gcm.len.u[1] += bulk; |
| 2819 | } |
| 2820 | #endif |
| 2821 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
| 2822 | in + bulk, |
| 2823 | out + bulk, |
| 2824 | len - bulk, gctx->ctr)) |
| 2825 | goto err; |
| 2826 | } else { |
| 2827 | size_t bulk = 0; |
| 2828 | #if defined(AES_GCM_ASM2) |
| 2829 | if (len >= 32 && AES_GCM_ASM2(gctx)) { |
| 2830 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
| 2831 | return -1; |
| 2832 | |
| 2833 | bulk = AES_gcm_encrypt(in, out, len, |
| 2834 | gctx->gcm.key, |
| 2835 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 2836 | gctx->gcm.len.u[1] += bulk; |
| 2837 | } |
| 2838 | #endif |
| 2839 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
| 2840 | in + bulk, out + bulk, len - bulk)) |
| 2841 | goto err; |
| 2842 | } |
| 2843 | out += len; |
| 2844 | /* Finally write tag */ |
| 2845 | CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); |
| 2846 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 2847 | } else { |
| 2848 | /* Decrypt */ |
| 2849 | if (gctx->ctr) { |
| 2850 | size_t bulk = 0; |
| 2851 | #if defined(AES_GCM_ASM) |
| 2852 | if (len >= 16 && AES_GCM_ASM(gctx)) { |
| 2853 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
| 2854 | return -1; |
| 2855 | |
| 2856 | bulk = AES_gcm_decrypt(in, out, len, |
| 2857 | gctx->gcm.key, |
| 2858 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 2859 | gctx->gcm.len.u[1] += bulk; |
| 2860 | } |
| 2861 | #endif |
| 2862 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
| 2863 | in + bulk, |
| 2864 | out + bulk, |
| 2865 | len - bulk, gctx->ctr)) |
| 2866 | goto err; |
| 2867 | } else { |
| 2868 | size_t bulk = 0; |
| 2869 | #if defined(AES_GCM_ASM2) |
| 2870 | if (len >= 16 && AES_GCM_ASM2(gctx)) { |
| 2871 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
| 2872 | return -1; |
| 2873 | |
| 2874 | bulk = AES_gcm_decrypt(in, out, len, |
| 2875 | gctx->gcm.key, |
| 2876 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 2877 | gctx->gcm.len.u[1] += bulk; |
| 2878 | } |
| 2879 | #endif |
| 2880 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
| 2881 | in + bulk, out + bulk, len - bulk)) |
| 2882 | goto err; |
| 2883 | } |
| 2884 | /* Retrieve tag */ |
| 2885 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); |
| 2886 | /* If tag mismatch wipe buffer */ |
| 2887 | if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { |
| 2888 | OPENSSL_cleanse(out, len); |
| 2889 | goto err; |
| 2890 | } |
| 2891 | rv = len; |
| 2892 | } |
| 2893 | |
| 2894 | err: |
| 2895 | gctx->iv_set = 0; |
| 2896 | gctx->tls_aad_len = -1; |
| 2897 | return rv; |
| 2898 | } |
| 2899 | |
| 2900 | #ifdef FIPS_MODE |
| 2901 | /* |
| 2902 | * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys" |
| 2903 | * |
| 2904 | * See also 8.2.2 RBG-based construction. |
| 2905 | * Random construction consists of a free field (which can be NULL) and a |
| 2906 | * random field which will use a DRBG that can return at least 96 bits of |
| 2907 | * entropy strength. (The DRBG must be seeded by the FIPS module). |
| 2908 | */ |
| 2909 | static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset) |
| 2910 | { |
| 2911 | int sz = gctx->ivlen - offset; |
| 2912 | |
| 2913 | /* Must be at least 96 bits */ |
| 2914 | if (sz <= 0 || gctx->ivlen < 12) |
| 2915 | return 0; |
| 2916 | |
| 2917 | /* Use DRBG to generate random iv */ |
| 2918 | if (RAND_bytes(gctx->iv + offset, sz) <= 0) |
| 2919 | return 0; |
| 2920 | return 1; |
| 2921 | } |
| 2922 | #endif /* FIPS_MODE */ |
| 2923 | |
| 2924 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2925 | const unsigned char *in, size_t len) |
| 2926 | { |
| 2927 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 2928 | |
| 2929 | /* If not set up, return error */ |
| 2930 | if (!gctx->key_set) |
| 2931 | return -1; |
| 2932 | |
| 2933 | if (gctx->tls_aad_len >= 0) |
| 2934 | return aes_gcm_tls_cipher(ctx, out, in, len); |
| 2935 | |
| 2936 | #ifdef FIPS_MODE |
| 2937 | /* |
| 2938 | * FIPS requires generation of AES-GCM IV's inside the FIPS module. |
| 2939 | * The IV can still be set externally (the security policy will state that |
| 2940 | * this is not FIPS compliant). There are some applications |
| 2941 | * where setting the IV externally is the only option available. |
| 2942 | */ |
| 2943 | if (!gctx->iv_set) { |
| 2944 | if (!ctx->encrypt || !aes_gcm_iv_generate(gctx, 0)) |
| 2945 | return -1; |
| 2946 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| 2947 | gctx->iv_set = 1; |
| 2948 | gctx->iv_gen_rand = 1; |
| 2949 | } |
| 2950 | #else |
| 2951 | if (!gctx->iv_set) |
| 2952 | return -1; |
| 2953 | #endif /* FIPS_MODE */ |
| 2954 | |
| 2955 | if (in) { |
| 2956 | if (out == NULL) { |
| 2957 | if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) |
| 2958 | return -1; |
| 2959 | } else if (ctx->encrypt) { |
| 2960 | if (gctx->ctr) { |
| 2961 | size_t bulk = 0; |
| 2962 | #if defined(AES_GCM_ASM) |
| 2963 | if (len >= 32 && AES_GCM_ASM(gctx)) { |
| 2964 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 2965 | |
| 2966 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
| 2967 | return -1; |
| 2968 | |
| 2969 | bulk = AES_gcm_encrypt(in + res, |
| 2970 | out + res, len - res, |
| 2971 | gctx->gcm.key, gctx->gcm.Yi.c, |
| 2972 | gctx->gcm.Xi.u); |
| 2973 | gctx->gcm.len.u[1] += bulk; |
| 2974 | bulk += res; |
| 2975 | } |
| 2976 | #endif |
| 2977 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
| 2978 | in + bulk, |
| 2979 | out + bulk, |
| 2980 | len - bulk, gctx->ctr)) |
| 2981 | return -1; |
| 2982 | } else { |
| 2983 | size_t bulk = 0; |
| 2984 | #if defined(AES_GCM_ASM2) |
