| 1 | /* |
| 2 | * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <string.h> |
| 11 | #include <openssl/crypto.h> |
| 12 | #include "internal/cryptlib.h" |
| 13 | #include "crypto/modes.h" |
| 14 | |
| 15 | #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) |
| 16 | /* redefine, because alignment is ensured */ |
| 17 | # undef GETU32 |
| 18 | # define GETU32(p) BSWAP4(*(const u32 *)(p)) |
| 19 | # undef PUTU32 |
| 20 | # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) |
| 21 | #endif |
| 22 | |
| 23 | #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) |
| 24 | #define REDUCE1BIT(V) do { \ |
| 25 | if (sizeof(size_t)==8) { \ |
| 26 | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ |
| 27 | V.lo = (V.hi<<63)|(V.lo>>1); \ |
| 28 | V.hi = (V.hi>>1 )^T; \ |
| 29 | } \ |
| 30 | else { \ |
| 31 | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ |
| 32 | V.lo = (V.hi<<63)|(V.lo>>1); \ |
| 33 | V.hi = (V.hi>>1 )^((u64)T<<32); \ |
| 34 | } \ |
| 35 | } while(0) |
| 36 | |
| 37 | /*- |
| 38 | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should |
| 39 | * never be set to 8. 8 is effectively reserved for testing purposes. |
| 40 | * TABLE_BITS>1 are lookup-table-driven implementations referred to as |
| 41 | * "Shoup's" in GCM specification. In other words OpenSSL does not cover |
| 42 | * whole spectrum of possible table driven implementations. Why? In |
| 43 | * non-"Shoup's" case memory access pattern is segmented in such manner, |
| 44 | * that it's trivial to see that cache timing information can reveal |
| 45 | * fair portion of intermediate hash value. Given that ciphertext is |
| 46 | * always available to attacker, it's possible for him to attempt to |
| 47 | * deduce secret parameter H and if successful, tamper with messages |
| 48 | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's |
| 49 | * not as trivial, but there is no reason to believe that it's resistant |
| 50 | * to cache-timing attack. And the thing about "8-bit" implementation is |
| 51 | * that it consumes 16 (sixteen) times more memory, 4KB per individual |
| 52 | * key + 1KB shared. Well, on pros side it should be twice as fast as |
| 53 | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version |
| 54 | * was observed to run ~75% faster, closer to 100% for commercial |
| 55 | * compilers... Yet "4-bit" procedure is preferred, because it's |
| 56 | * believed to provide better security-performance balance and adequate |
| 57 | * all-round performance. "All-round" refers to things like: |
| 58 | * |
| 59 | * - shorter setup time effectively improves overall timing for |
| 60 | * handling short messages; |
| 61 | * - larger table allocation can become unbearable because of VM |
| 62 | * subsystem penalties (for example on Windows large enough free |
| 63 | * results in VM working set trimming, meaning that consequent |
| 64 | * malloc would immediately incur working set expansion); |
| 65 | * - larger table has larger cache footprint, which can affect |
| 66 | * performance of other code paths (not necessarily even from same |
| 67 | * thread in Hyper-Threading world); |
| 68 | * |
| 69 | * Value of 1 is not appropriate for performance reasons. |
| 70 | */ |
| 71 | #if TABLE_BITS==8 |
| 72 | |
| 73 | static void gcm_init_8bit(u128 Htable[256], u64 H[2]) |
| 74 | { |
| 75 | int i, j; |
| 76 | u128 V; |
| 77 | |
| 78 | Htable[0].hi = 0; |
| 79 | Htable[0].lo = 0; |
| 80 | V.hi = H[0]; |
| 81 | V.lo = H[1]; |
| 82 | |
| 83 | for (Htable[128] = V, i = 64; i > 0; i >>= 1) { |
| 84 | REDUCE1BIT(V); |
| 85 | Htable[i] = V; |
| 86 | } |
| 87 | |
| 88 | for (i = 2; i < 256; i <<= 1) { |
| 89 | u128 *Hi = Htable + i, H0 = *Hi; |
| 90 | for (j = 1; j < i; ++j) { |
| 91 | Hi[j].hi = H0.hi ^ Htable[j].hi; |
| 92 | Hi[j].lo = H0.lo ^ Htable[j].lo; |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) |
| 98 | { |
| 99 | u128 Z = { 0, 0 }; |
| 100 | const u8 *xi = (const u8 *)Xi + 15; |
| 101 | size_t rem, n = *xi; |
| 102 | const union { |
| 103 | long one; |
| 104 | char little; |
| 105 | } is_endian = { 1 }; |
| 106 | static const size_t rem_8bit[256] = { |
| 107 | PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), |
| 108 | PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), |
| 109 | PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), |
| 110 | PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), |
| 111 | PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), |
| 112 | PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), |
| 113 | PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), |
| 114 | PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), |
| 115 | PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), |
| 116 | PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), |
| 117 | PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), |
| 118 | PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), |
| 119 | PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), |
| 120 | PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), |
| 121 | PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), |
| 122 | PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), |
| 123 | PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), |
| 124 | PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), |
| 125 | PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), |
| 126 | PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), |
| 127 | PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), |
| 128 | PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), |
| 129 | PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), |
| 130 | PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), |
| 131 | PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), |
| 132 | PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), |
| 133 | PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), |
| 134 | PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), |
| 135 | PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), |
| 136 | PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), |
| 137 | PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), |
| 138 | PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), |
| 139 | PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), |
| 140 | PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), |
| 141 | PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), |
| 142 | PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), |
| 143 | PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), |
| 144 | PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), |
| 145 | PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), |
| 146 | PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), |
| 147 | PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), |
| 148 | PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), |
| 149 | PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), |
| 150 | PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), |
| 151 | PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), |
| 152 | PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), |
| 153 | PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), |
| 154 | PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), |
| 155 | PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), |
| 156 | PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), |
| 157 | PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), |
| 158 | PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), |
| 159 | PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), |
