| 1 | /* |
| 2 | * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <openssl/err.h> |
| 12 | #include <openssl/bn.h> |
| 13 | #include "crypto/bn.h" |
| 14 | #include "rsa_local.h" |
| 15 | |
| 16 | /* |
| 17 | * Part of the RSA keypair test. |
| 18 | * Check the Chinese Remainder Theorem components are valid. |
| 19 | * |
| 20 | * See SP800-5bBr1 |
| 21 | * 6.4.1.2.3: rsakpv1-crt Step 7 |
| 22 | * 6.4.1.3.3: rsakpv2-crt Step 7 |
| 23 | */ |
| 24 | int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx) |
| 25 | { |
| 26 | int ret = 0; |
| 27 | BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL; |
| 28 | |
| 29 | /* check if only some of the crt components are set */ |
| 30 | if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) { |
| 31 | if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL) |
| 32 | return 0; |
| 33 | return 1; /* return ok if all components are NULL */ |
| 34 | } |
| 35 | |
| 36 | BN_CTX_start(ctx); |
| 37 | r = BN_CTX_get(ctx); |
| 38 | p1 = BN_CTX_get(ctx); |
| 39 | q1 = BN_CTX_get(ctx); |
| 40 | ret = (q1 != NULL) |
| 41 | /* p1 = p -1 */ |
| 42 | && (BN_copy(p1, rsa->p) != NULL) |
| 43 | && BN_sub_word(p1, 1) |
| 44 | /* q1 = q - 1 */ |
| 45 | && (BN_copy(q1, rsa->q) != NULL) |
| 46 | && BN_sub_word(q1, 1) |
| 47 | /* (a) 1 < dP < (p – 1). */ |
| 48 | && (BN_cmp(rsa->dmp1, BN_value_one()) > 0) |
| 49 | && (BN_cmp(rsa->dmp1, p1) < 0) |
| 50 | /* (b) 1 < dQ < (q - 1). */ |
| 51 | && (BN_cmp(rsa->dmq1, BN_value_one()) > 0) |
| 52 | && (BN_cmp(rsa->dmq1, q1) < 0) |
| 53 | /* (c) 1 < qInv < p */ |
| 54 | && (BN_cmp(rsa->iqmp, BN_value_one()) > 0) |
| 55 | && (BN_cmp(rsa->iqmp, rsa->p) < 0) |
| 56 | /* (d) 1 = (dP . e) mod (p - 1)*/ |
| 57 | && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx) |
| 58 | && BN_is_one(r) |
| 59 | /* (e) 1 = (dQ . e) mod (q - 1) */ |
| 60 | && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx) |
| 61 | && BN_is_one(r) |
| 62 | /* (f) 1 = (qInv . q) mod p */ |
| 63 | && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx) |
| 64 | && BN_is_one(r); |
| 65 | BN_clear(p1); |
| 66 | BN_clear(q1); |
| 67 | BN_CTX_end(ctx); |
| 68 | return ret; |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * Part of the RSA keypair test. |
| 73 | * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 |
| 74 | * |
| 75 | * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. |
| 76 | * |
| 77 | * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) |
| 78 | */ |
| 79 | int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx) |
| 80 | { |
| 81 | int ret = 0; |
| 82 | BIGNUM *low; |
| 83 | int shift; |
| 84 | |
| 85 | nbits >>= 1; |
| 86 | shift = nbits - BN_num_bits(&bn_inv_sqrt_2); |
| 87 | |
| 88 | /* Upper bound check */ |
| 89 | if (BN_num_bits(p) != nbits) |
| 90 | return 0; |
| 91 | |
| 92 | BN_CTX_start(ctx); |
| 93 | low = BN_CTX_get(ctx); |
| 94 | if (low == NULL) |
| 95 | goto err; |
| 96 | |
| 97 | /* set low = (√2)(2^(nbits/2 - 1) */ |
| 98 | if (!BN_copy(low, &bn_inv_sqrt_2)) |
| 99 | goto err; |
| 100 | |
| 101 | if (shift >= 0) { |
| 102 | /* |
| 103 | * We don't have all the bits. bn_inv_sqrt_2 contains a rounded up |
| 104 | * value, so there is a very low probability that we'll reject a valid |
| 105 | * value. |
| 106 | */ |
| 107 | if (!BN_lshift(low, low, shift)) |
| 108 | goto err; |
| 109 | } else if (!BN_rshift(low, low, -shift)) { |
| 110 | goto err; |
| 111 | } |
| 112 | if (BN_cmp(p, low) <= 0) |
| 113 | goto err; |
| 114 | ret = 1; |
| 115 | err: |
| 116 | BN_CTX_end(ctx); |
| 117 | return ret; |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Part of the RSA keypair test. |
| 122 | * Check the prime factor (for either p or q) |
| 123 | * i.e: p is prime AND GCD(p - 1, e) = 1 |
| 124 | * |
| 125 | * See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h). |
| 126 | */ |
| 127 | int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx) |
| 128 | { |
| 129 | int ret = 0; |
| 130 | BIGNUM *p1 = NULL, *gcd = NULL; |
| 131 | |
| 132 | /* (Steps 5 a-b) prime test */ |
| 133 | if (BN_check_prime(p, ctx, NULL) != 1 |
| 134 | /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */ |
