| 1 | /* |
| 2 | * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2004, EdelKey Project. All Rights Reserved. |
| 4 | * |
| 5 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | * |
| 10 | * Originally written by Christophe Renou and Peter Sylvester, |
| 11 | * for the EdelKey project. |
| 12 | */ |
| 13 | |
| 14 | #ifndef OPENSSL_NO_SRP |
| 15 | # include "internal/cryptlib.h" |
| 16 | # include "crypto/evp.h" |
| 17 | # include <openssl/sha.h> |
| 18 | # include <openssl/srp.h> |
| 19 | # include <openssl/evp.h> |
| 20 | # include <openssl/buffer.h> |
| 21 | # include <openssl/rand.h> |
| 22 | # include <openssl/txt_db.h> |
| 23 | # include <openssl/err.h> |
| 24 | |
| 25 | # define SRP_RANDOM_SALT_LEN 20 |
| 26 | # define MAX_LEN 2500 |
| 27 | |
| 28 | /* |
| 29 | * Note that SRP uses its own variant of base 64 encoding. A different base64 |
| 30 | * alphabet is used and no padding '=' characters are added. Instead we pad to |
| 31 | * the front with 0 bytes and subsequently strip off leading encoded padding. |
| 32 | * This variant is used for compatibility with other SRP implementations - |
| 33 | * notably libsrp, but also others. It is also required for backwards |
| 34 | * compatibility in order to load verifier files from other OpenSSL versions. |
| 35 | */ |
| 36 | |
| 37 | /* |
| 38 | * Convert a base64 string into raw byte array representation. |
| 39 | * Returns the length of the decoded data, or -1 on error. |
| 40 | */ |
| 41 | static int t_fromb64(unsigned char *a, size_t alen, const char *src) |
| 42 | { |
| 43 | EVP_ENCODE_CTX *ctx; |
| 44 | int outl = 0, outl2 = 0; |
| 45 | size_t size, padsize; |
| 46 | const unsigned char *pad = (const unsigned char *)"00" ; |
| 47 | |
| 48 | while (*src == ' ' || *src == '\t' || *src == '\n') |
| 49 | ++src; |
| 50 | size = strlen(src); |
| 51 | padsize = 4 - (size & 3); |
| 52 | padsize &= 3; |
| 53 | |
| 54 | /* Four bytes in src become three bytes output. */ |
| 55 | if (size > INT_MAX || ((size + padsize) / 4) * 3 > alen) |
| 56 | return -1; |
| 57 | |
| 58 | ctx = EVP_ENCODE_CTX_new(); |
| 59 | if (ctx == NULL) |
| 60 | return -1; |
| 61 | |
| 62 | /* |
| 63 | * This should never occur because 1 byte of data always requires 2 bytes of |
| 64 | * encoding, i.e. |
| 65 | * 0 bytes unencoded = 0 bytes encoded |
| 66 | * 1 byte unencoded = 2 bytes encoded |
| 67 | * 2 bytes unencoded = 3 bytes encoded |
| 68 | * 3 bytes unencoded = 4 bytes encoded |
| 69 | * 4 bytes unencoded = 6 bytes encoded |
| 70 | * etc |
| 71 | */ |
| 72 | if (padsize == 3) { |
| 73 | outl = -1; |
| 74 | goto err; |
| 75 | } |
| 76 | |
| 77 | /* Valid padsize values are now 0, 1 or 2 */ |
| 78 | |
| 79 | EVP_DecodeInit(ctx); |
| 80 | evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_USE_SRP_ALPHABET); |
| 81 | |
| 82 | /* Add any encoded padding that is required */ |
| 83 | if (padsize != 0 |
| 84 | && EVP_DecodeUpdate(ctx, a, &outl, pad, padsize) < 0) { |
| 85 | outl = -1; |
| 86 | goto err; |
| 87 | } |