| 2985 | if (len >= 32 && AES_GCM_ASM2(gctx)) { |
| 2986 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 2987 | |
| 2988 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
| 2989 | return -1; |
| 2990 | |
| 2991 | bulk = AES_gcm_encrypt(in + res, |
| 2992 | out + res, len - res, |
| 2993 | gctx->gcm.key, gctx->gcm.Yi.c, |
| 2994 | gctx->gcm.Xi.u); |
| 2995 | gctx->gcm.len.u[1] += bulk; |
| 2996 | bulk += res; |
| 2997 | } |
| 2998 | #endif |
| 2999 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
| 3000 | in + bulk, out + bulk, len - bulk)) |
| 3001 | return -1; |
| 3002 | } |
| 3003 | } else { |
| 3004 | if (gctx->ctr) { |
| 3005 | size_t bulk = 0; |
| 3006 | #if defined(AES_GCM_ASM) |
| 3007 | if (len >= 16 && AES_GCM_ASM(gctx)) { |
| 3008 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 3009 | |
| 3010 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
| 3011 | return -1; |
| 3012 | |
| 3013 | bulk = AES_gcm_decrypt(in + res, |
| 3014 | out + res, len - res, |
| 3015 | gctx->gcm.key, |
| 3016 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3017 | gctx->gcm.len.u[1] += bulk; |
| 3018 | bulk += res; |
| 3019 | } |
| 3020 | #endif |
| 3021 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
| 3022 | in + bulk, |
| 3023 | out + bulk, |
| 3024 | len - bulk, gctx->ctr)) |
| 3025 | return -1; |
| 3026 | } else { |
| 3027 | size_t bulk = 0; |
| 3028 | #if defined(AES_GCM_ASM2) |
| 3029 | if (len >= 16 && AES_GCM_ASM2(gctx)) { |
| 3030 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 3031 | |
| 3032 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
| 3033 | return -1; |
| 3034 | |
| 3035 | bulk = AES_gcm_decrypt(in + res, |
| 3036 | out + res, len - res, |
| 3037 | gctx->gcm.key, |
| 3038 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3039 | gctx->gcm.len.u[1] += bulk; |
| 3040 | bulk += res; |
| 3041 | } |
| 3042 | #endif |
| 3043 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
| 3044 | in + bulk, out + bulk, len - bulk)) |
| 3045 | return -1; |
| 3046 | } |
| 3047 | } |
| 3048 | return len; |
| 3049 | } else { |
| 3050 | if (!ctx->encrypt) { |
| 3051 | if (gctx->taglen < 0) |
| 3052 | return -1; |
| 3053 | if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) |
| 3054 | return -1; |
| 3055 | gctx->iv_set = 0; |
| 3056 | return 0; |
| 3057 | } |
| 3058 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); |
| 3059 | gctx->taglen = 16; |
| 3060 | /* Don't reuse the IV */ |
| 3061 | gctx->iv_set = 0; |
| 3062 | return 0; |
| 3063 | } |
| 3064 | |
| 3065 | } |
| 3066 | |
| 3067 | #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ |
| 3068 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| 3069 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
| 3070 | | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH) |
| 3071 | |
| 3072 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, |
| 3073 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3074 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, |
| 3075 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3076 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, |
| 3077 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3078 | |
| 3079 | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 3080 | { |
| 3081 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c); |
| 3082 | |
| 3083 | if (type == EVP_CTRL_COPY) { |
| 3084 | EVP_CIPHER_CTX *out = ptr; |
| 3085 | EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out); |
| 3086 | |
| 3087 | if (xctx->xts.key1) { |
| 3088 | if (xctx->xts.key1 != &xctx->ks1) |
| 3089 | return 0; |
| 3090 | xctx_out->xts.key1 = &xctx_out->ks1; |
| 3091 | } |
| 3092 | if (xctx->xts.key2) { |
| 3093 | if (xctx->xts.key2 != &xctx->ks2) |
| 3094 | return 0; |
| 3095 | xctx_out->xts.key2 = &xctx_out->ks2; |
| 3096 | } |
| 3097 | return 1; |
| 3098 | } else if (type != EVP_CTRL_INIT) |
| 3099 | return -1; |
| 3100 | /* key1 and key2 are used as an indicator both key and IV are set */ |
| 3101 | xctx->xts.key1 = NULL; |
| 3102 | xctx->xts.key2 = NULL; |
| 3103 | return 1; |
| 3104 | } |
| 3105 | |
| 3106 | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3107 | const unsigned char *iv, int enc) |
| 3108 | { |
| 3109 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 3110 | |
| 3111 | if (!iv && !key) |
| 3112 | return 1; |
| 3113 | |
| 3114 | if (key) { |
| 3115 | do { |
| 3116 | /* The key is two half length keys in reality */ |
| 3117 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 3118 | const int bits = bytes * 8; |
| 3119 | |
| 3120 | /* |
| 3121 | * Verify that the two keys are different. |
| 3122 | * |
| 3123 | * This addresses the vulnerability described in Rogaway's |
| 3124 | * September 2004 paper: |
| 3125 | * |
| 3126 | * "Efficient Instantiations of Tweakable Blockciphers and |
| 3127 | * Refinements to Modes OCB and PMAC". |
| 3128 | * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) |
| 3129 | * |
| 3130 | * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states |
| 3131 | * that: |
| 3132 | * "The check for Key_1 != Key_2 shall be done at any place |
| 3133 | * BEFORE using the keys in the XTS-AES algorithm to process |
| 3134 | * data with them." |
| 3135 | */ |
| 3136 | if ((!allow_insecure_decrypt || enc) |
| 3137 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
| 3138 | EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); |
| 3139 | return 0; |
| 3140 | } |
| 3141 | |
| 3142 | #ifdef AES_XTS_ASM |
| 3143 | xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; |
| 3144 | #else |
| 3145 | xctx->stream = NULL; |
| 3146 | #endif |
| 3147 | /* key_len is two AES keys */ |