| 135 | || rsa_check_prime_factor_range(p, nbits, ctx) != 1) |
| 136 | return 0; |
| 137 | |
| 138 | BN_CTX_start(ctx); |
| 139 | p1 = BN_CTX_get(ctx); |
| 140 | gcd = BN_CTX_get(ctx); |
| 141 | ret = (gcd != NULL) |
| 142 | /* (Step 5d) GCD(p-1, e) = 1 */ |
| 143 | && (BN_copy(p1, p) != NULL) |
| 144 | && BN_sub_word(p1, 1) |
| 145 | && BN_gcd(gcd, p1, e, ctx) |
| 146 | && BN_is_one(gcd); |
| 147 | |
| 148 | BN_clear(p1); |
| 149 | BN_CTX_end(ctx); |
| 150 | return ret; |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d |
| 155 | * satisfies: |
| 156 | * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). |
| 157 | * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) |
| 158 | */ |
| 159 | int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx) |
| 160 | { |
| 161 | int ret; |
| 162 | BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd; |
| 163 | |
| 164 | /* (Step 6a) 2^(nbits/2) < d */ |
| 165 | if (BN_num_bits(rsa->d) <= (nbits >> 1)) |
| 166 | return 0; |
| 167 | |
| 168 | BN_CTX_start(ctx); |
| 169 | r = BN_CTX_get(ctx); |
| 170 | p1 = BN_CTX_get(ctx); |
| 171 | q1 = BN_CTX_get(ctx); |
| 172 | lcm = BN_CTX_get(ctx); |
| 173 | p1q1 = BN_CTX_get(ctx); |
| 174 | gcd = BN_CTX_get(ctx); |
| 175 | ret = (gcd != NULL |
| 176 | /* LCM(p - 1, q - 1) */ |
| 177 | && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1) |
| 178 | /* (Step 6a) d < LCM(p - 1, q - 1) */ |
| 179 | && (BN_cmp(rsa->d, lcm) < 0) |
| 180 | /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */ |
| 181 | && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx) |
| 182 | && BN_is_one(r)); |
| 183 | |
| 184 | BN_clear(p1); |
| 185 | BN_clear(q1); |
| 186 | BN_clear(lcm); |
| 187 | BN_clear(gcd); |
| 188 | BN_CTX_end(ctx); |
| 189 | return ret; |
| 190 | } |
| 191 | |
| 192 | /* Check exponent is odd, and has a bitlen ranging from [17..256] */ |
| 193 | int rsa_check_public_exponent(const BIGNUM *e) |
| 194 | { |
| 195 | int bitlen = BN_num_bits(e); |
| 196 | |
| 197 | return (BN_is_odd(e) && bitlen > 16 && bitlen < 257); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) |
| 202 | * i.e- numbits(p-q-1) > (nbits/2 -100) |
| 203 | */ |
| 204 | int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, |
| 205 | int nbits) |
| 206 | { |
| 207 | int bitlen = (nbits >> 1) - 100; |
| 208 | |
| 209 | if (!BN_sub(diff, p, q)) |
| 210 | return -1; |
| 211 | BN_set_negative(diff, 0); |
| 212 | |
| 213 | if (BN_is_zero(diff)) |
| 214 | return 0; |
| 215 | |
| 216 | if (!BN_sub_word(diff, 1)) |
| 217 | return -1; |
| 218 | return (BN_num_bits(diff) > bitlen); |
| 219 | } |
| 220 | |
| 221 | /* return LCM(p-1, q-1) */ |
| 222 | int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, |
| 223 | BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, |
| 224 | BIGNUM *p1q1) |
| 225 | { |
| 226 | return BN_sub(p1, p, BN_value_one()) /* p-1 */ |
| 227 | && BN_sub(q1, q, BN_value_one()) /* q-1 */ |
| 228 | && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */ |
| 229 | && BN_gcd(gcd, p1, q1, ctx) |
| 230 | && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */ |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to |
| 235 | * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA |
| 236 | * caveat is that the modulus must be as specified in SP800-56Br1 |
| 237 | */ |
| 238 | int rsa_sp800_56b_check_public(const RSA *rsa) |
| 239 | { |
| 240 | int ret = 0, nbits, status; |
| 241 | BN_CTX *ctx = NULL; |
| 242 | BIGNUM *gcd = NULL; |
| 243 | |
| 244 | if (rsa->n == NULL || rsa->e == NULL) |
| 245 | return 0; |
| 246 | |
| 247 | /* |
| 248 | * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1) |
| 249 | * NOTE: changed to allow keys >= 2048 |
| 250 | */ |
| 251 | nbits = BN_num_bits(rsa->n); |
| 252 | if (!rsa_sp800_56b_validate_strength(nbits, -1)) { |
| 253 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH); |
| 254 | return 0; |
| 255 | } |
| 256 | if (!BN_is_odd(rsa->n)) { |
| 257 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */ |
| 262 | if (!rsa_check_public_exponent(rsa->e)) { |
| 263 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, |
| 264 | RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
