1/*
2 * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include <string.h>
12#include <openssl/opensslconf.h>
13#include <openssl/evp.h>
14#include <openssl/objects.h>
15#include <openssl/aes.h>
16#include <openssl/sha.h>
17#include <openssl/rand.h>
18#include "internal/cryptlib.h"
19#include "crypto/modes.h"
20#include "crypto/evp.h"
21#include "internal/constant_time.h"
22
23typedef struct {
24 AES_KEY ks;
25 SHA_CTX head, tail, md;
26 size_t payload_length; /* AAD length in decrypt case */
27 union {
28 unsigned int tls_ver;
29 unsigned char tls_aad[16]; /* 13 used */
30 } aux;
31} EVP_AES_HMAC_SHA1;
32
33#define NO_PAYLOAD_LENGTH ((size_t)-1)
34
35#if defined(AES_ASM) && ( \
36 defined(__x86_64) || defined(__x86_64__) || \
37 defined(_M_AMD64) || defined(_M_X64) )
38
39# define AESNI_CAPABLE (1<<(57-32))
40
41int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
42 AES_KEY *key);
43int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
44 AES_KEY *key);
45
46void aesni_cbc_encrypt(const unsigned char *in,
47 unsigned char *out,
48 size_t length,
49 const AES_KEY *key, unsigned char *ivec, int enc);
50
51void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
52 const AES_KEY *key, unsigned char iv[16],
53 SHA_CTX *ctx, const void *in0);
54
55void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
56 const AES_KEY *key, unsigned char iv[16],
57 SHA_CTX *ctx, const void *in0);
58
59# define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
60
61static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
62 const unsigned char *inkey,
63 const unsigned char *iv, int enc)
64{
65 EVP_AES_HMAC_SHA1 *key = data(ctx);
66 int ret;
67
68 if (enc)
69 ret = aesni_set_encrypt_key(inkey,
70 EVP_CIPHER_CTX_key_length(ctx) * 8,
71 &key->ks);
72 else
73 ret = aesni_set_decrypt_key(inkey,
74 EVP_CIPHER_CTX_key_length(ctx) * 8,
75 &key->ks);
76
77 SHA1_Init(&key->head); /* handy when benchmarking */
78 key->tail = key->head;
79 key->md = key->head;
80
81 key->payload_length = NO_PAYLOAD_LENGTH;
82
83 return ret < 0 ? 0 : 1;
84}
85
86# define STITCHED_CALL
87# undef STITCHED_DECRYPT_CALL
88
89# if !defined(STITCHED_CALL)
90# define aes_off 0
91# endif
92
93void sha1_block_data_order(void *c, const void *p, size_t len);
94
95static void sha1_update(SHA_CTX *c, const void *data, size_t len)
96{
97 const unsigned char *ptr = data;
98 size_t res;
99
100 if ((res = c->num)) {
101 res = SHA_CBLOCK - res;
102 if (len < res)
103 res = len;
104 SHA1_Update(c, ptr, res);
105 ptr += res;
106 len -= res;
107 }
108
109 res = len % SHA_CBLOCK;
110 len -= res;
111
112 if (len) {
113 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
114
115 ptr += len;
116 c->Nh += len >> 29;
117 c->Nl += len <<= 3;
118 if (c->Nl < (unsigned int)len)
119 c->Nh++;
120 }
121
122 if (res)
123 SHA1_Update(c, ptr, res);
124}
125
126# ifdef SHA1_Update
127# undef SHA1_Update
128# endif
129# define SHA1_Update sha1_update
130
131# if !defined(OPENSSL_NO_MULTIBLOCK)
132
133typedef struct {
134 unsigned int A[8], B[8], C[8], D[8], E[8];
135} SHA1_MB_CTX;
136typedef struct {
137 const unsigned char *ptr;
138 int blocks;
139} HASH_DESC;
140
141void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
142
143typedef struct {
144 const unsigned char *inp;
145 unsigned char *out;
146 int blocks;
147 u64 iv[2];
148} CIPH_DESC;
149
150void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
151
152static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
153 unsigned char *out,
154 const unsigned char *inp,
155 size_t inp_len, int n4x)
156{ /* n4x is 1 or 2 */
157 HASH_DESC hash_d[8], edges[8];
158 CIPH_DESC ciph_d[8];
159 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