| 3148 | #ifdef HWAES_CAPABLE |
| 3149 | if (HWAES_CAPABLE) { |
| 3150 | if (enc) { |
| 3151 | HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| 3152 | xctx->xts.block1 = (block128_f) HWAES_encrypt; |
| 3153 | # ifdef HWAES_xts_encrypt |
| 3154 | xctx->stream = HWAES_xts_encrypt; |
| 3155 | # endif |
| 3156 | } else { |
| 3157 | HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks); |
| 3158 | xctx->xts.block1 = (block128_f) HWAES_decrypt; |
| 3159 | # ifdef HWAES_xts_decrypt |
| 3160 | xctx->stream = HWAES_xts_decrypt; |
| 3161 | #endif |
| 3162 | } |
| 3163 | |
| 3164 | HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
| 3165 | xctx->xts.block2 = (block128_f) HWAES_encrypt; |
| 3166 | |
| 3167 | xctx->xts.key1 = &xctx->ks1; |
| 3168 | break; |
| 3169 | } else |
| 3170 | #endif |
| 3171 | #ifdef BSAES_CAPABLE |
| 3172 | if (BSAES_CAPABLE) |
| 3173 | xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; |
| 3174 | else |
| 3175 | #endif |
| 3176 | #ifdef VPAES_CAPABLE |
| 3177 | if (VPAES_CAPABLE) { |
| 3178 | if (enc) { |
| 3179 | vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| 3180 | xctx->xts.block1 = (block128_f) vpaes_encrypt; |
| 3181 | } else { |
| 3182 | vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks); |
| 3183 | xctx->xts.block1 = (block128_f) vpaes_decrypt; |
| 3184 | } |
| 3185 | |
| 3186 | vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
| 3187 | xctx->xts.block2 = (block128_f) vpaes_encrypt; |
| 3188 | |
| 3189 | xctx->xts.key1 = &xctx->ks1; |
| 3190 | break; |
| 3191 | } else |
| 3192 | #endif |
| 3193 | (void)0; /* terminate potentially open 'else' */ |
| 3194 | |
| 3195 | if (enc) { |
| 3196 | AES_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| 3197 | xctx->xts.block1 = (block128_f) AES_encrypt; |
| 3198 | } else { |
| 3199 | AES_set_decrypt_key(key, bits, &xctx->ks1.ks); |
| 3200 | xctx->xts.block1 = (block128_f) AES_decrypt; |
| 3201 | } |
| 3202 | |
| 3203 | AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
| 3204 | xctx->xts.block2 = (block128_f) AES_encrypt; |
| 3205 | |
| 3206 | xctx->xts.key1 = &xctx->ks1; |
| 3207 | } while (0); |
| 3208 | } |
| 3209 | |
| 3210 | if (iv) { |
| 3211 | xctx->xts.key2 = &xctx->ks2; |
| 3212 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); |
| 3213 | } |
| 3214 | |
| 3215 | return 1; |
| 3216 | } |
| 3217 | |
| 3218 | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3219 | const unsigned char *in, size_t len) |
| 3220 | { |
| 3221 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 3222 | |
| 3223 | if (xctx->xts.key1 == NULL |
| 3224 | || xctx->xts.key2 == NULL |
| 3225 | || out == NULL |
| 3226 | || in == NULL |
| 3227 | || len < AES_BLOCK_SIZE) |
| 3228 | return 0; |
| 3229 | |
| 3230 | /* |
| 3231 | * Impose a limit of 2^20 blocks per data unit as specified by |
| 3232 | * IEEE Std 1619-2018. The earlier and obsolete IEEE Std 1619-2007 |
| 3233 | * indicated that this was a SHOULD NOT rather than a MUST NOT. |
| 3234 | * NIST SP 800-38E mandates the same limit. |
| 3235 | */ |
| 3236 | if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) { |
| 3237 | EVPerr(EVP_F_AES_XTS_CIPHER, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE); |
| 3238 | return 0; |
| 3239 | } |
| 3240 | |
| 3241 | if (xctx->stream) |
| 3242 | (*xctx->stream) (in, out, len, |
| 3243 | xctx->xts.key1, xctx->xts.key2, |
| 3244 | EVP_CIPHER_CTX_iv_noconst(ctx)); |
| 3245 | else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 3246 | in, out, len, |
| 3247 | EVP_CIPHER_CTX_encrypting(ctx))) |
| 3248 | return 0; |
| 3249 | return 1; |
| 3250 | } |
| 3251 | |
| 3252 | #define aes_xts_cleanup NULL |
| 3253 | |
| 3254 | #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ |
| 3255 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
| 3256 | | EVP_CIPH_CUSTOM_COPY) |
| 3257 | |
| 3258 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) |
| 3259 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) |
| 3260 | |
| 3261 | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 3262 | { |
| 3263 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c); |
| 3264 | switch (type) { |
| 3265 | case EVP_CTRL_INIT: |
| 3266 | cctx->key_set = 0; |
| 3267 | cctx->iv_set = 0; |
| 3268 | cctx->L = 8; |
| 3269 | cctx->M = 12; |
| 3270 | cctx->tag_set = 0; |
| 3271 | cctx->len_set = 0; |
| 3272 | cctx->tls_aad_len = -1; |
| 3273 | return 1; |
| 3274 | |
| 3275 | case EVP_CTRL_GET_IVLEN: |
| 3276 | *(int *)ptr = 15 - cctx->L; |
| 3277 | return 1; |
| 3278 | |
| 3279 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 3280 | /* Save the AAD for later use */ |
| 3281 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 3282 | return 0; |
| 3283 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); |
| 3284 | cctx->tls_aad_len = arg; |
| 3285 | { |
| 3286 | uint16_t len = |
| 3287 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 |
| 3288 | | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; |
| 3289 | /* Correct length for explicit IV */ |
| 3290 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) |
| 3291 | return 0; |
| 3292 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 3293 | /* If decrypting correct for tag too */ |
| 3294 | if (!EVP_CIPHER_CTX_encrypting(c)) { |
| 3295 | if (len < cctx->M) |
| 3296 | return 0; |
| 3297 | len -= cctx->M; |
| 3298 | } |
| 3299 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; |
| 3300 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; |
| 3301 | } |
| 3302 | /* Extra padding: tag appended to record */ |
| 3303 | return cctx->M; |
| 3304 | |
| 3305 | case EVP_CTRL_CCM_SET_IV_FIXED: |
| 3306 | /* Sanity check length */ |
