| 1 | /* |
| 2 | * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <string.h> |
| 12 | #include <openssl/opensslconf.h> |
| 13 | #include <openssl/evp.h> |
| 14 | #include <openssl/objects.h> |
| 15 | #include <openssl/aes.h> |
| 16 | #include <openssl/sha.h> |
| 17 | #include <openssl/rand.h> |
| 18 | #include "internal/cryptlib.h" |
| 19 | #include "crypto/modes.h" |
| 20 | #include "internal/constant_time.h" |
| 21 | #include "crypto/evp.h" |
| 22 | |
| 23 | typedef struct { |
| 24 | AES_KEY ks; |
| 25 | SHA256_CTX head, tail, md; |
| 26 | size_t payload_length; /* AAD length in decrypt case */ |
| 27 | union { |
| 28 | unsigned int tls_ver; |
| 29 | unsigned char tls_aad[16]; /* 13 used */ |
| 30 | } aux; |
| 31 | } EVP_AES_HMAC_SHA256; |
| 32 | |
| 33 | # define NO_PAYLOAD_LENGTH ((size_t)-1) |
| 34 | |
| 35 | #if defined(AES_ASM) && ( \ |
| 36 | defined(__x86_64) || defined(__x86_64__) || \ |
| 37 | defined(_M_AMD64) || defined(_M_X64) ) |
| 38 | |
| 39 | # define AESNI_CAPABLE (1<<(57-32)) |
| 40 | |
| 41 | int aesni_set_encrypt_key(const unsigned char *userKey, int bits, |
| 42 | AES_KEY *key); |
| 43 | int aesni_set_decrypt_key(const unsigned char *userKey, int bits, |
| 44 | AES_KEY *key); |
| 45 | |
| 46 | void aesni_cbc_encrypt(const unsigned char *in, |
| 47 | unsigned char *out, |
| 48 | size_t length, |
| 49 | const AES_KEY *key, unsigned char *ivec, int enc); |
| 50 | |
| 51 | int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks, |
| 52 | const AES_KEY *key, unsigned char iv[16], |
| 53 | SHA256_CTX *ctx, const void *in0); |
| 54 | |
| 55 | # define data(ctx) ((EVP_AES_HMAC_SHA256 *)EVP_CIPHER_CTX_get_cipher_data(ctx)) |
| 56 | |
| 57 | static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx, |
| 58 | const unsigned char *inkey, |
| 59 | const unsigned char *iv, int enc) |
| 60 | { |
| 61 | EVP_AES_HMAC_SHA256 *key = data(ctx); |
| 62 | int ret; |
| 63 | |
| 64 | if (enc) |
| 65 | ret = aesni_set_encrypt_key(inkey, |
| 66 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 67 | &key->ks); |
| 68 | else |
| 69 | ret = aesni_set_decrypt_key(inkey, |
| 70 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 71 | &key->ks); |
| 72 | |
| 73 | SHA256_Init(&key->head); /* handy when benchmarking */ |
| 74 | key->tail = key->head; |
| 75 | key->md = key->head; |
| 76 | |
| 77 | key->payload_length = NO_PAYLOAD_LENGTH; |
| 78 | |
| 79 | return ret < 0 ? 0 : 1; |
| 80 | } |
| 81 | |
| 82 | # define STITCHED_CALL |
| 83 | |
| 84 | # if !defined(STITCHED_CALL) |
| 85 | # define aes_off 0 |
| 86 | # endif |
| 87 | |
| 88 | void sha256_block_data_order(void *c, const void *p, size_t len); |
| 89 | |
| 90 | static void sha256_update(SHA256_CTX *c, const void *data, size_t len) |
| 91 | { |
| 92 | const unsigned char *ptr = data; |
| 93 | size_t res; |
| 94 | |
| 95 | if ((res = c->num)) { |
| 96 | res = SHA256_CBLOCK - res; |
| 97 | if (len < res) |
| 98 | res = len; |
| 99 | SHA256_Update(c, ptr, res); |
| 100 | ptr += res; |
| 101 | len -= res; |
| 102 | } |
| 103 | |
| 104 | res = len % SHA256_CBLOCK; |
| 105 | len -= res; |
| 106 | |
| 107 | if (len) { |
| 108 | sha256_block_data_order(c, ptr, len / SHA256_CBLOCK); |
| 109 | |
| 110 | ptr += len; |
| 111 | c->Nh += len >> 29; |
| 112 | c->Nl += len <<= 3; |
| 113 | if (c->Nl < (unsigned int)len) |
| 114 | c->Nh++; |
| 115 | } |
| 116 | |
| 117 | if (res) |
| 118 | SHA256_Update(c, ptr, res); |
| 119 | } |
| 120 | |
| 121 | # ifdef SHA256_Update |
| 122 | # undef SHA256_Update |
| 123 | # endif |
| 124 | # define SHA256_Update sha256_update |
| 125 | |
| 126 | # if !defined(OPENSSL_NO_MULTIBLOCK) |
| 127 | |
| 128 | typedef struct { |
| 129 | unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8]; |
| 130 | } SHA256_MB_CTX; |
| 131 | typedef struct { |
| 132 | const unsigned char *ptr; |
| 133 | int blocks; |
| 134 | } HASH_DESC; |
| 135 | |
| 136 | void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int); |
| 137 | |
| 138 | typedef struct { |
| 139 | const unsigned char *inp; |
| 140 | unsigned char *out; |
| 141 | int blocks; |
| 142 | u64 iv[2]; |
| 143 | } CIPH_DESC; |
| 144 | |
