| 1 | /* |
| 2 | * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <string.h> |
| 11 | #include <stdlib.h> |
| 12 | #include <openssl/crypto.h> |
| 13 | #include <openssl/evp.h> |
| 14 | #include <openssl/core_names.h> |
| 15 | #include <openssl/params.h> |
| 16 | #include "crypto/modes.h" |
| 17 | #include "crypto/siv.h" |
| 18 | |
| 19 | #ifndef OPENSSL_NO_SIV |
| 20 | |
| 21 | __owur static ossl_inline uint32_t rotl8(uint32_t x) |
| 22 | { |
| 23 | return (x << 8) | (x >> 24); |
| 24 | } |
| 25 | |
| 26 | __owur static ossl_inline uint32_t rotr8(uint32_t x) |
| 27 | { |
| 28 | return (x >> 8) | (x << 24); |
| 29 | } |
| 30 | |
| 31 | __owur static ossl_inline uint64_t byteswap8(uint64_t x) |
| 32 | { |
| 33 | uint32_t high = (uint32_t)(x >> 32); |
| 34 | uint32_t low = (uint32_t)x; |
| 35 | |
| 36 | high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00); |
| 37 | low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00); |
| 38 | return ((uint64_t)low) << 32 | (uint64_t)high; |
| 39 | } |
| 40 | |
| 41 | __owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i) |
| 42 | { |
| 43 | const union { |
| 44 | long one; |
| 45 | char little; |
| 46 | } is_endian = { 1 }; |
| 47 | |
| 48 | if (is_endian.little) |
| 49 | return byteswap8(b->word[i]); |
| 50 | return b->word[i]; |
| 51 | } |
| 52 | |
| 53 | static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x) |
| 54 | { |
| 55 | const union { |
| 56 | long one; |
| 57 | char little; |
| 58 | } is_endian = { 1 }; |
| 59 | |
| 60 | if (is_endian.little) |
| 61 | b->word[i] = byteswap8(x); |
| 62 | else |
| 63 | b->word[i] = x; |
| 64 | } |
| 65 | |
| 66 | static ossl_inline void siv128_xorblock(SIV_BLOCK *x, |
| 67 | SIV_BLOCK const *y) |
| 68 | { |
| 69 | x->word[0] ^= y->word[0]; |
| 70 | x->word[1] ^= y->word[1]; |
| 71 | } |
| 72 | |
| 73 | /* |
| 74 | * Doubles |b|, which is 16 bytes representing an element |
| 75 | * of GF(2**128) modulo the irreducible polynomial |
| 76 | * x**128 + x**7 + x**2 + x + 1. |
| 77 | * Assumes two's-complement arithmetic |
| 78 | */ |
| 79 | static ossl_inline void siv128_dbl(SIV_BLOCK *b) |
| 80 | { |
| 81 | uint64_t high = siv128_getword(b, 0); |
| 82 | uint64_t low = siv128_getword(b, 1); |
| 83 | uint64_t high_carry = high & (((uint64_t)1) << 63); |
| 84 | uint64_t low_carry = low & (((uint64_t)1) << 63); |
| 85 | int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87; |
| 86 | uint64_t high_mask = low_carry >> 63; |
| 87 | |
| 88 | high = (high << 1) | high_mask; |
| 89 | low = (low << 1) ^ (uint64_t)low_mask; |
| 90 | siv128_putword(b, 0, high); |
| 91 | siv128_putword(b, 1, low); |
| 92 | } |
| 93 | |
| 94 | __owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out, |
| 95 | unsigned char const* in, size_t len) |
| 96 | { |
| 97 | SIV_BLOCK t; |
| 98 | size_t out_len = sizeof(out->byte); |
| 99 | EVP_MAC_CTX *mac_ctx; |
| 100 | int ret = 0; |
| 101 | |
| 102 | mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init); |
| 103 | if (mac_ctx == NULL) |
| 104 | return 0; |
| 105 | |
| 106 | if (len >= SIV_LEN) { |
| 107 | if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN)) |
| 108 | goto err; |
| 109 | memcpy(&t, in + (len-SIV_LEN), SIV_LEN); |
| 110 | siv128_xorblock(&t, &ctx->d); |
| 111 | if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) |
| 112 | goto err; |
| 113 | } else { |
| 114 | memset(&t, 0, sizeof(t)); |
| 115 | memcpy(&t, in, len); |
| 116 | t.byte[len] = 0x80; |
| 117 | siv128_dbl(&ctx->d); |
| 118 | siv128_xorblock(&t, &ctx->d); |
| 119 | if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) |
| 120 | goto err; |
| 121 | } |
| 122 | if (!EVP_MAC_final(mac_ctx, out->byte, &out_len, sizeof(out->byte)) |
| 123 | || out_len != SIV_LEN) |
| 124 | goto err; |
| 125 | |
| 126 | ret = 1; |
| 127 | |
| 128 | err: |
| 129 | EVP_MAC_CTX_free(mac_ctx); |
| 130 | return ret; |
| 131 | } |
| 132 | |
| 133 | |
