| 1 | /* |
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <time.h> |
| 12 | #include <errno.h> |
| 13 | #include <limits.h> |
| 14 | |
| 15 | #include "crypto/ctype.h" |
| 16 | #include "internal/cryptlib.h" |
| 17 | #include <openssl/crypto.h> |
| 18 | #include <openssl/buffer.h> |
| 19 | #include <openssl/evp.h> |
| 20 | #include <openssl/asn1.h> |
| 21 | #include <openssl/x509.h> |
| 22 | #include <openssl/x509v3.h> |
| 23 | #include <openssl/objects.h> |
| 24 | #include "internal/dane.h" |
| 25 | #include "crypto/x509.h" |
| 26 | #include "x509_local.h" |
| 27 | |
| 28 | /* CRL score values */ |
| 29 | |
| 30 | /* No unhandled critical extensions */ |
| 31 | |
| 32 | #define CRL_SCORE_NOCRITICAL 0x100 |
| 33 | |
| 34 | /* certificate is within CRL scope */ |
| 35 | |
| 36 | #define CRL_SCORE_SCOPE 0x080 |
| 37 | |
| 38 | /* CRL times valid */ |
| 39 | |
| 40 | #define CRL_SCORE_TIME 0x040 |
| 41 | |
| 42 | /* Issuer name matches certificate */ |
| 43 | |
| 44 | #define CRL_SCORE_ISSUER_NAME 0x020 |
| 45 | |
| 46 | /* If this score or above CRL is probably valid */ |
| 47 | |
| 48 | #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE) |
| 49 | |
| 50 | /* CRL issuer is certificate issuer */ |
| 51 | |
| 52 | #define CRL_SCORE_ISSUER_CERT 0x018 |
| 53 | |
| 54 | /* CRL issuer is on certificate path */ |
| 55 | |
| 56 | #define CRL_SCORE_SAME_PATH 0x008 |
| 57 | |
| 58 | /* CRL issuer matches CRL AKID */ |
| 59 | |
| 60 | #define CRL_SCORE_AKID 0x004 |
| 61 | |
| 62 | /* Have a delta CRL with valid times */ |
| 63 | |
| 64 | #define CRL_SCORE_TIME_DELTA 0x002 |
| 65 | |
| 66 | static int build_chain(X509_STORE_CTX *ctx); |
| 67 | static int verify_chain(X509_STORE_CTX *ctx); |
| 68 | static int dane_verify(X509_STORE_CTX *ctx); |
| 69 | static int null_callback(int ok, X509_STORE_CTX *e); |
| 70 | static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); |
| 71 | static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); |
| 72 | static int check_chain_extensions(X509_STORE_CTX *ctx); |
| 73 | static int check_name_constraints(X509_STORE_CTX *ctx); |
| 74 | static int check_id(X509_STORE_CTX *ctx); |
| 75 | static int check_trust(X509_STORE_CTX *ctx, int num_untrusted); |
| 76 | static int check_revocation(X509_STORE_CTX *ctx); |
| 77 | static int check_cert(X509_STORE_CTX *ctx); |
| 78 | static int check_policy(X509_STORE_CTX *ctx); |
| 79 | static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x); |
| 80 | static int check_dane_issuer(X509_STORE_CTX *ctx, int depth); |
| 81 | static int check_key_level(X509_STORE_CTX *ctx, X509 *cert); |
| 82 | static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert); |
| 83 | |
| 84 | static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, |
| 85 | unsigned int *preasons, X509_CRL *crl, X509 *x); |
| 86 | static int get_crl_delta(X509_STORE_CTX *ctx, |
| 87 | X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x); |
| 88 | static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, |
| 89 | int *pcrl_score, X509_CRL *base, |
| 90 | STACK_OF(X509_CRL) *crls); |
| 91 | static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, |
| 92 | int *pcrl_score); |
| 93 | static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, |
| 94 | unsigned int *preasons); |
| 95 | static int check_crl_path(X509_STORE_CTX *ctx, X509 *x); |
| 96 | static int check_crl_chain(X509_STORE_CTX *ctx, |
| 97 | STACK_OF(X509) *cert_path, |
| 98 | STACK_OF(X509) *crl_path); |
| 99 | |
| 100 | static int internal_verify(X509_STORE_CTX *ctx); |
| 101 | |
| 102 | static int null_callback(int ok, X509_STORE_CTX *e) |