| 145 | void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int); |
| 146 | |
| 147 | static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key, |
| 148 | unsigned char *out, |
| 149 | const unsigned char *inp, |
| 150 | size_t inp_len, int n4x) |
| 151 | { /* n4x is 1 or 2 */ |
| 152 | HASH_DESC hash_d[8], edges[8]; |
| 153 | CIPH_DESC ciph_d[8]; |
| 154 | unsigned char storage[sizeof(SHA256_MB_CTX) + 32]; |
| 155 | union { |
| 156 | u64 q[16]; |
| 157 | u32 d[32]; |
| 158 | u8 c[128]; |
| 159 | } blocks[8]; |
| 160 | SHA256_MB_CTX *ctx; |
| 161 | unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed = |
| 162 | 0; |
| 163 | size_t ret = 0; |
| 164 | u8 *IVs; |
| 165 | # if defined(BSWAP8) |
| 166 | u64 seqnum; |
| 167 | # endif |
| 168 | |
| 169 | /* ask for IVs in bulk */ |
| 170 | if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0) |
| 171 | return 0; |
| 172 | |
| 173 | /* align */ |
| 174 | ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); |
| 175 | |
| 176 | frag = (unsigned int)inp_len >> (1 + n4x); |
| 177 | last = (unsigned int)inp_len + frag - (frag << (1 + n4x)); |
| 178 | if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) { |
| 179 | frag++; |
| 180 | last -= x4 - 1; |
| 181 | } |
| 182 | |
| 183 | packlen = 5 + 16 + ((frag + 32 + 16) & -16); |
| 184 | |
| 185 | /* populate descriptors with pointers and IVs */ |
| 186 | hash_d[0].ptr = inp; |
| 187 | ciph_d[0].inp = inp; |
| 188 | /* 5+16 is place for header and explicit IV */ |
| 189 | ciph_d[0].out = out + 5 + 16; |
| 190 | memcpy(ciph_d[0].out - 16, IVs, 16); |
| 191 | memcpy(ciph_d[0].iv, IVs, 16); |
| 192 | IVs += 16; |
| 193 | |
| 194 | for (i = 1; i < x4; i++) { |
| 195 | ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag; |
| 196 | ciph_d[i].out = ciph_d[i - 1].out + packlen; |
| 197 | memcpy(ciph_d[i].out - 16, IVs, 16); |
| 198 | memcpy(ciph_d[i].iv, IVs, 16); |
| 199 | IVs += 16; |
| 200 | } |
| 201 | |
| 202 | # if defined(BSWAP8) |
| 203 | memcpy(blocks[0].c, key->md.data, 8); |
| 204 | seqnum = BSWAP8(blocks[0].q[0]); |
| 205 | # endif |
| 206 | for (i = 0; i < x4; i++) { |
| 207 | unsigned int len = (i == (x4 - 1) ? last : frag); |
| 208 | # if !defined(BSWAP8) |
| 209 | unsigned int carry, j; |
| 210 | # endif |
| 211 | |
| 212 | ctx->A[i] = key->md.h[0]; |
| 213 | ctx->B[i] = key->md.h[1]; |
| 214 | ctx->C[i] = key->md.h[2]; |
| 215 | ctx->D[i] = key->md.h[3]; |
| 216 | ctx->E[i] = key->md.h[4]; |
| 217 | ctx->F[i] = key->md.h[5]; |
| 218 | ctx->G[i] = key->md.h[6]; |
| 219 | ctx->H[i] = key->md.h[7]; |
| 220 | |
| 221 | /* fix seqnum */ |
| 222 | # if defined(BSWAP8) |
| 223 | blocks[i].q[0] = BSWAP8(seqnum + i); |
| 224 | # else |
| 225 | for (carry = i, j = 8; j--;) { |
| 226 | blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry; |
| 227 | carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1); |
| 228 | } |
| 229 | # endif |
| 230 | blocks[i].c[8] = ((u8 *)key->md.data)[8]; |
| 231 | blocks[i].c[9] = ((u8 *)key->md.data)[9]; |
| 232 | blocks[i].c[10] = ((u8 *)key->md.data)[10]; |
| 233 | /* fix length */ |
| 234 | blocks[i].c[11] = (u8)(len >> 8); |
| 235 | blocks[i].c[12] = (u8)(len); |
| 236 | |
| 237 | memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13); |
| 238 | hash_d[i].ptr += 64 - 13; |
| 239 | hash_d[i].blocks = (len - (64 - 13)) / 64; |
| 240 | |
| 241 | edges[i].ptr = blocks[i].c; |
| 242 | edges[i].blocks = 1; |
| 243 | } |
| 244 | |
| 245 | /* hash 13-byte headers and first 64-13 bytes of inputs */ |
| 246 | sha256_multi_block(ctx, edges, n4x); |
| 247 | /* hash bulk inputs */ |
| 248 | # define MAXCHUNKSIZE 2048 |
| 249 | # if MAXCHUNKSIZE%64 |
| 250 | # error "MAXCHUNKSIZE is not divisible by 64" |
| 251 | # elif MAXCHUNKSIZE |
| 252 | /* |
| 253 | * goal is to minimize pressure on L1 cache by moving in shorter steps, |
| 254 | * so that hashed data is still in the cache by the time we encrypt it |
| 255 | */ |
| 256 | minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64; |
| 257 | if (minblocks > MAXCHUNKSIZE / 64) { |
| 258 | for (i = 0; i < x4; i++) { |
| 259 | edges[i].ptr = hash_d[i].ptr; |