| 3307 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN) |
| 3308 | return 0; |
| 3309 | /* Just copy to first part of IV */ |
| 3310 | memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg); |
| 3311 | return 1; |
| 3312 | |
| 3313 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 3314 | arg = 15 - arg; |
| 3315 | /* fall thru */ |
| 3316 | case EVP_CTRL_CCM_SET_L: |
| 3317 | if (arg < 2 || arg > 8) |
| 3318 | return 0; |
| 3319 | cctx->L = arg; |
| 3320 | return 1; |
| 3321 | |
| 3322 | case EVP_CTRL_AEAD_SET_TAG: |
| 3323 | if ((arg & 1) || arg < 4 || arg > 16) |
| 3324 | return 0; |
| 3325 | if (EVP_CIPHER_CTX_encrypting(c) && ptr) |
| 3326 | return 0; |
| 3327 | if (ptr) { |
| 3328 | cctx->tag_set = 1; |
| 3329 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); |
| 3330 | } |
| 3331 | cctx->M = arg; |
| 3332 | return 1; |
| 3333 | |
| 3334 | case EVP_CTRL_AEAD_GET_TAG: |
| 3335 | if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set) |
| 3336 | return 0; |
| 3337 | if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) |
| 3338 | return 0; |
| 3339 | cctx->tag_set = 0; |
| 3340 | cctx->iv_set = 0; |
| 3341 | cctx->len_set = 0; |
| 3342 | return 1; |
| 3343 | |
| 3344 | case EVP_CTRL_COPY: |
| 3345 | { |
| 3346 | EVP_CIPHER_CTX *out = ptr; |
| 3347 | EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out); |
| 3348 | if (cctx->ccm.key) { |
| 3349 | if (cctx->ccm.key != &cctx->ks) |
| 3350 | return 0; |
| 3351 | cctx_out->ccm.key = &cctx_out->ks; |
| 3352 | } |
| 3353 | return 1; |
| 3354 | } |
| 3355 | |
| 3356 | default: |
| 3357 | return -1; |
| 3358 | |
| 3359 | } |
| 3360 | } |
| 3361 | |
| 3362 | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3363 | const unsigned char *iv, int enc) |
| 3364 | { |
| 3365 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 3366 | if (!iv && !key) |
| 3367 | return 1; |
| 3368 | if (key) |
| 3369 | do { |
| 3370 | #ifdef HWAES_CAPABLE |
| 3371 | if (HWAES_CAPABLE) { |
| 3372 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3373 | &cctx->ks.ks); |
| 3374 | |
| 3375 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 3376 | &cctx->ks, (block128_f) HWAES_encrypt); |
| 3377 | cctx->str = NULL; |
| 3378 | cctx->key_set = 1; |
| 3379 | break; |
| 3380 | } else |
| 3381 | #endif |
| 3382 | #ifdef VPAES_CAPABLE |
| 3383 | if (VPAES_CAPABLE) { |
| 3384 | vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3385 | &cctx->ks.ks); |
| 3386 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 3387 | &cctx->ks, (block128_f) vpaes_encrypt); |
| 3388 | cctx->str = NULL; |
| 3389 | cctx->key_set = 1; |
| 3390 | break; |
| 3391 | } |
| 3392 | #endif |
| 3393 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3394 | &cctx->ks.ks); |
| 3395 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 3396 | &cctx->ks, (block128_f) AES_encrypt); |
| 3397 | cctx->str = NULL; |
| 3398 | cctx->key_set = 1; |
| 3399 | } while (0); |
| 3400 | if (iv) { |
| 3401 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); |
| 3402 | cctx->iv_set = 1; |
| 3403 | } |
| 3404 | return 1; |
| 3405 | } |
| 3406 | |
| 3407 | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3408 | const unsigned char *in, size_t len) |
| 3409 | { |
| 3410 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 3411 | CCM128_CONTEXT *ccm = &cctx->ccm; |
| 3412 | /* Encrypt/decrypt must be performed in place */ |
| 3413 | if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) |
| 3414 | return -1; |
| 3415 | /* If encrypting set explicit IV from sequence number (start of AAD) */ |
| 3416 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3417 | memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), |
| 3418 | EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 3419 | /* Get rest of IV from explicit IV */ |
| 3420 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in, |
| 3421 | EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 3422 | /* Correct length value */ |
| 3423 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; |
| 3424 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, |
| 3425 | len)) |
| 3426 | return -1; |
| 3427 | /* Use saved AAD */ |
| 3428 | CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len); |
| 3429 | /* Fix buffer to point to payload */ |
| 3430 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 3431 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 3432 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3433 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
| 3434 | cctx->str) : |
| 3435 | CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
| 3436 | return -1; |
| 3437 | if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) |
| 3438 | return -1; |
| 3439 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; |
| 3440 | } else { |
| 3441 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
| 3442 | cctx->str) : |
| 3443 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
| 3444 | unsigned char tag[16]; |
| 3445 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
| 3446 | if (!CRYPTO_memcmp(tag, in + len, cctx->M)) |
| 3447 | return len; |
| 3448 | } |
| 3449 | } |
| 3450 | OPENSSL_cleanse(out, len); |
| 3451 | return -1; |
| 3452 | } |
| 3453 | } |
| 3454 | |
| 3455 | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3456 | const unsigned char *in, size_t len) |
| 3457 | { |
| 3458 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 3459 | CCM128_CONTEXT *ccm = &cctx->ccm; |
| 3460 | /* If not set up, return error */ |
| 3461 | if (!cctx->key_set) |
| 3462 | return -1; |
| 3463 | |
| 3464 | if (cctx->tls_aad_len >= 0) |
| 3465 | return aes_ccm_tls_cipher(ctx, out, in, len); |