| 103 | { |
| 104 | return ok; |
| 105 | } |
| 106 | |
| 107 | /* Return 1 is a certificate is self signed */ |
| 108 | static int cert_self_signed(X509 *x) |
| 109 | { |
| 110 | /* |
| 111 | * FIXME: x509v3_cache_extensions() needs to detect more failures and not |
| 112 | * set EXFLAG_SET when that happens. Especially, if the failures are |
| 113 | * parse errors, rather than memory pressure! |
| 114 | */ |
| 115 | X509_check_purpose(x, -1, 0); |
| 116 | if (x->ex_flags & EXFLAG_SS) |
| 117 | return 1; |
| 118 | else |
| 119 | return 0; |
| 120 | } |
| 121 | |
| 122 | /* Given a certificate try and find an exact match in the store */ |
| 123 | |
| 124 | static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) |
| 125 | { |
| 126 | STACK_OF(X509) *certs; |
| 127 | X509 *xtmp = NULL; |
| 128 | int i; |
| 129 | /* Lookup all certs with matching subject name */ |
| 130 | certs = ctx->lookup_certs(ctx, X509_get_subject_name(x)); |
| 131 | if (certs == NULL) |
| 132 | return NULL; |
| 133 | /* Look for exact match */ |
| 134 | for (i = 0; i < sk_X509_num(certs); i++) { |
| 135 | xtmp = sk_X509_value(certs, i); |
| 136 | if (!X509_cmp(xtmp, x)) |
| 137 | break; |
| 138 | } |
| 139 | if (i < sk_X509_num(certs)) |
| 140 | X509_up_ref(xtmp); |
| 141 | else |
| 142 | xtmp = NULL; |
| 143 | sk_X509_pop_free(certs, X509_free); |
| 144 | return xtmp; |
| 145 | } |
| 146 | |
| 147 | /*- |
| 148 | * Inform the verify callback of an error. |
| 149 | * If B<x> is not NULL it is the error cert, otherwise use the chain cert at |
| 150 | * B<depth>. |
| 151 | * If B<err> is not X509_V_OK, that's the error value, otherwise leave |
| 152 | * unchanged (presumably set by the caller). |
| 153 | * |
| 154 | * Returns 0 to abort verification with an error, non-zero to continue. |
| 155 | */ |
| 156 | static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err) |
| 157 | { |
| 158 | ctx->error_depth = depth; |
| 159 | ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth); |
| 160 | if (err != X509_V_OK) |
| 161 | ctx->error = err; |
| 162 | return ctx->verify_cb(0, ctx); |
| 163 | } |
| 164 | |
| 165 | /*- |
| 166 | * Inform the verify callback of an error, CRL-specific variant. Here, the |
| 167 | * error depth and certificate are already set, we just specify the error |
| 168 | * number. |
| 169 | * |
| 170 | * Returns 0 to abort verification with an error, non-zero to continue. |
| 171 | */ |
| 172 | static int verify_cb_crl(X509_STORE_CTX *ctx, int err) |
| 173 | { |
| 174 | ctx->error = err; |
| 175 | return ctx->verify_cb(0, ctx); |
| 176 | } |
| 177 | |
| 178 | static int check_auth_level(X509_STORE_CTX *ctx) |
| 179 | { |
| 180 | int i; |
| 181 | int num = sk_X509_num(ctx->chain); |
| 182 | |
| 183 | if (ctx->param->auth_level <= 0) |
| 184 | return 1; |
| 185 | |
| 186 | for (i = 0; i < num; ++i) { |
| 187 | X509 *cert = sk_X509_value(ctx->chain, i); |
| 188 | |
| 189 | /* |
| 190 | * We've already checked the security of the leaf key, so here we only |
| 191 | * check the security of issuer keys. |
| 192 | */ |
| 193 | if (i > 0 && !check_key_level(ctx, cert) && |
| 194 | verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0) |
| 195 | return 0; |
| 196 | /* |
| 197 | * We also check the signature algorithm security of all certificates |
| 198 | * except those of the trust anchor at index num-1. |
| 199 | */ |
| 200 | if (i < num - 1 && !check_sig_level(ctx, cert) && |
| 201 | verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0) |
| 202 | return 0; |
| 203 | } |
| 204 | return 1; |
| 205 | } |
| 206 | |
| 207 | static int verify_chain(X509_STORE_CTX *ctx) |
