1 | /* |
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include <stdio.h> |
11 | #include "crypto/ctype.h" |
12 | #include <string.h> |
13 | #include "internal/cryptlib.h" |
14 | #include <openssl/buffer.h> |
15 | #include <openssl/objects.h> |
16 | #include <openssl/evp.h> |
17 | #include <openssl/rand.h> |
18 | #include <openssl/x509.h> |
19 | #include <openssl/pem.h> |
20 | #include <openssl/pkcs12.h> |
21 | #include "crypto/asn1.h" |
22 | #include <openssl/des.h> |
23 | #include <openssl/engine.h> |
24 | |
25 | #define MIN_LENGTH 4 |
26 | |
27 | static int load_iv(char **fromp, unsigned char *to, int num); |
28 | static int check_pem(const char *nm, const char *name); |
29 | int pem_check_suffix(const char *pem_str, const char *suffix); |
30 | |
31 | int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) |
32 | { |
33 | int i, min_len; |
34 | const char *prompt; |
35 | |
36 | /* We assume that the user passes a default password as userdata */ |
37 | if (userdata) { |
38 | i = strlen(userdata); |
39 | i = (i > num) ? num : i; |
40 | memcpy(buf, userdata, i); |
41 | return i; |
42 | } |
43 | |
44 | prompt = EVP_get_pw_prompt(); |
45 | if (prompt == NULL) |
46 | prompt = "Enter PEM pass phrase:" ; |
47 | |
48 | /* |
49 | * rwflag == 0 means decryption |
50 | * rwflag == 1 means encryption |
51 | * |
52 | * We assume that for encryption, we want a minimum length, while for |
53 | * decryption, we cannot know any minimum length, so we assume zero. |
54 | */ |
55 | min_len = rwflag ? MIN_LENGTH : 0; |
56 | |
57 | i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); |
58 | if (i != 0) { |
59 | PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD); |
60 | memset(buf, 0, (unsigned int)num); |
61 | return -1; |
62 | } |
63 | return strlen(buf); |
64 | } |
65 | |
66 | void PEM_proc_type(char *buf, int type) |
67 | { |
68 | const char *str; |
69 | char *p = buf + strlen(buf); |
70 | |
71 | if (type == PEM_TYPE_ENCRYPTED) |
72 | str = "ENCRYPTED" ; |
73 | else if (type == PEM_TYPE_MIC_CLEAR) |
74 | str = "MIC-CLEAR" ; |
75 | else if (type == PEM_TYPE_MIC_ONLY) |
76 | str = "MIC-ONLY" ; |
77 | else |
78 | str = "BAD-TYPE" ; |
79 | |
80 | BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n" , str); |
81 | } |
82 | |
83 | void PEM_dek_info(char *buf, const char *type, int len, const char *str) |
84 | { |
85 | long i; |
86 | char *p = buf + strlen(buf); |
87 | int j = PEM_BUFSIZE - (size_t)(p - buf), n; |
88 | |
89 | n = BIO_snprintf(p, j, "DEK-Info: %s," , type); |
90 | if (n > 0) { |
91 | j -= n; |
92 | p += n; |
93 | for (i = 0; i < len; i++) { |
94 | n = BIO_snprintf(p, j, "%02X" , 0xff & str[i]); |
95 | if (n <= 0) |
96 | return; |
97 | j -= n; |
98 | p += n; |
99 | } |
100 | if (j > 1) |
101 | strcpy(p, "\n" ); |
102 | } |
103 | } |
104 | |
105 | #ifndef OPENSSL_NO_STDIO |
106 | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
107 | pem_password_cb *cb, void *u) |
108 | { |
109 | BIO *b; |
110 | void *ret; |
111 | |
112 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
113 | PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB); |
114 | return 0; |
115 | } |
116 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
117 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
118 | BIO_free(b); |
119 | return ret; |
120 | } |
121 | #endif |
122 | |
123 | static int check_pem(const char *nm, const char *name) |
124 | { |
125 | /* Normal matching nm and name */ |
126 | if (strcmp(nm, name) == 0) |
127 | return 1; |
128 | |
129 | /* Make PEM_STRING_EVP_PKEY match any private key */ |
130 | |
131 | if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { |
132 | int slen; |
133 | const EVP_PKEY_ASN1_METHOD *ameth; |
134 | if (strcmp(nm, PEM_STRING_PKCS8) == 0) |
135 | return 1; |
136 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) |
137 | return 1; |
138 | slen = pem_check_suffix(nm, "PRIVATE KEY" ); |
139 | if (slen > 0) { |
140 | /* |
141 | * NB: ENGINE implementations won't contain a deprecated old |