| 3466 | |
| 3467 | /* EVP_*Final() doesn't return any data */ |
| 3468 | if (in == NULL && out != NULL) |
| 3469 | return 0; |
| 3470 | |
| 3471 | if (!cctx->iv_set) |
| 3472 | return -1; |
| 3473 | |
| 3474 | if (!out) { |
| 3475 | if (!in) { |
| 3476 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 3477 | 15 - cctx->L, len)) |
| 3478 | return -1; |
| 3479 | cctx->len_set = 1; |
| 3480 | return len; |
| 3481 | } |
| 3482 | /* If have AAD need message length */ |
| 3483 | if (!cctx->len_set && len) |
| 3484 | return -1; |
| 3485 | CRYPTO_ccm128_aad(ccm, in, len); |
| 3486 | return len; |
| 3487 | } |
| 3488 | |
| 3489 | /* The tag must be set before actually decrypting data */ |
| 3490 | if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set) |
| 3491 | return -1; |
| 3492 | |
| 3493 | /* If not set length yet do it */ |
| 3494 | if (!cctx->len_set) { |
| 3495 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 3496 | 15 - cctx->L, len)) |
| 3497 | return -1; |
| 3498 | cctx->len_set = 1; |
| 3499 | } |
| 3500 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3501 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
| 3502 | cctx->str) : |
| 3503 | CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
| 3504 | return -1; |
| 3505 | cctx->tag_set = 1; |
| 3506 | return len; |
| 3507 | } else { |
| 3508 | int rv = -1; |
| 3509 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
| 3510 | cctx->str) : |
| 3511 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
| 3512 | unsigned char tag[16]; |
| 3513 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
| 3514 | if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), |
| 3515 | cctx->M)) |
| 3516 | rv = len; |
| 3517 | } |
| 3518 | } |
| 3519 | if (rv == -1) |
| 3520 | OPENSSL_cleanse(out, len); |
| 3521 | cctx->iv_set = 0; |
| 3522 | cctx->tag_set = 0; |
| 3523 | cctx->len_set = 0; |
| 3524 | return rv; |
| 3525 | } |
| 3526 | } |
| 3527 | |
| 3528 | #define aes_ccm_cleanup NULL |
| 3529 | |
| 3530 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, |
| 3531 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3532 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, |
| 3533 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3534 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, |
| 3535 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3536 | |
| 3537 | typedef struct { |
| 3538 | union { |
| 3539 | OSSL_UNION_ALIGN; |
| 3540 | AES_KEY ks; |
| 3541 | } ks; |
| 3542 | /* Indicates if IV has been set */ |
| 3543 | unsigned char *iv; |
| 3544 | } EVP_AES_WRAP_CTX; |
| 3545 | |
| 3546 | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3547 | const unsigned char *iv, int enc) |
| 3548 | { |
| 3549 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); |
| 3550 | if (!iv && !key) |
| 3551 | return 1; |
| 3552 | if (key) { |
| 3553 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3554 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3555 | &wctx->ks.ks); |
| 3556 | else |
| 3557 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3558 | &wctx->ks.ks); |
| 3559 | if (!iv) |
| 3560 | wctx->iv = NULL; |
| 3561 | } |
| 3562 | if (iv) { |
| 3563 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| 3564 | wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 3565 | } |
| 3566 | return 1; |
| 3567 | } |
| 3568 | |
| 3569 | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3570 | const unsigned char *in, size_t inlen) |
| 3571 | { |
| 3572 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); |
| 3573 | size_t rv; |
| 3574 | /* AES wrap with padding has IV length of 4, without padding 8 */ |
| 3575 | int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4; |
| 3576 | /* No final operation so always return zero length */ |
| 3577 | if (!in) |
| 3578 | return 0; |
| 3579 | /* Input length must always be non-zero */ |
| 3580 | if (!inlen) |
| 3581 | return -1; |
| 3582 | /* If decrypting need at least 16 bytes and multiple of 8 */ |
| 3583 | if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7)) |
| 3584 | return -1; |
| 3585 | /* If not padding input must be multiple of 8 */ |
| 3586 | if (!pad && inlen & 0x7) |
| 3587 | return -1; |
| 3588 | if (is_partially_overlapping(out, in, inlen)) { |
| 3589 | EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); |
| 3590 | return 0; |
| 3591 | } |
| 3592 | if (!out) { |
| 3593 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3594 | /* If padding round up to multiple of 8 */ |
| 3595 | if (pad) |
| 3596 | inlen = (inlen + 7) / 8 * 8; |
| 3597 | /* 8 byte prefix */ |
| 3598 | return inlen + 8; |
| 3599 | } else { |
| 3600 | /* |
| 3601 | * If not padding output will be exactly 8 bytes smaller than |
| 3602 | * input. If padding it will be at least 8 bytes smaller but we |
| 3603 | * don't know how much. |
| 3604 | */ |
| 3605 | return inlen - 8; |
| 3606 | } |
| 3607 | } |
| 3608 | if (pad) { |
| 3609 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3610 | rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, |
| 3611 | out, in, inlen, |
| 3612 | (block128_f) AES_encrypt); |
| 3613 | else |
| 3614 | rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, |
| 3615 | out, in, inlen, |
| 3616 | (block128_f) AES_decrypt); |
| 3617 | } else { |
| 3618 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3619 | rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, |
| 3620 | out, in, inlen, (block128_f) AES_encrypt); |
| 3621 | else |
| 3622 | rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, |
| 3623 | out, in, inlen, (block128_f) AES_decrypt); |
| 3624 | } |
| 3625 | return rv ? (int)rv : -1; |