160 union {
161 u64 q[16];
162 u32 d[32];
163 u8 c[128];
164 } blocks[8];
165 SHA1_MB_CTX *ctx;
166 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
167 0;
168 size_t ret = 0;
169 u8 *IVs;
170# if defined(BSWAP8)
171 u64 seqnum;
172# endif
173
174 /* ask for IVs in bulk */
175 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
176 return 0;
177
178 ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
179
180 frag = (unsigned int)inp_len >> (1 + n4x);
181 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
182 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
183 frag++;
184 last -= x4 - 1;
185 }
186
187 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
188
189 /* populate descriptors with pointers and IVs */
190 hash_d[0].ptr = inp;
191 ciph_d[0].inp = inp;
192 /* 5+16 is place for header and explicit IV */
193 ciph_d[0].out = out + 5 + 16;
194 memcpy(ciph_d[0].out - 16, IVs, 16);
195 memcpy(ciph_d[0].iv, IVs, 16);
196 IVs += 16;
197
198 for (i = 1; i < x4; i++) {
199 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
200 ciph_d[i].out = ciph_d[i - 1].out + packlen;
201 memcpy(ciph_d[i].out - 16, IVs, 16);
202 memcpy(ciph_d[i].iv, IVs, 16);
203 IVs += 16;
204 }
205
206# if defined(BSWAP8)
207 memcpy(blocks[0].c, key->md.data, 8);
208 seqnum = BSWAP8(blocks[0].q[0]);
209# endif
210 for (i = 0; i < x4; i++) {
211 unsigned int len = (i == (x4 - 1) ? last : frag);
212# if !defined(BSWAP8)
213 unsigned int carry, j;
214# endif
215
216 ctx->A[i] = key->md.h0;
217 ctx->B[i] = key->md.h1;
218 ctx->C[i] = key->md.h2;
219 ctx->D[i] = key->md.h3;
220 ctx->E[i] = key->md.h4;
221
222 /* fix seqnum */
223# if defined(BSWAP8)
224 blocks[i].q[0] = BSWAP8(seqnum + i);
225# else
226 for (carry = i, j = 8; j--;) {
227 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
228 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
229 }
230# endif
231 blocks[i].c[8] = ((u8 *)key->md.data)[8];
232 blocks[i].c[9] = ((u8 *)key->md.data)[9];
233 blocks[i].c[10] = ((u8 *)key->md.data)[10];
234 /* fix length */
235 blocks[i].c[11] = (u8)(len >> 8);
236 blocks[i].c[12] = (u8)(len);
237
238 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
239 hash_d[i].ptr += 64 - 13;
240 hash_d[i].blocks = (len - (64 - 13)) / 64;
241
242 edges[i].ptr = blocks[i].c;
243 edges[i].blocks = 1;
244 }
245
246 /* hash 13-byte headers and first 64-13 bytes of inputs */
247 sha1_multi_block(ctx, edges, n4x);
248 /* hash bulk inputs */
249# define MAXCHUNKSIZE 2048
250# if MAXCHUNKSIZE%64
251# error "MAXCHUNKSIZE is not divisible by 64"
252# elif MAXCHUNKSIZE
253 /*
254 * goal is to minimize pressure on L1 cache by moving in shorter steps,
255 * so that hashed data is still in the cache by the time we encrypt it
256 */
257 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
258 if (minblocks > MAXCHUNKSIZE / 64) {
259 for (i = 0; i < x4; i++) {
260 edges[i].ptr = hash_d[i].ptr;
261 edges[i].blocks = MAXCHUNKSIZE / 64;
262 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
263 }
264 do {
265 sha1_multi_block(ctx, edges, n4x);
266 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
267
268 for (i = 0; i < x4; i++) {
269 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
270 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
271 edges[i].blocks = MAXCHUNKSIZE / 64;
272 ciph_d[i].inp += MAXCHUNKSIZE;
273 ciph_d[i].out += MAXCHUNKSIZE;
274 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
275 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
276 }
277 processed += MAXCHUNKSIZE;
278 minblocks -= MAXCHUNKSIZE / 64;
279 } while (minblocks > MAXCHUNKSIZE / 64);
280 }
281# endif
282# undef MAXCHUNKSIZE