142 | * private key decode function so don't look for them. |
143 | */ |
144 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
145 | if (ameth && ameth->old_priv_decode) |
146 | return 1; |
147 | } |
148 | return 0; |
149 | } |
150 | |
151 | if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { |
152 | int slen; |
153 | const EVP_PKEY_ASN1_METHOD *ameth; |
154 | slen = pem_check_suffix(nm, "PARAMETERS" ); |
155 | if (slen > 0) { |
156 | ENGINE *e; |
157 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
158 | if (ameth) { |
159 | int r; |
160 | if (ameth->param_decode) |
161 | r = 1; |
162 | else |
163 | r = 0; |
164 | #ifndef OPENSSL_NO_ENGINE |
165 | ENGINE_finish(e); |
166 | #endif |
167 | return r; |
168 | } |
169 | } |
170 | return 0; |
171 | } |
172 | /* If reading DH parameters handle X9.42 DH format too */ |
173 | if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 |
174 | && strcmp(name, PEM_STRING_DHPARAMS) == 0) |
175 | return 1; |
176 | |
177 | /* Permit older strings */ |
178 | |
179 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
180 | && strcmp(name, PEM_STRING_X509) == 0) |
181 | return 1; |
182 | |
183 | if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 |
184 | && strcmp(name, PEM_STRING_X509_REQ) == 0) |
185 | return 1; |
186 | |
187 | /* Allow normal certs to be read as trusted certs */ |
188 | if (strcmp(nm, PEM_STRING_X509) == 0 |
189 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
190 | return 1; |
191 | |
192 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
193 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
194 | return 1; |
195 | |
196 | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
197 | if (strcmp(nm, PEM_STRING_X509) == 0 |
198 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
199 | return 1; |
200 | |
201 | if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 |
202 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
203 | return 1; |
204 | |
205 | #ifndef OPENSSL_NO_CMS |
206 | if (strcmp(nm, PEM_STRING_X509) == 0 |
207 | && strcmp(name, PEM_STRING_CMS) == 0) |
208 | return 1; |
209 | /* Allow CMS to be read from PKCS#7 headers */ |
210 | if (strcmp(nm, PEM_STRING_PKCS7) == 0 |
211 | && strcmp(name, PEM_STRING_CMS) == 0) |
212 | return 1; |
213 | #endif |
214 | |
215 | return 0; |
216 | } |
217 | |
218 | static void pem_free(void *p, unsigned int flags, size_t num) |
219 | { |
220 | if (flags & PEM_FLAG_SECURE) |
221 | OPENSSL_secure_clear_free(p, num); |
222 | else |
223 | OPENSSL_free(p); |
224 | } |
225 | |
226 | static void *pem_malloc(int num, unsigned int flags) |
227 | { |
228 | return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) |
229 | : OPENSSL_malloc(num); |
230 | } |
231 | |
232 | static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, |
233 | char **pnm, const char *name, BIO *bp, |
234 | pem_password_cb *cb, void *u, |
235 | unsigned int flags) |
236 | { |
237 | EVP_CIPHER_INFO cipher; |
238 | char *nm = NULL, * = NULL; |
239 | unsigned char *data = NULL; |
240 | long len = 0; |
241 | int ret = 0; |
242 | |
243 | do { |
244 | pem_free(nm, flags, 0); |
245 | pem_free(header, flags, 0); |
246 | pem_free(data, flags, len); |
247 | if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { |
248 | if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
249 | ERR_add_error_data(2, "Expecting: " , name); |
250 | return 0; |
251 | } |
252 | } while (!check_pem(nm, name)); |
253 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
254 | goto err; |
255 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
256 | goto err; |
257 | |
258 | *pdata = data; |
259 | *plen = len; |
260 | |
261 | if (pnm != NULL) |
262 | *pnm = nm; |
263 | |
264 | ret = 1; |
265 | |
266 | err: |
267 | if (!ret || pnm == NULL) |
268 | pem_free(nm, flags, 0); |
269 | pem_free(header, flags, 0); |
270 | if (!ret) |
271 | pem_free(data, flags, len); |
272 | return ret; |
273 | } |
274 | |
275 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