| 3626 | } |
| 3627 | |
| 3628 | #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ |
| 3629 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| 3630 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) |
| 3631 | |
| 3632 | static const EVP_CIPHER aes_128_wrap = { |
| 3633 | NID_id_aes128_wrap, |
| 3634 | 8, 16, 8, WRAP_FLAGS, |
| 3635 | aes_wrap_init_key, aes_wrap_cipher, |
| 3636 | NULL, |
| 3637 | sizeof(EVP_AES_WRAP_CTX), |
| 3638 | NULL, NULL, NULL, NULL |
| 3639 | }; |
| 3640 | |
| 3641 | const EVP_CIPHER *EVP_aes_128_wrap(void) |
| 3642 | { |
| 3643 | return &aes_128_wrap; |
| 3644 | } |
| 3645 | |
| 3646 | static const EVP_CIPHER aes_192_wrap = { |
| 3647 | NID_id_aes192_wrap, |
| 3648 | 8, 24, 8, WRAP_FLAGS, |
| 3649 | aes_wrap_init_key, aes_wrap_cipher, |
| 3650 | NULL, |
| 3651 | sizeof(EVP_AES_WRAP_CTX), |
| 3652 | NULL, NULL, NULL, NULL |
| 3653 | }; |
| 3654 | |
| 3655 | const EVP_CIPHER *EVP_aes_192_wrap(void) |
| 3656 | { |
| 3657 | return &aes_192_wrap; |
| 3658 | } |
| 3659 | |
| 3660 | static const EVP_CIPHER aes_256_wrap = { |
| 3661 | NID_id_aes256_wrap, |
| 3662 | 8, 32, 8, WRAP_FLAGS, |
| 3663 | aes_wrap_init_key, aes_wrap_cipher, |
| 3664 | NULL, |
| 3665 | sizeof(EVP_AES_WRAP_CTX), |
| 3666 | NULL, NULL, NULL, NULL |
| 3667 | }; |
| 3668 | |
| 3669 | const EVP_CIPHER *EVP_aes_256_wrap(void) |
| 3670 | { |
| 3671 | return &aes_256_wrap; |
| 3672 | } |
| 3673 | |
| 3674 | static const EVP_CIPHER aes_128_wrap_pad = { |
| 3675 | NID_id_aes128_wrap_pad, |
| 3676 | 8, 16, 4, WRAP_FLAGS, |
| 3677 | aes_wrap_init_key, aes_wrap_cipher, |
| 3678 | NULL, |
| 3679 | sizeof(EVP_AES_WRAP_CTX), |
| 3680 | NULL, NULL, NULL, NULL |
| 3681 | }; |
| 3682 | |
| 3683 | const EVP_CIPHER *EVP_aes_128_wrap_pad(void) |
| 3684 | { |
| 3685 | return &aes_128_wrap_pad; |
| 3686 | } |
| 3687 | |
| 3688 | static const EVP_CIPHER aes_192_wrap_pad = { |
| 3689 | NID_id_aes192_wrap_pad, |
| 3690 | 8, 24, 4, WRAP_FLAGS, |
| 3691 | aes_wrap_init_key, aes_wrap_cipher, |
| 3692 | NULL, |
| 3693 | sizeof(EVP_AES_WRAP_CTX), |
| 3694 | NULL, NULL, NULL, NULL |
| 3695 | }; |
| 3696 | |
| 3697 | const EVP_CIPHER *EVP_aes_192_wrap_pad(void) |
| 3698 | { |
| 3699 | return &aes_192_wrap_pad; |
| 3700 | } |
| 3701 | |
| 3702 | static const EVP_CIPHER aes_256_wrap_pad = { |
| 3703 | NID_id_aes256_wrap_pad, |
| 3704 | 8, 32, 4, WRAP_FLAGS, |
| 3705 | aes_wrap_init_key, aes_wrap_cipher, |
| 3706 | NULL, |
| 3707 | sizeof(EVP_AES_WRAP_CTX), |
| 3708 | NULL, NULL, NULL, NULL |
| 3709 | }; |
| 3710 | |
| 3711 | const EVP_CIPHER *EVP_aes_256_wrap_pad(void) |
| 3712 | { |
| 3713 | return &aes_256_wrap_pad; |
| 3714 | } |
| 3715 | |
| 3716 | #ifndef OPENSSL_NO_OCB |
| 3717 | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 3718 | { |
| 3719 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); |
| 3720 | EVP_CIPHER_CTX *newc; |
| 3721 | EVP_AES_OCB_CTX *new_octx; |
| 3722 | |
| 3723 | switch (type) { |
| 3724 | case EVP_CTRL_INIT: |
| 3725 | octx->key_set = 0; |
| 3726 | octx->iv_set = 0; |
| 3727 | octx->ivlen = EVP_CIPHER_iv_length(c->cipher); |
| 3728 | octx->iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 3729 | octx->taglen = 16; |
| 3730 | octx->data_buf_len = 0; |
| 3731 | octx->aad_buf_len = 0; |
| 3732 | return 1; |
| 3733 | |
| 3734 | case EVP_CTRL_GET_IVLEN: |
| 3735 | *(int *)ptr = octx->ivlen; |
| 3736 | return 1; |
| 3737 | |
| 3738 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 3739 | /* IV len must be 1 to 15 */ |
| 3740 | if (arg <= 0 || arg > 15) |
| 3741 | return 0; |
| 3742 | |
| 3743 | octx->ivlen = arg; |
| 3744 | return 1; |
| 3745 | |
| 3746 | case EVP_CTRL_AEAD_SET_TAG: |
| 3747 | if (ptr == NULL) { |
| 3748 | /* Tag len must be 0 to 16 */ |
| 3749 | if (arg < 0 || arg > 16) |
| 3750 | return 0; |
| 3751 | |
| 3752 | octx->taglen = arg; |
| 3753 | return 1; |
| 3754 | } |
| 3755 | if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c)) |
| 3756 | return 0; |
| 3757 | memcpy(octx->tag, ptr, arg); |
| 3758 | return 1; |
| 3759 | |
| 3760 | case EVP_CTRL_AEAD_GET_TAG: |
| 3761 | if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c)) |
| 3762 | return 0; |
| 3763 | |
| 3764 | memcpy(ptr, octx->tag, arg); |
| 3765 | return 1; |
| 3766 | |
| 3767 | case EVP_CTRL_COPY: |
| 3768 | newc = (EVP_CIPHER_CTX *)ptr; |
| 3769 | new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc); |
| 3770 | return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, |
| 3771 | &new_octx->ksenc.ks, |
| 3772 | &new_octx->ksdec.ks); |
| 3773 | |
| 3774 | default: |
| 3775 | return -1; |
| 3776 | |
| 3777 | } |
| 3778 | } |
| 3779 | |
| 3780 | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3781 | const unsigned char *iv, int enc) |
| 3782 | { |
| 3783 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 3784 | if (!iv && !key) |
| 3785 | return 1; |
| 3786 | if (key) { |
| 3787 | do { |
| 3788 | /* |
| 3789 | * We set both the encrypt and decrypt key here because decrypt |
| 3790 | * needs both. We could possibly optimise to remove setting the |
| 3791 | * decrypt for an encryption operation. |
| 3792 | */ |
| 3793 | # ifdef HWAES_CAPABLE |
| 3794 | if (HWAES_CAPABLE) { |
| 3795 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3796 | &octx->ksenc.ks); |
| 3797 | HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3798 | &octx->ksdec.ks); |
| 3799 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 3800 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 3801 | (block128_f) HWAES_encrypt, |
| 3802 | (block128_f) HWAES_decrypt, |
| 3803 | enc ? HWAES_ocb_encrypt |
| 3804 | : HWAES_ocb_decrypt)) |
| 3805 | return 0; |
| 3806 | break; |
| 3807 | } |