| 160 | PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), |
| 161 | PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), |
| 162 | PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), |
| 163 | PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), |
| 164 | PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), |
| 165 | PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), |
| 166 | PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), |
| 167 | PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), |
| 168 | PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), |
| 169 | PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), |
| 170 | PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) |
| 171 | }; |
| 172 | |
| 173 | while (1) { |
| 174 | Z.hi ^= Htable[n].hi; |
| 175 | Z.lo ^= Htable[n].lo; |
| 176 | |
| 177 | if ((u8 *)Xi == xi) |
| 178 | break; |
| 179 | |
| 180 | n = *(--xi); |
| 181 | |
| 182 | rem = (size_t)Z.lo & 0xff; |
| 183 | Z.lo = (Z.hi << 56) | (Z.lo >> 8); |
| 184 | Z.hi = (Z.hi >> 8); |
| 185 | if (sizeof(size_t) == 8) |
| 186 | Z.hi ^= rem_8bit[rem]; |
| 187 | else |
| 188 | Z.hi ^= (u64)rem_8bit[rem] << 32; |
| 189 | } |
| 190 | |
| 191 | if (is_endian.little) { |
| 192 | # ifdef BSWAP8 |
| 193 | Xi[0] = BSWAP8(Z.hi); |
| 194 | Xi[1] = BSWAP8(Z.lo); |
| 195 | # else |
| 196 | u8 *p = (u8 *)Xi; |
| 197 | u32 v; |
| 198 | v = (u32)(Z.hi >> 32); |
| 199 | PUTU32(p, v); |
| 200 | v = (u32)(Z.hi); |
| 201 | PUTU32(p + 4, v); |
| 202 | v = (u32)(Z.lo >> 32); |
| 203 | PUTU32(p + 8, v); |
| 204 | v = (u32)(Z.lo); |
| 205 | PUTU32(p + 12, v); |
| 206 | # endif |
| 207 | } else { |
| 208 | Xi[0] = Z.hi; |
| 209 | Xi[1] = Z.lo; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | # define GCM_MUL(ctx) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) |
| 214 | |
| 215 | #elif TABLE_BITS==4 |
| 216 | |
| 217 | static void gcm_init_4bit(u128 Htable[16], u64 H[2]) |
| 218 | { |
| 219 | u128 V; |
| 220 | # if defined(OPENSSL_SMALL_FOOTPRINT) |
| 221 | int i; |
| 222 | # endif |
| 223 | |
| 224 | Htable[0].hi = 0; |
| 225 | Htable[0].lo = 0; |
| 226 | V.hi = H[0]; |
| 227 | V.lo = H[1]; |
| 228 | |
| 229 | # if defined(OPENSSL_SMALL_FOOTPRINT) |
| 230 | for (Htable[8] = V, i = 4; i > 0; i >>= 1) { |
| 231 | REDUCE1BIT(V); |
| 232 | Htable[i] = V; |
| 233 | } |
| 234 | |
| 235 | for (i = 2; i < 16; i <<= 1) { |
| 236 | u128 *Hi = Htable + i; |
| 237 | int j; |
| 238 | for (V = *Hi, j = 1; j < i; ++j) { |
| 239 | Hi[j].hi = V.hi ^ Htable[j].hi; |
| 240 | Hi[j].lo = V.lo ^ Htable[j].lo; |
| 241 | } |
| 242 | } |
| 243 | # else |
| 244 | Htable[8] = V; |
| 245 | REDUCE1BIT(V); |
| 246 | Htable[4] = V; |
| 247 | REDUCE1BIT(V); |
| 248 | Htable[2] = V; |
| 249 | REDUCE1BIT(V); |
| 250 | Htable[1] = V; |
| 251 | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
| 252 | V = Htable[4]; |
| 253 | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
| 254 | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
| 255 | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
| 256 | V = Htable[8]; |
| 257 | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
| 258 | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
| 259 | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
| 260 | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
| 261 | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
| 262 | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
| 263 | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
| 264 | # endif |
| 265 | # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) |
| 266 | /* |
| 267 | * ARM assembler expects specific dword order in Htable. |
| 268 | */ |
| 269 | { |
| 270 | int j; |
| 271 | const union { |
| 272 | long one; |
| 273 | char little; |
| 274 | } is_endian = { 1 }; |
| 275 | |
| 276 | if (is_endian.little) |
| 277 | for (j = 0; j < 16; ++j) { |
| 278 | V = Htable[j]; |
| 279 | Htable[j].hi = V.lo; |
| 280 | Htable[j].lo = V.hi; |
| 281 | } else |
| 282 | for (j = 0; j < 16; ++j) { |
| 283 | V = Htable[j]; |
| 284 | Htable[j].hi = V.lo << 32 | V.lo >> 32; |
| 285 | Htable[j].lo = V.hi << 32 | V.hi >> 32; |
| 286 | } |
| 287 | } |
| 288 | # endif |
| 289 | } |
| 290 | |
| 291 | # ifndef GHASH_ASM |
| 292 | static const size_t rem_4bit[16] = { |
| 293 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
| 294 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
| 295 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
| 296 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) |
| 297 | }; |
| 298 | |
| 299 | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) |
| 300 | { |
| 301 | u128 Z; |
| 302 | int cnt = 15; |
| 303 | size_t rem, nlo, nhi; |
| 304 | const union { |
| 305 | long one; |
| 306 | char little; |
| 307 | } is_endian = { 1 }; |
| 308 | |
| 309 | nlo = ((const u8 *)Xi)[15]; |
| 310 | nhi = nlo >> 4; |
| 311 | nlo &= 0xf; |
| 312 | |
| 313 | Z.hi = Htable[nlo].hi; |
| 314 | Z.lo = Htable[nlo].lo; |
| 315 | |
| 316 | while (1) { |
| 317 | rem = (size_t)Z.lo & 0xf; |
| 318 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 319 | Z.hi = (Z.hi >> 4); |
| 320 | if (sizeof(size_t) == 8) |
| 321 | Z.hi ^= rem_4bit[rem]; |
| 322 | else |
| 323 | Z.hi ^= (u64)rem_4bit[rem] << 32; |
| 324 | |
| 325 | Z.hi ^= Htable[nhi].hi; |
| 326 | Z.lo ^= Htable[nhi].lo; |
| 327 | |
| 328 | if (--cnt < 0) |
| 329 | break; |
| 330 | |
| 331 | nlo = ((const u8 *)Xi)[cnt]; |
| 332 | nhi = nlo >> 4; |
| 333 | nlo &= 0xf; |
| 334 | |
| 335 | rem = (size_t)Z.lo & 0xf; |
| 336 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 337 | Z.hi = (Z.hi >> 4); |
| 338 | if (sizeof(size_t) == 8) |
| 339 | Z.hi ^= rem_4bit[rem]; |
| 340 | else |
| 341 | Z.hi ^= (u64)rem_4bit[rem] << 32; |
| 342 | |
| 343 | Z.hi ^= Htable[nlo].hi; |
| 344 | Z.lo ^= Htable[nlo].lo; |
| 345 | } |
| 346 | |
| 347 | if (is_endian.little) { |
| 348 | # ifdef BSWAP8 |
| 349 | Xi[0] = BSWAP8(Z.hi); |
| 350 | Xi[1] = BSWAP8(Z.lo); |
| 351 | # else |
| 352 | u8 *p = (u8 *)Xi; |
| 353 | u32 v; |
| 354 | v = (u32)(Z.hi >> 32); |
| 355 | PUTU32(p, v); |
| 356 | v = (u32)(Z.hi); |
| 357 | PUTU32(p + 4, v); |
| 358 | v = (u32)(Z.lo >> 32); |
| 359 | PUTU32(p + 8, v); |
| 360 | v = (u32)(Z.lo); |
| 361 | PUTU32(p + 12, v); |
| 362 | # endif |
| 363 | } else { |
| 364 | Xi[0] = Z.hi; |
| 365 | Xi[1] = Z.lo; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | # if !defined(OPENSSL_SMALL_FOOTPRINT) |
| 370 | /* |
| 371 | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
| 372 | * details... Compiler-generated code doesn't seem to give any |
| 373 | * performance improvement, at least not on x86[_64]. It's here |
| 374 | * mostly as reference and a placeholder for possible future |
| 375 | * non-trivial optimization[s]... |
| 376 | */ |
| 377 | static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], |
| 378 | const u8 *inp, size_t len) |
| 379 | { |
| 380 | u128 Z; |
| 381 | int cnt; |
| 382 | size_t rem, nlo, nhi; |
| 383 | const union { |
| 384 | long one; |
| 385 | char little; |
| 386 | } is_endian = { 1 }; |
| 387 | |
| 388 | # if 1 |
| 389 | do { |
| 390 | cnt = 15; |
| 391 | nlo = ((const u8 *)Xi)[15]; |
| 392 | nlo ^= inp[15]; |
| 393 | nhi = nlo >> 4; |
| 394 | nlo &= 0xf; |
| 395 | |
| 396 | Z.hi = Htable[nlo].hi; |
| 397 | Z.lo = Htable[nlo].lo; |
| 398 | |
| 399 | while (1) { |
| 400 | rem = (size_t)Z.lo & 0xf; |
| 401 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 402 | Z.hi = (Z.hi >> 4); |
| 403 | if (sizeof(size_t) == 8) |
| 404 | Z.hi ^= rem_4bit[rem]; |
| 405 | else |
| 406 | Z.hi ^= (u64)rem_4bit[rem] << 32; |
| 407 | |
| 408 | Z.hi ^= Htable[nhi].hi; |
| 409 | Z.lo ^= Htable[nhi].lo; |
| 410 | |
| 411 | if (--cnt < 0) |
