1 | /* |
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include <stdio.h> |
11 | #include "internal/cryptlib.h" |
12 | #include <openssl/asn1.h> |
13 | #include <openssl/objects.h> |
14 | #include <openssl/x509.h> |
15 | #include <openssl/x509v3.h> |
16 | #include <openssl/core_names.h> |
17 | #include "crypto/x509.h" |
18 | |
19 | int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b) |
20 | { |
21 | int i; |
22 | const X509_CINF *ai, *bi; |
23 | |
24 | ai = &a->cert_info; |
25 | bi = &b->cert_info; |
26 | i = ASN1_INTEGER_cmp(&ai->serialNumber, &bi->serialNumber); |
27 | if (i) |
28 | return i; |
29 | return X509_NAME_cmp(ai->issuer, bi->issuer); |
30 | } |
31 | |
32 | #ifndef OPENSSL_NO_MD5 |
33 | unsigned long X509_issuer_and_serial_hash(X509 *a) |
34 | { |
35 | unsigned long ret = 0; |
36 | EVP_MD_CTX *ctx = EVP_MD_CTX_new(); |
37 | unsigned char md[16]; |
38 | char *f; |
39 | |
40 | if (ctx == NULL) |
41 | goto err; |
42 | f = X509_NAME_oneline(a->cert_info.issuer, NULL, 0); |
43 | if (!EVP_DigestInit_ex(ctx, EVP_md5(), NULL)) |
44 | goto err; |
45 | if (!EVP_DigestUpdate(ctx, (unsigned char *)f, strlen(f))) |
46 | goto err; |
47 | OPENSSL_free(f); |
48 | if (!EVP_DigestUpdate |
49 | (ctx, (unsigned char *)a->cert_info.serialNumber.data, |
50 | (unsigned long)a->cert_info.serialNumber.length)) |
51 | goto err; |
52 | if (!EVP_DigestFinal_ex(ctx, &(md[0]), NULL)) |
53 | goto err; |
54 | ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | |
55 | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) |
56 | ) & 0xffffffffL; |
57 | err: |
58 | EVP_MD_CTX_free(ctx); |
59 | return ret; |
60 | } |
61 | #endif |
62 | |
63 | int X509_issuer_name_cmp(const X509 *a, const X509 *b) |
64 | { |
65 | return X509_NAME_cmp(a->cert_info.issuer, b->cert_info.issuer); |
66 | } |
67 | |
68 | int X509_subject_name_cmp(const X509 *a, const X509 *b) |
69 | { |
70 | return X509_NAME_cmp(a->cert_info.subject, b->cert_info.subject); |
71 | } |
72 | |
73 | int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b) |
74 | { |
75 | return X509_NAME_cmp(a->crl.issuer, b->crl.issuer); |
76 | } |
77 | |
78 | int X509_CRL_match(const X509_CRL *a, const X509_CRL *b) |
79 | { |
80 | return memcmp(a->sha1_hash, b->sha1_hash, 20); |
81 | } |
82 | |
83 | X509_NAME *X509_get_issuer_name(const X509 *a) |
84 | { |
85 | return a->cert_info.issuer; |
86 | } |
87 | |
88 | unsigned long X509_issuer_name_hash(X509 *x) |
89 | { |
90 | return X509_NAME_hash(x->cert_info.issuer); |
91 | } |
92 | |
93 | #ifndef OPENSSL_NO_MD5 |
94 | unsigned long X509_issuer_name_hash_old(X509 *x) |
95 | { |
96 | return X509_NAME_hash_old(x->cert_info.issuer); |
97 | } |
98 | #endif |
99 | |
100 | X509_NAME *X509_get_subject_name(const X509 *a) |
101 | { |
102 | return a->cert_info.subject; |
103 | } |
104 | |
105 | ASN1_INTEGER *X509_get_serialNumber(X509 *a) |
106 | { |
107 | return &a->cert_info.serialNumber; |
108 | } |
109 | |
110 | const ASN1_INTEGER *X509_get0_serialNumber(const X509 *a) |
111 | { |
112 | return &a->cert_info.serialNumber; |
113 | } |
114 | |
115 | unsigned long X509_subject_name_hash(X509 *x) |
116 | { |
117 | return X509_NAME_hash(x->cert_info.subject); |
118 | } |
119 | |
120 | #ifndef OPENSSL_NO_MD5 |
121 | unsigned long X509_subject_name_hash_old(X509 *x) |
122 | { |
123 | return X509_NAME_hash_old(x->cert_info.subject); |
124 | } |
125 | #endif |
126 | |
127 | /* |
128 | * Compare two certificates: they must be identical for this to work. NB: |
129 | * Although "cmp" operations are generally prototyped to take "const" |
130 | * arguments (eg. for use in STACKs), the way X509 handling is - these |