| 3808 | # endif |
| 3809 | # ifdef VPAES_CAPABLE |
| 3810 | if (VPAES_CAPABLE) { |
| 3811 | vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3812 | &octx->ksenc.ks); |
| 3813 | vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3814 | &octx->ksdec.ks); |
| 3815 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 3816 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 3817 | (block128_f) vpaes_encrypt, |
| 3818 | (block128_f) vpaes_decrypt, |
| 3819 | NULL)) |
| 3820 | return 0; |
| 3821 | break; |
| 3822 | } |
| 3823 | # endif |
| 3824 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3825 | &octx->ksenc.ks); |
| 3826 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3827 | &octx->ksdec.ks); |
| 3828 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 3829 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 3830 | (block128_f) AES_encrypt, |
| 3831 | (block128_f) AES_decrypt, |
| 3832 | NULL)) |
| 3833 | return 0; |
| 3834 | } |
| 3835 | while (0); |
| 3836 | |
| 3837 | /* |
| 3838 | * If we have an iv we can set it directly, otherwise use saved IV. |
| 3839 | */ |
| 3840 | if (iv == NULL && octx->iv_set) |
| 3841 | iv = octx->iv; |
| 3842 | if (iv) { |
| 3843 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| 3844 | != 1) |
| 3845 | return 0; |
| 3846 | octx->iv_set = 1; |
| 3847 | } |
| 3848 | octx->key_set = 1; |
| 3849 | } else { |
| 3850 | /* If key set use IV, otherwise copy */ |
| 3851 | if (octx->key_set) |
| 3852 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| 3853 | else |
| 3854 | memcpy(octx->iv, iv, octx->ivlen); |
| 3855 | octx->iv_set = 1; |
| 3856 | } |
| 3857 | return 1; |
| 3858 | } |
| 3859 | |
| 3860 | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3861 | const unsigned char *in, size_t len) |
| 3862 | { |
| 3863 | unsigned char *buf; |
| 3864 | int *buf_len; |
| 3865 | int written_len = 0; |
| 3866 | size_t trailing_len; |
| 3867 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 3868 | |
| 3869 | /* If IV or Key not set then return error */ |
| 3870 | if (!octx->iv_set) |
| 3871 | return -1; |
| 3872 | |
| 3873 | if (!octx->key_set) |
| 3874 | return -1; |
| 3875 | |
| 3876 | if (in != NULL) { |
| 3877 | /* |
| 3878 | * Need to ensure we are only passing full blocks to low level OCB |
| 3879 | * routines. We do it here rather than in EVP_EncryptUpdate/ |
| 3880 | * EVP_DecryptUpdate because we need to pass full blocks of AAD too |
| 3881 | * and those routines don't support that |
| 3882 | */ |
| 3883 | |
| 3884 | /* Are we dealing with AAD or normal data here? */ |
| 3885 | if (out == NULL) { |
| 3886 | buf = octx->aad_buf; |
| 3887 | buf_len = &(octx->aad_buf_len); |
| 3888 | } else { |
| 3889 | buf = octx->data_buf; |
| 3890 | buf_len = &(octx->data_buf_len); |
| 3891 | |
| 3892 | if (is_partially_overlapping(out + *buf_len, in, len)) { |
| 3893 | EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); |
| 3894 | return 0; |
| 3895 | } |
| 3896 | } |
| 3897 | |
| 3898 | /* |
| 3899 | * If we've got a partially filled buffer from a previous call then |
| 3900 | * use that data first |
| 3901 | */ |
| 3902 | if (*buf_len > 0) { |
| 3903 | unsigned int remaining; |
| 3904 | |
| 3905 | remaining = AES_BLOCK_SIZE - (*buf_len); |
| 3906 | if (remaining > len) { |
| 3907 | memcpy(buf + (*buf_len), in, len); |
| 3908 | *(buf_len) += len; |
| 3909 | return 0; |
| 3910 | } |
| 3911 | memcpy(buf + (*buf_len), in, remaining); |
| 3912 | |
| 3913 | /* |
| 3914 | * If we get here we've filled the buffer, so process it |
| 3915 | */ |
| 3916 | len -= remaining; |
| 3917 | in += remaining; |
| 3918 | if (out == NULL) { |
| 3919 | if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE)) |
| 3920 | return -1; |
| 3921 | } else if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3922 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, |
| 3923 | AES_BLOCK_SIZE)) |
| 3924 | return -1; |
| 3925 | } else { |
| 3926 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, |
| 3927 | AES_BLOCK_SIZE)) |
| 3928 | return -1; |
| 3929 | } |
| 3930 | written_len = AES_BLOCK_SIZE; |
| 3931 | *buf_len = 0; |
| 3932 | if (out != NULL) |
| 3933 | out += AES_BLOCK_SIZE; |
| 3934 | } |
| 3935 | |
| 3936 | /* Do we have a partial block to handle at the end? */ |
| 3937 | trailing_len = len % AES_BLOCK_SIZE; |
| 3938 | |
| 3939 | /* |
| 3940 | * If we've got some full blocks to handle, then process these first |
| 3941 | */ |
| 3942 | if (len != trailing_len) { |
| 3943 | if (out == NULL) { |
| 3944 | if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) |
| 3945 | return -1; |
| 3946 | } else if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3947 | if (!CRYPTO_ocb128_encrypt |
| 3948 | (&octx->ocb, in, out, len - trailing_len)) |
| 3949 | return -1; |
| 3950 | } else { |
| 3951 | if (!CRYPTO_ocb128_decrypt |
| 3952 | (&octx->ocb, in, out, len - trailing_len)) |
| 3953 | return -1; |
| 3954 | } |
| 3955 | written_len += len - trailing_len; |
| 3956 | in += len - trailing_len; |
| 3957 | } |
| 3958 | |
| 3959 | /* Handle any trailing partial block */ |
| 3960 | if (trailing_len > 0) { |
| 3961 | memcpy(buf, in, trailing_len); |
| 3962 | *buf_len = trailing_len; |
| 3963 | } |
| 3964 | |
| 3965 | return written_len; |
| 3966 | } else { |
| 3967 | /* |
| 3968 | * First of all empty the buffer of any partial block that we might |
| 3969 | * have been provided - both for data and AAD |
| 3970 | */ |
| 3971 | if (octx->data_buf_len > 0) { |
| 3972 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3973 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, |
| 3974 | octx->data_buf_len)) |
| 3975 | return -1; |