| 260 | edges[i].blocks = MAXCHUNKSIZE / 64; |
| 261 | ciph_d[i].blocks = MAXCHUNKSIZE / 16; |
| 262 | } |
| 263 | do { |
| 264 | sha256_multi_block(ctx, edges, n4x); |
| 265 | aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); |
| 266 | |
| 267 | for (i = 0; i < x4; i++) { |
| 268 | edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE; |
| 269 | hash_d[i].blocks -= MAXCHUNKSIZE / 64; |
| 270 | edges[i].blocks = MAXCHUNKSIZE / 64; |
| 271 | ciph_d[i].inp += MAXCHUNKSIZE; |
| 272 | ciph_d[i].out += MAXCHUNKSIZE; |
| 273 | ciph_d[i].blocks = MAXCHUNKSIZE / 16; |
| 274 | memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16); |
| 275 | } |
| 276 | processed += MAXCHUNKSIZE; |
| 277 | minblocks -= MAXCHUNKSIZE / 64; |
| 278 | } while (minblocks > MAXCHUNKSIZE / 64); |
| 279 | } |
| 280 | # endif |
| 281 | # undef MAXCHUNKSIZE |
| 282 | sha256_multi_block(ctx, hash_d, n4x); |
| 283 | |
| 284 | memset(blocks, 0, sizeof(blocks)); |
| 285 | for (i = 0; i < x4; i++) { |
| 286 | unsigned int len = (i == (x4 - 1) ? last : frag), |
| 287 | off = hash_d[i].blocks * 64; |
| 288 | const unsigned char *ptr = hash_d[i].ptr + off; |
| 289 | |
| 290 | off = (len - processed) - (64 - 13) - off; /* remainder actually */ |
| 291 | memcpy(blocks[i].c, ptr, off); |
| 292 | blocks[i].c[off] = 0x80; |
| 293 | len += 64 + 13; /* 64 is HMAC header */ |
| 294 | len *= 8; /* convert to bits */ |
| 295 | if (off < (64 - 8)) { |
| 296 | # ifdef BSWAP4 |
| 297 | blocks[i].d[15] = BSWAP4(len); |
| 298 | # else |
| 299 | PUTU32(blocks[i].c + 60, len); |
| 300 | # endif |
| 301 | edges[i].blocks = 1; |
| 302 | } else { |
| 303 | # ifdef BSWAP4 |
| 304 | blocks[i].d[31] = BSWAP4(len); |
| 305 | # else |
| 306 | PUTU32(blocks[i].c + 124, len); |
| 307 | # endif |
| 308 | edges[i].blocks = 2; |
| 309 | } |
| 310 | edges[i].ptr = blocks[i].c; |
| 311 | } |
| 312 | |
| 313 | /* hash input tails and finalize */ |
| 314 | sha256_multi_block(ctx, edges, n4x); |
| 315 | |
| 316 | memset(blocks, 0, sizeof(blocks)); |
| 317 | for (i = 0; i < x4; i++) { |
| 318 | # ifdef BSWAP4 |
| 319 | blocks[i].d[0] = BSWAP4(ctx->A[i]); |
| 320 | ctx->A[i] = key->tail.h[0]; |
| 321 | blocks[i].d[1] = BSWAP4(ctx->B[i]); |
| 322 | ctx->B[i] = key->tail.h[1]; |
| 323 | blocks[i].d[2] = BSWAP4(ctx->C[i]); |
| 324 | ctx->C[i] = key->tail.h[2]; |
| 325 | blocks[i].d[3] = BSWAP4(ctx->D[i]); |
| 326 | ctx->D[i] = key->tail.h[3]; |
| 327 | blocks[i].d[4] = BSWAP4(ctx->E[i]); |
| 328 | ctx->E[i] = key->tail.h[4]; |
| 329 | blocks[i].d[5] = BSWAP4(ctx->F[i]); |
| 330 | ctx->F[i] = key->tail.h[5]; |
| 331 | blocks[i].d[6] = BSWAP4(ctx->G[i]); |
| 332 | ctx->G[i] = key->tail.h[6]; |
| 333 | blocks[i].d[7] = BSWAP4(ctx->H[i]); |
| 334 | ctx->H[i] = key->tail.h[7]; |
| 335 | blocks[i].c[32] = 0x80; |
| 336 | blocks[i].d[15] = BSWAP4((64 + 32) * 8); |
| 337 | # else |
| 338 | PUTU32(blocks[i].c + 0, ctx->A[i]); |
| 339 | ctx->A[i] = key->tail.h[0]; |
| 340 | PUTU32(blocks[i].c + 4, ctx->B[i]); |
| 341 | ctx->B[i] = key->tail.h[1]; |
| 342 | PUTU32(blocks[i].c + 8, ctx->C[i]); |
| 343 | ctx->C[i] = key->tail.h[2]; |
| 344 | PUTU32(blocks[i].c + 12, ctx->D[i]); |
| 345 | ctx->D[i] = key->tail.h[3]; |
| 346 | PUTU32(blocks[i].c + 16, ctx->E[i]); |
| 347 | ctx->E[i] = key->tail.h[4]; |
| 348 | PUTU32(blocks[i].c + 20, ctx->F[i]); |
| 349 | ctx->F[i] = key->tail.h[5]; |
| 350 | PUTU32(blocks[i].c + 24, ctx->G[i]); |
| 351 | ctx->G[i] = key->tail.h[6]; |
| 352 | PUTU32(blocks[i].c + 28, ctx->H[i]); |
| 353 | ctx->H[i] = key->tail.h[7]; |
| 354 | blocks[i].c[32] = 0x80; |
| 355 | PUTU32(blocks[i].c + 60, (64 + 32) * 8); |
| 356 | # endif |
| 357 | edges[i].ptr = blocks[i].c; |
| 358 | edges[i].blocks = 1; |
| 359 | } |
| 360 | |
| 361 | /* finalize MACs */ |
| 362 | sha256_multi_block(ctx, edges, n4x); |
| 363 | |
| 364 | for (i = 0; i < x4; i++) { |
| 365 | unsigned int len = (i == (x4 - 1) ? last : frag), pad, j; |
| 366 | unsigned char *out0 = out; |
| 367 | |
| 368 | memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed); |
| 369 | ciph_d[i].inp = ciph_d[i].out; |
| 370 | |
| 371 | out += 5 + 16 + len; |
| 372 | |