276 | const char *name, BIO *bp, pem_password_cb *cb, |
277 | void *u) { |
278 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
279 | PEM_FLAG_EAY_COMPATIBLE); |
280 | } |
281 | |
282 | int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, |
283 | const char *name, BIO *bp, pem_password_cb *cb, |
284 | void *u) { |
285 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
286 | PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); |
287 | } |
288 | |
289 | #ifndef OPENSSL_NO_STDIO |
290 | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
291 | const void *x, const EVP_CIPHER *enc, |
292 | const unsigned char *kstr, int klen, |
293 | pem_password_cb *callback, void *u) |
294 | { |
295 | BIO *b; |
296 | int ret; |
297 | |
298 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
299 | PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB); |
300 | return 0; |
301 | } |
302 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
303 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
304 | BIO_free(b); |
305 | return ret; |
306 | } |
307 | #endif |
308 | |
309 | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
310 | const void *x, const EVP_CIPHER *enc, |
311 | const unsigned char *kstr, int klen, |
312 | pem_password_cb *callback, void *u) |
313 | { |
314 | EVP_CIPHER_CTX *ctx = NULL; |
315 | int dsize = 0, i = 0, j = 0, ret = 0; |
316 | unsigned char *p, *data = NULL; |
317 | const char *objstr = NULL; |
318 | char buf[PEM_BUFSIZE]; |
319 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
320 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
321 | |
322 | if (enc != NULL) { |
323 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
324 | if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0 |
325 | || EVP_CIPHER_iv_length(enc) > (int)sizeof(iv) |
326 | /* |
327 | * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" |
328 | * fits into buf |
329 | */ |
330 | || (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13) |
331 | > sizeof(buf)) { |
332 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER); |
333 | goto err; |
334 | } |
335 | } |
336 | |
337 | if ((dsize = i2d(x, NULL)) < 0) { |
338 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB); |
339 | dsize = 0; |
340 | goto err; |
341 | } |
342 | /* dsize + 8 bytes are needed */ |
343 | /* actually it needs the cipher block size extra... */ |
344 | data = OPENSSL_malloc((unsigned int)dsize + 20); |
345 | if (data == NULL) { |
346 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE); |
347 | goto err; |
348 | } |
349 | p = data; |
350 | i = i2d(x, &p); |
351 | |
352 | if (enc != NULL) { |
353 | if (kstr == NULL) { |
354 | if (callback == NULL) |
355 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
356 | else |
357 | klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
358 | if (klen <= 0) { |
359 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY); |
360 | goto err; |
361 | } |
362 | #ifdef CHARSET_EBCDIC |
363 | /* Convert the pass phrase from EBCDIC */ |
364 | ebcdic2ascii(buf, buf, klen); |
365 | #endif |
366 | kstr = (unsigned char *)buf; |
367 | } |
368 | if (RAND_bytes(iv, EVP_CIPHER_iv_length(enc)) <= 0) /* Generate a salt */ |
369 | goto err; |
370 | /* |
371 | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
372 | * the BytesToKey function |
373 | */ |
374 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
375 | goto err; |
376 | |
377 | if (kstr == (unsigned char *)buf) |
378 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
379 | |
380 | buf[0] = '\0'; |
381 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
382 | PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv); |
383 | /* k=strlen(buf); */ |
384 | |
385 | ret = 1; |
386 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL |
387 | || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) |
388 | || !EVP_EncryptUpdate(ctx, data, &j, data, i) |
389 | || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) |