| 412 | break; |
| 413 | |
| 414 | nlo = ((const u8 *)Xi)[cnt]; |
| 415 | nlo ^= inp[cnt]; |
| 416 | nhi = nlo >> 4; |
| 417 | nlo &= 0xf; |
| 418 | |
| 419 | rem = (size_t)Z.lo & 0xf; |
| 420 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 421 | Z.hi = (Z.hi >> 4); |
| 422 | if (sizeof(size_t) == 8) |
| 423 | Z.hi ^= rem_4bit[rem]; |
| 424 | else |
| 425 | Z.hi ^= (u64)rem_4bit[rem] << 32; |
| 426 | |
| 427 | Z.hi ^= Htable[nlo].hi; |
| 428 | Z.lo ^= Htable[nlo].lo; |
| 429 | } |
| 430 | # else |
| 431 | /* |
| 432 | * Extra 256+16 bytes per-key plus 512 bytes shared tables |
| 433 | * [should] give ~50% improvement... One could have PACK()-ed |
| 434 | * the rem_8bit even here, but the priority is to minimize |
| 435 | * cache footprint... |
| 436 | */ |
| 437 | u128 Hshr4[16]; /* Htable shifted right by 4 bits */ |
| 438 | u8 Hshl4[16]; /* Htable shifted left by 4 bits */ |
| 439 | static const unsigned short rem_8bit[256] = { |
| 440 | 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, |
| 441 | 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, |
| 442 | 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, |
| 443 | 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, |
| 444 | 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, |
| 445 | 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, |
| 446 | 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, |
| 447 | 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, |
| 448 | 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, |
| 449 | 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, |
| 450 | 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, |
| 451 | 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, |
| 452 | 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, |
| 453 | 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, |
| 454 | 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, |
| 455 | 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, |
| 456 | 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, |
| 457 | 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, |
| 458 | 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, |
| 459 | 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, |
| 460 | 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, |
| 461 | 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, |
| 462 | 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, |
| 463 | 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, |
| 464 | 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, |
| 465 | 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, |
| 466 | 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, |
| 467 | 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, |
| 468 | 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, |
| 469 | 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, |
| 470 | 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, |
| 471 | 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE |
| 472 | }; |
| 473 | /* |
| 474 | * This pre-processing phase slows down procedure by approximately |
| 475 | * same time as it makes each loop spin faster. In other words |
| 476 | * single block performance is approximately same as straightforward |
| 477 | * "4-bit" implementation, and then it goes only faster... |
| 478 | */ |
| 479 | for (cnt = 0; cnt < 16; ++cnt) { |
| 480 | Z.hi = Htable[cnt].hi; |
| 481 | Z.lo = Htable[cnt].lo; |
| 482 | Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4); |
| 483 | Hshr4[cnt].hi = (Z.hi >> 4); |
| 484 | Hshl4[cnt] = (u8)(Z.lo << 4); |
| 485 | } |
| 486 | |
| 487 | do { |
| 488 | for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { |
| 489 | nlo = ((const u8 *)Xi)[cnt]; |
| 490 | nlo ^= inp[cnt]; |
| 491 | nhi = nlo >> 4; |
| 492 | nlo &= 0xf; |
| 493 | |
| 494 | Z.hi ^= Htable[nlo].hi; |
| 495 | Z.lo ^= Htable[nlo].lo; |
| 496 | |
| 497 | rem = (size_t)Z.lo & 0xff; |
| 498 | |
| 499 | Z.lo = (Z.hi << 56) | (Z.lo >> 8); |
| 500 | Z.hi = (Z.hi >> 8); |
| 501 | |
| 502 | Z.hi ^= Hshr4[nhi].hi; |
| 503 | Z.lo ^= Hshr4[nhi].lo; |
| 504 | Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; |
| 505 | } |
| 506 | |
| 507 | nlo = ((const u8 *)Xi)[0]; |
| 508 | nlo ^= inp[0]; |
| 509 | nhi = nlo >> 4; |
| 510 | nlo &= 0xf; |
| 511 | |
| 512 | Z.hi ^= Htable[nlo].hi; |
| 513 | Z.lo ^= Htable[nlo].lo; |
| 514 | |
| 515 | rem = (size_t)Z.lo & 0xf; |
| 516 | |
| 517 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 518 | Z.hi = (Z.hi >> 4); |
| 519 | |
| 520 | Z.hi ^= Htable[nhi].hi; |
| 521 | Z.lo ^= Htable[nhi].lo; |
| 522 | Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; |
| 523 | # endif |
| 524 | |
| 525 | if (is_endian.little) { |
| 526 | # ifdef BSWAP8 |
| 527 | Xi[0] = BSWAP8(Z.hi); |
| 528 | Xi[1] = BSWAP8(Z.lo); |
| 529 | # else |
| 530 | u8 *p = (u8 *)Xi; |
| 531 | u32 v; |
| 532 | v = (u32)(Z.hi >> 32); |
| 533 | PUTU32(p, v); |
| 534 | v = (u32)(Z.hi); |
| 535 | PUTU32(p + 4, v); |
| 536 | v = (u32)(Z.lo >> 32); |
| 537 | PUTU32(p + 8, v); |
| 538 | v = (u32)(Z.lo); |
| 539 | PUTU32(p + 12, v); |
| 540 | # endif |
| 541 | } else { |
| 542 | Xi[0] = Z.hi; |
| 543 | Xi[1] = Z.lo; |
| 544 | } |
| 545 | } while (inp += 16, len -= 16); |
| 546 | } |
| 547 | # endif |
| 548 | # else |
| 549 | void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); |
| 550 | void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 551 | size_t len); |
| 552 | # endif |
| 553 | |
| 554 | # define GCM_MUL(ctx) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) |
| 555 | # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) |
| 556 | # define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) |
| 557 | /* |
| 558 | * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing |
| 559 | * effect. In other words idea is to hash data while it's still in L1 cache |
| 560 | * after encryption pass... |
| 561 | */ |
| 562 | # define GHASH_CHUNK (3*1024) |
| 563 | # endif |
| 564 | |
| 565 | #else /* TABLE_BITS */ |
| 566 | |
| 567 | static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) |
| 568 | { |
| 569 | u128 V, Z = { 0, 0 }; |
| 570 | long X; |
| 571 | int i, j; |
| 572 | const long *xi = (const long *)Xi; |
| 573 | const union { |
| 574 | long one; |
| 575 | char little; |
| 576 | } is_endian = { 1 }; |
| 577 | |
| 578 | V.hi = H[0]; /* H is in host byte order, no byte swapping */ |
| 579 | V.lo = H[1]; |
| 580 | |
| 581 | for (j = 0; j < 16 / sizeof(long); ++j) { |
| 582 | if (is_endian.little) { |
| 583 | if (sizeof(long) == 8) { |
| 584 | # ifdef BSWAP8 |
| 585 | X = (long)(BSWAP8(xi[j])); |
| 586 | # else |
| 587 | const u8 *p = (const u8 *)(xi + j); |
| 588 | X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4)); |
| 589 | # endif |
| 590 | } else { |
| 591 | const u8 *p = (const u8 *)(xi + j); |
| 592 | X = (long)GETU32(p); |
| 593 | } |
| 594 | } else |
| 595 | X = xi[j]; |
| 596 | |
| 597 | for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) { |
| 598 | u64 M = (u64)(X >> (8 * sizeof(long) - 1)); |
| 599 | Z.hi ^= V.hi & M; |
| 600 | Z.lo ^= V.lo & M; |
| 601 | |
| 602 | REDUCE1BIT(V); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | if (is_endian.little) { |
| 607 | # ifdef BSWAP8 |
| 608 | Xi[0] = BSWAP8(Z.hi); |
| 609 | Xi[1] = BSWAP8(Z.lo); |
| 610 | # else |
| 611 | u8 *p = (u8 *)Xi; |
| 612 | u32 v; |
| 613 | v = (u32)(Z.hi >> 32); |
| 614 | PUTU32(p, v); |
| 615 | v = (u32)(Z.hi); |
| 616 | PUTU32(p + 4, v); |
| 617 | v = (u32)(Z.lo >> 32); |
| 618 | PUTU32(p + 8, v); |
| 619 | v = (u32)(Z.lo); |
| 620 | PUTU32(p + 12, v); |
| 621 | # endif |
| 622 | } else { |
| 623 | Xi[0] = Z.hi; |