| 373 | /* write MAC */ |
| 374 | PUTU32(out + 0, ctx->A[i]); |
| 375 | PUTU32(out + 4, ctx->B[i]); |
| 376 | PUTU32(out + 8, ctx->C[i]); |
| 377 | PUTU32(out + 12, ctx->D[i]); |
| 378 | PUTU32(out + 16, ctx->E[i]); |
| 379 | PUTU32(out + 20, ctx->F[i]); |
| 380 | PUTU32(out + 24, ctx->G[i]); |
| 381 | PUTU32(out + 28, ctx->H[i]); |
| 382 | out += 32; |
| 383 | len += 32; |
| 384 | |
| 385 | /* pad */ |
| 386 | pad = 15 - len % 16; |
| 387 | for (j = 0; j <= pad; j++) |
| 388 | *(out++) = pad; |
| 389 | len += pad + 1; |
| 390 | |
| 391 | ciph_d[i].blocks = (len - processed) / 16; |
| 392 | len += 16; /* account for explicit iv */ |
| 393 | |
| 394 | /* arrange header */ |
| 395 | out0[0] = ((u8 *)key->md.data)[8]; |
| 396 | out0[1] = ((u8 *)key->md.data)[9]; |
| 397 | out0[2] = ((u8 *)key->md.data)[10]; |
| 398 | out0[3] = (u8)(len >> 8); |
| 399 | out0[4] = (u8)(len); |
| 400 | |
| 401 | ret += len + 5; |
| 402 | inp += frag; |
| 403 | } |
| 404 | |
| 405 | aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); |
| 406 | |
| 407 | OPENSSL_cleanse(blocks, sizeof(blocks)); |
| 408 | OPENSSL_cleanse(ctx, sizeof(*ctx)); |
| 409 | |
| 410 | return ret; |
| 411 | } |
| 412 | # endif |
| 413 | |
| 414 | static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx, |
| 415 | unsigned char *out, |
| 416 | const unsigned char *in, size_t len) |
| 417 | { |
| 418 | EVP_AES_HMAC_SHA256 *key = data(ctx); |
| 419 | unsigned int l; |
| 420 | size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and |
| 421 | * later */ |
| 422 | sha_off = 0; |
| 423 | # if defined(STITCHED_CALL) |
| 424 | size_t aes_off = 0, blocks; |
| 425 | |
| 426 | sha_off = SHA256_CBLOCK - key->md.num; |
| 427 | # endif |
| 428 | |
| 429 | key->payload_length = NO_PAYLOAD_LENGTH; |
| 430 | |
| 431 | if (len % AES_BLOCK_SIZE) |
| 432 | return 0; |
| 433 | |
| 434 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 435 | if (plen == NO_PAYLOAD_LENGTH) |
| 436 | plen = len; |
| 437 | else if (len != |
| 438 | ((plen + SHA256_DIGEST_LENGTH + |
| 439 | AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)) |
| 440 | return 0; |
| 441 | else if (key->aux.tls_ver >= TLS1_1_VERSION) |
| 442 | iv = AES_BLOCK_SIZE; |
| 443 | |
| 444 | # if defined(STITCHED_CALL) |
| 445 | /* |
| 446 | * Assembly stitch handles AVX-capable processors, but its |
| 447 | * performance is not optimal on AMD Jaguar, ~40% worse, for |
| 448 | * unknown reasons. Incidentally processor in question supports |
| 449 | * AVX, but not AMD-specific XOP extension, which can be used |
| 450 | * to identify it and avoid stitch invocation. So that after we |
| 451 | * establish that current CPU supports AVX, we even see if it's |
| 452 | * either even XOP-capable Bulldozer-based or GenuineIntel one. |
| 453 | * But SHAEXT-capable go ahead... |
| 454 | */ |
| 455 | if (((OPENSSL_ia32cap_P[2] & (1 << 29)) || /* SHAEXT? */ |
| 456 | ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */ |
| 457 | ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32))) /* XOP? */ |
| 458 | | (OPENSSL_ia32cap_P[0] & (1 << 30))))) && /* "Intel CPU"? */ |
| 459 | plen > (sha_off + iv) && |
| 460 | (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) { |
| 461 | SHA256_Update(&key->md, in + iv, sha_off); |
| 462 | |
| 463 | (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks, |
| 464 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 465 | &key->md, in + iv + sha_off); |
| 466 | blocks *= SHA256_CBLOCK; |
| 467 | aes_off += blocks; |
| 468 | sha_off += blocks; |
| 469 | key->md.Nh += blocks >> 29; |
| 470 | key->md.Nl += blocks <<= 3; |
| 471 | if (key->md.Nl < (unsigned int)blocks) |
| 472 | key->md.Nh++; |
| 473 | } else { |
| 474 | sha_off = 0; |
| 475 | } |
| 476 | # endif |
| 477 | sha_off += iv; |
| 478 | SHA256_Update(&key->md, in + sha_off, plen - sha_off); |
| 479 | |
| 480 | if (plen != len) { /* "TLS" mode of operation */ |
| 481 | if (in != out) |
| 482 | memcpy(out + aes_off, in + aes_off, plen - aes_off); |
| 483 | |
| 484 | /* calculate HMAC and append it to payload */ |
| 485 | SHA256_Final(out + plen, &key->md); |
| 486 | key->md = key->tail; |