390 | ret = 0; |
391 | if (ret == 0) |
392 | goto err; |
393 | i += j; |
394 | } else { |
395 | ret = 1; |
396 | buf[0] = '\0'; |
397 | } |
398 | i = PEM_write_bio(bp, name, buf, data, i); |
399 | if (i <= 0) |
400 | ret = 0; |
401 | err: |
402 | OPENSSL_cleanse(key, sizeof(key)); |
403 | OPENSSL_cleanse(iv, sizeof(iv)); |
404 | EVP_CIPHER_CTX_free(ctx); |
405 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
406 | OPENSSL_clear_free(data, (unsigned int)dsize); |
407 | return ret; |
408 | } |
409 | |
410 | int (EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
411 | pem_password_cb *callback, void *u) |
412 | { |
413 | int ok; |
414 | int keylen; |
415 | long len = *plen; |
416 | int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ |
417 | EVP_CIPHER_CTX *ctx; |
418 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
419 | char buf[PEM_BUFSIZE]; |
420 | |
421 | #if LONG_MAX > INT_MAX |
422 | /* Check that we did not truncate the length */ |
423 | if (len > INT_MAX) { |
424 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_HEADER_TOO_LONG); |
425 | return 0; |
426 | } |
427 | #endif |
428 | |
429 | if (cipher->cipher == NULL) |
430 | return 1; |
431 | if (callback == NULL) |
432 | keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
433 | else |
434 | keylen = callback(buf, PEM_BUFSIZE, 0, u); |
435 | if (keylen < 0) { |
436 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ); |
437 | return 0; |
438 | } |
439 | #ifdef CHARSET_EBCDIC |
440 | /* Convert the pass phrase from EBCDIC */ |
441 | ebcdic2ascii(buf, buf, keylen); |
442 | #endif |
443 | |
444 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
445 | (unsigned char *)buf, keylen, 1, key, NULL)) |
446 | return 0; |
447 | |
448 | ctx = EVP_CIPHER_CTX_new(); |
449 | if (ctx == NULL) |
450 | return 0; |
451 | |
452 | ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
453 | if (ok) |
454 | ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); |
455 | if (ok) { |
456 | /* Squirrel away the length of data decrypted so far. */ |
457 | *plen = ilen; |
458 | ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); |
459 | } |
460 | if (ok) |
461 | *plen += ilen; |
462 | else |
463 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT); |
464 | |
465 | EVP_CIPHER_CTX_free(ctx); |
466 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
467 | OPENSSL_cleanse((char *)key, sizeof(key)); |
468 | return ok; |
469 | } |
470 | |
471 | /* |
472 | * This implements a very limited PEM header parser that does not support the |
473 | * full grammar of rfc1421. In particular, folded headers are not supported, |
474 | * nor is additional whitespace. |
475 | * |
476 | * A robust implementation would make use of a library that turns the headers |
477 | * into a BIO from which one folded line is read at a time, and is then split |
478 | * into a header label and content. We would then parse the content of the |
479 | * headers we care about. This is overkill for just this limited use-case, but |
480 | * presumably we also parse rfc822-style headers for S/MIME, so a common |
481 | * abstraction might well be more generally useful. |
482 | */ |
483 | int PEM_get_EVP_CIPHER_INFO(char *, EVP_CIPHER_INFO *cipher) |
484 | { |
485 | static const char ProcType[] = "Proc-Type:" ; |
486 | static const char ENCRYPTED[] = "ENCRYPTED" ; |
487 | static const char DEKInfo[] = "DEK-Info:" ; |
488 | const EVP_CIPHER *enc = NULL; |
489 | int ivlen; |
490 | char *dekinfostart, c; |
491 | |
492 | cipher->cipher = NULL; |
493 | memset(cipher->iv, 0, sizeof(cipher->iv)); |
494 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
495 | return 1; |
496 | |
497 | if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) { |
498 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE); |
499 | return 0; |
500 | } |
501 | header += sizeof(ProcType)-1; |
502 | header += strspn(header, " \t" ); |
503 | |
504 | if (*header++ != '4' || *header++ != ',') |
505 | return 0; |