| 624 | Xi[1] = Z.lo; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | # define GCM_MUL(ctx) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) |
| 629 | |
| 630 | #endif |
| 631 | |
| 632 | #if TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) |
| 633 | # if !defined(I386_ONLY) && \ |
| 634 | (defined(__i386) || defined(__i386__) || \ |
| 635 | defined(__x86_64) || defined(__x86_64__) || \ |
| 636 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) |
| 637 | # define GHASH_ASM_X86_OR_64 |
| 638 | # define GCM_FUNCREF_4BIT |
| 639 | |
| 640 | void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); |
| 641 | void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); |
| 642 | void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 643 | size_t len); |
| 644 | |
| 645 | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| 646 | # define gcm_init_avx gcm_init_clmul |
| 647 | # define gcm_gmult_avx gcm_gmult_clmul |
| 648 | # define gcm_ghash_avx gcm_ghash_clmul |
| 649 | # else |
| 650 | void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); |
| 651 | void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); |
| 652 | void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 653 | size_t len); |
| 654 | # endif |
| 655 | |
| 656 | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| 657 | # define GHASH_ASM_X86 |
| 658 | void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); |
| 659 | void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 660 | size_t len); |
| 661 | |
| 662 | void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); |
| 663 | void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 664 | size_t len); |
| 665 | # endif |
| 666 | # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) |
| 667 | # include "arm_arch.h" |
| 668 | # if __ARM_MAX_ARCH__>=7 |
| 669 | # define GHASH_ASM_ARM |
| 670 | # define GCM_FUNCREF_4BIT |
| 671 | # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) |
| 672 | # if defined(__arm__) || defined(__arm) |
| 673 | # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) |
| 674 | # endif |
| 675 | void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); |
| 676 | void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); |
| 677 | void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 678 | size_t len); |
| 679 | void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); |
| 680 | void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); |
| 681 | void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 682 | size_t len); |
| 683 | # endif |
| 684 | # elif defined(__sparc__) || defined(__sparc) |
| 685 | # include "sparc_arch.h" |
| 686 | # define GHASH_ASM_SPARC |
| 687 | # define GCM_FUNCREF_4BIT |
| 688 | extern unsigned int OPENSSL_sparcv9cap_P[]; |
| 689 | void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); |
| 690 | void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); |
| 691 | void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 692 | size_t len); |
| 693 | # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) |
| 694 | # include "ppc_arch.h" |
| 695 | # define GHASH_ASM_PPC |
| 696 | # define GCM_FUNCREF_4BIT |
| 697 | void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); |
| 698 | void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); |
| 699 | void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| 700 | size_t len); |
| 701 | # endif |
| 702 | #endif |
| 703 | |
| 704 | #ifdef GCM_FUNCREF_4BIT |
| 705 | # undef GCM_MUL |
| 706 | # define GCM_MUL(ctx) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) |
| 707 | # ifdef GHASH |
| 708 | # undef GHASH |
| 709 | # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) |
| 710 | # endif |
| 711 | #endif |
| 712 | |
| 713 | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) |
| 714 | { |
| 715 | const union { |
| 716 | long one; |
| 717 | char little; |
| 718 | } is_endian = { 1 }; |
| 719 | |
| 720 | memset(ctx, 0, sizeof(*ctx)); |
| 721 | ctx->block = block; |
| 722 | ctx->key = key; |
| 723 | |
| 724 | (*block) (ctx->H.c, ctx->H.c, key); |
| 725 | |
| 726 | if (is_endian.little) { |
| 727 | /* H is stored in host byte order */ |
| 728 | #ifdef BSWAP8 |
| 729 | ctx->H.u[0] = BSWAP8(ctx->H.u[0]); |
| 730 | ctx->H.u[1] = BSWAP8(ctx->H.u[1]); |
| 731 | #else |
| 732 | u8 *p = ctx->H.c; |
| 733 | u64 hi, lo; |
| 734 | hi = (u64)GETU32(p) << 32 | GETU32(p + 4); |
| 735 | lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); |
| 736 | ctx->H.u[0] = hi; |
| 737 | ctx->H.u[1] = lo; |
| 738 | #endif |
| 739 | } |
| 740 | #if TABLE_BITS==8 |
| 741 | gcm_init_8bit(ctx->Htable, ctx->H.u); |
| 742 | #elif TABLE_BITS==4 |
| 743 | # if defined(GHASH) |
| 744 | # define CTX__GHASH(f) (ctx->ghash = (f)) |
| 745 | # else |
| 746 | # define CTX__GHASH(f) (ctx->ghash = NULL) |
| 747 | # endif |
| 748 | # if defined(GHASH_ASM_X86_OR_64) |
| 749 | # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) |
| 750 | if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ |
| 751 | if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ |
| 752 | gcm_init_avx(ctx->Htable, ctx->H.u); |
| 753 | ctx->gmult = gcm_gmult_avx; |
| 754 | CTX__GHASH(gcm_ghash_avx); |
| 755 | } else { |
| 756 | gcm_init_clmul(ctx->Htable, ctx->H.u); |
| 757 | ctx->gmult = gcm_gmult_clmul; |
| 758 | CTX__GHASH(gcm_ghash_clmul); |
| 759 | } |
| 760 | return; |
| 761 | } |
| 762 | # endif |
| 763 | gcm_init_4bit(ctx->Htable, ctx->H.u); |
| 764 | # if defined(GHASH_ASM_X86) /* x86 only */ |
| 765 | # if defined(OPENSSL_IA32_SSE2) |
| 766 | if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ |
| 767 | # else |
| 768 | if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ |
| 769 | # endif |
| 770 | ctx->gmult = gcm_gmult_4bit_mmx; |
| 771 | CTX__GHASH(gcm_ghash_4bit_mmx); |
| 772 | } else { |
| 773 | ctx->gmult = gcm_gmult_4bit_x86; |
| 774 | CTX__GHASH(gcm_ghash_4bit_x86); |
| 775 | } |
| 776 | # else |
| 777 | ctx->gmult = gcm_gmult_4bit; |
| 778 | CTX__GHASH(gcm_ghash_4bit); |
| 779 | # endif |
| 780 | # elif defined(GHASH_ASM_ARM) |
| 781 | # ifdef PMULL_CAPABLE |
| 782 | if (PMULL_CAPABLE) { |
| 783 | gcm_init_v8(ctx->Htable, ctx->H.u); |
| 784 | ctx->gmult = gcm_gmult_v8; |
| 785 | CTX__GHASH(gcm_ghash_v8); |
| 786 | } else |
| 787 | # endif |
| 788 | # ifdef NEON_CAPABLE |
| 789 | if (NEON_CAPABLE) { |
| 790 | gcm_init_neon(ctx->Htable, ctx->H.u); |
| 791 | ctx->gmult = gcm_gmult_neon; |
| 792 | CTX__GHASH(gcm_ghash_neon); |
| 793 | } else |
| 794 | # endif |
| 795 | { |
| 796 | gcm_init_4bit(ctx->Htable, ctx->H.u); |
| 797 | ctx->gmult = gcm_gmult_4bit; |
| 798 | CTX__GHASH(gcm_ghash_4bit); |
| 799 | } |
| 800 | # elif defined(GHASH_ASM_SPARC) |
| 801 | if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { |
| 802 | gcm_init_vis3(ctx->Htable, ctx->H.u); |
| 803 | ctx->gmult = gcm_gmult_vis3; |
| 804 | CTX__GHASH(gcm_ghash_vis3); |
| 805 | } else { |
| 806 | gcm_init_4bit(ctx->Htable, ctx->H.u); |
| 807 | ctx->gmult = gcm_gmult_4bit; |
| 808 | CTX__GHASH(gcm_ghash_4bit); |
| 809 | } |
| 810 | # elif defined(GHASH_ASM_PPC) |
| 811 | if (OPENSSL_ppccap_P & PPC_CRYPTO207) { |
| 812 | gcm_init_p8(ctx->Htable, ctx->H.u); |
| 813 | ctx->gmult = gcm_gmult_p8; |
| 814 | CTX__GHASH(gcm_ghash_p8); |
| 815 | } else { |
| 816 | gcm_init_4bit(ctx->Htable, ctx->H.u); |
| 817 | ctx->gmult = gcm_gmult_4bit; |
| 818 | CTX__GHASH(gcm_ghash_4bit); |
| 819 | } |
| 820 | # else |
| 821 | gcm_init_4bit(ctx->Htable, ctx->H.u); |
| 822 | # endif |
| 823 | # undef CTX__GHASH |
| 824 | #endif |
| 825 | } |
| 826 | |
| 827 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, |
| 828 | size_t len) |
| 829 | { |
| 830 | const union { |
