| 1 | /* |
| 2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "internal/constant_time.h" |
| 11 | |
| 12 | #include <stdio.h> |
| 13 | #include <openssl/bn.h> |
| 14 | #include <openssl/rsa.h> |
| 15 | #include <openssl/rand.h> |
| 16 | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ |
| 17 | #include <openssl/ssl.h> |
| 18 | #include "internal/cryptlib.h" |
| 19 | #include "crypto/rsa.h" |
| 20 | |
| 21 | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
| 22 | const unsigned char *from, int flen) |
| 23 | { |
| 24 | int j; |
| 25 | unsigned char *p; |
| 26 | |
| 27 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
| 28 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1, |
| 29 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| 30 | return 0; |
| 31 | } |
| 32 | |
| 33 | p = (unsigned char *)to; |
| 34 | |
| 35 | *(p++) = 0; |
| 36 | *(p++) = 1; /* Private Key BT (Block Type) */ |
| 37 | |
| 38 | /* pad out with 0xff data */ |
| 39 | j = tlen - 3 - flen; |
| 40 | memset(p, 0xff, j); |
| 41 | p += j; |
| 42 | *(p++) = '\0'; |
| 43 | memcpy(p, from, (unsigned int)flen); |
| 44 | return 1; |
| 45 | } |
| 46 | |
| 47 | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
| 48 | const unsigned char *from, int flen, |
| 49 | int num) |
| 50 | { |
| 51 | int i, j; |
| 52 | const unsigned char *p; |
| 53 | |
| 54 | p = from; |
| 55 | |
| 56 | /* |
| 57 | * The format is |
| 58 | * 00 || 01 || PS || 00 || D |
| 59 | * PS - padding string, at least 8 bytes of FF |
| 60 | * D - data. |
| 61 | */ |
| 62 | |
| 63 | if (num < RSA_PKCS1_PADDING_SIZE) |
| 64 | return -1; |
| 65 | |
| 66 | /* Accept inputs with and without the leading 0-byte. */ |
| 67 | if (num == flen) { |
| 68 | if ((*p++) != 0x00) { |
| 69 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
| 70 | RSA_R_INVALID_PADDING); |
| 71 | return -1; |
| 72 | } |
| 73 | flen--; |
| 74 | } |
| 75 | |
| 76 | if ((num != (flen + 1)) || (*(p++) != 0x01)) { |
| 77 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
| 78 | RSA_R_BLOCK_TYPE_IS_NOT_01); |
| 79 | return -1; |
| 80 | } |
| 81 | |
| 82 | /* scan over padding data */ |
| 83 | j = flen - 1; /* one for type. */ |
| 84 | for (i = 0; i < j; i++) { |
| 85 | if (*p != 0xff) { /* should decrypt to 0xff */ |
| 86 | if (*p == 0) { |
| 87 | p++; |
| 88 | break; |
| 89 | } else { |
| 90 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
| 91 | RSA_R_BAD_FIXED_HEADER_DECRYPT); |
| 92 | return -1; |
| 93 | } |
| 94 | } |
| 95 | p++; |
| 96 | } |
| 97 | |
| 98 | if (i == j) { |
| 99 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
| 100 | RSA_R_NULL_BEFORE_BLOCK_MISSING); |
| 101 | return -1; |
| 102 | } |
| 103 | |
| 104 | if (i < 8) { |
| 105 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
| 106 | RSA_R_BAD_PAD_BYTE_COUNT); |
| 107 | return -1; |
| 108 | } |
| 109 | i++; /* Skip over the '\0' */ |
| 110 | j -= i; |
| 111 | if (j > tlen) { |
| 112 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE); |
| 113 | return -1; |
| 114 | } |
| 115 | memcpy(to, p, (unsigned int)j); |
| 116 | |
| 117 | return j; |
| 118 | } |
| 119 | |
| 120 | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
| 121 | const unsigned char *from, int flen) |
| 122 | { |
| 123 | int i, j; |
| 124 | unsigned char *p; |
| 125 | |
| 126 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
| 127 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2, |
| 128 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | p = (unsigned char *)to; |
| 133 | |
| 134 | *(p++) = 0; |
| 135 | *(p++) = 2; /* Public Key BT (Block Type) */ |
| 136 | |
| 137 | /* pad out with non-zero random data */ |
| 138 | j = tlen - 3 - flen; |
| 139 | |
| 140 | if (RAND_bytes(p, j) <= 0) |
| 141 | return 0; |
| 142 | for (i = 0; i < j; i++) { |
| 143 | if (*p == '\0') |
| 144 | do { |
| 145 | if (RAND_bytes(p, 1) <= 0) |
| 146 | return 0; |
| 147 | } while (*p == '\0'); |
| 148 | p++; |
| 149 | } |
| 150 | |
| 151 | *(p++) = '\0'; |
| 152 | |
| 153 | memcpy(p, from, (unsigned int)flen); |
| 154 | return 1; |
| 155 | } |
| 156 | |
| 157 | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
| 158 | const unsigned char *from, int flen, |
| 159 | int num) |
| 160 | { |
| 161 | int i; |
| 162 | /* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
| 163 | unsigned char *em = NULL; |
| 164 | unsigned int good, found_zero_byte, mask; |
| 165 | int zero_index = 0, msg_index, mlen = -1; |
| 166 | |
| 167 | if (tlen <= 0 || flen <= 0) |
| 168 | return -1; |