| 487 | SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH); |
| 488 | SHA256_Final(out + plen, &key->md); |
| 489 | |
| 490 | /* pad the payload|hmac */ |
| 491 | plen += SHA256_DIGEST_LENGTH; |
| 492 | for (l = len - plen - 1; plen < len; plen++) |
| 493 | out[plen] = l; |
| 494 | /* encrypt HMAC|padding at once */ |
| 495 | aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off, |
| 496 | &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1); |
| 497 | } else { |
| 498 | aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off, |
| 499 | &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1); |
| 500 | } |
| 501 | } else { |
| 502 | union { |
| 503 | unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)]; |
| 504 | unsigned char c[64 + SHA256_DIGEST_LENGTH]; |
| 505 | } mac, *pmac; |
| 506 | |
| 507 | /* arrange cache line alignment */ |
| 508 | pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64)); |
| 509 | |
| 510 | /* decrypt HMAC|padding at once */ |
| 511 | aesni_cbc_encrypt(in, out, len, &key->ks, |
| 512 | EVP_CIPHER_CTX_iv_noconst(ctx), 0); |
| 513 | |
| 514 | if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ |
| 515 | size_t inp_len, mask, j, i; |
| 516 | unsigned int res, maxpad, pad, bitlen; |
| 517 | int ret = 1; |
| 518 | union { |
| 519 | unsigned int u[SHA_LBLOCK]; |
| 520 | unsigned char c[SHA256_CBLOCK]; |
| 521 | } *data = (void *)key->md.data; |
| 522 | |
| 523 | if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3]) |
| 524 | >= TLS1_1_VERSION) |
| 525 | iv = AES_BLOCK_SIZE; |
| 526 | |
| 527 | if (len < (iv + SHA256_DIGEST_LENGTH + 1)) |
| 528 | return 0; |
| 529 | |
| 530 | /* omit explicit iv */ |
| 531 | out += iv; |
| 532 | len -= iv; |
| 533 | |
| 534 | /* figure out payload length */ |
| 535 | pad = out[len - 1]; |
| 536 | maxpad = len - (SHA256_DIGEST_LENGTH + 1); |
| 537 | maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8); |
| 538 | maxpad &= 255; |
| 539 | |
| 540 | mask = constant_time_ge(maxpad, pad); |
| 541 | ret &= mask; |
| 542 | /* |
| 543 | * If pad is invalid then we will fail the above test but we must |
| 544 | * continue anyway because we are in constant time code. However, |
| 545 | * we'll use the maxpad value instead of the supplied pad to make |
| 546 | * sure we perform well defined pointer arithmetic. |
| 547 | */ |
| 548 | pad = constant_time_select(mask, pad, maxpad); |
| 549 | |
| 550 | inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1); |
| 551 | |
| 552 | key->aux.tls_aad[plen - 2] = inp_len >> 8; |
| 553 | key->aux.tls_aad[plen - 1] = inp_len; |
| 554 | |
| 555 | /* calculate HMAC */ |
| 556 | key->md = key->head; |
| 557 | SHA256_Update(&key->md, key->aux.tls_aad, plen); |
| 558 | |
| 559 | # if 1 /* see original reference version in #else */ |
| 560 | len -= SHA256_DIGEST_LENGTH; /* amend mac */ |
| 561 | if (len >= (256 + SHA256_CBLOCK)) { |
| 562 | j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK); |
| 563 | j += SHA256_CBLOCK - key->md.num; |
| 564 | SHA256_Update(&key->md, out, j); |
| 565 | out += j; |
| 566 | len -= j; |
| 567 | inp_len -= j; |
| 568 | } |
| 569 | |
| 570 | /* but pretend as if we hashed padded payload */ |
| 571 | bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */ |
| 572 | # ifdef BSWAP4 |
| 573 | bitlen = BSWAP4(bitlen); |
| 574 | # else |
| 575 | mac.c[0] = 0; |
| 576 | mac.c[1] = (unsigned char)(bitlen >> 16); |
| 577 | mac.c[2] = (unsigned char)(bitlen >> 8); |
| 578 | mac.c[3] = (unsigned char)bitlen; |
| 579 | bitlen = mac.u[0]; |
| 580 | # endif |
| 581 | |
| 582 | pmac->u[0] = 0; |
| 583 | pmac->u[1] = 0; |
| 584 | pmac->u[2] = 0; |
| 585 | pmac->u[3] = 0; |
| 586 | pmac->u[4] = 0; |
| 587 | pmac->u[5] = 0; |
| 588 | pmac->u[6] = 0; |
| 589 | pmac->u[7] = 0; |
| 590 | |
| 591 | for (res = key->md.num, j = 0; j < len; j++) { |
| 592 | size_t c = out[j]; |
| 593 | mask = (j - inp_len) >> (sizeof(j) * 8 - 8); |
| 594 | c &= mask; |
| 595 | c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8)); |
| 596 | data->c[res++] = (unsigned char)c; |
| 597 | |
| 598 | if (res != SHA256_CBLOCK) |
| 599 | continue; |