| 831 | long one; |
| 832 | char little; |
| 833 | } is_endian = { 1 }; |
| 834 | unsigned int ctr; |
| 835 | #ifdef GCM_FUNCREF_4BIT |
| 836 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 837 | #endif |
| 838 | |
| 839 | ctx->len.u[0] = 0; /* AAD length */ |
| 840 | ctx->len.u[1] = 0; /* message length */ |
| 841 | ctx->ares = 0; |
| 842 | ctx->mres = 0; |
| 843 | |
| 844 | if (len == 12) { |
| 845 | memcpy(ctx->Yi.c, iv, 12); |
| 846 | ctx->Yi.c[12] = 0; |
| 847 | ctx->Yi.c[13] = 0; |
| 848 | ctx->Yi.c[14] = 0; |
| 849 | ctx->Yi.c[15] = 1; |
| 850 | ctr = 1; |
| 851 | } else { |
| 852 | size_t i; |
| 853 | u64 len0 = len; |
| 854 | |
| 855 | /* Borrow ctx->Xi to calculate initial Yi */ |
| 856 | ctx->Xi.u[0] = 0; |
| 857 | ctx->Xi.u[1] = 0; |
| 858 | |
| 859 | while (len >= 16) { |
| 860 | for (i = 0; i < 16; ++i) |
| 861 | ctx->Xi.c[i] ^= iv[i]; |
| 862 | GCM_MUL(ctx); |
| 863 | iv += 16; |
| 864 | len -= 16; |
| 865 | } |
| 866 | if (len) { |
| 867 | for (i = 0; i < len; ++i) |
| 868 | ctx->Xi.c[i] ^= iv[i]; |
| 869 | GCM_MUL(ctx); |
| 870 | } |
| 871 | len0 <<= 3; |
| 872 | if (is_endian.little) { |
| 873 | #ifdef BSWAP8 |
| 874 | ctx->Xi.u[1] ^= BSWAP8(len0); |
| 875 | #else |
| 876 | ctx->Xi.c[8] ^= (u8)(len0 >> 56); |
| 877 | ctx->Xi.c[9] ^= (u8)(len0 >> 48); |
| 878 | ctx->Xi.c[10] ^= (u8)(len0 >> 40); |
| 879 | ctx->Xi.c[11] ^= (u8)(len0 >> 32); |
| 880 | ctx->Xi.c[12] ^= (u8)(len0 >> 24); |
| 881 | ctx->Xi.c[13] ^= (u8)(len0 >> 16); |
| 882 | ctx->Xi.c[14] ^= (u8)(len0 >> 8); |
| 883 | ctx->Xi.c[15] ^= (u8)(len0); |
| 884 | #endif |
| 885 | } else { |
| 886 | ctx->Xi.u[1] ^= len0; |
| 887 | } |
| 888 | |
| 889 | GCM_MUL(ctx); |
| 890 | |
| 891 | if (is_endian.little) |
| 892 | #ifdef BSWAP4 |
| 893 | ctr = BSWAP4(ctx->Xi.d[3]); |
| 894 | #else |
| 895 | ctr = GETU32(ctx->Xi.c + 12); |
| 896 | #endif |
| 897 | else |
| 898 | ctr = ctx->Xi.d[3]; |
| 899 | |
| 900 | /* Copy borrowed Xi to Yi */ |
| 901 | ctx->Yi.u[0] = ctx->Xi.u[0]; |
| 902 | ctx->Yi.u[1] = ctx->Xi.u[1]; |
| 903 | } |
| 904 | |
| 905 | ctx->Xi.u[0] = 0; |
| 906 | ctx->Xi.u[1] = 0; |
| 907 | |
| 908 | (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); |
| 909 | ++ctr; |
| 910 | if (is_endian.little) |
| 911 | #ifdef BSWAP4 |
| 912 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 913 | #else |
| 914 | PUTU32(ctx->Yi.c + 12, ctr); |
| 915 | #endif |
| 916 | else |
| 917 | ctx->Yi.d[3] = ctr; |
| 918 | } |
| 919 | |
| 920 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, |
| 921 | size_t len) |
| 922 | { |
| 923 | size_t i; |
| 924 | unsigned int n; |
| 925 | u64 alen = ctx->len.u[0]; |
| 926 | #ifdef GCM_FUNCREF_4BIT |
| 927 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 928 | # ifdef GHASH |
| 929 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| 930 | const u8 *inp, size_t len) = ctx->ghash; |
| 931 | # endif |
| 932 | #endif |
| 933 | |
| 934 | if (ctx->len.u[1]) |
| 935 | return -2; |
| 936 | |
| 937 | alen += len; |
| 938 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
| 939 | return -1; |
| 940 | ctx->len.u[0] = alen; |
| 941 | |
| 942 | n = ctx->ares; |
| 943 | if (n) { |
| 944 | while (n && len) { |
| 945 | ctx->Xi.c[n] ^= *(aad++); |
| 946 | --len; |
| 947 | n = (n + 1) % 16; |
| 948 | } |
| 949 | if (n == 0) |
| 950 | GCM_MUL(ctx); |
| 951 | else { |
| 952 | ctx->ares = n; |
| 953 | return 0; |
| 954 | } |
| 955 | } |
| 956 | #ifdef GHASH |
| 957 | if ((i = (len & (size_t)-16))) { |
| 958 | GHASH(ctx, aad, i); |
| 959 | aad += i; |
| 960 | len -= i; |
| 961 | } |
| 962 | #else |
| 963 | while (len >= 16) { |
| 964 | for (i = 0; i < 16; ++i) |
| 965 | ctx->Xi.c[i] ^= aad[i]; |
| 966 | GCM_MUL(ctx); |
| 967 | aad += 16; |
| 968 | len -= 16; |
| 969 | } |
| 970 | #endif |
| 971 | if (len) { |
| 972 | n = (unsigned int)len; |
| 973 | for (i = 0; i < len; ++i) |
| 974 | ctx->Xi.c[i] ^= aad[i]; |
| 975 | } |
| 976 | |
| 977 | ctx->ares = n; |
| 978 | return 0; |
| 979 | } |
| 980 | |
| 981 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
| 982 | const unsigned char *in, unsigned char *out, |
| 983 | size_t len) |
| 984 | { |
| 985 | const union { |
| 986 | long one; |
| 987 | char little; |
| 988 | } is_endian = { 1 }; |
| 989 | unsigned int n, ctr, mres; |
| 990 | size_t i; |
| 991 | u64 mlen = ctx->len.u[1]; |
| 992 | block128_f block = ctx->block; |
| 993 | void *key = ctx->key; |
| 994 | #ifdef GCM_FUNCREF_4BIT |
| 995 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 996 | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 997 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| 998 | const u8 *inp, size_t len) = ctx->ghash; |
| 999 | # endif |
| 1000 | #endif |
| 1001 | |
| 1002 | mlen += len; |
| 1003 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| 1004 | return -1; |
| 1005 | ctx->len.u[1] = mlen; |
| 1006 | |
| 1007 | mres = ctx->mres; |
| 1008 | |
| 1009 | if (ctx->ares) { |
| 1010 | /* First call to encrypt finalizes GHASH(AAD) */ |
| 1011 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1012 | if (len == 0) { |
| 1013 | GCM_MUL(ctx); |
| 1014 | ctx->ares = 0; |
| 1015 | return 0; |
| 1016 | } |
| 1017 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
| 1018 | ctx->Xi.u[0] = 0; |
| 1019 | ctx->Xi.u[1] = 0; |
| 1020 | mres = sizeof(ctx->Xi); |
| 1021 | #else |
| 1022 | GCM_MUL(ctx); |
| 1023 | #endif |
| 1024 | ctx->ares = 0; |
| 1025 | } |
| 1026 | |
| 1027 | if (is_endian.little) |
| 1028 | #ifdef BSWAP4 |
| 1029 | ctr = BSWAP4(ctx->Yi.d[3]); |
| 1030 | #else |
| 1031 | ctr = GETU32(ctx->Yi.c + 12); |
| 1032 | #endif |
| 1033 | else |
| 1034 | ctr = ctx->Yi.d[3]; |
| 1035 | |
| 1036 | n = mres % 16; |
| 1037 | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1038 | if (16 % sizeof(size_t) == 0) { /* always true actually */ |
| 1039 | do { |
| 1040 | if (n) { |
| 1041 | # if defined(GHASH) |
| 1042 | while (n && len) { |
| 1043 | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| 1044 | --len; |
| 1045 | n = (n + 1) % 16; |
| 1046 | } |
| 1047 | if (n == 0) { |
| 1048 | GHASH(ctx, ctx->Xn, mres); |
| 1049 | mres = 0; |
| 1050 | } else { |
| 1051 | ctx->mres = mres; |
| 1052 | return 0; |
| 1053 | } |
| 1054 | # else |
| 1055 | while (n && len) { |
| 1056 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| 1057 | --len; |
| 1058 | n = (n + 1) % 16; |
| 1059 | } |
| 1060 | if (n == 0) { |
| 1061 | GCM_MUL(ctx); |
| 1062 | mres = 0; |
| 1063 | } else { |
| 1064 | ctx->mres = n; |
| 1065 | return 0; |
| 1066 | } |
| 1067 | # endif |
| 1068 | } |
| 1069 | # if defined(STRICT_ALIGNMENT) |
| 1070 | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) |
| 1071 | break; |
| 1072 | # endif |
| 1073 | # if defined(GHASH) |
| 1074 | if (len >= 16 && mres) { |
| 1075 | GHASH(ctx, ctx->Xn, mres); |
| 1076 | mres = 0; |
| 1077 | } |
| 1078 | # if defined(GHASH_CHUNK) |
| 1079 | while (len >= GHASH_CHUNK) { |
| 1080 | size_t j = GHASH_CHUNK; |
| 1081 | |
| 1082 | while (j) { |
| 1083 | size_t *out_t = (size_t *)out; |
| 1084 | const size_t *in_t = (const size_t *)in; |
| 1085 | |
| 1086 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1087 | ++ctr; |
| 1088 | if (is_endian.little) |
| 1089 | # ifdef BSWAP4 |
| 1090 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1091 | # else |
| 1092 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1093 | # endif |
| 1094 | else |
| 1095 | ctx->Yi.d[3] = ctr; |
| 1096 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
| 1097 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| 1098 | out += 16; |
| 1099 | in += 16; |
| 1100 | j -= 16; |
| 1101 | } |
| 1102 | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
| 1103 | len -= GHASH_CHUNK; |
| 1104 | } |