| 265 | return 0; |
| 266 | } |
| 267 | |
| 268 | ctx = BN_CTX_new(); |
| 269 | gcd = BN_new(); |
| 270 | if (ctx == NULL || gcd == NULL) |
| 271 | goto err; |
| 272 | |
| 273 | /* (Steps d-f): |
| 274 | * The modulus is composite, but not a power of a prime. |
| 275 | * The modulus has no factors smaller than 752. |
| 276 | */ |
| 277 | if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) { |
| 278 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); |
| 279 | goto err; |
| 280 | } |
| 281 | |
| 282 | ret = bn_miller_rabin_is_prime(rsa->n, 0, ctx, NULL, 1, &status); |
| 283 | if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) { |
| 284 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); |
| 285 | ret = 0; |
| 286 | goto err; |
| 287 | } |
| 288 | |
| 289 | ret = 1; |
| 290 | err: |
| 291 | BN_free(gcd); |
| 292 | BN_CTX_free(ctx); |
| 293 | return ret; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * Perform validation of the RSA private key to check that 0 < D < N. |
| 298 | */ |
| 299 | int rsa_sp800_56b_check_private(const RSA *rsa) |
| 300 | { |
| 301 | if (rsa->d == NULL || rsa->n == NULL) |
| 302 | return 0; |
| 303 | return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0; |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * RSA key pair validation. |
| 308 | * |
| 309 | * SP800-56Br1. |
| 310 | * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" |
| 311 | * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" |
| 312 | * |
| 313 | * It uses: |
| 314 | * 6.4.1.2.3 "rsakpv1 - crt" |
| 315 | * 6.4.1.3.3 "rsakpv2 - crt" |
| 316 | */ |
| 317 | int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, |
| 318 | int strength, int nbits) |
| 319 | { |
| 320 | int ret = 0; |
| 321 | BN_CTX *ctx = NULL; |
| 322 | BIGNUM *r = NULL; |
| 323 | |
| 324 | if (rsa->p == NULL |
| 325 | || rsa->q == NULL |
| 326 | || rsa->e == NULL |
| 327 | || rsa->d == NULL |
| 328 | || rsa->n == NULL) { |
| 329 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); |
| 330 | return 0; |
| 331 | } |
| 332 | /* (Step 1): Check Ranges */ |
| 333 | if (!rsa_sp800_56b_validate_strength(nbits, strength)) |
| 334 | return 0; |
| 335 | |
| 336 | /* If the exponent is known */ |
| 337 | if (efixed != NULL) { |
| 338 | /* (2): Check fixed exponent matches public exponent. */ |
| 339 | if (BN_cmp(efixed, rsa->e) != 0) { |
| 340 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); |
| 341 | return 0; |
| 342 | } |
| 343 | } |
| 344 | /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */ |
| 345 | if (!rsa_check_public_exponent(rsa->e)) { |
| 346 | /* exponent out of range */ |
| 347 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, |
| 348 | RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
| 349 | return 0; |
| 350 | } |
| 351 | /* (Step 3.b): check the modulus */ |
| 352 | if (nbits != BN_num_bits(rsa->n)) { |
| 353 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); |
| 354 | return 0; |
| 355 | } |
| 356 | |
| 357 | ctx = BN_CTX_new(); |
| 358 | if (ctx == NULL) |
| 359 | return 0; |
| 360 | |
| 361 | BN_CTX_start(ctx); |
| 362 | r = BN_CTX_get(ctx); |
| 363 | if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx)) |
| 364 | goto err; |
| 365 | /* (Step 4.c): Check n = pq */ |
| 366 | if (BN_cmp(rsa->n, r) != 0) { |
| 367 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); |
| 368 | goto err; |
| 369 | } |
| 370 | |
| 371 | /* (Step 5): check prime factors p & q */ |
| 372 | ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx) |
| 373 | && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx) |
| 374 | && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0) |
| 375 | /* (Step 6): Check the private exponent d */ |
| 376 | && rsa_check_private_exponent(rsa, nbits, ctx) |
| 377 | /* 6.4.1.2.3 (Step 7): Check the CRT components */ |
| 378 | && rsa_check_crt_components(rsa, ctx); |
| 379 | if (ret != 1) |
| 380 | RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); |
| 381 | |
| 382 | err: |
| 383 | BN_clear(r); |
| 384 | BN_CTX_end(ctx); |
| 385 | BN_CTX_free(ctx); |
| 386 | return ret; |
| 387 | } |
| 388 | |