283 sha1_multi_block(ctx, hash_d, n4x);
284
285 memset(blocks, 0, sizeof(blocks));
286 for (i = 0; i < x4; i++) {
287 unsigned int len = (i == (x4 - 1) ? last : frag),
288 off = hash_d[i].blocks * 64;
289 const unsigned char *ptr = hash_d[i].ptr + off;
290
291 off = (len - processed) - (64 - 13) - off; /* remainder actually */
292 memcpy(blocks[i].c, ptr, off);
293 blocks[i].c[off] = 0x80;
294 len += 64 + 13; /* 64 is HMAC header */
295 len *= 8; /* convert to bits */
296 if (off < (64 - 8)) {
297# ifdef BSWAP4
298 blocks[i].d[15] = BSWAP4(len);
299# else
300 PUTU32(blocks[i].c + 60, len);
301# endif
302 edges[i].blocks = 1;
303 } else {
304# ifdef BSWAP4
305 blocks[i].d[31] = BSWAP4(len);
306# else
307 PUTU32(blocks[i].c + 124, len);
308# endif
309 edges[i].blocks = 2;
310 }
311 edges[i].ptr = blocks[i].c;
312 }
313
314 /* hash input tails and finalize */
315 sha1_multi_block(ctx, edges, n4x);
316
317 memset(blocks, 0, sizeof(blocks));
318 for (i = 0; i < x4; i++) {
319# ifdef BSWAP4
320 blocks[i].d[0] = BSWAP4(ctx->A[i]);
321 ctx->A[i] = key->tail.h0;
322 blocks[i].d[1] = BSWAP4(ctx->B[i]);
323 ctx->B[i] = key->tail.h1;
324 blocks[i].d[2] = BSWAP4(ctx->C[i]);
325 ctx->C[i] = key->tail.h2;
326 blocks[i].d[3] = BSWAP4(ctx->D[i]);
327 ctx->D[i] = key->tail.h3;
328 blocks[i].d[4] = BSWAP4(ctx->E[i]);
329 ctx->E[i] = key->tail.h4;
330 blocks[i].c[20] = 0x80;
331 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
332# else
333 PUTU32(blocks[i].c + 0, ctx->A[i]);
334 ctx->A[i] = key->tail.h0;
335 PUTU32(blocks[i].c + 4, ctx->B[i]);
336 ctx->B[i] = key->tail.h1;
337 PUTU32(blocks[i].c + 8, ctx->C[i]);
338 ctx->C[i] = key->tail.h2;
339 PUTU32(blocks[i].c + 12, ctx->D[i]);
340 ctx->D[i] = key->tail.h3;
341 PUTU32(blocks[i].c + 16, ctx->E[i]);
342 ctx->E[i] = key->tail.h4;
343 blocks[i].c[20] = 0x80;
344 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
345# endif
346 edges[i].ptr = blocks[i].c;
347 edges[i].blocks = 1;
348 }
349
350 /* finalize MACs */
351 sha1_multi_block(ctx, edges, n4x);
352
353 for (i = 0; i < x4; i++) {
354 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
355 unsigned char *out0 = out;
356
357 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
358 ciph_d[i].inp = ciph_d[i].out;
359
360 out += 5 + 16 + len;
361
362 /* write MAC */
363 PUTU32(out + 0, ctx->A[i]);
364 PUTU32(out + 4, ctx->B[i]);
365 PUTU32(out + 8, ctx->C[i]);
366 PUTU32(out + 12, ctx->D[i]);
367 PUTU32(out + 16, ctx->E[i]);
368 out += 20;
369 len += 20;
370
371 /* pad */
372 pad = 15 - len % 16;
373 for (j = 0; j <= pad; j++)
374 *(out++) = pad;
375 len += pad + 1;
376
377 ciph_d[i].blocks = (len - processed) / 16;
378 len += 16; /* account for explicit iv */
379
380 /* arrange header */
381 out0[0] = ((u8 *)key->md.data)[8];
382 out0[1] = ((u8 *)key->md.data)[9];
383 out0[2] = ((u8 *)key->md.data)[10];
384 out0[3] = (u8)(len >> 8);
385 out0[4] = (u8)(len);
386
387 ret += len + 5;
388 inp += frag;
389 }
390
391 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
392
393 OPENSSL_cleanse(blocks, sizeof(blocks));
394 OPENSSL_cleanse(ctx, sizeof(*ctx));
395
396 return ret;
397}
398# endif
399
400static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
401 const unsigned char *in, size_t len)
402{
403 EVP_AES_HMAC_SHA1 *key = data(ctx);
404 unsigned int l;
405 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
406 * later */
407 sha_off = 0;
408# if defined(STITCHED_CALL)
409 size_t aes_off = 0, blocks;
410
411 sha_off = SHA_CBLOCK - key->md.num;
412# endif
413
414 key->payload_length = NO_PAYLOAD_LENGTH;
415
416 if (len % AES_BLOCK_SIZE)
417 return 0;
418
419 if (EVP_CIPHER_CTX_encrypting(ctx)) {
420 if (plen == NO_PAYLOAD_LENGTH)