| 88 | if (EVP_DecodeUpdate(ctx, a, &outl2, (const unsigned char *)src, size) < 0) { |
| 89 | outl = -1; |
| 90 | goto err; |
| 91 | } |
| 92 | outl += outl2; |
| 93 | EVP_DecodeFinal(ctx, a + outl, &outl2); |
| 94 | outl += outl2; |
| 95 | |
| 96 | /* Strip off the leading padding */ |
| 97 | if (padsize != 0) { |
| 98 | if ((int)padsize >= outl) { |
| 99 | outl = -1; |
| 100 | goto err; |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * If we added 1 byte of padding prior to encoding then we have 2 bytes |
| 105 | * of "real" data which gets spread across 4 encoded bytes like this: |
| 106 | * (6 bits pad)(2 bits pad | 4 bits data)(6 bits data)(6 bits data) |
| 107 | * So 1 byte of pre-encoding padding results in 1 full byte of encoded |
| 108 | * padding. |
| 109 | * If we added 2 bytes of padding prior to encoding this gets encoded |
| 110 | * as: |
| 111 | * (6 bits pad)(6 bits pad)(4 bits pad | 2 bits data)(6 bits data) |
| 112 | * So 2 bytes of pre-encoding padding results in 2 full bytes of encoded |
| 113 | * padding, i.e. we have to strip the same number of bytes of padding |
| 114 | * from the encoded data as we added to the pre-encoded data. |
| 115 | */ |
| 116 | memmove(a, a + padsize, outl - padsize); |
| 117 | outl -= padsize; |
| 118 | } |
| 119 | |
| 120 | err: |
| 121 | EVP_ENCODE_CTX_free(ctx); |
| 122 | |
| 123 | return outl; |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Convert a raw byte string into a null-terminated base64 ASCII string. |
| 128 | * Returns 1 on success or 0 on error. |
| 129 | */ |
| 130 | static int t_tob64(char *dst, const unsigned char *src, int size) |
| 131 | { |
| 132 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
| 133 | int outl = 0, outl2 = 0; |
| 134 | unsigned char pad[2] = {0, 0}; |
| 135 | size_t leadz = 0; |
| 136 | |
| 137 | if (ctx == NULL) |
| 138 | return 0; |
| 139 | |
| 140 | EVP_EncodeInit(ctx); |
| 141 | evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_NO_NEWLINES |
| 142 | | EVP_ENCODE_CTX_USE_SRP_ALPHABET); |
| 143 | |
| 144 | /* |
| 145 | * We pad at the front with zero bytes until the length is a multiple of 3 |
| 146 | * so that EVP_EncodeUpdate/EVP_EncodeFinal does not add any of its own "=" |
| 147 | * padding |
| 148 | */ |
| 149 | leadz = 3 - (size % 3); |
| 150 | if (leadz != 3 |
| 151 | && !EVP_EncodeUpdate(ctx, (unsigned char *)dst, &outl, pad, |
| 152 | leadz)) { |
| 153 | EVP_ENCODE_CTX_free(ctx); |
| 154 | return 0; |
| 155 | } |
| 156 | |
| 157 | if (!EVP_EncodeUpdate(ctx, (unsigned char *)dst + outl, &outl2, src, |
| 158 | size)) { |
| 159 | EVP_ENCODE_CTX_free(ctx); |
| 160 | return 0; |
| 161 | } |
| 162 | outl += outl2; |
| 163 | EVP_EncodeFinal(ctx, (unsigned char *)dst + outl, &outl2); |
| 164 | outl += outl2; |
| 165 | |
| 166 | /* Strip the encoded padding at the front */ |
| 167 | if (leadz != 3) { |
| 168 | memmove(dst, dst + leadz, outl - leadz); |
| 169 | dst[outl - leadz] = '\0'; |
| 170 | } |
| 171 | |
| 172 | EVP_ENCODE_CTX_free(ctx); |