506 | header += strspn(header, " \t" ); |
507 | |
508 | /* We expect "ENCRYPTED" followed by optional white-space + line break */ |
509 | if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 || |
510 | strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n" ) == 0) { |
511 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED); |
512 | return 0; |
513 | } |
514 | header += sizeof(ENCRYPTED)-1; |
515 | header += strspn(header, " \t\r" ); |
516 | if (*header++ != '\n') { |
517 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER); |
518 | return 0; |
519 | } |
520 | |
521 | /*- |
522 | * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 |
523 | * We expect "DEK-Info: algo[,hex-parameters]" |
524 | */ |
525 | if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) { |
526 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO); |
527 | return 0; |
528 | } |
529 | header += sizeof(DEKInfo)-1; |
530 | header += strspn(header, " \t" ); |
531 | |
532 | /* |
533 | * DEK-INFO is a comma-separated combination of algorithm name and optional |
534 | * parameters. |
535 | */ |
536 | dekinfostart = header; |
537 | header += strcspn(header, " \t," ); |
538 | c = *header; |
539 | *header = '\0'; |
540 | cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); |
541 | *header = c; |
542 | header += strspn(header, " \t" ); |
543 | |
544 | if (enc == NULL) { |
545 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION); |
546 | return 0; |
547 | } |
548 | ivlen = EVP_CIPHER_iv_length(enc); |
549 | if (ivlen > 0 && *header++ != ',') { |
550 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_MISSING_DEK_IV); |
551 | return 0; |
552 | } else if (ivlen == 0 && *header == ',') { |
553 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNEXPECTED_DEK_IV); |
554 | return 0; |
555 | } |
556 | |
557 | if (!load_iv(&header, cipher->iv, EVP_CIPHER_iv_length(enc))) |
558 | return 0; |
559 | |
560 | return 1; |
561 | } |
562 | |
563 | static int load_iv(char **fromp, unsigned char *to, int num) |
564 | { |
565 | int v, i; |
566 | char *from; |
567 | |
568 | from = *fromp; |
569 | for (i = 0; i < num; i++) |
570 | to[i] = 0; |
571 | num *= 2; |
572 | for (i = 0; i < num; i++) { |
573 | v = OPENSSL_hexchar2int(*from); |
574 | if (v < 0) { |
575 | PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS); |
576 | return 0; |
577 | } |
578 | from++; |
579 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
580 | } |
581 | |
582 | *fromp = from; |
583 | return 1; |
584 | } |
585 | |
586 | #ifndef OPENSSL_NO_STDIO |
587 | int PEM_write(FILE *fp, const char *name, const char *, |
588 | const unsigned char *data, long len) |
589 | { |
590 | BIO *b; |
591 | int ret; |
592 | |
593 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
594 | PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB); |
595 | return 0; |
596 | } |
597 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
598 | ret = PEM_write_bio(b, name, header, data, len); |
599 | BIO_free(b); |
600 | return ret; |
601 | } |
602 | #endif |
603 | |
604 | int PEM_write_bio(BIO *bp, const char *name, const char *, |
605 | const unsigned char *data, long len) |
606 | { |
607 | int nlen, n, i, j, outl; |
608 | unsigned char *buf = NULL; |
609 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
610 | int reason = ERR_R_BUF_LIB; |
611 | int retval = 0; |
612 | |
613 | if (ctx == NULL) { |
614 | reason = ERR_R_MALLOC_FAILURE; |
615 | goto err; |
616 | } |
617 | |
618 | EVP_EncodeInit(ctx); |
619 | nlen = strlen(name); |
620 | |
621 | if ((BIO_write(bp, "-----BEGIN " , 11) != 11) || |
622 | (BIO_write(bp, name, nlen) != nlen) || |
623 | (BIO_write(bp, "-----\n" , 6) != 6)) |
624 | goto err; |
625 | |
626 | i = strlen(header); |
627 | if (i > 0) { |
628 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n" , 1) != 1)) |
629 | goto err; |
630 | } |
631 | |
632 | buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
633 | if (buf == NULL) { |
634 | reason = ERR_R_MALLOC_FAILURE; |
635 | goto err; |