421 plen = len;
422 else if (len !=
423 ((plen + SHA_DIGEST_LENGTH +
424 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
425 return 0;
426 else if (key->aux.tls_ver >= TLS1_1_VERSION)
427 iv = AES_BLOCK_SIZE;
428
429# if defined(STITCHED_CALL)
430 if (plen > (sha_off + iv)
431 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
432 SHA1_Update(&key->md, in + iv, sha_off);
433
434 aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
435 EVP_CIPHER_CTX_iv_noconst(ctx),
436 &key->md, in + iv + sha_off);
437 blocks *= SHA_CBLOCK;
438 aes_off += blocks;
439 sha_off += blocks;
440 key->md.Nh += blocks >> 29;
441 key->md.Nl += blocks <<= 3;
442 if (key->md.Nl < (unsigned int)blocks)
443 key->md.Nh++;
444 } else {
445 sha_off = 0;
446 }
447# endif
448 sha_off += iv;
449 SHA1_Update(&key->md, in + sha_off, plen - sha_off);
450
451 if (plen != len) { /* "TLS" mode of operation */
452 if (in != out)
453 memcpy(out + aes_off, in + aes_off, plen - aes_off);
454
455 /* calculate HMAC and append it to payload */
456 SHA1_Final(out + plen, &key->md);
457 key->md = key->tail;
458 SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
459 SHA1_Final(out + plen, &key->md);
460
461 /* pad the payload|hmac */
462 plen += SHA_DIGEST_LENGTH;
463 for (l = len - plen - 1; plen < len; plen++)
464 out[plen] = l;
465 /* encrypt HMAC|padding at once */
466 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
467 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
468 } else {
469 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
470 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
471 }
472 } else {
473 union {
474 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
475 unsigned char c[32 + SHA_DIGEST_LENGTH];
476 } mac, *pmac;
477
478 /* arrange cache line alignment */
479 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
480
481 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
482 size_t inp_len, mask, j, i;
483 unsigned int res, maxpad, pad, bitlen;
484 int ret = 1;
485 union {
486 unsigned int u[SHA_LBLOCK];
487 unsigned char c[SHA_CBLOCK];
488 } *data = (void *)key->md.data;
489# if defined(STITCHED_DECRYPT_CALL)
490 unsigned char tail_iv[AES_BLOCK_SIZE];
491 int stitch = 0;
492# endif
493
494 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
495 >= TLS1_1_VERSION) {
496 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
497 return 0;
498
499 /* omit explicit iv */
500 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), in, AES_BLOCK_SIZE);
501
502 in += AES_BLOCK_SIZE;
503 out += AES_BLOCK_SIZE;
504 len -= AES_BLOCK_SIZE;
505 } else if (len < (SHA_DIGEST_LENGTH + 1))
506 return 0;
507
508# if defined(STITCHED_DECRYPT_CALL)
509 if (len >= 1024 && ctx->key_len == 32) {
510 /* decrypt last block */
511 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
512 AES_BLOCK_SIZE);
513 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
514 out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
515 &key->ks, tail_iv, 0);
516 stitch = 1;
517 } else
518# endif
519 /* decrypt HMAC|padding at once */
520 aesni_cbc_encrypt(in, out, len, &key->ks,
521 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
522
523 /* figure out payload length */
524 pad = out[len - 1];
525 maxpad = len - (SHA_DIGEST_LENGTH + 1);
526 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
527 maxpad &= 255;
528
529 mask = constant_time_ge(maxpad, pad);
530 ret &= mask;
531 /*
532 * If pad is invalid then we will fail the above test but we must
533 * continue anyway because we are in constant time code. However,
534 * we'll use the maxpad value instead of the supplied pad to make
535 * sure we perform well defined pointer arithmetic.
