| 1 | /* |
| 2 | * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. |
| 4 | * |
| 5 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <openssl/crypto.h> |
| 12 | #include <openssl/bn.h> |
| 13 | #include "crypto/sparse_array.h" |
| 14 | |
| 15 | /* |
| 16 | * How many bits are used to index each level in the tree structure? |
| 17 | * This setting determines the number of pointers stored in each node of the |
| 18 | * tree used to represent the sparse array. Having more pointers reduces the |
| 19 | * depth of the tree but potentially wastes more memory. That is, this is a |
| 20 | * direct space versus time tradeoff. |
| 21 | * |
| 22 | * The large memory model uses twelve bits which means that the are 4096 |
| 23 | * pointers in each tree node. This is more than sufficient to hold the |
| 24 | * largest defined NID (as of Feb 2019). This means that using a NID to |
| 25 | * index a sparse array becomes a constant time single array look up. |
| 26 | * |
| 27 | * The small memory model uses four bits which means the tree nodes contain |
| 28 | * sixteen pointers. This reduces the amount of unused space significantly |
| 29 | * at a cost in time. |
| 30 | * |
| 31 | * The library builder is also permitted to define other sizes in the closed |
| 32 | * interval [2, sizeof(ossl_uintmax_t) * 8]. |
| 33 | */ |
| 34 | #ifndef OPENSSL_SA_BLOCK_BITS |
| 35 | # ifdef OPENSSL_SMALL_FOOTPRINT |
| 36 | # define OPENSSL_SA_BLOCK_BITS 4 |
| 37 | # else |
| 38 | # define OPENSSL_SA_BLOCK_BITS 12 |
| 39 | # endif |
| 40 | #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1) |
| 41 | # error OPENSSL_SA_BLOCK_BITS is out of range |
| 42 | #endif |
| 43 | |
| 44 | /* |
| 45 | * From the number of bits, work out: |
| 46 | * the number of pointers in a tree node; |
| 47 | * a bit mask to quickly extract an index and |
| 48 | * the maximum depth of the tree structure. |
| 49 | */ |
| 50 | #define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS) |
| 51 | #define SA_BLOCK_MASK (SA_BLOCK_MAX - 1) |
| 52 | #define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \ |
| 53 | + OPENSSL_SA_BLOCK_BITS - 1) \ |
| 54 | / OPENSSL_SA_BLOCK_BITS) |
| 55 | |
| 56 | struct sparse_array_st { |
| 57 | int levels; |
| 58 | ossl_uintmax_t top; |
| 59 | size_t nelem; |
| 60 | void **nodes; |
| 61 | }; |
| 62 | |
| 63 | OPENSSL_SA *OPENSSL_SA_new(void) |
| 64 | { |
| 65 | OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res)); |
| 66 | |
| 67 | return res; |
| 68 | } |
| 69 | |
| 70 | static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **), |
| 71 | void (*leaf)(ossl_uintmax_t, void *, void *), void *arg) |
| 72 | { |
| 73 | int i[SA_BLOCK_MAX_LEVELS]; |
| 74 | void *nodes[SA_BLOCK_MAX_LEVELS]; |
| 75 | ossl_uintmax_t idx = 0; |
| 76 | int l = 0; |
| 77 | |
| 78 | i[0] = 0; |
| 79 | nodes[0] = sa->nodes; |
| 80 | while (l >= 0) { |
| 81 | const int n = i[l]; |
| 82 | void ** const p = nodes[l]; |
| 83 | |
| 84 | if (n >= SA_BLOCK_MAX) { |
| 85 | if (p != NULL && node != NULL) |
| 86 | (*node)(p); |
| 87 | l--; |
| 88 | idx >>= OPENSSL_SA_BLOCK_BITS; |
| 89 | } else { |
| 90 | i[l] = n + 1; |
| 91 | if (p != NULL && p[n] != NULL) { |
| 92 | idx = (idx & ~SA_BLOCK_MASK) | n; |
| 93 | if (l < sa->levels - 1) { |
| 94 | i[++l] = 0; |
| 95 | nodes[l] = p[n]; |
| 96 | idx <<= OPENSSL_SA_BLOCK_BITS; |
| 97 | } else if (leaf != NULL) { |
| 98 | (*leaf)(idx, p[n], arg); |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | static void sa_free_node(void **p) |