636 | } |
637 | |
638 | i = j = 0; |
639 | while (len > 0) { |
640 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
641 | if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) |
642 | goto err; |
643 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
644 | goto err; |
645 | i += outl; |
646 | len -= n; |
647 | j += n; |
648 | } |
649 | EVP_EncodeFinal(ctx, buf, &outl); |
650 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
651 | goto err; |
652 | if ((BIO_write(bp, "-----END " , 9) != 9) || |
653 | (BIO_write(bp, name, nlen) != nlen) || |
654 | (BIO_write(bp, "-----\n" , 6) != 6)) |
655 | goto err; |
656 | retval = i + outl; |
657 | |
658 | err: |
659 | if (retval == 0) |
660 | PEMerr(PEM_F_PEM_WRITE_BIO, reason); |
661 | EVP_ENCODE_CTX_free(ctx); |
662 | OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); |
663 | return retval; |
664 | } |
665 | |
666 | #ifndef OPENSSL_NO_STDIO |
667 | int PEM_read(FILE *fp, char **name, char **, unsigned char **data, |
668 | long *len) |
669 | { |
670 | BIO *b; |
671 | int ret; |
672 | |
673 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
674 | PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB); |
675 | return 0; |
676 | } |
677 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
678 | ret = PEM_read_bio(b, name, header, data, len); |
679 | BIO_free(b); |
680 | return ret; |
681 | } |
682 | #endif |
683 | |
684 | /* Some helpers for PEM_read_bio_ex(). */ |
685 | static int sanitize_line(char *linebuf, int len, unsigned int flags, int first_call) |
686 | { |
687 | int i; |
688 | if (first_call) { |
689 | /* Other BOMs imply unsupported multibyte encoding, |
690 | * so don't strip them and let the error raise */ |
691 | const unsigned char utf8_bom[3] = {0xEF, 0xBB, 0xBF}; |
692 | |
693 | if (len > 3 && memcmp(linebuf, utf8_bom, 3) == 0) { |
694 | memmove(linebuf, linebuf + 3, len - 3); |
695 | linebuf[len - 3] = 0; |
696 | len -= 3; |
697 | } |
698 | } |
699 | |
700 | if (flags & PEM_FLAG_EAY_COMPATIBLE) { |
701 | /* Strip trailing whitespace */ |
702 | while ((len >= 0) && (linebuf[len] <= ' ')) |
703 | len--; |
704 | /* Go back to whitespace before applying uniform line ending. */ |
705 | len++; |
706 | } else if (flags & PEM_FLAG_ONLY_B64) { |
707 | for (i = 0; i < len; ++i) { |
708 | if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' |
709 | || linebuf[i] == '\r') |
710 | break; |
711 | } |
712 | len = i; |
713 | } else { |
714 | /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip |
715 | * control characters in-place and let everything through. */ |
716 | for (i = 0; i < len; ++i) { |
717 | if (linebuf[i] == '\n' || linebuf[i] == '\r') |
718 | break; |
719 | if (ossl_iscntrl(linebuf[i])) |
720 | linebuf[i] = ' '; |
721 | } |
722 | len = i; |
723 | } |
724 | /* The caller allocated LINESIZE+1, so this is safe. */ |
725 | linebuf[len++] = '\n'; |
726 | linebuf[len] = '\0'; |
727 | return len; |
728 | } |
729 | |
730 | #define LINESIZE 255 |
731 | /* Note trailing spaces for begin and end. */ |
732 | static const char beginstr[] = "-----BEGIN " ; |
733 | static const char endstr[] = "-----END " ; |
734 | static const char tailstr[] = "-----\n" ; |
735 | #define BEGINLEN ((int)(sizeof(beginstr) - 1)) |
736 | #define ENDLEN ((int)(sizeof(endstr) - 1)) |
737 | #define TAILLEN ((int)(sizeof(tailstr) - 1)) |
738 | static int get_name(BIO *bp, char **name, unsigned int flags) |
739 | { |
740 | char *linebuf; |
741 | int ret = 0; |
742 | int len; |
743 | int first_call = 1; |
744 | |
745 | /* |
746 | * Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
747 | * that will be added by sanitize_line() (the extra '1'). |
748 | */ |
749 | linebuf = pem_malloc(LINESIZE + 1, flags); |
750 | if (linebuf == NULL) { |
751 | PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE); |
752 | return 0; |
753 | } |
754 | |
755 | do { |
756 | len = BIO_gets(bp, linebuf, LINESIZE); |
757 | |
758 | if (len <= 0) { |
759 | PEMerr(PEM_F_GET_NAME, PEM_R_NO_START_LINE); |