| 208 | { |
| 209 | int err; |
| 210 | int ok; |
| 211 | |
| 212 | /* |
| 213 | * Before either returning with an error, or continuing with CRL checks, |
| 214 | * instantiate chain public key parameters. |
| 215 | */ |
| 216 | if ((ok = build_chain(ctx)) == 0 || |
| 217 | (ok = check_chain_extensions(ctx)) == 0 || |
| 218 | (ok = check_auth_level(ctx)) == 0 || |
| 219 | (ok = check_id(ctx)) == 0 || 1) |
| 220 | X509_get_pubkey_parameters(NULL, ctx->chain); |
| 221 | if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0) |
| 222 | return ok; |
| 223 | |
| 224 | err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain, |
| 225 | ctx->param->flags); |
| 226 | if (err != X509_V_OK) { |
| 227 | if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0) |
| 228 | return ok; |
| 229 | } |
| 230 | |
| 231 | /* Verify chain signatures and expiration times */ |
| 232 | ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx); |
| 233 | if (!ok) |
| 234 | return ok; |
| 235 | |
| 236 | if ((ok = check_name_constraints(ctx)) == 0) |
| 237 | return ok; |
| 238 | |
| 239 | #ifndef OPENSSL_NO_RFC3779 |
| 240 | /* RFC 3779 path validation, now that CRL check has been done */ |
| 241 | if ((ok = X509v3_asid_validate_path(ctx)) == 0) |
| 242 | return ok; |
| 243 | if ((ok = X509v3_addr_validate_path(ctx)) == 0) |
| 244 | return ok; |
| 245 | #endif |
| 246 | |
| 247 | /* If we get this far evaluate policies */ |
| 248 | if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK) |
| 249 | ok = ctx->check_policy(ctx); |
| 250 | return ok; |
| 251 | } |
| 252 | |
| 253 | int X509_verify_cert(X509_STORE_CTX *ctx) |
| 254 | { |
| 255 | SSL_DANE *dane = ctx->dane; |
| 256 | int ret; |
| 257 | |
| 258 | if (ctx->cert == NULL) { |
| 259 | X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); |
| 260 | ctx->error = X509_V_ERR_INVALID_CALL; |
| 261 | return -1; |
| 262 | } |
| 263 | |
| 264 | if (ctx->chain != NULL) { |
| 265 | /* |
| 266 | * This X509_STORE_CTX has already been used to verify a cert. We |
| 267 | * cannot do another one. |
| 268 | */ |
| 269 | X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 270 | ctx->error = X509_V_ERR_INVALID_CALL; |
| 271 | return -1; |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * first we make sure the chain we are going to build is present and that |
| 276 | * the first entry is in place |
| 277 | */ |
| 278 | if (((ctx->chain = sk_X509_new_null()) == NULL) || |
| 279 | (!sk_X509_push(ctx->chain, ctx->cert))) { |
| 280 | X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); |
| 281 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 282 | return -1; |
| 283 | } |
| 284 | X509_up_ref(ctx->cert); |
| 285 | ctx->num_untrusted = 1; |
| 286 | |
| 287 | /* If the peer's public key is too weak, we can stop early. */ |
| 288 | if (!check_key_level(ctx, ctx->cert) && |
| 289 | !verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL)) |
| 290 | return 0; |
| 291 | |
| 292 | if (DANETLS_ENABLED(dane)) |
| 293 | ret = dane_verify(ctx); |
| 294 | else |
| 295 | ret = verify_chain(ctx); |
| 296 | |
| 297 | /* |
| 298 | * Safety-net. If we are returning an error, we must also set ctx->error, |
| 299 | * so that the chain is not considered verified should the error be ignored |
| 300 | * (e.g. TLS with SSL_VERIFY_NONE). |
| 301 | */ |
| 302 | if (ret <= 0 && ctx->error == X509_V_OK) |
| 303 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 304 | return ret; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Given a STACK_OF(X509) find the issuer of cert (if any) |
| 309 | */ |