| 173 | return 1; |
| 174 | } |
| 175 | |
| 176 | void SRP_user_pwd_free(SRP_user_pwd *user_pwd) |
| 177 | { |
| 178 | if (user_pwd == NULL) |
| 179 | return; |
| 180 | BN_free(user_pwd->s); |
| 181 | BN_clear_free(user_pwd->v); |
| 182 | OPENSSL_free(user_pwd->id); |
| 183 | OPENSSL_free(user_pwd->info); |
| 184 | OPENSSL_free(user_pwd); |
| 185 | } |
| 186 | |
| 187 | SRP_user_pwd *SRP_user_pwd_new(void) |
| 188 | { |
| 189 | SRP_user_pwd *ret; |
| 190 | |
| 191 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { |
| 192 | /* SRPerr(SRP_F_SRP_USER_PWD_NEW, ERR_R_MALLOC_FAILURE); */ /*ckerr_ignore*/ |
| 193 | return NULL; |
| 194 | } |
| 195 | ret->N = NULL; |
| 196 | ret->g = NULL; |
| 197 | ret->s = NULL; |
| 198 | ret->v = NULL; |
| 199 | ret->id = NULL; |
| 200 | ret->info = NULL; |
| 201 | return ret; |
| 202 | } |
| 203 | |
| 204 | void SRP_user_pwd_set_gN(SRP_user_pwd *vinfo, const BIGNUM *g, |
| 205 | const BIGNUM *N) |
| 206 | { |
| 207 | vinfo->N = N; |
| 208 | vinfo->g = g; |
| 209 | } |
| 210 | |
| 211 | int SRP_user_pwd_set1_ids(SRP_user_pwd *vinfo, const char *id, |
| 212 | const char *info) |
| 213 | { |
| 214 | OPENSSL_free(vinfo->id); |
| 215 | OPENSSL_free(vinfo->info); |
| 216 | if (id != NULL && NULL == (vinfo->id = OPENSSL_strdup(id))) |
| 217 | return 0; |
| 218 | return (info == NULL || NULL != (vinfo->info = OPENSSL_strdup(info))); |
| 219 | } |
| 220 | |
| 221 | static int SRP_user_pwd_set_sv(SRP_user_pwd *vinfo, const char *s, |
| 222 | const char *v) |
| 223 | { |
| 224 | unsigned char tmp[MAX_LEN]; |
| 225 | int len; |
| 226 | |
| 227 | vinfo->v = NULL; |
| 228 | vinfo->s = NULL; |
| 229 | |
| 230 | len = t_fromb64(tmp, sizeof(tmp), v); |
| 231 | if (len < 0) |
| 232 | return 0; |
| 233 | if (NULL == (vinfo->v = BN_bin2bn(tmp, len, NULL))) |
| 234 | return 0; |
| 235 | len = t_fromb64(tmp, sizeof(tmp), s); |
| 236 | if (len < 0) |
| 237 | goto err; |
| 238 | vinfo->s = BN_bin2bn(tmp, len, NULL); |
| 239 | if (vinfo->s == NULL) |
| 240 | goto err; |
| 241 | return 1; |
| 242 | err: |
| 243 | BN_free(vinfo->v); |
| 244 | vinfo->v = NULL; |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | int SRP_user_pwd_set0_sv(SRP_user_pwd *vinfo, BIGNUM *s, BIGNUM *v) |
| 249 | { |
| 250 | BN_free(vinfo->s); |
| 251 | BN_clear_free(vinfo->v); |
| 252 | vinfo->v = v; |
| 253 | vinfo->s = s; |
| 254 | return (vinfo->s != NULL && vinfo->v != NULL); |
| 255 | } |
| 256 | |
| 257 | static SRP_user_pwd *srp_user_pwd_dup(SRP_user_pwd *src) |
| 258 | { |
| 259 | SRP_user_pwd *ret; |
| 260 | |
| 261 | if (src == NULL) |
| 262 | return NULL; |
| 263 | if ((ret = SRP_user_pwd_new()) == NULL) |
| 264 | return NULL; |
| 265 | |
| 266 | SRP_user_pwd_set_gN(ret, src->g, src->N); |
| 267 | if (!SRP_user_pwd_set1_ids(ret, src->id, src->info) |
| 268 | || !SRP_user_pwd_set0_sv(ret, BN_dup(src->s), BN_dup(src->v))) { |
| 269 | SRP_user_pwd_free(ret); |
| 270 | return NULL; |
| 271 | } |
| 272 | return ret; |
| 273 | } |
| 274 | |