| 1105 | # endif |
| 1106 | if ((i = (len & (size_t)-16))) { |
| 1107 | size_t j = i; |
| 1108 | |
| 1109 | while (len >= 16) { |
| 1110 | size_t *out_t = (size_t *)out; |
| 1111 | const size_t *in_t = (const size_t *)in; |
| 1112 | |
| 1113 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1114 | ++ctr; |
| 1115 | if (is_endian.little) |
| 1116 | # ifdef BSWAP4 |
| 1117 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1118 | # else |
| 1119 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1120 | # endif |
| 1121 | else |
| 1122 | ctx->Yi.d[3] = ctr; |
| 1123 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
| 1124 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| 1125 | out += 16; |
| 1126 | in += 16; |
| 1127 | len -= 16; |
| 1128 | } |
| 1129 | GHASH(ctx, out - j, j); |
| 1130 | } |
| 1131 | # else |
| 1132 | while (len >= 16) { |
| 1133 | size_t *out_t = (size_t *)out; |
| 1134 | const size_t *in_t = (const size_t *)in; |
| 1135 | |
| 1136 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1137 | ++ctr; |
| 1138 | if (is_endian.little) |
| 1139 | # ifdef BSWAP4 |
| 1140 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1141 | # else |
| 1142 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1143 | # endif |
| 1144 | else |
| 1145 | ctx->Yi.d[3] = ctr; |
| 1146 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
| 1147 | ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| 1148 | GCM_MUL(ctx); |
| 1149 | out += 16; |
| 1150 | in += 16; |
| 1151 | len -= 16; |
| 1152 | } |
| 1153 | # endif |
| 1154 | if (len) { |
| 1155 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1156 | ++ctr; |
| 1157 | if (is_endian.little) |
| 1158 | # ifdef BSWAP4 |
| 1159 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1160 | # else |
| 1161 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1162 | # endif |
| 1163 | else |
| 1164 | ctx->Yi.d[3] = ctr; |
| 1165 | # if defined(GHASH) |
| 1166 | while (len--) { |
| 1167 | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; |
| 1168 | ++n; |
| 1169 | } |
| 1170 | # else |
| 1171 | while (len--) { |
| 1172 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| 1173 | ++n; |
| 1174 | } |
| 1175 | mres = n; |
| 1176 | # endif |
| 1177 | } |
| 1178 | |
| 1179 | ctx->mres = mres; |
| 1180 | return 0; |
| 1181 | } while (0); |
| 1182 | } |
| 1183 | #endif |
| 1184 | for (i = 0; i < len; ++i) { |
| 1185 | if (n == 0) { |
| 1186 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1187 | ++ctr; |
| 1188 | if (is_endian.little) |
| 1189 | #ifdef BSWAP4 |
| 1190 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1191 | #else |
| 1192 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1193 | #endif |
| 1194 | else |
| 1195 | ctx->Yi.d[3] = ctr; |
| 1196 | } |
| 1197 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1198 | ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; |
| 1199 | n = (n + 1) % 16; |
| 1200 | if (mres == sizeof(ctx->Xn)) { |
| 1201 | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); |
| 1202 | mres = 0; |
| 1203 | } |
| 1204 | #else |
| 1205 | ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; |
| 1206 | mres = n = (n + 1) % 16; |
| 1207 | if (n == 0) |
| 1208 | GCM_MUL(ctx); |
| 1209 | #endif |
| 1210 | } |
| 1211 | |
| 1212 | ctx->mres = mres; |
| 1213 | return 0; |
| 1214 | } |
| 1215 | |
| 1216 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
| 1217 | const unsigned char *in, unsigned char *out, |
| 1218 | size_t len) |
| 1219 | { |
| 1220 | const union { |
| 1221 | long one; |
| 1222 | char little; |
| 1223 | } is_endian = { 1 }; |
| 1224 | unsigned int n, ctr, mres; |
| 1225 | size_t i; |
| 1226 | u64 mlen = ctx->len.u[1]; |
| 1227 | block128_f block = ctx->block; |
| 1228 | void *key = ctx->key; |
| 1229 | #ifdef GCM_FUNCREF_4BIT |
| 1230 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 1231 | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1232 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| 1233 | const u8 *inp, size_t len) = ctx->ghash; |
| 1234 | # endif |
| 1235 | #endif |
| 1236 | |
| 1237 | mlen += len; |
| 1238 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| 1239 | return -1; |
| 1240 | ctx->len.u[1] = mlen; |
| 1241 | |
| 1242 | mres = ctx->mres; |
| 1243 | |
| 1244 | if (ctx->ares) { |
| 1245 | /* First call to decrypt finalizes GHASH(AAD) */ |
| 1246 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1247 | if (len == 0) { |
| 1248 | GCM_MUL(ctx); |
| 1249 | ctx->ares = 0; |
| 1250 | return 0; |
| 1251 | } |
| 1252 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
| 1253 | ctx->Xi.u[0] = 0; |
| 1254 | ctx->Xi.u[1] = 0; |
| 1255 | mres = sizeof(ctx->Xi); |
| 1256 | #else |
| 1257 | GCM_MUL(ctx); |
| 1258 | #endif |
| 1259 | ctx->ares = 0; |
| 1260 | } |
| 1261 | |
| 1262 | if (is_endian.little) |
| 1263 | #ifdef BSWAP4 |
| 1264 | ctr = BSWAP4(ctx->Yi.d[3]); |
| 1265 | #else |
| 1266 | ctr = GETU32(ctx->Yi.c + 12); |
| 1267 | #endif |
| 1268 | else |
| 1269 | ctr = ctx->Yi.d[3]; |
| 1270 | |
| 1271 | n = mres % 16; |
| 1272 | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1273 | if (16 % sizeof(size_t) == 0) { /* always true actually */ |
| 1274 | do { |
| 1275 | if (n) { |
| 1276 | # if defined(GHASH) |
| 1277 | while (n && len) { |
| 1278 | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; |
| 1279 | --len; |
| 1280 | n = (n + 1) % 16; |
| 1281 | } |
| 1282 | if (n == 0) { |
| 1283 | GHASH(ctx, ctx->Xn, mres); |
| 1284 | mres = 0; |
| 1285 | } else { |
| 1286 | ctx->mres = mres; |
| 1287 | return 0; |
| 1288 | } |
| 1289 | # else |
| 1290 | while (n && len) { |
| 1291 | u8 c = *(in++); |
| 1292 | *(out++) = c ^ ctx->EKi.c[n]; |
| 1293 | ctx->Xi.c[n] ^= c; |
| 1294 | --len; |
| 1295 | n = (n + 1) % 16; |
| 1296 | } |
| 1297 | if (n == 0) { |
| 1298 | GCM_MUL(ctx); |
| 1299 | mres = 0; |
| 1300 | } else { |
| 1301 | ctx->mres = n; |
| 1302 | return 0; |
| 1303 | } |
| 1304 | # endif |
| 1305 | } |
| 1306 | # if defined(STRICT_ALIGNMENT) |
| 1307 | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) |
| 1308 | break; |
| 1309 | # endif |
| 1310 | # if defined(GHASH) |
| 1311 | if (len >= 16 && mres) { |
| 1312 | GHASH(ctx, ctx->Xn, mres); |
| 1313 | mres = 0; |
| 1314 | } |
| 1315 | # if defined(GHASH_CHUNK) |
| 1316 | while (len >= GHASH_CHUNK) { |
| 1317 | size_t j = GHASH_CHUNK; |
| 1318 | |
| 1319 | GHASH(ctx, in, GHASH_CHUNK); |
| 1320 | while (j) { |
| 1321 | size_t *out_t = (size_t *)out; |
| 1322 | const size_t *in_t = (const size_t *)in; |
| 1323 | |
| 1324 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1325 | ++ctr; |
| 1326 | if (is_endian.little) |
| 1327 | # ifdef BSWAP4 |
| 1328 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1329 | # else |
| 1330 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1331 | # endif |
| 1332 | else |
| 1333 | ctx->Yi.d[3] = ctr; |
| 1334 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
| 1335 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| 1336 | out += 16; |
| 1337 | in += 16; |
| 1338 | j -= 16; |
| 1339 | } |
| 1340 | len -= GHASH_CHUNK; |
| 1341 | } |
| 1342 | # endif |
| 1343 | if ((i = (len & (size_t)-16))) { |
| 1344 | GHASH(ctx, in, i); |
| 1345 | while (len >= 16) { |
| 1346 | size_t *out_t = (size_t *)out; |
| 1347 | const size_t *in_t = (const size_t *)in; |
| 1348 | |
| 1349 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1350 | ++ctr; |
| 1351 | if (is_endian.little) |
| 1352 | # ifdef BSWAP4 |
| 1353 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1354 | # else |
| 1355 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1356 | # endif |
| 1357 | else |
| 1358 | ctx->Yi.d[3] = ctr; |