131 | * operations may involve ensuring the hashes are up-to-date and ensuring |
132 | * certain cert information is cached. So this is the point where the |
133 | * "depth-first" constification tree has to halt with an evil cast. |
134 | */ |
135 | int X509_cmp(const X509 *a, const X509 *b) |
136 | { |
137 | int rv; |
138 | /* ensure hash is valid */ |
139 | X509_check_purpose((X509 *)a, -1, 0); |
140 | X509_check_purpose((X509 *)b, -1, 0); |
141 | |
142 | rv = memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH); |
143 | if (rv) |
144 | return rv; |
145 | /* Check for match against stored encoding too */ |
146 | if (!a->cert_info.enc.modified && !b->cert_info.enc.modified) { |
147 | if (a->cert_info.enc.len < b->cert_info.enc.len) |
148 | return -1; |
149 | if (a->cert_info.enc.len > b->cert_info.enc.len) |
150 | return 1; |
151 | return memcmp(a->cert_info.enc.enc, b->cert_info.enc.enc, |
152 | a->cert_info.enc.len); |
153 | } |
154 | return rv; |
155 | } |
156 | |
157 | int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b) |
158 | { |
159 | int ret; |
160 | |
161 | /* Ensure canonical encoding is present and up to date */ |
162 | |
163 | if (!a->canon_enc || a->modified) { |
164 | ret = i2d_X509_NAME((X509_NAME *)a, NULL); |
165 | if (ret < 0) |
166 | return -2; |
167 | } |
168 | |
169 | if (!b->canon_enc || b->modified) { |
170 | ret = i2d_X509_NAME((X509_NAME *)b, NULL); |
171 | if (ret < 0) |
172 | return -2; |
173 | } |
174 | |
175 | ret = a->canon_enclen - b->canon_enclen; |
176 | |
177 | if (ret != 0 || a->canon_enclen == 0) |
178 | return ret; |
179 | |
180 | return memcmp(a->canon_enc, b->canon_enc, a->canon_enclen); |
181 | |
182 | } |
183 | |
184 | unsigned long X509_NAME_hash(X509_NAME *x) |
185 | { |
186 | unsigned long ret = 0; |
187 | unsigned char md[SHA_DIGEST_LENGTH]; |
188 | |
189 | /* Make sure X509_NAME structure contains valid cached encoding */ |
190 | i2d_X509_NAME(x, NULL); |
191 | if (!EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, EVP_sha1(), |
192 | NULL)) |
193 | return 0; |
194 | |
195 | ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | |
196 | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) |
197 | ) & 0xffffffffL; |
198 | return ret; |
199 | } |
200 | |
201 | #ifndef OPENSSL_NO_MD5 |
202 | /* |
203 | * I now DER encode the name and hash it. Since I cache the DER encoding, |
204 | * this is reasonably efficient. |
205 | */ |
206 | |
207 | unsigned long X509_NAME_hash_old(X509_NAME *x) |
208 | { |
209 | EVP_MD *md5 = EVP_MD_fetch(NULL, OSSL_DIGEST_NAME_MD5, "-fips" ); |
210 | EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); |
211 | unsigned long ret = 0; |
212 | unsigned char md[16]; |
213 | |
214 | if (md5 == NULL || md_ctx == NULL) |
215 | goto end; |
216 | |
217 | /* Make sure X509_NAME structure contains valid cached encoding */ |
218 | i2d_X509_NAME(x, NULL); |
219 | if (EVP_DigestInit_ex(md_ctx, md5, NULL) |
220 | && EVP_DigestUpdate(md_ctx, x->bytes->data, x->bytes->length) |
221 | && EVP_DigestFinal_ex(md_ctx, md, NULL)) |
222 | ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | |
223 | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) |
224 | ) & 0xffffffffL; |
225 | |
226 | end: |
227 | EVP_MD_CTX_free(md_ctx); |
228 | EVP_MD_free(md5); |
229 | |
230 | return ret; |
231 | } |
232 | #endif |
233 | |
234 | /* Search a stack of X509 for a match */ |
235 | X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name, |
236 | ASN1_INTEGER *serial) |
237 | { |
238 | int i; |
239 | X509 x, *x509 = NULL; |
240 | |
241 | if (!sk) |
242 | return NULL; |
243 | |