| 3976 | } else { |
| 3977 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, |
| 3978 | octx->data_buf_len)) |
| 3979 | return -1; |
| 3980 | } |
| 3981 | written_len = octx->data_buf_len; |
| 3982 | octx->data_buf_len = 0; |
| 3983 | } |
| 3984 | if (octx->aad_buf_len > 0) { |
| 3985 | if (!CRYPTO_ocb128_aad |
| 3986 | (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) |
| 3987 | return -1; |
| 3988 | octx->aad_buf_len = 0; |
| 3989 | } |
| 3990 | /* If decrypting then verify */ |
| 3991 | if (!EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3992 | if (octx->taglen < 0) |
| 3993 | return -1; |
| 3994 | if (CRYPTO_ocb128_finish(&octx->ocb, |
| 3995 | octx->tag, octx->taglen) != 0) |
| 3996 | return -1; |
| 3997 | octx->iv_set = 0; |
| 3998 | return written_len; |
| 3999 | } |
| 4000 | /* If encrypting then just get the tag */ |
| 4001 | if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) |
| 4002 | return -1; |
| 4003 | /* Don't reuse the IV */ |
| 4004 | octx->iv_set = 0; |
| 4005 | return written_len; |
| 4006 | } |
| 4007 | } |
| 4008 | |
| 4009 | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) |
| 4010 | { |
| 4011 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); |
| 4012 | CRYPTO_ocb128_cleanup(&octx->ocb); |
| 4013 | return 1; |
| 4014 | } |
| 4015 | |
| 4016 | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, |
| 4017 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 4018 | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, |
| 4019 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 4020 | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, |
| 4021 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 4022 | #endif /* OPENSSL_NO_OCB */ |
| 4023 | |
| 4024 | /* AES-SIV mode */ |
| 4025 | #ifndef OPENSSL_NO_SIV |
| 4026 | |
| 4027 | typedef SIV128_CONTEXT EVP_AES_SIV_CTX; |
| 4028 | |
| 4029 | #define aesni_siv_init_key aes_siv_init_key |
| 4030 | static int aes_siv_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 4031 | const unsigned char *iv, int enc) |
| 4032 | { |
| 4033 | const EVP_CIPHER *ctr; |
| 4034 | const EVP_CIPHER *cbc; |
| 4035 | SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, ctx); |
| 4036 | int klen = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 4037 | |
| 4038 | if (key == NULL) |
| 4039 | return 1; |
| 4040 | |
| 4041 | switch (klen) { |
| 4042 | case 16: |
| 4043 | cbc = EVP_aes_128_cbc(); |
| 4044 | ctr = EVP_aes_128_ctr(); |
| 4045 | break; |
| 4046 | case 24: |
| 4047 | cbc = EVP_aes_192_cbc(); |
| 4048 | ctr = EVP_aes_192_ctr(); |
| 4049 | break; |
| 4050 | case 32: |
| 4051 | cbc = EVP_aes_256_cbc(); |
| 4052 | ctr = EVP_aes_256_ctr(); |
| 4053 | break; |
| 4054 | default: |
| 4055 | return 0; |
| 4056 | } |
| 4057 | |
| 4058 | /* klen is the length of the underlying cipher, not the input key, |
| 4059 | which should be twice as long */ |
| 4060 | return CRYPTO_siv128_init(sctx, key, klen, cbc, ctr); |
| 4061 | } |
| 4062 | |
| 4063 | #define aesni_siv_cipher aes_siv_cipher |
| 4064 | static int aes_siv_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 4065 | const unsigned char *in, size_t len) |
| 4066 | { |
| 4067 | SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, ctx); |
| 4068 | |
| 4069 | /* EncryptFinal or DecryptFinal */ |
| 4070 | if (in == NULL) |
| 4071 | return CRYPTO_siv128_finish(sctx); |
| 4072 | |
| 4073 | /* Deal with associated data */ |
| 4074 | if (out == NULL) |
| 4075 | return CRYPTO_siv128_aad(sctx, in, len); |
| 4076 | |
| 4077 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 4078 | return CRYPTO_siv128_encrypt(sctx, in, out, len); |
| 4079 | |
| 4080 | return CRYPTO_siv128_decrypt(sctx, in, out, len); |
| 4081 | } |
| 4082 | |
| 4083 | #define aesni_siv_cleanup aes_siv_cleanup |
| 4084 | static int aes_siv_cleanup(EVP_CIPHER_CTX *c) |
| 4085 | { |
| 4086 | SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, c); |
| 4087 | |
| 4088 | return CRYPTO_siv128_cleanup(sctx); |
| 4089 | } |
| 4090 | |
| 4091 | |
| 4092 | #define aesni_siv_ctrl aes_siv_ctrl |
| 4093 | static int aes_siv_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 4094 | { |
| 4095 | SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, c); |
| 4096 | SIV128_CONTEXT *sctx_out; |
| 4097 | |
| 4098 | switch (type) { |
| 4099 | case EVP_CTRL_INIT: |
| 4100 | return CRYPTO_siv128_cleanup(sctx); |
| 4101 | |
| 4102 | case EVP_CTRL_SET_SPEED: |
| 4103 | return CRYPTO_siv128_speed(sctx, arg); |
| 4104 | |
| 4105 | case EVP_CTRL_AEAD_SET_TAG: |
| 4106 | if (!EVP_CIPHER_CTX_encrypting(c)) |
| 4107 | return CRYPTO_siv128_set_tag(sctx, ptr, arg); |
| 4108 | return 1; |
| 4109 | |
| 4110 | case EVP_CTRL_AEAD_GET_TAG: |
| 4111 | if (!EVP_CIPHER_CTX_encrypting(c)) |
| 4112 | return 0; |
| 4113 | return CRYPTO_siv128_get_tag(sctx, ptr, arg); |
| 4114 | |
| 4115 | case EVP_CTRL_COPY: |
| 4116 | sctx_out = EVP_C_DATA(SIV128_CONTEXT, (EVP_CIPHER_CTX*)ptr); |
| 4117 | return CRYPTO_siv128_copy_ctx(sctx_out, sctx); |
| 4118 | |
| 4119 | default: |
| 4120 | return -1; |
| 4121 | |
| 4122 | } |
| 4123 | } |
| 4124 | |
| 4125 | #define SIV_FLAGS (EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_DEFAULT_ASN1 \ |
| 4126 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| 4127 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CUSTOM_COPY \ |
| 4128 | | EVP_CIPH_CTRL_INIT) |
| 4129 | |
| 4130 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 0, siv, SIV, SIV_FLAGS) |
| 4131 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 0, siv, SIV, SIV_FLAGS) |
| 4132 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 0, siv, SIV, SIV_FLAGS) |
| 4133 | #endif |
| 4134 | |