| 1359 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
| 1360 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| 1361 | out += 16; |
| 1362 | in += 16; |
| 1363 | len -= 16; |
| 1364 | } |
| 1365 | } |
| 1366 | # else |
| 1367 | while (len >= 16) { |
| 1368 | size_t *out_t = (size_t *)out; |
| 1369 | const size_t *in_t = (const size_t *)in; |
| 1370 | |
| 1371 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1372 | ++ctr; |
| 1373 | if (is_endian.little) |
| 1374 | # ifdef BSWAP4 |
| 1375 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1376 | # else |
| 1377 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1378 | # endif |
| 1379 | else |
| 1380 | ctx->Yi.d[3] = ctr; |
| 1381 | for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| 1382 | size_t c = in[i]; |
| 1383 | out[i] = c ^ ctx->EKi.t[i]; |
| 1384 | ctx->Xi.t[i] ^= c; |
| 1385 | } |
| 1386 | GCM_MUL(ctx); |
| 1387 | out += 16; |
| 1388 | in += 16; |
| 1389 | len -= 16; |
| 1390 | } |
| 1391 | # endif |
| 1392 | if (len) { |
| 1393 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1394 | ++ctr; |
| 1395 | if (is_endian.little) |
| 1396 | # ifdef BSWAP4 |
| 1397 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1398 | # else |
| 1399 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1400 | # endif |
| 1401 | else |
| 1402 | ctx->Yi.d[3] = ctr; |
| 1403 | # if defined(GHASH) |
| 1404 | while (len--) { |
| 1405 | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; |
| 1406 | ++n; |
| 1407 | } |
| 1408 | # else |
| 1409 | while (len--) { |
| 1410 | u8 c = in[n]; |
| 1411 | ctx->Xi.c[n] ^= c; |
| 1412 | out[n] = c ^ ctx->EKi.c[n]; |
| 1413 | ++n; |
| 1414 | } |
| 1415 | mres = n; |
| 1416 | # endif |
| 1417 | } |
| 1418 | |
| 1419 | ctx->mres = mres; |
| 1420 | return 0; |
| 1421 | } while (0); |
| 1422 | } |
| 1423 | #endif |
| 1424 | for (i = 0; i < len; ++i) { |
| 1425 | u8 c; |
| 1426 | if (n == 0) { |
| 1427 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1428 | ++ctr; |
| 1429 | if (is_endian.little) |
| 1430 | #ifdef BSWAP4 |
| 1431 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1432 | #else |
| 1433 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1434 | #endif |
| 1435 | else |
| 1436 | ctx->Yi.d[3] = ctr; |
| 1437 | } |
| 1438 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1439 | out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; |
| 1440 | n = (n + 1) % 16; |
| 1441 | if (mres == sizeof(ctx->Xn)) { |
| 1442 | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); |
| 1443 | mres = 0; |
| 1444 | } |
| 1445 | #else |
| 1446 | c = in[i]; |
| 1447 | out[i] = c ^ ctx->EKi.c[n]; |
| 1448 | ctx->Xi.c[n] ^= c; |
| 1449 | mres = n = (n + 1) % 16; |
| 1450 | if (n == 0) |
| 1451 | GCM_MUL(ctx); |
| 1452 | #endif |
| 1453 | } |
| 1454 | |
| 1455 | ctx->mres = mres; |
| 1456 | return 0; |
| 1457 | } |
| 1458 | |
| 1459 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
| 1460 | const unsigned char *in, unsigned char *out, |
| 1461 | size_t len, ctr128_f stream) |
| 1462 | { |
| 1463 | #if defined(OPENSSL_SMALL_FOOTPRINT) |
| 1464 | return CRYPTO_gcm128_encrypt(ctx, in, out, len); |
| 1465 | #else |
| 1466 | const union { |
| 1467 | long one; |
| 1468 | char little; |
| 1469 | } is_endian = { 1 }; |
| 1470 | unsigned int n, ctr, mres; |
| 1471 | size_t i; |
| 1472 | u64 mlen = ctx->len.u[1]; |
| 1473 | void *key = ctx->key; |
| 1474 | # ifdef GCM_FUNCREF_4BIT |
| 1475 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 1476 | # ifdef GHASH |
| 1477 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| 1478 | const u8 *inp, size_t len) = ctx->ghash; |
| 1479 | # endif |
| 1480 | # endif |
| 1481 | |
| 1482 | mlen += len; |
| 1483 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| 1484 | return -1; |
| 1485 | ctx->len.u[1] = mlen; |
| 1486 | |
| 1487 | mres = ctx->mres; |
| 1488 | |
| 1489 | if (ctx->ares) { |
| 1490 | /* First call to encrypt finalizes GHASH(AAD) */ |
| 1491 | #if defined(GHASH) |
| 1492 | if (len == 0) { |
| 1493 | GCM_MUL(ctx); |
| 1494 | ctx->ares = 0; |
| 1495 | return 0; |
| 1496 | } |
| 1497 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
| 1498 | ctx->Xi.u[0] = 0; |
| 1499 | ctx->Xi.u[1] = 0; |
| 1500 | mres = sizeof(ctx->Xi); |
| 1501 | #else |
| 1502 | GCM_MUL(ctx); |
| 1503 | #endif |
| 1504 | ctx->ares = 0; |
| 1505 | } |
| 1506 | |
| 1507 | if (is_endian.little) |
| 1508 | # ifdef BSWAP4 |
| 1509 | ctr = BSWAP4(ctx->Yi.d[3]); |
| 1510 | # else |
| 1511 | ctr = GETU32(ctx->Yi.c + 12); |
| 1512 | # endif |
| 1513 | else |
| 1514 | ctr = ctx->Yi.d[3]; |
| 1515 | |
| 1516 | n = mres % 16; |
| 1517 | if (n) { |
| 1518 | # if defined(GHASH) |
| 1519 | while (n && len) { |
| 1520 | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| 1521 | --len; |
| 1522 | n = (n + 1) % 16; |
| 1523 | } |
| 1524 | if (n == 0) { |
| 1525 | GHASH(ctx, ctx->Xn, mres); |
| 1526 | mres = 0; |
| 1527 | } else { |
| 1528 | ctx->mres = mres; |
| 1529 | return 0; |
| 1530 | } |
| 1531 | # else |
| 1532 | while (n && len) { |
| 1533 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| 1534 | --len; |
| 1535 | n = (n + 1) % 16; |
| 1536 | } |
| 1537 | if (n == 0) { |
| 1538 | GCM_MUL(ctx); |
| 1539 | mres = 0; |
| 1540 | } else { |
| 1541 | ctx->mres = n; |
| 1542 | return 0; |
| 1543 | } |
| 1544 | # endif |
| 1545 | } |
| 1546 | # if defined(GHASH) |
| 1547 | if (len >= 16 && mres) { |
| 1548 | GHASH(ctx, ctx->Xn, mres); |
| 1549 | mres = 0; |
| 1550 | } |
| 1551 | # if defined(GHASH_CHUNK) |
| 1552 | while (len >= GHASH_CHUNK) { |
| 1553 | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| 1554 | ctr += GHASH_CHUNK / 16; |
| 1555 | if (is_endian.little) |
| 1556 | # ifdef BSWAP4 |
| 1557 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1558 | # else |
| 1559 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1560 | # endif |
| 1561 | else |
| 1562 | ctx->Yi.d[3] = ctr; |
| 1563 | GHASH(ctx, out, GHASH_CHUNK); |
| 1564 | out += GHASH_CHUNK; |
| 1565 | in += GHASH_CHUNK; |
| 1566 | len -= GHASH_CHUNK; |
| 1567 | } |
| 1568 | # endif |
| 1569 | # endif |
| 1570 | if ((i = (len & (size_t)-16))) { |
| 1571 | size_t j = i / 16; |
| 1572 | |
| 1573 | (*stream) (in, out, j, key, ctx->Yi.c); |
| 1574 | ctr += (unsigned int)j; |
| 1575 | if (is_endian.little) |
| 1576 | # ifdef BSWAP4 |
| 1577 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1578 | # else |
| 1579 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1580 | # endif |
| 1581 | else |
| 1582 | ctx->Yi.d[3] = ctr; |
| 1583 | in += i; |
| 1584 | len -= i; |
| 1585 | # if defined(GHASH) |
| 1586 | GHASH(ctx, out, i); |
| 1587 | out += i; |
| 1588 | # else |
| 1589 | while (j--) { |
| 1590 | for (i = 0; i < 16; ++i) |
| 1591 | ctx->Xi.c[i] ^= out[i]; |
| 1592 | GCM_MUL(ctx); |
| 1593 | out += 16; |
| 1594 | } |
| 1595 | # endif |
| 1596 | } |
| 1597 | if (len) { |
| 1598 | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1599 | ++ctr; |
| 1600 | if (is_endian.little) |
| 1601 | # ifdef BSWAP4 |
| 1602 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1603 | # else |
| 1604 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1605 | # endif |
| 1606 | else |
| 1607 | ctx->Yi.d[3] = ctr; |
| 1608 | while (len--) { |
| 1609 | # if defined(GHASH) |
| 1610 | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; |
| 1611 | # else |
| 1612 | ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| 1613 | # endif |
| 1614 | ++n; |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | ctx->mres = mres; |
| 1619 | return 0; |
| 1620 | #endif |
| 1621 | } |
| 1622 | |
| 1623 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
| 1624 | const unsigned char *in, unsigned char *out, |