760 | goto err; |
761 | } |
762 | |
763 | /* Strip trailing garbage and standardize ending. */ |
764 | len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64, first_call); |
765 | first_call = 0; |
766 | |
767 | /* Allow leading empty or non-matching lines. */ |
768 | } while (strncmp(linebuf, beginstr, BEGINLEN) != 0 |
769 | || len < TAILLEN |
770 | || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0); |
771 | linebuf[len - TAILLEN] = '\0'; |
772 | len = len - BEGINLEN - TAILLEN + 1; |
773 | *name = pem_malloc(len, flags); |
774 | if (*name == NULL) { |
775 | PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE); |
776 | goto err; |
777 | } |
778 | memcpy(*name, linebuf + BEGINLEN, len); |
779 | ret = 1; |
780 | |
781 | err: |
782 | pem_free(linebuf, flags, LINESIZE + 1); |
783 | return ret; |
784 | } |
785 | |
786 | /* Keep track of how much of a header we've seen. */ |
787 | enum { |
788 | , |
789 | , |
790 | |
791 | }; |
792 | |
793 | /** |
794 | * Extract the optional PEM header, with details on the type of content and |
795 | * any encryption used on the contents, and the bulk of the data from the bio. |
796 | * The end of the header is marked by a blank line; if the end-of-input marker |
797 | * is reached prior to a blank line, there is no header. |
798 | * |
799 | * The header and data arguments are BIO** since we may have to swap them |
800 | * if there is no header, for efficiency. |
801 | * |
802 | * We need the name of the PEM-encoded type to verify the end string. |
803 | */ |
804 | static int get_header_and_data(BIO *bp, BIO **, BIO **data, char *name, |
805 | unsigned int flags) |
806 | { |
807 | BIO *tmp = *header; |
808 | char *linebuf, *p; |
809 | int len, line, ret = 0, end = 0; |
810 | /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ |
811 | enum header_status = MAYBE_HEADER; |
812 | unsigned int flags_mask; |
813 | size_t namelen; |
814 | |
815 | /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
816 | * that will be added by sanitize_line() (the extra '1'). */ |
817 | linebuf = pem_malloc(LINESIZE + 1, flags); |
818 | if (linebuf == NULL) { |
819 | PEMerr(PEM_F_GET_HEADER_AND_DATA, ERR_R_MALLOC_FAILURE); |
820 | return 0; |
821 | } |
822 | |
823 | for (line = 0; ; line++) { |
824 | flags_mask = ~0u; |
825 | len = BIO_gets(bp, linebuf, LINESIZE); |
826 | if (len <= 0) { |
827 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_SHORT_HEADER); |
828 | goto err; |
829 | } |
830 | |
831 | if (got_header == MAYBE_HEADER) { |
832 | if (memchr(linebuf, ':', len) != NULL) |
833 | got_header = IN_HEADER; |
834 | } |
835 | if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER) |
836 | flags_mask &= ~PEM_FLAG_ONLY_B64; |
837 | len = sanitize_line(linebuf, len, flags & flags_mask, 0); |
838 | |
839 | /* Check for end of header. */ |
840 | if (linebuf[0] == '\n') { |
841 | if (got_header == POST_HEADER) { |
842 | /* Another blank line is an error. */ |
843 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
844 | goto err; |
845 | } |
846 | got_header = POST_HEADER; |
847 | tmp = *data; |
848 | continue; |
849 | } |
850 | |
851 | /* Check for end of stream (which means there is no header). */ |
852 | if (strncmp(linebuf, endstr, ENDLEN) == 0) { |
853 | p = linebuf + ENDLEN; |
854 | namelen = strlen(name); |
855 | if (strncmp(p, name, namelen) != 0 || |
856 | strncmp(p + namelen, tailstr, TAILLEN) != 0) { |
857 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
858 | goto err; |
859 | } |
860 | if (got_header == MAYBE_HEADER) { |
861 | *header = *data; |
862 | *data = tmp; |
863 | } |
864 | break; |
865 | } else if (end) { |
866 | /* Malformed input; short line not at end of data. */ |
867 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
868 | goto err; |
869 | } |
870 | /* |
871 | * Else, a line of text -- could be header or data; we don't |
872 | * know yet. Just pass it through. |
873 | */ |
874 | if (BIO_puts(tmp, linebuf) < 0) |
875 | goto err; |