536 */
537 pad = constant_time_select(mask, pad, maxpad);
538
539 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
540
541 key->aux.tls_aad[plen - 2] = inp_len >> 8;
542 key->aux.tls_aad[plen - 1] = inp_len;
543
544 /* calculate HMAC */
545 key->md = key->head;
546 SHA1_Update(&key->md, key->aux.tls_aad, plen);
547
548# if defined(STITCHED_DECRYPT_CALL)
549 if (stitch) {
550 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
551 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
552 sha_off = SHA_CBLOCK - plen;
553
554 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
555
556 SHA1_Update(&key->md, out, sha_off);
557 aesni256_cbc_sha1_dec(in + aes_off,
558 out + aes_off, blocks, &key->ks,
559 ctx->iv, &key->md, out + sha_off);
560
561 sha_off += blocks *= SHA_CBLOCK;
562 out += sha_off;
563 len -= sha_off;
564 inp_len -= sha_off;
565
566 key->md.Nl += (blocks << 3); /* at most 18 bits */
567 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
568 }
569# endif
570
571# if 1 /* see original reference version in #else */
572 len -= SHA_DIGEST_LENGTH; /* amend mac */
573 if (len >= (256 + SHA_CBLOCK)) {
574 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
575 j += SHA_CBLOCK - key->md.num;
576 SHA1_Update(&key->md, out, j);
577 out += j;
578 len -= j;
579 inp_len -= j;
580 }
581
582 /* but pretend as if we hashed padded payload */
583 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
584# ifdef BSWAP4
585 bitlen = BSWAP4(bitlen);
586# else
587 mac.c[0] = 0;
588 mac.c[1] = (unsigned char)(bitlen >> 16);
589 mac.c[2] = (unsigned char)(bitlen >> 8);
590 mac.c[3] = (unsigned char)bitlen;
591 bitlen = mac.u[0];
592# endif
593
594 pmac->u[0] = 0;
595 pmac->u[1] = 0;
596 pmac->u[2] = 0;
597 pmac->u[3] = 0;
598 pmac->u[4] = 0;
599
600 for (res = key->md.num, j = 0; j < len; j++) {
601 size_t c = out[j];
602 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
603 c &= mask;
604 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
605 data->c[res++] = (unsigned char)c;
606
607 if (res != SHA_CBLOCK)
608 continue;
609
610 /* j is not incremented yet */
611 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
612 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
613 sha1_block_data_order(&key->md, data, 1);
614 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
615 pmac->u[0] |= key->md.h0 & mask;
616 pmac->u[1] |= key->md.h1 & mask;
617 pmac->u[2] |= key->md.h2 & mask;
618 pmac->u[3] |= key->md.h3 & mask;
619 pmac->u[4] |= key->md.h4 & mask;
620 res = 0;
621 }
622
623 for (i = res; i < SHA_CBLOCK; i++, j++)
624 data->c[i] = 0;
625
626 if (res > SHA_CBLOCK - 8) {
627 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
628 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
629 sha1_block_data_order(&key->md, data, 1);
630 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
631 pmac->u[0] |= key->md.h0 & mask;
632 pmac->u[1] |= key->md.h1 & mask;
633 pmac->u[2] |= key->md.h2 & mask;
634 pmac->u[3] |= key->md.h3 & mask;
635 pmac->u[4] |= key->md.h4 & mask;
636
637 memset(data, 0, SHA_CBLOCK);
638 j += 64;
639 }
640 data->u[SHA_LBLOCK - 1] = bitlen;
641 sha1_block_data_order(&key->md, data, 1);
642 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
643 pmac->u[0] |= key->md.h0 & mask;
644 pmac->u[1] |= key->md.h1 & mask;
645 pmac->u[2] |= key->md.h2 & mask;
646 pmac->u[3] |= key->md.h3 & mask;
647 pmac->u[4] |= key->md.h4 & mask;
648
649# ifdef BSWAP4
650 pmac->u[0] = BSWAP4(pmac->u[0]);
651 pmac->u[1] = BSWAP4(pmac->u[1]);
652 pmac->u[2] = BSWAP4(pmac->u[2]);
653 pmac->u[3] = BSWAP4(pmac->u[3]);
654 pmac->u[4] = BSWAP4(pmac->u[4]);
655# else
656 for (i = 0; i < 5; i++) {
657 res = pmac->u[i];
658 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
659 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
660 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
661 pmac->c[4 * i + 3] = (unsigned char)res;
662 }
663# endif
664 len += SHA_DIGEST_LENGTH;
665# else /* pre-lucky-13 reference version of above */
666 SHA1_Update(&key->md, out, inp_len);
667 res = key->md.num;
668 SHA1_Final(pmac->c, &key->md);