| 310 | static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) |
| 311 | { |
| 312 | int i; |
| 313 | X509 *issuer, *rv = NULL; |
| 314 | |
| 315 | for (i = 0; i < sk_X509_num(sk); i++) { |
| 316 | issuer = sk_X509_value(sk, i); |
| 317 | if (ctx->check_issued(ctx, x, issuer)) { |
| 318 | rv = issuer; |
| 319 | if (x509_check_cert_time(ctx, rv, -1)) |
| 320 | break; |
| 321 | } |
| 322 | } |
| 323 | return rv; |
| 324 | } |
| 325 | |
| 326 | /* Given a possible certificate and issuer check them */ |
| 327 | |
| 328 | static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer) |
| 329 | { |
| 330 | int ret; |
| 331 | if (x == issuer) |
| 332 | return cert_self_signed(x); |
| 333 | ret = X509_check_issued(issuer, x); |
| 334 | if (ret == X509_V_OK) { |
| 335 | int i; |
| 336 | X509 *ch; |
| 337 | /* Special case: single self signed certificate */ |
| 338 | if (cert_self_signed(x) && sk_X509_num(ctx->chain) == 1) |
| 339 | return 1; |
| 340 | for (i = 0; i < sk_X509_num(ctx->chain); i++) { |
| 341 | ch = sk_X509_value(ctx->chain, i); |
| 342 | if (ch == issuer || !X509_cmp(ch, issuer)) { |
| 343 | ret = X509_V_ERR_PATH_LOOP; |
| 344 | break; |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | return (ret == X509_V_OK); |
| 350 | } |
| 351 | |
| 352 | /* Alternative lookup method: look from a STACK stored in other_ctx */ |
| 353 | |
| 354 | static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x) |
| 355 | { |
| 356 | *issuer = find_issuer(ctx, ctx->other_ctx, x); |
| 357 | if (*issuer) { |
| 358 | X509_up_ref(*issuer); |
| 359 | return 1; |
| 360 | } else |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx, X509_NAME *nm) |
| 365 | { |
| 366 | STACK_OF(X509) *sk = NULL; |
| 367 | X509 *x; |
| 368 | int i; |
| 369 | |
| 370 | for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) { |
| 371 | x = sk_X509_value(ctx->other_ctx, i); |
| 372 | if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) { |
| 373 | if (sk == NULL) |
| 374 | sk = sk_X509_new_null(); |
| 375 | if (sk == NULL || sk_X509_push(sk, x) == 0) { |
| 376 | sk_X509_pop_free(sk, X509_free); |
| 377 | X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_MALLOC_FAILURE); |
| 378 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 379 | return NULL; |
| 380 | } |
| 381 | X509_up_ref(x); |
| 382 | } |
| 383 | } |
| 384 | return sk; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Check EE or CA certificate purpose. For trusted certificates explicit local |
| 389 | * auxiliary trust can be used to override EKU-restrictions. |
| 390 | */ |
| 391 | static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth, |
| 392 | int must_be_ca) |
| 393 | { |
| 394 | int tr_ok = X509_TRUST_UNTRUSTED; |
| 395 | |
| 396 | /* |
| 397 | * For trusted certificates we want to see whether any auxiliary trust |
| 398 | * settings trump the purpose constraints. |
| 399 | * |
| 400 | * This is complicated by the fact that the trust ordinals in |
| 401 | * ctx->param->trust are entirely independent of the purpose ordinals in |
| 402 | * ctx->param->purpose! |
| 403 | * |
| 404 | * What connects them is their mutual initialization via calls from |
| 405 | * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets |
| 406 | * related values of both param->trust and param->purpose. It is however |
| 407 | * typically possible to infer associated trust values from a purpose value |
| 408 | * via the X509_PURPOSE API. |
| 409 | * |
| 410 | * Therefore, we can only check for trust overrides when the purpose we're |
| 411 | * checking is the same as ctx->param->purpose and ctx->param->trust is |
| 412 | * also set. |
