1 | /* |
2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include "internal/constant_time.h" |
11 | |
12 | #include <stdio.h> |
13 | #include <openssl/bn.h> |
14 | #include <openssl/rsa.h> |
15 | #include <openssl/rand.h> |
16 | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ |
17 | #include <openssl/ssl.h> |
18 | #include "internal/cryptlib.h" |
19 | #include "crypto/rsa.h" |
20 | |
21 | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
22 | const unsigned char *from, int flen) |
23 | { |
24 | int j; |
25 | unsigned char *p; |
26 | |
27 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
28 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1, |
29 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
30 | return 0; |
31 | } |
32 | |
33 | p = (unsigned char *)to; |
34 | |
35 | *(p++) = 0; |
36 | *(p++) = 1; /* Private Key BT (Block Type) */ |
37 | |
38 | /* pad out with 0xff data */ |
39 | j = tlen - 3 - flen; |
40 | memset(p, 0xff, j); |
41 | p += j; |
42 | *(p++) = '\0'; |
43 | memcpy(p, from, (unsigned int)flen); |
44 | return 1; |
45 | } |
46 | |
47 | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
48 | const unsigned char *from, int flen, |
49 | int num) |
50 | { |
51 | int i, j; |
52 | const unsigned char *p; |
53 | |
54 | p = from; |
55 | |
56 | /* |
57 | * The format is |
58 | * 00 || 01 || PS || 00 || D |
59 | * PS - padding string, at least 8 bytes of FF |
60 | * D - data. |
61 | */ |
62 | |
63 | if (num < RSA_PKCS1_PADDING_SIZE) |
64 | return -1; |
65 | |
66 | /* Accept inputs with and without the leading 0-byte. */ |
67 | if (num == flen) { |
68 | if ((*p++) != 0x00) { |
69 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
70 | RSA_R_INVALID_PADDING); |
71 | return -1; |
72 | } |
73 | flen--; |
74 | } |
75 | |
76 | if ((num != (flen + 1)) || (*(p++) != 0x01)) { |
77 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
78 | RSA_R_BLOCK_TYPE_IS_NOT_01); |
79 | return -1; |
80 | } |
81 | |
82 | /* scan over padding data */ |
83 | j = flen - 1; /* one for type. */ |
84 | for (i = 0; i < j; i++) { |
85 | if (*p != 0xff) { /* should decrypt to 0xff */ |
86 | if (*p == 0) { |
87 | p++; |
88 | break; |
89 | } else { |
90 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
91 | RSA_R_BAD_FIXED_HEADER_DECRYPT); |
92 | return -1; |
93 | } |
94 | } |
95 | p++; |
96 | } |
97 | |
98 | if (i == j) { |
99 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
100 | RSA_R_NULL_BEFORE_BLOCK_MISSING); |
101 | return -1; |
102 | } |
103 | |
104 | if (i < 8) { |
105 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
106 | RSA_R_BAD_PAD_BYTE_COUNT); |
107 | return -1; |
108 | } |
109 | i++; /* Skip over the '\0' */ |
110 | j -= i; |
111 | if (j > tlen) { |
112 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE); |
113 | return -1; |
114 | } |
115 | memcpy(to, p, (unsigned int)j); |
116 | |
117 | return j; |
118 | } |
119 | |
120 | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
121 | const unsigned char *from, int flen) |
122 | { |
123 | int i, j; |
124 | unsigned char *p; |
125 | |
126 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
127 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2, |
128 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
129 | return 0; |
130 | } |
131 | |
132 | p = (unsigned char *)to; |
133 | |
134 | *(p++) = 0; |
135 | *(p++) = 2; /* Public Key BT (Block Type) */ |
136 | |
137 | /* pad out with non-zero random data */ |
138 | j = tlen - 3 - flen; |
139 | |
140 | if (RAND_bytes(p, j) <= 0) |
141 | return 0; |
142 | for (i = 0; i < j; i++) { |
143 | if (*p == '\0') |
144 | do { |
145 | if (RAND_bytes(p, 1) <= 0) |
146 | return 0; |
147 | } while (*p == '\0'); |
148 | p++; |
149 | } |
150 | |
151 | *(p++) = '\0'; |
152 | |
153 | memcpy(p, from, (unsigned int)flen); |
154 | return 1; |
155 | } |
156 | |
157 | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
158 | const unsigned char *from, int flen, |
159 | int num) |
160 | { |
161 | int i; |
162 | /* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
163 | unsigned char *em = NULL; |
164 | unsigned int good, found_zero_byte, mask; |
165 | int zero_index = 0, msg_index, mlen = -1; |
166 | |
167 | if (tlen <= 0 || flen <= 0) |
168 | return -1; |
169 | |
170 | /* |