669
670 {
671 unsigned int inp_blocks, pad_blocks;
672
673 /* but pretend as if we hashed padded payload */
674 inp_blocks =
675 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
676 res += (unsigned int)(len - inp_len);
677 pad_blocks = res / SHA_CBLOCK;
678 res %= SHA_CBLOCK;
679 pad_blocks +=
680 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
681 for (; inp_blocks < pad_blocks; inp_blocks++)
682 sha1_block_data_order(&key->md, data, 1);
683 }
684# endif
685 key->md = key->tail;
686 SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
687 SHA1_Final(pmac->c, &key->md);
688
689 /* verify HMAC */
690 out += inp_len;
691 len -= inp_len;
692# if 1 /* see original reference version in #else */
693 {
694 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
695 size_t off = out - p;
696 unsigned int c, cmask;
697
698 maxpad += SHA_DIGEST_LENGTH;
699 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
700 c = p[j];
701 cmask =
702 ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
703 8 - 1);
704 res |= (c ^ pad) & ~cmask; /* ... and padding */
705 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
706 res |= (c ^ pmac->c[i]) & cmask;
707 i += 1 & cmask;
708 }
709 maxpad -= SHA_DIGEST_LENGTH;
710
711 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
712 ret &= (int)~res;
713 }
714# else /* pre-lucky-13 reference version of above */
715 for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
716 res |= out[i] ^ pmac->c[i];
717 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
718 ret &= (int)~res;
719
720 /* verify padding */
721 pad = (pad & ~res) | (maxpad & res);
722 out = out + len - 1 - pad;
723 for (res = 0, i = 0; i < pad; i++)
724 res |= out[i] ^ pad;
725
726 res = (0 - res) >> (sizeof(res) * 8 - 1);
727 ret &= (int)~res;
728# endif
729 return ret;
730 } else {
731# if defined(STITCHED_DECRYPT_CALL)
732 if (len >= 1024 && ctx->key_len == 32) {
733 if (sha_off %= SHA_CBLOCK)
734 blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
735 else
736 blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
737 aes_off = len - blocks * SHA_CBLOCK;
738
739 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
740 SHA1_Update(&key->md, out, sha_off);
741 aesni256_cbc_sha1_dec(in + aes_off,
742 out + aes_off, blocks, &key->ks,
743 ctx->iv, &key->md, out + sha_off);
744
745 sha_off += blocks *= SHA_CBLOCK;
746 out += sha_off;
747 len -= sha_off;
748
749 key->md.Nh += blocks >> 29;
750 key->md.Nl += blocks <<= 3;
751 if (key->md.Nl < (unsigned int)blocks)
752 key->md.Nh++;
753 } else
754# endif
755 /* decrypt HMAC|padding at once */
756 aesni_cbc_encrypt(in, out, len, &key->ks,
757 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
758
759 SHA1_Update(&key->md, out, len);
760 }
761 }
762
763 return 1;
764}
765
766static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
767 void *ptr)
768{
769 EVP_AES_HMAC_SHA1 *key = data(ctx);
770
771 switch (type) {
772 case EVP_CTRL_AEAD_SET_MAC_KEY:
773 {
774 unsigned int i;
775 unsigned char hmac_key[64];
776
777 memset(hmac_key, 0, sizeof(hmac_key));
778
779 if (arg > (int)sizeof(hmac_key)) {
780 SHA1_Init(&key->head);
781 SHA1_Update(&key->head, ptr, arg);
782 SHA1_Final(hmac_key, &key->head);
783 } else {
784 memcpy(hmac_key, ptr, arg);
785 }
786
787 for (i = 0; i < sizeof(hmac_key); i++)
788 hmac_key[i] ^= 0x36; /* ipad */
789 SHA1_Init(&key->head);
790 SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
791
792 for (i = 0; i < sizeof(hmac_key); i++)
793 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
794 SHA1_Init(&key->tail);
795 SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
796
797 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
798
799 return 1;
800 }
801 case EVP_CTRL_AEAD_TLS1_AAD:
802 {
803 unsigned char *p = ptr;
804 unsigned int len;
805
806 if (arg != EVP_AEAD_TLS1_AAD_LEN)
807 return -1;
808
809 len = p[arg - 2] << 8 | p[arg - 1];
810
811 if (EVP_CIPHER_CTX_encrypting(ctx)) {
812 key->payload_length = len;
813 if ((key->aux.tls_ver =
814 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