| 413 | */ |
| 414 | if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose) |
| 415 | tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT); |
| 416 | |
| 417 | switch (tr_ok) { |
| 418 | case X509_TRUST_TRUSTED: |
| 419 | return 1; |
| 420 | case X509_TRUST_REJECTED: |
| 421 | break; |
| 422 | default: |
| 423 | switch (X509_check_purpose(x, purpose, must_be_ca > 0)) { |
| 424 | case 1: |
| 425 | return 1; |
| 426 | case 0: |
| 427 | break; |
| 428 | default: |
| 429 | if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0) |
| 430 | return 1; |
| 431 | } |
| 432 | break; |
| 433 | } |
| 434 | |
| 435 | return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE); |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * Check a certificate chains extensions for consistency with the supplied |
| 440 | * purpose |
| 441 | */ |
| 442 | |
| 443 | static int check_chain_extensions(X509_STORE_CTX *ctx) |
| 444 | { |
| 445 | int i, must_be_ca, plen = 0; |
| 446 | X509 *x; |
| 447 | int proxy_path_length = 0; |
| 448 | int purpose; |
| 449 | int allow_proxy_certs; |
| 450 | int num = sk_X509_num(ctx->chain); |
| 451 | |
| 452 | /*- |
| 453 | * must_be_ca can have 1 of 3 values: |
| 454 | * -1: we accept both CA and non-CA certificates, to allow direct |
| 455 | * use of self-signed certificates (which are marked as CA). |
| 456 | * 0: we only accept non-CA certificates. This is currently not |
| 457 | * used, but the possibility is present for future extensions. |
| 458 | * 1: we only accept CA certificates. This is currently used for |
| 459 | * all certificates in the chain except the leaf certificate. |
| 460 | */ |
| 461 | must_be_ca = -1; |
| 462 | |
| 463 | /* CRL path validation */ |
| 464 | if (ctx->parent) { |
| 465 | allow_proxy_certs = 0; |
| 466 | purpose = X509_PURPOSE_CRL_SIGN; |
| 467 | } else { |
| 468 | allow_proxy_certs = |
| 469 | ! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS); |
| 470 | purpose = ctx->param->purpose; |
| 471 | } |
| 472 | |
| 473 | for (i = 0; i < num; i++) { |
| 474 | int ret; |
| 475 | x = sk_X509_value(ctx->chain, i); |
| 476 | if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) |
| 477 | && (x->ex_flags & EXFLAG_CRITICAL)) { |
| 478 | if (!verify_cb_cert(ctx, x, i, |
| 479 | X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION)) |
| 480 | return 0; |
| 481 | } |
| 482 | if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) { |
| 483 | if (!verify_cb_cert(ctx, x, i, |
| 484 | X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED)) |
| 485 | return 0; |
| 486 | } |
| 487 | ret = X509_check_ca(x); |
| 488 | switch (must_be_ca) { |
| 489 | case -1: |
| 490 | if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) |
| 491 | && (ret != 1) && (ret != 0)) { |
| 492 | ret = 0; |
| 493 | ctx->error = X509_V_ERR_INVALID_CA; |
| 494 | } else |
| 495 | ret = 1; |
| 496 | break; |
| 497 | case 0: |
| 498 | if (ret != 0) { |
| 499 | ret = 0; |
| 500 | ctx->error = X509_V_ERR_INVALID_NON_CA; |
| 501 | } else |
| 502 | ret = 1; |
| 503 | break; |
| 504 | default: |
| 505 | /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */ |
| 506 | if ((ret == 0) |
| 507 | || ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT) |
| 508 | && (ret != 1))) { |
| 509 | ret = 0; |
| 510 | ctx->error = X509_V_ERR_INVALID_CA; |
| 511 | } else |
| 512 | ret = 1; |
| 513 | break; |
| 514 | } |
| 515 | if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK)) |
| 516 | return 0; |
| 517 | /* check_purpose() makes the callback as needed */ |
| 518 | if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca)) |