244 | x.cert_info.serialNumber = *serial; |
245 | x.cert_info.issuer = name; |
246 | |
247 | for (i = 0; i < sk_X509_num(sk); i++) { |
248 | x509 = sk_X509_value(sk, i); |
249 | if (X509_issuer_and_serial_cmp(x509, &x) == 0) |
250 | return x509; |
251 | } |
252 | return NULL; |
253 | } |
254 | |
255 | X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name) |
256 | { |
257 | X509 *x509; |
258 | int i; |
259 | |
260 | for (i = 0; i < sk_X509_num(sk); i++) { |
261 | x509 = sk_X509_value(sk, i); |
262 | if (X509_NAME_cmp(X509_get_subject_name(x509), name) == 0) |
263 | return x509; |
264 | } |
265 | return NULL; |
266 | } |
267 | |
268 | EVP_PKEY *X509_get0_pubkey(const X509 *x) |
269 | { |
270 | if (x == NULL) |
271 | return NULL; |
272 | return X509_PUBKEY_get0(x->cert_info.key); |
273 | } |
274 | |
275 | EVP_PKEY *X509_get_pubkey(X509 *x) |
276 | { |
277 | if (x == NULL) |
278 | return NULL; |
279 | return X509_PUBKEY_get(x->cert_info.key); |
280 | } |
281 | |
282 | int X509_check_private_key(const X509 *x, const EVP_PKEY *k) |
283 | { |
284 | const EVP_PKEY *xk; |
285 | int ret; |
286 | |
287 | xk = X509_get0_pubkey(x); |
288 | |
289 | if (xk) |
290 | ret = EVP_PKEY_cmp(xk, k); |
291 | else |
292 | ret = -2; |
293 | |
294 | switch (ret) { |
295 | case 1: |
296 | break; |
297 | case 0: |
298 | X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_KEY_VALUES_MISMATCH); |
299 | break; |
300 | case -1: |
301 | X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_KEY_TYPE_MISMATCH); |
302 | break; |
303 | case -2: |
304 | X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_UNKNOWN_KEY_TYPE); |
305 | } |
306 | if (ret > 0) |
307 | return 1; |
308 | return 0; |
309 | } |
310 | |
311 | /* |
312 | * Check a suite B algorithm is permitted: pass in a public key and the NID |
313 | * of its signature (or 0 if no signature). The pflags is a pointer to a |
314 | * flags field which must contain the suite B verification flags. |
315 | */ |
316 | |
317 | #ifndef OPENSSL_NO_EC |
318 | |
319 | static int check_suite_b(EVP_PKEY *pkey, int sign_nid, unsigned long *pflags) |
320 | { |
321 | const EC_GROUP *grp = NULL; |
322 | int curve_nid; |
323 | if (pkey && EVP_PKEY_id(pkey) == EVP_PKEY_EC) |
324 | grp = EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey)); |
325 | if (!grp) |
326 | return X509_V_ERR_SUITE_B_INVALID_ALGORITHM; |
327 | curve_nid = EC_GROUP_get_curve_name(grp); |
328 | /* Check curve is consistent with LOS */ |
329 | if (curve_nid == NID_secp384r1) { /* P-384 */ |
330 | /* |
331 | * Check signature algorithm is consistent with curve. |
332 | */ |
333 | if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA384) |
334 | return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; |
335 | if (!(*pflags & X509_V_FLAG_SUITEB_192_LOS)) |
336 | return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; |
337 | /* If we encounter P-384 we cannot use P-256 later */ |
338 | *pflags &= ~X509_V_FLAG_SUITEB_128_LOS_ONLY; |
339 | } else if (curve_nid == NID_X9_62_prime256v1) { /* P-256 */ |
340 | if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA256) |
341 | return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; |
342 | if (!(*pflags & X509_V_FLAG_SUITEB_128_LOS_ONLY)) |
343 | return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; |
344 | } else |
345 | return X509_V_ERR_SUITE_B_INVALID_CURVE; |
346 | |
347 | return X509_V_OK; |
348 | } |
349 | |
350 | int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, |
351 | unsigned long flags) |
352 | { |
353 | int rv, i, sign_nid; |
354 | EVP_PKEY *pk; |
355 | unsigned long tflags = flags; |