| 169 | |
| 170 | /* |
| 171 | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
| 172 | * section 7.2.2. |
| 173 | */ |
| 174 | |
| 175 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { |
| 176 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, |
| 177 | RSA_R_PKCS_DECODING_ERROR); |
| 178 | return -1; |
| 179 | } |
| 180 | |
| 181 | em = OPENSSL_malloc(num); |
| 182 | if (em == NULL) { |
| 183 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE); |
| 184 | return -1; |
| 185 | } |
| 186 | /* |
| 187 | * Caller is encouraged to pass zero-padded message created with |
| 188 | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
| 189 | * bounds, it's impossible to have an invariant memory access pattern |
| 190 | * in case |from| was not zero-padded in advance. |
| 191 | */ |
| 192 | for (from += flen, em += num, i = 0; i < num; i++) { |
| 193 | mask = ~constant_time_is_zero(flen); |
| 194 | flen -= 1 & mask; |
| 195 | from -= 1 & mask; |
| 196 | *--em = *from & mask; |
| 197 | } |
| 198 | |
| 199 | good = constant_time_is_zero(em[0]); |
| 200 | good &= constant_time_eq(em[1], 2); |
| 201 | |
| 202 | /* scan over padding data */ |
| 203 | found_zero_byte = 0; |
| 204 | for (i = 2; i < num; i++) { |
| 205 | unsigned int equals0 = constant_time_is_zero(em[i]); |
| 206 | |
| 207 | zero_index = constant_time_select_int(~found_zero_byte & equals0, |
| 208 | i, zero_index); |
| 209 | found_zero_byte |= equals0; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * PS must be at least 8 bytes long, and it starts two bytes into |em|. |
| 214 | * If we never found a 0-byte, then |zero_index| is 0 and the check |
| 215 | * also fails. |
| 216 | */ |
| 217 | good &= constant_time_ge(zero_index, 2 + 8); |
| 218 | |
| 219 | /* |
| 220 | * Skip the zero byte. This is incorrect if we never found a zero-byte |
| 221 | * but in this case we also do not copy the message out. |
| 222 | */ |
| 223 | msg_index = zero_index + 1; |
| 224 | mlen = num - msg_index; |
| 225 | |
| 226 | /* |
| 227 | * For good measure, do this check in constant time as well. |
| 228 | */ |
| 229 | good &= constant_time_ge(tlen, mlen); |
| 230 | |
| 231 | /* |
| 232 | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. |
| 233 | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. |
| 234 | * Otherwise leave |to| unchanged. |
| 235 | * Copy the memory back in a way that does not reveal the size of |
| 236 | * the data being copied via a timing side channel. This requires copying |
| 237 | * parts of the buffer multiple times based on the bits set in the real |
| 238 | * length. Clear bits do a non-copy with identical access pattern. |
| 239 | * The loop below has overall complexity of O(N*log(N)). |
| 240 | */ |
| 241 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), |
| 242 | num - RSA_PKCS1_PADDING_SIZE, tlen); |
| 243 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { |
| 244 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); |
| 245 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) |
| 246 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); |
| 247 | } |
| 248 | for (i = 0; i < tlen; i++) { |
| 249 | mask = good & constant_time_lt(i, mlen); |
| 250 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); |
| 251 | } |
| 252 | |
| 253 | OPENSSL_clear_free(em, num); |
| 254 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR); |
| 255 | err_clear_last_constant_time(1 & good); |
| 256 | |
| 257 | return constant_time_select_int(good, mlen, -1); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 |
| 262 | * padding from a decrypted RSA message in a TLS signature. The result is stored |
| 263 | * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| |
| 264 | * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message |
| 265 | * should be stored in |from| which must be |flen| bytes in length and padded |
| 266 | * such that |flen == RSA_size()|. The TLS protocol version that the client |
| 267 | * originally requested should be passed in |client_version|. Some buggy clients |
| 268 | * can exist which use the negotiated version instead of the originally |
| 269 | * requested protocol version. If it is necessary to work around this bug then |
| 270 | * the negotiated protocol version can be passed in |alt_version|, otherwise 0 |
| 271 | * should be passed. |
| 272 | * |
| 273 | * If the passed message is publicly invalid or some other error that can be |
| 274 | * treated in non-constant time occurs then -1 is returned. On success the |