| 519 | return 0; |
| 520 | /* Check pathlen */ |
| 521 | if ((i > 1) && (x->ex_pathlen != -1) |
| 522 | && (plen > (x->ex_pathlen + proxy_path_length))) { |
| 523 | if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED)) |
| 524 | return 0; |
| 525 | } |
| 526 | /* Increment path length if not a self issued intermediate CA */ |
| 527 | if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0) |
| 528 | plen++; |
| 529 | /* |
| 530 | * If this certificate is a proxy certificate, the next certificate |
| 531 | * must be another proxy certificate or a EE certificate. If not, |
| 532 | * the next certificate must be a CA certificate. |
| 533 | */ |
| 534 | if (x->ex_flags & EXFLAG_PROXY) { |
| 535 | /* |
| 536 | * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint |
| 537 | * is less than max_path_length, the former should be copied to |
| 538 | * the latter, and 4.1.4 (a) stipulates that max_path_length |
| 539 | * should be verified to be larger than zero and decrement it. |
| 540 | * |
| 541 | * Because we're checking the certs in the reverse order, we start |
| 542 | * with verifying that proxy_path_length isn't larger than pcPLC, |
| 543 | * and copy the latter to the former if it is, and finally, |
| 544 | * increment proxy_path_length. |
| 545 | */ |
| 546 | if (x->ex_pcpathlen != -1) { |
| 547 | if (proxy_path_length > x->ex_pcpathlen) { |
| 548 | if (!verify_cb_cert(ctx, x, i, |
| 549 | X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED)) |
| 550 | return 0; |
| 551 | } |
| 552 | proxy_path_length = x->ex_pcpathlen; |
| 553 | } |
| 554 | proxy_path_length++; |
| 555 | must_be_ca = 0; |
| 556 | } else |
| 557 | must_be_ca = 1; |
| 558 | } |
| 559 | return 1; |
| 560 | } |
| 561 | |
| 562 | static int has_san_id(X509 *x, int gtype) |
| 563 | { |
| 564 | int i; |
| 565 | int ret = 0; |
| 566 | GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); |
| 567 | |
| 568 | if (gs == NULL) |
| 569 | return 0; |
| 570 | |
| 571 | for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) { |
| 572 | GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i); |
| 573 | |
| 574 | if (g->type == gtype) { |
| 575 | ret = 1; |
| 576 | break; |
| 577 | } |
| 578 | } |
| 579 | GENERAL_NAMES_free(gs); |
| 580 | return ret; |
| 581 | } |
| 582 | |
| 583 | static int check_name_constraints(X509_STORE_CTX *ctx) |
| 584 | { |
| 585 | int i; |
| 586 | |
| 587 | /* Check name constraints for all certificates */ |
| 588 | for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) { |
| 589 | X509 *x = sk_X509_value(ctx->chain, i); |
| 590 | int j; |
| 591 | |
| 592 | /* Ignore self issued certs unless last in chain */ |
| 593 | if (i && (x->ex_flags & EXFLAG_SI)) |
| 594 | continue; |
| 595 | |
| 596 | /* |
| 597 | * Proxy certificates policy has an extra constraint, where the |
| 598 | * certificate subject MUST be the issuer with a single CN entry |
| 599 | * added. |
| 600 | * (RFC 3820: 3.4, 4.1.3 (a)(4)) |
| 601 | */ |
| 602 | if (x->ex_flags & EXFLAG_PROXY) { |
| 603 | X509_NAME *tmpsubject = X509_get_subject_name(x); |
| 604 | X509_NAME *tmpissuer = X509_get_issuer_name(x); |
| 605 | X509_NAME_ENTRY *tmpentry = NULL; |
| 606 | int last_object_nid = 0; |
| 607 | int err = X509_V_OK; |
| 608 | int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1; |
| 609 | |
| 610 | /* Check that there are at least two RDNs */ |
| 611 | if (last_object_loc < 1) { |
| 612 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| 613 | goto proxy_name_done; |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * Check that there is exactly one more RDN in subject as |