| 134 | __owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 135 | unsigned char const *in, size_t len, |
| 136 | SIV_BLOCK *icv) |
| 137 | { |
| 138 | int out_len = (int)len; |
| 139 | |
| 140 | if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1)) |
| 141 | return 0; |
| 142 | return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len); |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Create a new SIV128_CONTEXT |
| 147 | */ |
| 148 | SIV128_CONTEXT *CRYPTO_siv128_new(const unsigned char *key, int klen, EVP_CIPHER* cbc, EVP_CIPHER* ctr) |
| 149 | { |
| 150 | SIV128_CONTEXT *ctx; |
| 151 | int ret; |
| 152 | |
| 153 | if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) { |
| 154 | ret = CRYPTO_siv128_init(ctx, key, klen, cbc, ctr); |
| 155 | if (ret) |
| 156 | return ctx; |
| 157 | OPENSSL_free(ctx); |
| 158 | } |
| 159 | |
| 160 | return NULL; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Initialise an existing SIV128_CONTEXT |
| 165 | */ |
| 166 | int CRYPTO_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen, |
| 167 | const EVP_CIPHER* cbc, const EVP_CIPHER* ctr) |
| 168 | { |
| 169 | static const unsigned char zero[SIV_LEN] = { 0 }; |
| 170 | size_t out_len = SIV_LEN; |
| 171 | EVP_MAC_CTX *mac_ctx = NULL; |
| 172 | OSSL_PARAM params[3]; |
| 173 | const char *cbc_name = EVP_CIPHER_name(cbc); |
| 174 | |
| 175 | params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, |
| 176 | (char *)cbc_name, 0); |
| 177 | params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| 178 | (void *)key, klen); |
| 179 | params[2] = OSSL_PARAM_construct_end(); |
| 180 | |
| 181 | memset(&ctx->d, 0, sizeof(ctx->d)); |
| 182 | ctx->cipher_ctx = NULL; |
| 183 | ctx->mac_ctx_init = NULL; |
| 184 | |
| 185 | if (key == NULL || cbc == NULL || ctr == NULL |
| 186 | || (ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL |
| 187 | /* TODO(3.0) library context */ |
| 188 | || (ctx->mac = |
| 189 | EVP_MAC_fetch(NULL, OSSL_MAC_NAME_CMAC, NULL)) == NULL |
| 190 | || (ctx->mac_ctx_init = EVP_MAC_CTX_new(ctx->mac)) == NULL |
| 191 | || !EVP_MAC_CTX_set_params(ctx->mac_ctx_init, params) |
| 192 | || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL) |
| 193 | || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL |
| 194 | || !EVP_MAC_update(mac_ctx, zero, sizeof(zero)) |
| 195 | || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len, |
| 196 | sizeof(ctx->d.byte))) { |
| 197 | EVP_CIPHER_CTX_free(ctx->cipher_ctx); |
| 198 | EVP_MAC_CTX_free(ctx->mac_ctx_init); |
| 199 | EVP_MAC_CTX_free(mac_ctx); |
| 200 | EVP_MAC_free(ctx->mac); |
| 201 | return 0; |
| 202 | } |
| 203 | EVP_MAC_CTX_free(mac_ctx); |
| 204 | |
| 205 | ctx->final_ret = -1; |
| 206 | ctx->crypto_ok = 1; |
| 207 | |
| 208 | return 1; |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * Copy an SIV128_CONTEXT object |
| 213 | */ |
| 214 | int CRYPTO_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src) |
| 215 | { |
| 216 | memcpy(&dest->d, &src->d, sizeof(src->d)); |
| 217 | if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx)) |
| 218 | return 0; |
| 219 | EVP_MAC_CTX_free(dest->mac_ctx_init); |
| 220 | dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init); |
| 221 | if (dest->mac_ctx_init == NULL) |
| 222 | return 0; |
| 223 | return 1; |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Provide any AAD. This can be called multiple times. |
| 228 | * Per RFC5297, the last piece of associated data |
| 229 | * is the nonce, but it's not treated special |
| 230 | */ |
| 231 | int CRYPTO_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad, |
| 232 | size_t len) |
| 233 | { |
| 234 | SIV_BLOCK mac_out; |
| 235 | size_t out_len = SIV_LEN; |
| 236 | EVP_MAC_CTX *mac_ctx; |
| 237 | |
| 238 | siv128_dbl(&ctx->d); |
| 239 | |
| 240 | if ((mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL |
| 241 | || !EVP_MAC_update(mac_ctx, aad, len) |