| 275 | SRP_VBASE *SRP_VBASE_new(char *seed_key) |
| 276 | { |
| 277 | SRP_VBASE *vb = OPENSSL_malloc(sizeof(*vb)); |
| 278 | |
| 279 | if (vb == NULL) |
| 280 | return NULL; |
| 281 | if ((vb->users_pwd = sk_SRP_user_pwd_new_null()) == NULL |
| 282 | || (vb->gN_cache = sk_SRP_gN_cache_new_null()) == NULL) { |
| 283 | OPENSSL_free(vb); |
| 284 | return NULL; |
| 285 | } |
| 286 | vb->default_g = NULL; |
| 287 | vb->default_N = NULL; |
| 288 | vb->seed_key = NULL; |
| 289 | if ((seed_key != NULL) && (vb->seed_key = OPENSSL_strdup(seed_key)) == NULL) { |
| 290 | sk_SRP_user_pwd_free(vb->users_pwd); |
| 291 | sk_SRP_gN_cache_free(vb->gN_cache); |
| 292 | OPENSSL_free(vb); |
| 293 | return NULL; |
| 294 | } |
| 295 | return vb; |
| 296 | } |
| 297 | |
| 298 | void SRP_VBASE_free(SRP_VBASE *vb) |
| 299 | { |
| 300 | if (!vb) |
| 301 | return; |
| 302 | sk_SRP_user_pwd_pop_free(vb->users_pwd, SRP_user_pwd_free); |
| 303 | sk_SRP_gN_cache_free(vb->gN_cache); |
| 304 | OPENSSL_free(vb->seed_key); |
| 305 | OPENSSL_free(vb); |
| 306 | } |
| 307 | |
| 308 | static SRP_gN_cache *SRP_gN_new_init(const char *ch) |
| 309 | { |
| 310 | unsigned char tmp[MAX_LEN]; |
| 311 | int len; |
| 312 | SRP_gN_cache *newgN = OPENSSL_malloc(sizeof(*newgN)); |
| 313 | |
| 314 | if (newgN == NULL) |
| 315 | return NULL; |
| 316 | |
| 317 | len = t_fromb64(tmp, sizeof(tmp), ch); |
| 318 | if (len < 0) |
| 319 | goto err; |
| 320 | |
| 321 | if ((newgN->b64_bn = OPENSSL_strdup(ch)) == NULL) |
| 322 | goto err; |
| 323 | |
| 324 | if ((newgN->bn = BN_bin2bn(tmp, len, NULL))) |
| 325 | return newgN; |
| 326 | |
| 327 | OPENSSL_free(newgN->b64_bn); |
| 328 | err: |
| 329 | OPENSSL_free(newgN); |
| 330 | return NULL; |
| 331 | } |
| 332 | |
| 333 | static void SRP_gN_free(SRP_gN_cache *gN_cache) |
| 334 | { |
| 335 | if (gN_cache == NULL) |
| 336 | return; |
| 337 | OPENSSL_free(gN_cache->b64_bn); |
| 338 | BN_free(gN_cache->bn); |
| 339 | OPENSSL_free(gN_cache); |
| 340 | } |
| 341 | |
| 342 | static SRP_gN *SRP_get_gN_by_id(const char *id, STACK_OF(SRP_gN) *gN_tab) |
| 343 | { |
| 344 | int i; |
| 345 | |
| 346 | SRP_gN *gN; |
| 347 | if (gN_tab != NULL) { |
| 348 | for (i = 0; i < sk_SRP_gN_num(gN_tab); i++) { |
| 349 | gN = sk_SRP_gN_value(gN_tab, i); |
| 350 | if (gN && (id == NULL || strcmp(gN->id, id) == 0)) |
| 351 | return gN; |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | return SRP_get_default_gN(id); |
| 356 | } |
| 357 | |
| 358 | static BIGNUM *SRP_gN_place_bn(STACK_OF(SRP_gN_cache) *gN_cache, char *ch) |
| 359 | { |
| 360 | int i; |
| 361 | if (gN_cache == NULL) |
| 362 | return NULL; |
| 363 | |
| 364 | /* search if we have already one... */ |
| 365 | for (i = 0; i < sk_SRP_gN_cache_num(gN_cache); i++) { |
| 366 | SRP_gN_cache *cache = sk_SRP_gN_cache_value(gN_cache, i); |
| 367 | if (strcmp(cache->b64_bn, ch) == 0) |
| 368 | return cache->bn; |
| 369 | } |
| 370 | { /* it is the first time that we find it */ |
| 371 | SRP_gN_cache *newgN = SRP_gN_new_init(ch); |