| 275 | * length of the decrypted data is returned. This will always be |
| 276 | * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in |
| 277 | * constant time then this function will appear to return successfully, but the |
| 278 | * decrypted data will be randomly generated (as per |
| 279 | * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). |
| 280 | */ |
| 281 | int rsa_padding_check_PKCS1_type_2_TLS(unsigned char *to, size_t tlen, |
| 282 | const unsigned char *from, size_t flen, |
| 283 | int client_version, int alt_version) |
| 284 | { |
| 285 | unsigned int i, good, version_good; |
| 286 | unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; |
| 287 | |
| 288 | /* |
| 289 | * If these checks fail then either the message in publicly invalid, or |
| 290 | * we've been called incorrectly. We can fail immediately. |
| 291 | */ |
| 292 | if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH |
| 293 | || tlen < SSL_MAX_MASTER_KEY_LENGTH) { |
| 294 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
| 295 | return -1; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Generate a random premaster secret to use in the event that we fail |
| 300 | * to decrypt. |
| 301 | */ |
| 302 | if (RAND_priv_bytes(rand_premaster_secret, |
| 303 | sizeof(rand_premaster_secret)) <= 0) { |
| 304 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
| 305 | return -1; |
| 306 | } |
| 307 | |
| 308 | good = constant_time_is_zero(from[0]); |
| 309 | good &= constant_time_eq(from[1], 2); |
| 310 | |
| 311 | /* Check we have the expected padding data */ |
| 312 | for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) |
| 313 | good &= ~constant_time_is_zero_8(from[i]); |
| 314 | good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); |
| 315 | |
| 316 | |
| 317 | /* |
| 318 | * If the version in the decrypted pre-master secret is correct then |
| 319 | * version_good will be 0xff, otherwise it'll be zero. The |
| 320 | * Klima-Pokorny-Rosa extension of Bleichenbacher's attack |
| 321 | * (http://eprint.iacr.org/2003/052/) exploits the version number |
| 322 | * check as a "bad version oracle". Thus version checks are done in |
| 323 | * constant time and are treated like any other decryption error. |
| 324 | */ |
| 325 | version_good = |
| 326 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
| 327 | (client_version >> 8) & 0xff); |
| 328 | version_good &= |
| 329 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
| 330 | client_version & 0xff); |
| 331 | |
| 332 | /* |
| 333 | * The premaster secret must contain the same version number as the |
| 334 | * ClientHello to detect version rollback attacks (strangely, the |
| 335 | * protocol does not offer such protection for DH ciphersuites). |
| 336 | * However, buggy clients exist that send the negotiated protocol |
| 337 | * version instead if the server does not support the requested |
| 338 | * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate |
| 339 | * such clients. In that case alt_version will be non-zero and set to |
| 340 | * the negotiated version. |
| 341 | */ |
| 342 | if (alt_version > 0) { |
| 343 | unsigned int workaround_good; |
| 344 | |
| 345 | workaround_good = |
| 346 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
| 347 | (alt_version >> 8) & 0xff); |
| 348 | workaround_good &= |
| 349 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
| 350 | alt_version & 0xff); |
| 351 | version_good |= workaround_good; |
| 352 | } |
| 353 | |
| 354 | good &= version_good; |
| 355 | |
| 356 | |
| 357 | /* |
| 358 | * Now copy the result over to the to buffer if good, or random data if |
| 359 | * not good. |
| 360 | */ |
| 361 | for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { |
| 362 | to[i] = |
| 363 | constant_time_select_8(good, |
| 364 | from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], |
| 365 | rand_premaster_secret[i]); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * We must not leak whether a decryption failure occurs because of |
| 370 | * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, |
| 371 | * section 7.4.7.1). The code follows that advice of the TLS RFC and |
| 372 | * generates a random premaster secret for the case that the decrypt |
| 373 | * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 |
| 374 | * So, whether we actually succeeded or not, return success. |
| 375 | */ |
| 376 | |
| 377 | return SSL_MAX_MASTER_KEY_LENGTH; |
| 378 | } |
| 379 | |