| 1625 | size_t len, ctr128_f stream) |
| 1626 | { |
| 1627 | #if defined(OPENSSL_SMALL_FOOTPRINT) |
| 1628 | return CRYPTO_gcm128_decrypt(ctx, in, out, len); |
| 1629 | #else |
| 1630 | const union { |
| 1631 | long one; |
| 1632 | char little; |
| 1633 | } is_endian = { 1 }; |
| 1634 | unsigned int n, ctr, mres; |
| 1635 | size_t i; |
| 1636 | u64 mlen = ctx->len.u[1]; |
| 1637 | void *key = ctx->key; |
| 1638 | # ifdef GCM_FUNCREF_4BIT |
| 1639 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 1640 | # ifdef GHASH |
| 1641 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| 1642 | const u8 *inp, size_t len) = ctx->ghash; |
| 1643 | # endif |
| 1644 | # endif |
| 1645 | |
| 1646 | mlen += len; |
| 1647 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| 1648 | return -1; |
| 1649 | ctx->len.u[1] = mlen; |
| 1650 | |
| 1651 | mres = ctx->mres; |
| 1652 | |
| 1653 | if (ctx->ares) { |
| 1654 | /* First call to decrypt finalizes GHASH(AAD) */ |
| 1655 | # if defined(GHASH) |
| 1656 | if (len == 0) { |
| 1657 | GCM_MUL(ctx); |
| 1658 | ctx->ares = 0; |
| 1659 | return 0; |
| 1660 | } |
| 1661 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
| 1662 | ctx->Xi.u[0] = 0; |
| 1663 | ctx->Xi.u[1] = 0; |
| 1664 | mres = sizeof(ctx->Xi); |
| 1665 | # else |
| 1666 | GCM_MUL(ctx); |
| 1667 | # endif |
| 1668 | ctx->ares = 0; |
| 1669 | } |
| 1670 | |
| 1671 | if (is_endian.little) |
| 1672 | # ifdef BSWAP4 |
| 1673 | ctr = BSWAP4(ctx->Yi.d[3]); |
| 1674 | # else |
| 1675 | ctr = GETU32(ctx->Yi.c + 12); |
| 1676 | # endif |
| 1677 | else |
| 1678 | ctr = ctx->Yi.d[3]; |
| 1679 | |
| 1680 | n = mres % 16; |
| 1681 | if (n) { |
| 1682 | # if defined(GHASH) |
| 1683 | while (n && len) { |
| 1684 | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; |
| 1685 | --len; |
| 1686 | n = (n + 1) % 16; |
| 1687 | } |
| 1688 | if (n == 0) { |
| 1689 | GHASH(ctx, ctx->Xn, mres); |
| 1690 | mres = 0; |
| 1691 | } else { |
| 1692 | ctx->mres = mres; |
| 1693 | return 0; |
| 1694 | } |
| 1695 | # else |
| 1696 | while (n && len) { |
| 1697 | u8 c = *(in++); |
| 1698 | *(out++) = c ^ ctx->EKi.c[n]; |
| 1699 | ctx->Xi.c[n] ^= c; |
| 1700 | --len; |
| 1701 | n = (n + 1) % 16; |
| 1702 | } |
| 1703 | if (n == 0) { |
| 1704 | GCM_MUL(ctx); |
| 1705 | mres = 0; |
| 1706 | } else { |
| 1707 | ctx->mres = n; |
| 1708 | return 0; |
| 1709 | } |
| 1710 | # endif |
| 1711 | } |
| 1712 | # if defined(GHASH) |
| 1713 | if (len >= 16 && mres) { |
| 1714 | GHASH(ctx, ctx->Xn, mres); |
| 1715 | mres = 0; |
| 1716 | } |
| 1717 | # if defined(GHASH_CHUNK) |
| 1718 | while (len >= GHASH_CHUNK) { |
| 1719 | GHASH(ctx, in, GHASH_CHUNK); |
| 1720 | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| 1721 | ctr += GHASH_CHUNK / 16; |
| 1722 | if (is_endian.little) |
| 1723 | # ifdef BSWAP4 |
| 1724 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1725 | # else |
| 1726 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1727 | # endif |
| 1728 | else |
| 1729 | ctx->Yi.d[3] = ctr; |
| 1730 | out += GHASH_CHUNK; |
| 1731 | in += GHASH_CHUNK; |
| 1732 | len -= GHASH_CHUNK; |
| 1733 | } |
| 1734 | # endif |
| 1735 | # endif |
| 1736 | if ((i = (len & (size_t)-16))) { |
| 1737 | size_t j = i / 16; |
| 1738 | |
| 1739 | # if defined(GHASH) |
| 1740 | GHASH(ctx, in, i); |
| 1741 | # else |
| 1742 | while (j--) { |
| 1743 | size_t k; |
| 1744 | for (k = 0; k < 16; ++k) |
| 1745 | ctx->Xi.c[k] ^= in[k]; |
| 1746 | GCM_MUL(ctx); |
| 1747 | in += 16; |
| 1748 | } |
| 1749 | j = i / 16; |
| 1750 | in -= i; |
| 1751 | # endif |
| 1752 | (*stream) (in, out, j, key, ctx->Yi.c); |
| 1753 | ctr += (unsigned int)j; |
| 1754 | if (is_endian.little) |
| 1755 | # ifdef BSWAP4 |
| 1756 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1757 | # else |
| 1758 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1759 | # endif |
| 1760 | else |
| 1761 | ctx->Yi.d[3] = ctr; |
| 1762 | out += i; |
| 1763 | in += i; |
| 1764 | len -= i; |
| 1765 | } |
| 1766 | if (len) { |
| 1767 | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); |
| 1768 | ++ctr; |
| 1769 | if (is_endian.little) |
| 1770 | # ifdef BSWAP4 |
| 1771 | ctx->Yi.d[3] = BSWAP4(ctr); |
| 1772 | # else |
| 1773 | PUTU32(ctx->Yi.c + 12, ctr); |
| 1774 | # endif |
| 1775 | else |
| 1776 | ctx->Yi.d[3] = ctr; |
| 1777 | while (len--) { |
| 1778 | # if defined(GHASH) |
| 1779 | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; |
| 1780 | # else |
| 1781 | u8 c = in[n]; |
| 1782 | ctx->Xi.c[mres++] ^= c; |
| 1783 | out[n] = c ^ ctx->EKi.c[n]; |
| 1784 | # endif |
| 1785 | ++n; |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | ctx->mres = mres; |
| 1790 | return 0; |
| 1791 | #endif |
| 1792 | } |
| 1793 | |
| 1794 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, |
| 1795 | size_t len) |
| 1796 | { |
| 1797 | const union { |
| 1798 | long one; |
| 1799 | char little; |
| 1800 | } is_endian = { 1 }; |
| 1801 | u64 alen = ctx->len.u[0] << 3; |
| 1802 | u64 clen = ctx->len.u[1] << 3; |
| 1803 | #ifdef GCM_FUNCREF_4BIT |
| 1804 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| 1805 | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1806 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| 1807 | const u8 *inp, size_t len) = ctx->ghash; |
| 1808 | # endif |
| 1809 | #endif |
| 1810 | |
| 1811 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1812 | u128 bitlen; |
| 1813 | unsigned int mres = ctx->mres; |
| 1814 | |
| 1815 | if (mres) { |
| 1816 | unsigned blocks = (mres + 15) & -16; |
| 1817 | |
| 1818 | memset(ctx->Xn + mres, 0, blocks - mres); |
| 1819 | mres = blocks; |
| 1820 | if (mres == sizeof(ctx->Xn)) { |
| 1821 | GHASH(ctx, ctx->Xn, mres); |
| 1822 | mres = 0; |
| 1823 | } |
| 1824 | } else if (ctx->ares) { |
| 1825 | GCM_MUL(ctx); |
| 1826 | } |
| 1827 | #else |
| 1828 | if (ctx->mres || ctx->ares) |
| 1829 | GCM_MUL(ctx); |
| 1830 | #endif |
| 1831 | |
| 1832 | if (is_endian.little) { |
| 1833 | #ifdef BSWAP8 |
| 1834 | alen = BSWAP8(alen); |
| 1835 | clen = BSWAP8(clen); |
| 1836 | #else |
| 1837 | u8 *p = ctx->len.c; |
| 1838 | |
| 1839 | ctx->len.u[0] = alen; |
| 1840 | ctx->len.u[1] = clen; |
| 1841 | |
| 1842 | alen = (u64)GETU32(p) << 32 | GETU32(p + 4); |
| 1843 | clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); |
| 1844 | #endif |
| 1845 | } |
| 1846 | |
| 1847 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 1848 | bitlen.hi = alen; |
| 1849 | bitlen.lo = clen; |
| 1850 | memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); |
| 1851 | mres += sizeof(bitlen); |
| 1852 | GHASH(ctx, ctx->Xn, mres); |
| 1853 | #else |
| 1854 | ctx->Xi.u[0] ^= alen; |
| 1855 | ctx->Xi.u[1] ^= clen; |
| 1856 | GCM_MUL(ctx); |
| 1857 | #endif |
| 1858 | |
| 1859 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
| 1860 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
| 1861 | |
| 1862 | if (tag && len <= sizeof(ctx->Xi)) |
| 1863 | return CRYPTO_memcmp(ctx->Xi.c, tag, len); |
| 1864 | else |
| 1865 | return -1; |
| 1866 | } |
| 1867 | |
| 1868 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) |
| 1869 | { |
| 1870 | CRYPTO_gcm128_finish(ctx, NULL, 0); |
| 1871 | memcpy(tag, ctx->Xi.c, |
| 1872 | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
| 1873 | } |
| 1874 | |
| 1875 | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) |
| 1876 | { |
| 1877 | GCM128_CONTEXT *ret; |
| 1878 | |
| 1879 | if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) |
| 1880 | CRYPTO_gcm128_init(ret, key, block); |
| 1881 | |
| 1882 | return ret; |
| 1883 | } |
| 1884 | |
| 1885 | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) |
| 1886 | { |
| 1887 | OPENSSL_clear_free(ctx, sizeof(*ctx)); |
| 1888 | } |
| 1889 | |