| 372 | if (newgN) { |
| 373 | if (sk_SRP_gN_cache_insert(gN_cache, newgN, 0) > 0) |
| 374 | return newgN->bn; |
| 375 | SRP_gN_free(newgN); |
| 376 | } |
| 377 | } |
| 378 | return NULL; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * This function parses the verifier file generated by the srp app. |
| 383 | * The format for each entry is: |
| 384 | * V base64(verifier) base64(salt) username gNid userinfo(optional) |
| 385 | * or |
| 386 | * I base64(N) base64(g) |
| 387 | * Note that base64 is the SRP variant of base64 encoding described |
| 388 | * in t_fromb64(). |
| 389 | */ |
| 390 | |
| 391 | int SRP_VBASE_init(SRP_VBASE *vb, char *verifier_file) |
| 392 | { |
| 393 | int error_code; |
| 394 | STACK_OF(SRP_gN) *SRP_gN_tab = sk_SRP_gN_new_null(); |
| 395 | char *last_index = NULL; |
| 396 | int i; |
| 397 | char **pp; |
| 398 | |
| 399 | SRP_gN *gN = NULL; |
| 400 | SRP_user_pwd *user_pwd = NULL; |
| 401 | |
| 402 | TXT_DB *tmpdb = NULL; |
| 403 | BIO *in = BIO_new(BIO_s_file()); |
| 404 | |
| 405 | error_code = SRP_ERR_OPEN_FILE; |
| 406 | |
| 407 | if (in == NULL || BIO_read_filename(in, verifier_file) <= 0) |
| 408 | goto err; |
| 409 | |
| 410 | error_code = SRP_ERR_VBASE_INCOMPLETE_FILE; |
| 411 | |
| 412 | if ((tmpdb = TXT_DB_read(in, DB_NUMBER)) == NULL) |
| 413 | goto err; |
| 414 | |
| 415 | error_code = SRP_ERR_MEMORY; |
| 416 | |
| 417 | if (vb->seed_key) { |
| 418 | last_index = SRP_get_default_gN(NULL)->id; |
| 419 | } |
| 420 | for (i = 0; i < sk_OPENSSL_PSTRING_num(tmpdb->data); i++) { |
| 421 | pp = sk_OPENSSL_PSTRING_value(tmpdb->data, i); |
| 422 | if (pp[DB_srptype][0] == DB_SRP_INDEX) { |
| 423 | /* |
| 424 | * we add this couple in the internal Stack |
| 425 | */ |
| 426 | |
| 427 | if ((gN = OPENSSL_malloc(sizeof(*gN))) == NULL) |
| 428 | goto err; |
| 429 | |
| 430 | if ((gN->id = OPENSSL_strdup(pp[DB_srpid])) == NULL |
| 431 | || (gN->N = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpverifier])) |
| 432 | == NULL |
| 433 | || (gN->g = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpsalt])) |
| 434 | == NULL |
| 435 | || sk_SRP_gN_insert(SRP_gN_tab, gN, 0) == 0) |
| 436 | goto err; |
| 437 | |
| 438 | gN = NULL; |
| 439 | |
| 440 | if (vb->seed_key != NULL) { |
| 441 | last_index = pp[DB_srpid]; |
| 442 | } |
| 443 | } else if (pp[DB_srptype][0] == DB_SRP_VALID) { |
| 444 | /* it is a user .... */ |
| 445 | const SRP_gN *lgN; |
| 446 | |
| 447 | if ((lgN = SRP_get_gN_by_id(pp[DB_srpgN], SRP_gN_tab)) != NULL) { |
| 448 | error_code = SRP_ERR_MEMORY; |
| 449 | if ((user_pwd = SRP_user_pwd_new()) == NULL) |
| 450 | goto err; |
| 451 | |
| 452 | SRP_user_pwd_set_gN(user_pwd, lgN->g, lgN->N); |
| 453 | if (!SRP_user_pwd_set1_ids |
| 454 | (user_pwd, pp[DB_srpid], pp[DB_srpinfo])) |
| 455 | goto err; |
| 456 | |
| 457 | error_code = SRP_ERR_VBASE_BN_LIB; |
| 458 | if (!SRP_user_pwd_set_sv |
| 459 | (user_pwd, pp[DB_srpsalt], pp[DB_srpverifier])) |
| 460 | goto err; |
| 461 | |