171 | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
172 | * section 7.2.2. |
173 | */ |
174 | |
175 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { |
176 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, |
177 | RSA_R_PKCS_DECODING_ERROR); |
178 | return -1; |
179 | } |
180 | |
181 | em = OPENSSL_malloc(num); |
182 | if (em == NULL) { |
183 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE); |
184 | return -1; |
185 | } |
186 | /* |
187 | * Caller is encouraged to pass zero-padded message created with |
188 | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
189 | * bounds, it's impossible to have an invariant memory access pattern |
190 | * in case |from| was not zero-padded in advance. |
191 | */ |
192 | for (from += flen, em += num, i = 0; i < num; i++) { |
193 | mask = ~constant_time_is_zero(flen); |
194 | flen -= 1 & mask; |
195 | from -= 1 & mask; |
196 | *--em = *from & mask; |
197 | } |
198 | |
199 | good = constant_time_is_zero(em[0]); |
200 | good &= constant_time_eq(em[1], 2); |
201 | |
202 | /* scan over padding data */ |
203 | found_zero_byte = 0; |
204 | for (i = 2; i < num; i++) { |
205 | unsigned int equals0 = constant_time_is_zero(em[i]); |
206 | |
207 | zero_index = constant_time_select_int(~found_zero_byte & equals0, |
208 | i, zero_index); |
209 | found_zero_byte |= equals0; |
210 | } |
211 | |
212 | /* |
213 | * PS must be at least 8 bytes long, and it starts two bytes into |em|. |
214 | * If we never found a 0-byte, then |zero_index| is 0 and the check |
215 | * also fails. |
216 | */ |
217 | good &= constant_time_ge(zero_index, 2 + 8); |
218 | |
219 | /* |
220 | * Skip the zero byte. This is incorrect if we never found a zero-byte |
221 | * but in this case we also do not copy the message out. |
222 | */ |
223 | msg_index = zero_index + 1; |
224 | mlen = num - msg_index; |
225 | |
226 | /* |
227 | * For good measure, do this check in constant time as well. |
228 | */ |
229 | good &= constant_time_ge(tlen, mlen); |
230 | |
231 | /* |
232 | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. |
233 | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. |
234 | * Otherwise leave |to| unchanged. |
235 | * Copy the memory back in a way that does not reveal the size of |
236 | * the data being copied via a timing side channel. This requires copying |
237 | * parts of the buffer multiple times based on the bits set in the real |
238 | * length. Clear bits do a non-copy with identical access pattern. |
239 | * The loop below has overall complexity of O(N*log(N)). |
240 | */ |
241 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), |
242 | num - RSA_PKCS1_PADDING_SIZE, tlen); |
243 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { |
244 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); |
245 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) |
246 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); |
247 | } |
248 | for (i = 0; i < tlen; i++) { |
249 | mask = good & constant_time_lt(i, mlen); |
250 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); |
251 | } |
252 | |
253 | OPENSSL_clear_free(em, num); |
254 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR); |
255 | err_clear_last_constant_time(1 & good); |
256 | |
257 | return constant_time_select_int(good, mlen, -1); |
258 | } |
259 | |
260 | /* |
261 | * rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 |
262 | * padding from a decrypted RSA message in a TLS signature. The result is stored |
263 | * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| |
264 | * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message |
265 | * should be stored in |from| which must be |flen| bytes in length and padded |
266 | * such that |flen == RSA_size()|. The TLS protocol version that the client |
267 | * originally requested should be passed in |client_version|. Some buggy clients |
268 | * can exist which use the negotiated version instead of the originally |
269 | * requested protocol version. If it is necessary to work around this bug then |
270 | * the negotiated protocol version can be passed in |alt_version|, otherwise 0 |
271 | * should be passed. |
272 | * |
273 | * If the passed message is publicly invalid or some other error that can be |
274 | * treated in non-constant time occurs then -1 is returned. On success the |