| 600 | |
| 601 | /* j is not incremented yet */ |
| 602 | mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1)); |
| 603 | data->u[SHA_LBLOCK - 1] |= bitlen & mask; |
| 604 | sha256_block_data_order(&key->md, data, 1); |
| 605 | mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1)); |
| 606 | pmac->u[0] |= key->md.h[0] & mask; |
| 607 | pmac->u[1] |= key->md.h[1] & mask; |
| 608 | pmac->u[2] |= key->md.h[2] & mask; |
| 609 | pmac->u[3] |= key->md.h[3] & mask; |
| 610 | pmac->u[4] |= key->md.h[4] & mask; |
| 611 | pmac->u[5] |= key->md.h[5] & mask; |
| 612 | pmac->u[6] |= key->md.h[6] & mask; |
| 613 | pmac->u[7] |= key->md.h[7] & mask; |
| 614 | res = 0; |
| 615 | } |
| 616 | |
| 617 | for (i = res; i < SHA256_CBLOCK; i++, j++) |
| 618 | data->c[i] = 0; |
| 619 | |
| 620 | if (res > SHA256_CBLOCK - 8) { |
| 621 | mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1)); |
| 622 | data->u[SHA_LBLOCK - 1] |= bitlen & mask; |
| 623 | sha256_block_data_order(&key->md, data, 1); |
| 624 | mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); |
| 625 | pmac->u[0] |= key->md.h[0] & mask; |
| 626 | pmac->u[1] |= key->md.h[1] & mask; |
| 627 | pmac->u[2] |= key->md.h[2] & mask; |
| 628 | pmac->u[3] |= key->md.h[3] & mask; |
| 629 | pmac->u[4] |= key->md.h[4] & mask; |
| 630 | pmac->u[5] |= key->md.h[5] & mask; |
| 631 | pmac->u[6] |= key->md.h[6] & mask; |
| 632 | pmac->u[7] |= key->md.h[7] & mask; |
| 633 | |
| 634 | memset(data, 0, SHA256_CBLOCK); |
| 635 | j += 64; |
| 636 | } |
| 637 | data->u[SHA_LBLOCK - 1] = bitlen; |
| 638 | sha256_block_data_order(&key->md, data, 1); |
| 639 | mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); |
| 640 | pmac->u[0] |= key->md.h[0] & mask; |
| 641 | pmac->u[1] |= key->md.h[1] & mask; |
| 642 | pmac->u[2] |= key->md.h[2] & mask; |
| 643 | pmac->u[3] |= key->md.h[3] & mask; |
| 644 | pmac->u[4] |= key->md.h[4] & mask; |
| 645 | pmac->u[5] |= key->md.h[5] & mask; |
| 646 | pmac->u[6] |= key->md.h[6] & mask; |
| 647 | pmac->u[7] |= key->md.h[7] & mask; |
| 648 | |
| 649 | # ifdef BSWAP4 |
| 650 | pmac->u[0] = BSWAP4(pmac->u[0]); |
| 651 | pmac->u[1] = BSWAP4(pmac->u[1]); |
| 652 | pmac->u[2] = BSWAP4(pmac->u[2]); |
| 653 | pmac->u[3] = BSWAP4(pmac->u[3]); |
| 654 | pmac->u[4] = BSWAP4(pmac->u[4]); |
| 655 | pmac->u[5] = BSWAP4(pmac->u[5]); |
| 656 | pmac->u[6] = BSWAP4(pmac->u[6]); |
| 657 | pmac->u[7] = BSWAP4(pmac->u[7]); |
| 658 | # else |
| 659 | for (i = 0; i < 8; i++) { |
| 660 | res = pmac->u[i]; |
| 661 | pmac->c[4 * i + 0] = (unsigned char)(res >> 24); |
| 662 | pmac->c[4 * i + 1] = (unsigned char)(res >> 16); |
| 663 | pmac->c[4 * i + 2] = (unsigned char)(res >> 8); |
| 664 | pmac->c[4 * i + 3] = (unsigned char)res; |
| 665 | } |
| 666 | # endif |
| 667 | len += SHA256_DIGEST_LENGTH; |
| 668 | # else |
| 669 | SHA256_Update(&key->md, out, inp_len); |
| 670 | res = key->md.num; |
| 671 | SHA256_Final(pmac->c, &key->md); |
| 672 | |
| 673 | { |
| 674 | unsigned int inp_blocks, pad_blocks; |
| 675 | |
| 676 | /* but pretend as if we hashed padded payload */ |
| 677 | inp_blocks = |
| 678 | 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); |
| 679 | res += (unsigned int)(len - inp_len); |
| 680 | pad_blocks = res / SHA256_CBLOCK; |
| 681 | res %= SHA256_CBLOCK; |
| 682 | pad_blocks += |
| 683 | 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); |
| 684 | for (; inp_blocks < pad_blocks; inp_blocks++) |
| 685 | sha1_block_data_order(&key->md, data, 1); |
| 686 | } |
| 687 | # endif /* pre-lucky-13 reference version of above */ |
| 688 | key->md = key->tail; |
| 689 | SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH); |
| 690 | SHA256_Final(pmac->c, &key->md); |
| 691 | |
| 692 | /* verify HMAC */ |
| 693 | out += inp_len; |
| 694 | len -= inp_len; |
| 695 | # if 1 /* see original reference version in #else */ |
| 696 | { |
| 697 | unsigned char *p = |
| 698 | out + len - 1 - maxpad - SHA256_DIGEST_LENGTH; |
| 699 | size_t off = out - p; |
| 700 | unsigned int c, cmask; |
| 701 | |
| 702 | maxpad += SHA256_DIGEST_LENGTH; |
| 703 | for (res = 0, i = 0, j = 0; j < maxpad; j++) { |
| 704 | c = p[j]; |