| 106 | { |
| 107 | OPENSSL_free(p); |
| 108 | } |
| 109 | |
| 110 | static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg) |
| 111 | { |
| 112 | OPENSSL_free(p); |
| 113 | } |
| 114 | |
| 115 | void OPENSSL_SA_free(OPENSSL_SA *sa) |
| 116 | { |
| 117 | sa_doall(sa, &sa_free_node, NULL, NULL); |
| 118 | OPENSSL_free(sa); |
| 119 | } |
| 120 | |
| 121 | void OPENSSL_SA_free_leaves(OPENSSL_SA *sa) |
| 122 | { |
| 123 | sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL); |
| 124 | OPENSSL_free(sa); |
| 125 | } |
| 126 | |
| 127 | /* Wrap this in a structure to avoid compiler warnings */ |
| 128 | struct trampoline_st { |
| 129 | void (*func)(ossl_uintmax_t, void *); |
| 130 | }; |
| 131 | |
| 132 | static void trampoline(ossl_uintmax_t n, void *l, void *arg) |
| 133 | { |
| 134 | ((const struct trampoline_st *)arg)->func(n, l); |
| 135 | } |
| 136 | |
| 137 | void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, |
| 138 | void *)) |
| 139 | { |
| 140 | struct trampoline_st tramp; |
| 141 | |
| 142 | tramp.func = leaf; |
| 143 | if (sa != NULL) |
| 144 | sa_doall(sa, NULL, &trampoline, &tramp); |
| 145 | } |
| 146 | |
| 147 | void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa, |
| 148 | void (*leaf)(ossl_uintmax_t, void *, void *), |
| 149 | void *arg) |
| 150 | { |
| 151 | if (sa != NULL) |
| 152 | sa_doall(sa, NULL, leaf, arg); |
| 153 | } |
| 154 | |
| 155 | size_t OPENSSL_SA_num(const OPENSSL_SA *sa) |
| 156 | { |
| 157 | return sa == NULL ? 0 : sa->nelem; |
| 158 | } |
| 159 | |
| 160 | void *OPENSSL_SA_get(const OPENSSL_SA *sa, ossl_uintmax_t n) |
| 161 | { |
| 162 | int level; |
| 163 | void **p, *r = NULL; |
| 164 | |
| 165 | if (sa == NULL) |
| 166 | return NULL; |
| 167 | |
| 168 | if (n <= sa->top) { |
| 169 | p = sa->nodes; |
| 170 | for (level = sa->levels - 1; p != NULL && level > 0; level--) |
| 171 | p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level)) |
| 172 | & SA_BLOCK_MASK]; |
| 173 | r = p == NULL ? NULL : p[n & SA_BLOCK_MASK]; |
| 174 | } |
| 175 | return r; |
| 176 | } |
| 177 | |
| 178 | static ossl_inline void **alloc_node(void) |
| 179 | { |
| 180 | return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *)); |
| 181 | } |
| 182 | |
| 183 | int OPENSSL_SA_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val) |
| 184 | { |
| 185 | int i, level = 1; |
| 186 | ossl_uintmax_t n = posn; |
| 187 | void **p; |
| 188 | |
| 189 | if (sa == NULL) |
| 190 | return 0; |
| 191 | |
| 192 | for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++) |
| 193 | if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0) |
| 194 | break; |
| 195 | |
| 196 | for (;sa->levels < level; sa->levels++) { |
| 197 | p = alloc_node(); |
| 198 | if (p == NULL) |
| 199 | return 0; |
| 200 | p[0] = sa->nodes; |
| 201 | sa->nodes = p; |
| 202 | } |
| 203 | if (sa->top < posn) |
| 204 | sa->top = posn; |
| 205 | |
| 206 | p = sa->nodes; |
| 207 | for (level = sa->levels - 1; level > 0; level--) { |
| 208 | i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK; |
| 209 | if (p[i] == NULL && (p[i] = alloc_node()) == NULL) |
| 210 | return 0; |
| 211 | p = p[i]; |
| 212 | } |
| 213 | p += posn & SA_BLOCK_MASK; |
| 214 | if (val == NULL && *p != NULL) |
| 215 | sa->nelem--; |
| 216 | else if (val != NULL && *p == NULL) |
| 217 | sa->nelem++; |
| 218 | *p = val; |
| 219 | return 1; |
| 220 | } |
| 221 | |