| 462 | if (sk_SRP_user_pwd_insert(vb->users_pwd, user_pwd, 0) == 0) |
| 463 | goto err; |
| 464 | user_pwd = NULL; /* abandon responsibility */ |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | if (last_index != NULL) { |
| 470 | /* this means that we want to simulate a default user */ |
| 471 | |
| 472 | if (((gN = SRP_get_gN_by_id(last_index, SRP_gN_tab)) == NULL)) { |
| 473 | error_code = SRP_ERR_VBASE_BN_LIB; |
| 474 | goto err; |
| 475 | } |
| 476 | vb->default_g = gN->g; |
| 477 | vb->default_N = gN->N; |
| 478 | gN = NULL; |
| 479 | } |
| 480 | error_code = SRP_NO_ERROR; |
| 481 | |
| 482 | err: |
| 483 | /* |
| 484 | * there may be still some leaks to fix, if this fails, the application |
| 485 | * terminates most likely |
| 486 | */ |
| 487 | |
| 488 | if (gN != NULL) { |
| 489 | OPENSSL_free(gN->id); |
| 490 | OPENSSL_free(gN); |
| 491 | } |
| 492 | |
| 493 | SRP_user_pwd_free(user_pwd); |
| 494 | |
| 495 | TXT_DB_free(tmpdb); |
| 496 | BIO_free_all(in); |
| 497 | |
| 498 | sk_SRP_gN_free(SRP_gN_tab); |
| 499 | |
| 500 | return error_code; |
| 501 | |
| 502 | } |
| 503 | |
| 504 | static SRP_user_pwd *find_user(SRP_VBASE *vb, char *username) |
| 505 | { |
| 506 | int i; |
| 507 | SRP_user_pwd *user; |
| 508 | |
| 509 | if (vb == NULL) |
| 510 | return NULL; |
| 511 | |
| 512 | for (i = 0; i < sk_SRP_user_pwd_num(vb->users_pwd); i++) { |
| 513 | user = sk_SRP_user_pwd_value(vb->users_pwd, i); |
| 514 | if (strcmp(user->id, username) == 0) |
| 515 | return user; |
| 516 | } |
| 517 | |
| 518 | return NULL; |
| 519 | } |
| 520 | |
| 521 | int SRP_VBASE_add0_user(SRP_VBASE *vb, SRP_user_pwd *user_pwd) |
| 522 | { |
| 523 | if (sk_SRP_user_pwd_push(vb->users_pwd, user_pwd) <= 0) |
| 524 | return 0; |
| 525 | return 1; |
| 526 | } |
| 527 | |
| 528 | # ifndef OPENSSL_NO_DEPRECATED_1_1_0 |
| 529 | /* |
| 530 | * DEPRECATED: use SRP_VBASE_get1_by_user instead. |
| 531 | * This method ignores the configured seed and fails for an unknown user. |
| 532 | * Ownership of the returned pointer is not released to the caller. |
| 533 | * In other words, caller must not free the result. |
| 534 | */ |
| 535 | SRP_user_pwd *SRP_VBASE_get_by_user(SRP_VBASE *vb, char *username) |
| 536 | { |
| 537 | return find_user(vb, username); |
| 538 | } |
| 539 | # endif |
| 540 | |
| 541 | /* |
| 542 | * Ownership of the returned pointer is released to the caller. |
| 543 | * In other words, caller must free the result once done. |
| 544 | */ |
| 545 | SRP_user_pwd *SRP_VBASE_get1_by_user(SRP_VBASE *vb, char *username) |
| 546 | { |
| 547 | SRP_user_pwd *user; |
| 548 | unsigned char digv[SHA_DIGEST_LENGTH]; |
| 549 | unsigned char digs[SHA_DIGEST_LENGTH]; |
| 550 | EVP_MD_CTX *ctxt = NULL; |
| 551 | |
| 552 | if (vb == NULL) |
| 553 | return NULL; |
| 554 | |
| 555 | if ((user = find_user(vb, username)) != NULL) |
| 556 | return srp_user_pwd_dup(user); |
| 557 | |
| 558 | if ((vb->seed_key == NULL) || |
| 559 | (vb->default_g == NULL) || (vb->default_N == NULL)) |