| 705 | cmask = |
| 706 | ((int)(j - off - SHA256_DIGEST_LENGTH)) >> |
| 707 | (sizeof(int) * 8 - 1); |
| 708 | res |= (c ^ pad) & ~cmask; /* ... and padding */ |
| 709 | cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1); |
| 710 | res |= (c ^ pmac->c[i]) & cmask; |
| 711 | i += 1 & cmask; |
| 712 | } |
| 713 | maxpad -= SHA256_DIGEST_LENGTH; |
| 714 | |
| 715 | res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); |
| 716 | ret &= (int)~res; |
| 717 | } |
| 718 | # else /* pre-lucky-13 reference version of above */ |
| 719 | for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++) |
| 720 | res |= out[i] ^ pmac->c[i]; |
| 721 | res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); |
| 722 | ret &= (int)~res; |
| 723 | |
| 724 | /* verify padding */ |
| 725 | pad = (pad & ~res) | (maxpad & res); |
| 726 | out = out + len - 1 - pad; |
| 727 | for (res = 0, i = 0; i < pad; i++) |
| 728 | res |= out[i] ^ pad; |
| 729 | |
| 730 | res = (0 - res) >> (sizeof(res) * 8 - 1); |
| 731 | ret &= (int)~res; |
| 732 | # endif |
| 733 | return ret; |
| 734 | } else { |
| 735 | SHA256_Update(&key->md, out, len); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | return 1; |
| 740 | } |
| 741 | |
| 742 | static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, |
| 743 | void *ptr) |
| 744 | { |
| 745 | EVP_AES_HMAC_SHA256 *key = data(ctx); |
| 746 | unsigned int u_arg = (unsigned int)arg; |
| 747 | |
| 748 | switch (type) { |
| 749 | case EVP_CTRL_AEAD_SET_MAC_KEY: |
| 750 | { |
| 751 | unsigned int i; |
| 752 | unsigned char hmac_key[64]; |
| 753 | |
| 754 | memset(hmac_key, 0, sizeof(hmac_key)); |
| 755 | |
| 756 | if (arg < 0) |
| 757 | return -1; |
| 758 | |
| 759 | if (u_arg > sizeof(hmac_key)) { |
| 760 | SHA256_Init(&key->head); |
| 761 | SHA256_Update(&key->head, ptr, arg); |
| 762 | SHA256_Final(hmac_key, &key->head); |
| 763 | } else { |
| 764 | memcpy(hmac_key, ptr, arg); |
| 765 | } |
| 766 | |
| 767 | for (i = 0; i < sizeof(hmac_key); i++) |
| 768 | hmac_key[i] ^= 0x36; /* ipad */ |
| 769 | SHA256_Init(&key->head); |
| 770 | SHA256_Update(&key->head, hmac_key, sizeof(hmac_key)); |
| 771 | |
| 772 | for (i = 0; i < sizeof(hmac_key); i++) |
| 773 | hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ |
| 774 | SHA256_Init(&key->tail); |
| 775 | SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key)); |
| 776 | |
| 777 | OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); |
| 778 | |
| 779 | return 1; |
| 780 | } |
| 781 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 782 | { |
| 783 | unsigned char *p = ptr; |
| 784 | unsigned int len; |
| 785 | |
| 786 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 787 | return -1; |
| 788 | |
| 789 | len = p[arg - 2] << 8 | p[arg - 1]; |
| 790 | |
| 791 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 792 | key->payload_length = len; |
| 793 | if ((key->aux.tls_ver = |
| 794 | p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) { |
| 795 | if (len < AES_BLOCK_SIZE) |
| 796 | return 0; |
| 797 | len -= AES_BLOCK_SIZE; |
| 798 | p[arg - 2] = len >> 8; |
| 799 | p[arg - 1] = len; |
| 800 | } |
| 801 | key->md = key->head; |
| 802 | SHA256_Update(&key->md, p, arg); |
| 803 | |
| 804 | return (int)(((len + SHA256_DIGEST_LENGTH + |
| 805 | AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) |
| 806 | - len); |
| 807 | } else { |
| 808 | memcpy(key->aux.tls_aad, ptr, arg); |
| 809 | key->payload_length = arg; |
| 810 | |
| 811 | return SHA256_DIGEST_LENGTH; |
| 812 | } |
| 813 | } |
| 814 | # if !defined(OPENSSL_NO_MULTIBLOCK) |
| 815 | case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE: |
| 816 | return (int)(5 + 16 + ((arg + 32 + 16) & -16)); |
| 817 | case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: |
| 818 | { |
| 819 | EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = |
| 820 | (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; |
| 821 | unsigned int n4x = 1, x4; |
| 822 | unsigned int frag, last, packlen, inp_len; |
| 823 | |
| 824 | if (arg < 0) |
| 825 | return -1; |
| 826 | |
| 827 | if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) |