876 | /* |
877 | * Only encrypted files need the line length check applied. |
878 | */ |
879 | if (got_header == POST_HEADER) { |
880 | /* 65 includes the trailing newline */ |
881 | if (len > 65) |
882 | goto err; |
883 | if (len < 65) |
884 | end = 1; |
885 | } |
886 | } |
887 | |
888 | ret = 1; |
889 | err: |
890 | pem_free(linebuf, flags, LINESIZE + 1); |
891 | return ret; |
892 | } |
893 | |
894 | /** |
895 | * Read in PEM-formatted data from the given BIO. |
896 | * |
897 | * By nature of the PEM format, all content must be printable ASCII (except |
898 | * for line endings). Other characters are malformed input and will be rejected. |
899 | */ |
900 | int PEM_read_bio_ex(BIO *bp, char **name_out, char **, |
901 | unsigned char **data, long *len_out, unsigned int flags) |
902 | { |
903 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
904 | const BIO_METHOD *bmeth; |
905 | BIO * = NULL, *dataB = NULL; |
906 | char *name = NULL; |
907 | int len, taillen, , ret = 0; |
908 | BUF_MEM * buf_mem; |
909 | |
910 | if (ctx == NULL) { |
911 | PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); |
912 | return 0; |
913 | } |
914 | |
915 | *len_out = 0; |
916 | *name_out = *header = NULL; |
917 | *data = NULL; |
918 | if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { |
919 | /* These two are mutually incompatible; bail out. */ |
920 | PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_PASSED_INVALID_ARGUMENT); |
921 | goto end; |
922 | } |
923 | bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); |
924 | |
925 | headerB = BIO_new(bmeth); |
926 | dataB = BIO_new(bmeth); |
927 | if (headerB == NULL || dataB == NULL) { |
928 | PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); |
929 | goto end; |
930 | } |
931 | |
932 | if (!get_name(bp, &name, flags)) |
933 | goto end; |
934 | if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) |
935 | goto end; |
936 | |
937 | EVP_DecodeInit(ctx); |
938 | BIO_get_mem_ptr(dataB, &buf_mem); |
939 | len = buf_mem->length; |
940 | if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, |
941 | (unsigned char*)buf_mem->data, len) < 0 |
942 | || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), |
943 | &taillen) < 0) { |
944 | PEMerr(PEM_F_PEM_READ_BIO_EX, PEM_R_BAD_BASE64_DECODE); |
945 | goto end; |
946 | } |
947 | len += taillen; |
948 | buf_mem->length = len; |
949 | |
950 | /* There was no data in the PEM file; avoid malloc(0). */ |
951 | if (len == 0) |
952 | goto end; |
953 | headerlen = BIO_get_mem_data(headerB, NULL); |
954 | *header = pem_malloc(headerlen + 1, flags); |
955 | *data = pem_malloc(len, flags); |
956 | if (*header == NULL || *data == NULL) { |
957 | pem_free(*header, flags, 0); |
958 | pem_free(*data, flags, 0); |
959 | goto end; |
960 | } |
961 | BIO_read(headerB, *header, headerlen); |
962 | (*header)[headerlen] = '\0'; |
963 | BIO_read(dataB, *data, len); |
964 | *len_out = len; |
965 | *name_out = name; |
966 | name = NULL; |
967 | ret = 1; |
968 | |
969 | end: |
970 | EVP_ENCODE_CTX_free(ctx); |
971 | pem_free(name, flags, 0); |
972 | BIO_free(headerB); |
973 | BIO_free(dataB); |
974 | return ret; |
975 | } |
976 | |
977 | int PEM_read_bio(BIO *bp, char **name, char **, unsigned char **data, |
978 | long *len) |
979 | { |
980 | return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); |
981 | } |
982 | |
983 | /* |
984 | * Check pem string and return prefix length. If for example the pem_str == |
985 | * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
986 | * string "RSA". |
987 | */ |
988 | |
989 | int pem_check_suffix(const char *pem_str, const char *suffix) |
990 | { |
991 | int pem_len = strlen(pem_str); |
992 | int suffix_len = strlen(suffix); |
993 | const char *p; |
994 | if (suffix_len + 1 >= pem_len) |
995 | return 0; |
996 | p = pem_str + pem_len - suffix_len; |
997 | if (strcmp(p, suffix)) |
998 | return 0; |
999 | p--; |
1000 | if (*p != ' ') |
1001 | return 0; |
1002 | return p - pem_str; |
1003 | } |
1004 | |