815 if (len < AES_BLOCK_SIZE)
816 return 0;
817 len -= AES_BLOCK_SIZE;
818 p[arg - 2] = len >> 8;
819 p[arg - 1] = len;
820 }
821 key->md = key->head;
822 SHA1_Update(&key->md, p, arg);
823
824 return (int)(((len + SHA_DIGEST_LENGTH +
825 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
826 - len);
827 } else {
828 memcpy(key->aux.tls_aad, ptr, arg);
829 key->payload_length = arg;
830
831 return SHA_DIGEST_LENGTH;
832 }
833 }
834# if !defined(OPENSSL_NO_MULTIBLOCK)
835 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
836 return (int)(5 + 16 + ((arg + 20 + 16) & -16));
837 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
838 {
839 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
840 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
841 unsigned int n4x = 1, x4;
842 unsigned int frag, last, packlen, inp_len;
843
844 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
845 return -1;
846
847 inp_len = param->inp[11] << 8 | param->inp[12];
848
849 if (EVP_CIPHER_CTX_encrypting(ctx)) {
850 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
851 return -1;
852
853 if (inp_len) {
854 if (inp_len < 4096)
855 return 0; /* too short */
856
857 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
858 n4x = 2; /* AVX2 */
859 } else if ((n4x = param->interleave / 4) && n4x <= 2)
860 inp_len = param->len;
861 else
862 return -1;
863
864 key->md = key->head;
865 SHA1_Update(&key->md, param->inp, 13);
866
867 x4 = 4 * n4x;
868 n4x += 1;
869
870 frag = inp_len >> n4x;
871 last = inp_len + frag - (frag << n4x);
872 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
873 frag++;
874 last -= x4 - 1;
875 }
876
877 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
878 packlen = (packlen << n4x) - packlen;
879 packlen += 5 + 16 + ((last + 20 + 16) & -16);
880
881 param->interleave = x4;
882
883 return (int)packlen;
884 } else
885 return -1; /* not yet */
886 }
887 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
888 {
889 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
890 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
891
892 return (int)tls1_1_multi_block_encrypt(key, param->out,
893 param->inp, param->len,
894 param->interleave / 4);
895 }
896 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
897# endif
898 default:
899 return -1;
900 }
901}
902
903static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
904# ifdef NID_aes_128_cbc_hmac_sha1
905 NID_aes_128_cbc_hmac_sha1,
906# else
907 NID_undef,
908# endif
909 AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
910 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
911 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
912 aesni_cbc_hmac_sha1_init_key,
913 aesni_cbc_hmac_sha1_cipher,
914 NULL,
915 sizeof(EVP_AES_HMAC_SHA1),
916 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
917 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
918 aesni_cbc_hmac_sha1_ctrl,
919 NULL
920};
921
922static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
923# ifdef NID_aes_256_cbc_hmac_sha1
924 NID_aes_256_cbc_hmac_sha1,
925# else
926 NID_undef,
927# endif
928 AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
929 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
930 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
931 aesni_cbc_hmac_sha1_init_key,
932 aesni_cbc_hmac_sha1_cipher,
933 NULL,
934 sizeof(EVP_AES_HMAC_SHA1),
935 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
936 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
937 aesni_cbc_hmac_sha1_ctrl,
938 NULL
939};
940
941const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
942{
943 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
944 &aesni_128_cbc_hmac_sha1_cipher : NULL);
945}
946
947const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
948{
949 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
950 &aesni_256_cbc_hmac_sha1_cipher : NULL);
951}
952#else
953const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
954{
955 return NULL;
956}
957
958const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
959{
960 return NULL;
961}
962#endif
963