| 242 | || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len, |
| 243 | sizeof(mac_out.byte)) |
| 244 | || out_len != SIV_LEN) { |
| 245 | EVP_MAC_CTX_free(mac_ctx); |
| 246 | return 0; |
| 247 | } |
| 248 | EVP_MAC_CTX_free(mac_ctx); |
| 249 | |
| 250 | siv128_xorblock(&ctx->d, &mac_out); |
| 251 | |
| 252 | return 1; |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * Provide any data to be encrypted. This can be called once. |
| 257 | */ |
| 258 | int CRYPTO_siv128_encrypt(SIV128_CONTEXT *ctx, |
| 259 | const unsigned char *in, unsigned char *out, |
| 260 | size_t len) |
| 261 | { |
| 262 | SIV_BLOCK q; |
| 263 | |
| 264 | /* can only do one crypto operation */ |
| 265 | if (ctx->crypto_ok == 0) |
| 266 | return 0; |
| 267 | ctx->crypto_ok--; |
| 268 | |
| 269 | if (!siv128_do_s2v_p(ctx, &q, in, len)) |
| 270 | return 0; |
| 271 | |
| 272 | memcpy(ctx->tag.byte, &q, SIV_LEN); |
| 273 | q.byte[8] &= 0x7f; |
| 274 | q.byte[12] &= 0x7f; |
| 275 | |
| 276 | if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)) |
| 277 | return 0; |
| 278 | ctx->final_ret = 0; |
| 279 | return len; |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * Provide any data to be decrypted. This can be called once. |
| 284 | */ |
| 285 | int CRYPTO_siv128_decrypt(SIV128_CONTEXT *ctx, |
| 286 | const unsigned char *in, unsigned char *out, |
| 287 | size_t len) |
| 288 | { |
| 289 | unsigned char* p; |
| 290 | SIV_BLOCK t, q; |
| 291 | int i; |
| 292 | |
| 293 | /* can only do one crypto operation */ |
| 294 | if (ctx->crypto_ok == 0) |
| 295 | return 0; |
| 296 | ctx->crypto_ok--; |
| 297 | |
| 298 | memcpy(&q, ctx->tag.byte, SIV_LEN); |
| 299 | q.byte[8] &= 0x7f; |
| 300 | q.byte[12] &= 0x7f; |
| 301 | |
| 302 | if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q) |
| 303 | || !siv128_do_s2v_p(ctx, &t, out, len)) |
| 304 | return 0; |
| 305 | |
| 306 | p = ctx->tag.byte; |
| 307 | for (i = 0; i < SIV_LEN; i++) |
| 308 | t.byte[i] ^= p[i]; |
| 309 | |
| 310 | if ((t.word[0] | t.word[1]) != 0) { |
| 311 | OPENSSL_cleanse(out, len); |
| 312 | return 0; |
| 313 | } |
| 314 | ctx->final_ret = 0; |
| 315 | return len; |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * Return the already calculated final result. |
| 320 | */ |
| 321 | int CRYPTO_siv128_finish(SIV128_CONTEXT *ctx) |
| 322 | { |
| 323 | return ctx->final_ret; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * Set the tag |
| 328 | */ |
| 329 | int CRYPTO_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len) |
| 330 | { |
| 331 | if (len != SIV_LEN) |
| 332 | return 0; |
| 333 | |
| 334 | /* Copy the tag from the supplied buffer */ |
| 335 | memcpy(ctx->tag.byte, tag, len); |
| 336 | return 1; |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * Retrieve the calculated tag |
| 341 | */ |
| 342 | int CRYPTO_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len) |
| 343 | { |
| 344 | if (len != SIV_LEN) |
| 345 | return 0; |
| 346 | |
| 347 | /* Copy the tag into the supplied buffer */ |
| 348 | memcpy(tag, ctx->tag.byte, len); |
| 349 | return 1; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Release all resources |
| 354 | */ |
| 355 | int CRYPTO_siv128_cleanup(SIV128_CONTEXT *ctx) |
| 356 | { |
| 357 | if (ctx != NULL) { |
| 358 | EVP_CIPHER_CTX_free(ctx->cipher_ctx); |
| 359 | ctx->cipher_ctx = NULL; |
| 360 | EVP_MAC_CTX_free(ctx->mac_ctx_init); |
| 361 | ctx->mac_ctx_init = NULL; |
| 362 | EVP_MAC_free(ctx->mac); |
| 363 | ctx->mac = NULL; |
| 364 | OPENSSL_cleanse(&ctx->d, sizeof(ctx->d)); |
| 365 | OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag)); |
| 366 | ctx->final_ret = -1; |
| 367 | ctx->crypto_ok = 1; |
| 368 | } |
| 369 | return 1; |
| 370 | } |
| 371 | |
| 372 | int CRYPTO_siv128_speed(SIV128_CONTEXT *ctx, int arg) |
| 373 | { |
| 374 | ctx->crypto_ok = (arg == 1) ? -1 : 1; |
| 375 | return 1; |
| 376 | } |
| 377 | |
| 378 | #endif /* OPENSSL_NO_SIV */ |
| 379 | |