| 828 | return -1; |
| 829 | |
| 830 | inp_len = param->inp[11] << 8 | param->inp[12]; |
| 831 | |
| 832 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 833 | if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION) |
| 834 | return -1; |
| 835 | |
| 836 | if (inp_len) { |
| 837 | if (inp_len < 4096) |
| 838 | return 0; /* too short */ |
| 839 | |
| 840 | if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5)) |
| 841 | n4x = 2; /* AVX2 */ |
| 842 | } else if ((n4x = param->interleave / 4) && n4x <= 2) |
| 843 | inp_len = param->len; |
| 844 | else |
| 845 | return -1; |
| 846 | |
| 847 | key->md = key->head; |
| 848 | SHA256_Update(&key->md, param->inp, 13); |
| 849 | |
| 850 | x4 = 4 * n4x; |
| 851 | n4x += 1; |
| 852 | |
| 853 | frag = inp_len >> n4x; |
| 854 | last = inp_len + frag - (frag << n4x); |
| 855 | if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) { |
| 856 | frag++; |
| 857 | last -= x4 - 1; |
| 858 | } |
| 859 | |
| 860 | packlen = 5 + 16 + ((frag + 32 + 16) & -16); |
| 861 | packlen = (packlen << n4x) - packlen; |
| 862 | packlen += 5 + 16 + ((last + 32 + 16) & -16); |
| 863 | |
| 864 | param->interleave = x4; |
| 865 | |
| 866 | return (int)packlen; |
| 867 | } else |
| 868 | return -1; /* not yet */ |
| 869 | } |
| 870 | case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: |
| 871 | { |
| 872 | EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = |
| 873 | (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; |
| 874 | |
| 875 | return (int)tls1_1_multi_block_encrypt(key, param->out, |
| 876 | param->inp, param->len, |
| 877 | param->interleave / 4); |
| 878 | } |
| 879 | case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT: |
| 880 | # endif |
| 881 | default: |
| 882 | return -1; |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = { |
| 887 | # ifdef NID_aes_128_cbc_hmac_sha256 |
| 888 | NID_aes_128_cbc_hmac_sha256, |
| 889 | # else |
| 890 | NID_undef, |
| 891 | # endif |
| 892 | AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE, |
| 893 | EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | |
| 894 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, |
| 895 | aesni_cbc_hmac_sha256_init_key, |
| 896 | aesni_cbc_hmac_sha256_cipher, |
| 897 | NULL, |
| 898 | sizeof(EVP_AES_HMAC_SHA256), |
| 899 | EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, |
| 900 | EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, |
| 901 | aesni_cbc_hmac_sha256_ctrl, |
| 902 | NULL |
| 903 | }; |
| 904 | |
| 905 | static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = { |
| 906 | # ifdef NID_aes_256_cbc_hmac_sha256 |
| 907 | NID_aes_256_cbc_hmac_sha256, |
| 908 | # else |
| 909 | NID_undef, |
| 910 | # endif |
| 911 | AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE, |
| 912 | EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | |
| 913 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, |
| 914 | aesni_cbc_hmac_sha256_init_key, |
| 915 | aesni_cbc_hmac_sha256_cipher, |
| 916 | NULL, |
| 917 | sizeof(EVP_AES_HMAC_SHA256), |
| 918 | EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, |
| 919 | EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, |
| 920 | aesni_cbc_hmac_sha256_ctrl, |
| 921 | NULL |
| 922 | }; |
| 923 | |
| 924 | const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) |
| 925 | { |
| 926 | return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) && |
| 927 | aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ? |
| 928 | &aesni_128_cbc_hmac_sha256_cipher : NULL); |
| 929 | } |
| 930 | |
| 931 | const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) |
| 932 | { |
| 933 | return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) && |
| 934 | aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ? |
| 935 | &aesni_256_cbc_hmac_sha256_cipher : NULL); |
| 936 | } |
| 937 | #else |
| 938 | const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) |
| 939 | { |
| 940 | return NULL; |
| 941 | } |
| 942 | |
| 943 | const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) |
| 944 | { |
| 945 | return NULL; |
| 946 | } |
| 947 | #endif |
| 948 | |