275 | * length of the decrypted data is returned. This will always be |
276 | * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in |
277 | * constant time then this function will appear to return successfully, but the |
278 | * decrypted data will be randomly generated (as per |
279 | * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). |
280 | */ |
281 | int rsa_padding_check_PKCS1_type_2_TLS(unsigned char *to, size_t tlen, |
282 | const unsigned char *from, size_t flen, |
283 | int client_version, int alt_version) |
284 | { |
285 | unsigned int i, good, version_good; |
286 | unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; |
287 | |
288 | /* |
289 | * If these checks fail then either the message in publicly invalid, or |
290 | * we've been called incorrectly. We can fail immediately. |
291 | */ |
292 | if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH |
293 | || tlen < SSL_MAX_MASTER_KEY_LENGTH) { |
294 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
295 | return -1; |
296 | } |
297 | |
298 | /* |
299 | * Generate a random premaster secret to use in the event that we fail |
300 | * to decrypt. |
301 | */ |
302 | if (RAND_priv_bytes(rand_premaster_secret, |
303 | sizeof(rand_premaster_secret)) <= 0) { |
304 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
305 | return -1; |
306 | } |
307 | |
308 | good = constant_time_is_zero(from[0]); |
309 | good &= constant_time_eq(from[1], 2); |
310 | |
311 | /* Check we have the expected padding data */ |
312 | for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) |
313 | good &= ~constant_time_is_zero_8(from[i]); |
314 | good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); |
315 | |
316 | |
317 | /* |
318 | * If the version in the decrypted pre-master secret is correct then |
319 | * version_good will be 0xff, otherwise it'll be zero. The |
320 | * Klima-Pokorny-Rosa extension of Bleichenbacher's attack |
321 | * (http://eprint.iacr.org/2003/052/) exploits the version number |
322 | * check as a "bad version oracle". Thus version checks are done in |
323 | * constant time and are treated like any other decryption error. |
324 | */ |
325 | version_good = |
326 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
327 | (client_version >> 8) & 0xff); |
328 | version_good &= |
329 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
330 | client_version & 0xff); |
331 | |
332 | /* |
333 | * The premaster secret must contain the same version number as the |
334 | * ClientHello to detect version rollback attacks (strangely, the |
335 | * protocol does not offer such protection for DH ciphersuites). |
336 | * However, buggy clients exist that send the negotiated protocol |
337 | * version instead if the server does not support the requested |
338 | * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate |
339 | * such clients. In that case alt_version will be non-zero and set to |
340 | * the negotiated version. |
341 | */ |
342 | if (alt_version > 0) { |
343 | unsigned int workaround_good; |
344 | |
345 | workaround_good = |
346 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
347 | (alt_version >> 8) & 0xff); |
348 | workaround_good &= |
349 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
350 | alt_version & 0xff); |
351 | version_good |= workaround_good; |
352 | } |
353 | |
354 | good &= version_good; |
355 | |
356 | |
357 | /* |
358 | * Now copy the result over to the to buffer if good, or random data if |
359 | * not good. |
360 | */ |
361 | for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { |
362 | to[i] = |
363 | constant_time_select_8(good, |
364 | from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], |
365 | rand_premaster_secret[i]); |
366 | } |
367 | |
368 | /* |
369 | * We must not leak whether a decryption failure occurs because of |
370 | * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, |
371 | * section 7.4.7.1). The code follows that advice of the TLS RFC and |
372 | * generates a random premaster secret for the case that the decrypt |
373 | * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 |
374 | * So, whether we actually succeeded or not, return success. |
375 | */ |
376 | |
377 | return SSL_MAX_MASTER_KEY_LENGTH; |
378 | } |
379 | |