| 560 | return NULL; |
| 561 | |
| 562 | /* if the user is unknown we set parameters as well if we have a seed_key */ |
| 563 | |
| 564 | if ((user = SRP_user_pwd_new()) == NULL) |
| 565 | return NULL; |
| 566 | |
| 567 | SRP_user_pwd_set_gN(user, vb->default_g, vb->default_N); |
| 568 | |
| 569 | if (!SRP_user_pwd_set1_ids(user, username, NULL)) |
| 570 | goto err; |
| 571 | |
| 572 | if (RAND_priv_bytes(digv, SHA_DIGEST_LENGTH) <= 0) |
| 573 | goto err; |
| 574 | ctxt = EVP_MD_CTX_new(); |
| 575 | if (ctxt == NULL |
| 576 | || !EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL) |
| 577 | || !EVP_DigestUpdate(ctxt, vb->seed_key, strlen(vb->seed_key)) |
| 578 | || !EVP_DigestUpdate(ctxt, username, strlen(username)) |
| 579 | || !EVP_DigestFinal_ex(ctxt, digs, NULL)) |
| 580 | goto err; |
| 581 | EVP_MD_CTX_free(ctxt); |
| 582 | ctxt = NULL; |
| 583 | if (SRP_user_pwd_set0_sv(user, |
| 584 | BN_bin2bn(digs, SHA_DIGEST_LENGTH, NULL), |
| 585 | BN_bin2bn(digv, SHA_DIGEST_LENGTH, NULL))) |
| 586 | return user; |
| 587 | |
| 588 | err: |
| 589 | EVP_MD_CTX_free(ctxt); |
| 590 | SRP_user_pwd_free(user); |
| 591 | return NULL; |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * create a verifier (*salt,*verifier,g and N are in base64) |
| 596 | */ |
| 597 | char *SRP_create_verifier(const char *user, const char *pass, char **salt, |
| 598 | char **verifier, const char *N, const char *g) |
| 599 | { |
| 600 | int len; |
| 601 | char *result = NULL, *vf = NULL; |
| 602 | const BIGNUM *N_bn = NULL, *g_bn = NULL; |
| 603 | BIGNUM *N_bn_alloc = NULL, *g_bn_alloc = NULL, *s = NULL, *v = NULL; |
| 604 | unsigned char tmp[MAX_LEN]; |
| 605 | unsigned char tmp2[MAX_LEN]; |
| 606 | char *defgNid = NULL; |
| 607 | int vfsize = 0; |
| 608 | |
| 609 | if ((user == NULL) || |
| 610 | (pass == NULL) || (salt == NULL) || (verifier == NULL)) |
| 611 | goto err; |
| 612 | |
| 613 | if (N) { |
| 614 | if ((len = t_fromb64(tmp, sizeof(tmp), N)) <= 0) |
| 615 | goto err; |
| 616 | N_bn_alloc = BN_bin2bn(tmp, len, NULL); |
| 617 | if (N_bn_alloc == NULL) |
| 618 | goto err; |
| 619 | N_bn = N_bn_alloc; |
| 620 | if ((len = t_fromb64(tmp, sizeof(tmp) ,g)) <= 0) |
| 621 | goto err; |
| 622 | g_bn_alloc = BN_bin2bn(tmp, len, NULL); |
| 623 | if (g_bn_alloc == NULL) |
| 624 | goto err; |
| 625 | g_bn = g_bn_alloc; |
| 626 | defgNid = "*" ; |
| 627 | } else { |
| 628 | SRP_gN *gN = SRP_get_default_gN(g); |
| 629 | if (gN == NULL) |
| 630 | goto err; |
| 631 | N_bn = gN->N; |
| 632 | g_bn = gN->g; |
| 633 | defgNid = gN->id; |
| 634 | } |
| 635 | |
| 636 | if (*salt == NULL) { |
| 637 | if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0) |
| 638 | goto err; |
| 639 | |
| 640 | s = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL); |
| 641 | } else { |
| 642 | if ((len = t_fromb64(tmp2, sizeof(tmp2), *salt)) <= 0) |
| 643 | goto err; |
| 644 | s = BN_bin2bn(tmp2, len, NULL); |
| 645 | } |
| 646 | if (s == NULL) |
| 647 | goto err; |
| 648 | |