356 | |
357 | if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) |
358 | return X509_V_OK; |
359 | |
360 | /* If no EE certificate passed in must be first in chain */ |
361 | if (x == NULL) { |
362 | x = sk_X509_value(chain, 0); |
363 | i = 1; |
364 | } else |
365 | i = 0; |
366 | |
367 | pk = X509_get0_pubkey(x); |
368 | |
369 | /* |
370 | * With DANE-EE(3) success, or DANE-EE(3)/PKIX-EE(1) failure we don't build |
371 | * a chain all, just report trust success or failure, but must also report |
372 | * Suite-B errors if applicable. This is indicated via a NULL chain |
373 | * pointer. All we need to do is check the leaf key algorithm. |
374 | */ |
375 | if (chain == NULL) |
376 | return check_suite_b(pk, -1, &tflags); |
377 | |
378 | if (X509_get_version(x) != 2) { |
379 | rv = X509_V_ERR_SUITE_B_INVALID_VERSION; |
380 | /* Correct error depth */ |
381 | i = 0; |
382 | goto end; |
383 | } |
384 | |
385 | /* Check EE key only */ |
386 | rv = check_suite_b(pk, -1, &tflags); |
387 | if (rv != X509_V_OK) { |
388 | /* Correct error depth */ |
389 | i = 0; |
390 | goto end; |
391 | } |
392 | for (; i < sk_X509_num(chain); i++) { |
393 | sign_nid = X509_get_signature_nid(x); |
394 | x = sk_X509_value(chain, i); |
395 | if (X509_get_version(x) != 2) { |
396 | rv = X509_V_ERR_SUITE_B_INVALID_VERSION; |
397 | goto end; |
398 | } |
399 | pk = X509_get0_pubkey(x); |
400 | rv = check_suite_b(pk, sign_nid, &tflags); |
401 | if (rv != X509_V_OK) |
402 | goto end; |
403 | } |
404 | |
405 | /* Final check: root CA signature */ |
406 | rv = check_suite_b(pk, X509_get_signature_nid(x), &tflags); |
407 | end: |
408 | if (rv != X509_V_OK) { |
409 | /* Invalid signature or LOS errors are for previous cert */ |
410 | if ((rv == X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM |
411 | || rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED) && i) |
412 | i--; |
413 | /* |
414 | * If we have LOS error and flags changed then we are signing P-384 |
415 | * with P-256. Use more meaningful error. |
416 | */ |
417 | if (rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED && flags != tflags) |
418 | rv = X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256; |
419 | if (perror_depth) |
420 | *perror_depth = i; |
421 | } |
422 | return rv; |
423 | } |
424 | |
425 | int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) |
426 | { |
427 | int sign_nid; |
428 | if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) |
429 | return X509_V_OK; |
430 | sign_nid = OBJ_obj2nid(crl->crl.sig_alg.algorithm); |
431 | return check_suite_b(pk, sign_nid, &flags); |
432 | } |
433 | |
434 | #else |
435 | int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, |
436 | unsigned long flags) |
437 | { |
438 | return 0; |
439 | } |
440 | |
441 | int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) |
442 | { |
443 | return 0; |
444 | } |
445 | |
446 | #endif |
447 | /* |
448 | * Not strictly speaking an "up_ref" as a STACK doesn't have a reference |
449 | * count but it has the same effect by duping the STACK and upping the ref of |
450 | * each X509 structure. |
451 | */ |
452 | STACK_OF(X509) *X509_chain_up_ref(STACK_OF(X509) *chain) |
453 | { |
454 | STACK_OF(X509) *ret; |
455 | int i; |
456 | ret = sk_X509_dup(chain); |
457 | if (ret == NULL) |
458 | return NULL; |
459 | for (i = 0; i < sk_X509_num(ret); i++) { |
460 | X509 *x = sk_X509_value(ret, i); |
461 | if (!X509_up_ref(x)) |
462 | goto err; |
463 | } |
464 | return ret; |
465 | err: |
466 | while (i-- > 0) |
467 | X509_free (sk_X509_value(ret, i)); |
468 | sk_X509_free(ret); |
469 | return NULL; |
470 | } |
471 | |