| 649 | if (!SRP_create_verifier_BN(user, pass, &s, &v, N_bn, g_bn)) |
| 650 | goto err; |
| 651 | |
| 652 | if (BN_bn2bin(v, tmp) < 0) |
| 653 | goto err; |
| 654 | vfsize = BN_num_bytes(v) * 2; |
| 655 | if (((vf = OPENSSL_malloc(vfsize)) == NULL)) |
| 656 | goto err; |
| 657 | if (!t_tob64(vf, tmp, BN_num_bytes(v))) |
| 658 | goto err; |
| 659 | |
| 660 | if (*salt == NULL) { |
| 661 | char *tmp_salt; |
| 662 | |
| 663 | if ((tmp_salt = OPENSSL_malloc(SRP_RANDOM_SALT_LEN * 2)) == NULL) { |
| 664 | goto err; |
| 665 | } |
| 666 | if (!t_tob64(tmp_salt, tmp2, SRP_RANDOM_SALT_LEN)) { |
| 667 | OPENSSL_free(tmp_salt); |
| 668 | goto err; |
| 669 | } |
| 670 | *salt = tmp_salt; |
| 671 | } |
| 672 | |
| 673 | *verifier = vf; |
| 674 | vf = NULL; |
| 675 | result = defgNid; |
| 676 | |
| 677 | err: |
| 678 | BN_free(N_bn_alloc); |
| 679 | BN_free(g_bn_alloc); |
| 680 | OPENSSL_clear_free(vf, vfsize); |
| 681 | BN_clear_free(s); |
| 682 | BN_clear_free(v); |
| 683 | return result; |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * create a verifier (*salt,*verifier,g and N are BIGNUMs). If *salt != NULL |
| 688 | * then the provided salt will be used. On successful exit *verifier will point |
| 689 | * to a newly allocated BIGNUM containing the verifier and (if a salt was not |
| 690 | * provided) *salt will be populated with a newly allocated BIGNUM containing a |
| 691 | * random salt. |
| 692 | * The caller is responsible for freeing the allocated *salt and *verifier |
| 693 | * BIGNUMS. |
| 694 | */ |
| 695 | int SRP_create_verifier_BN(const char *user, const char *pass, BIGNUM **salt, |
| 696 | BIGNUM **verifier, const BIGNUM *N, |
| 697 | const BIGNUM *g) |
| 698 | { |
| 699 | int result = 0; |
| 700 | BIGNUM *x = NULL; |
| 701 | BN_CTX *bn_ctx = BN_CTX_new(); |
| 702 | unsigned char tmp2[MAX_LEN]; |
| 703 | BIGNUM *salttmp = NULL; |
| 704 | |
| 705 | if ((user == NULL) || |
| 706 | (pass == NULL) || |
| 707 | (salt == NULL) || |
| 708 | (verifier == NULL) || (N == NULL) || (g == NULL) || (bn_ctx == NULL)) |
| 709 | goto err; |
| 710 | |
| 711 | if (*salt == NULL) { |
| 712 | if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0) |
| 713 | goto err; |
| 714 | |
| 715 | salttmp = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL); |
| 716 | if (salttmp == NULL) |
| 717 | goto err; |
| 718 | } else { |
| 719 | salttmp = *salt; |
| 720 | } |
| 721 | |
| 722 | x = SRP_Calc_x(salttmp, user, pass); |
| 723 | if (x == NULL) |
| 724 | goto err; |
| 725 | |
| 726 | *verifier = BN_new(); |
| 727 | if (*verifier == NULL) |
| 728 | goto err; |
| 729 | |
| 730 | if (!BN_mod_exp(*verifier, g, x, N, bn_ctx)) { |
| 731 | BN_clear_free(*verifier); |
| 732 | goto err; |
| 733 | } |
| 734 | |
| 735 | result = 1; |
| 736 | *salt = salttmp; |
| 737 | |
| 738 | err: |
| 739 | if (salt != NULL && *salt != salttmp) |
| 740 | BN_clear_free(salttmp); |
| 741 | BN_clear_free(x); |
| 742 | BN_CTX_free(bn_ctx); |
| 743 | return result; |
| 744 | } |
| 745 | |
| 746 | #endif |
| 747 | |