| 618 | * there is in issuer. |
| 619 | */ |
| 620 | if (X509_NAME_entry_count(tmpsubject) |
| 621 | != X509_NAME_entry_count(tmpissuer) + 1) { |
| 622 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| 623 | goto proxy_name_done; |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * Check that the last subject component isn't part of a |
| 628 | * multivalued RDN |
| 629 | */ |
| 630 | if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, |
| 631 | last_object_loc)) |
| 632 | == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, |
| 633 | last_object_loc - 1))) { |
| 634 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| 635 | goto proxy_name_done; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Check that the last subject RDN is a commonName, and that |
| 640 | * all the previous RDNs match the issuer exactly |
| 641 | */ |
| 642 | tmpsubject = X509_NAME_dup(tmpsubject); |
| 643 | if (tmpsubject == NULL) { |
| 644 | X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE); |
| 645 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 646 | return 0; |
| 647 | } |
| 648 | |
| 649 | tmpentry = |
| 650 | X509_NAME_delete_entry(tmpsubject, last_object_loc); |
| 651 | last_object_nid = |
| 652 | OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry)); |
| 653 | |
| 654 | if (last_object_nid != NID_commonName |
| 655 | || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) { |
| 656 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| 657 | } |
| 658 | |
| 659 | X509_NAME_ENTRY_free(tmpentry); |
| 660 | X509_NAME_free(tmpsubject); |
| 661 | |
| 662 | proxy_name_done: |
| 663 | if (err != X509_V_OK |
| 664 | && !verify_cb_cert(ctx, x, i, err)) |
| 665 | return 0; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Check against constraints for all certificates higher in chain |
| 670 | * including trust anchor. Trust anchor not strictly speaking needed |
| 671 | * but if it includes constraints it is to be assumed it expects them |
| 672 | * to be obeyed. |
| 673 | */ |
| 674 | for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) { |
| 675 | NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; |
| 676 | |
| 677 | if (nc) { |
| 678 | int rv = NAME_CONSTRAINTS_check(x, nc); |
| 679 | |
| 680 | /* If EE certificate check commonName too */ |
| 681 | if (rv == X509_V_OK && i == 0 |
| 682 | && (ctx->param->hostflags |
| 683 | & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0 |
| 684 | && ((ctx->param->hostflags |
| 685 | & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0 |
| 686 | || !has_san_id(x, GEN_DNS))) |
| 687 | rv = NAME_CONSTRAINTS_check_CN(x, nc); |
| 688 | |
| 689 | switch (rv) { |
| 690 | case X509_V_OK: |
| 691 | break; |
| 692 | case X509_V_ERR_OUT_OF_MEM: |
| 693 | return 0; |
| 694 | default: |
| 695 | if (!verify_cb_cert(ctx, x, i, rv)) |
| 696 | return 0; |
| 697 | break; |
| 698 | } |
| 699 | } |
| 700 | } |
| 701 | } |
| 702 | return 1; |
| 703 | } |
| 704 | |
| 705 | static int check_id_error(X509_STORE_CTX *ctx, int errcode) |
| 706 | { |
| 707 | return verify_cb_cert(ctx, ctx->cert, 0, errcode); |
| 708 | } |
| 709 | |
| 710 | static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm) |
| 711 | { |
| 712 | int i; |
| 713 | int n = sk_OPENSSL_STRING_num(vpm->hosts); |
| 714 | char *name; |
| 715 | |
| 716 | if (vpm->peername != NULL) { |
| 717 | OPENSSL_free(vpm->peername); |
| 718 | vpm->peername = NULL; |
| 719 | } |
| 720 | for (i = 0; i < n; ++i) { |
| 721 | name = sk_OPENSSL_STRING_value(vpm->hosts, i); |
| 722 | if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0) |
| 723 | return 1; |
| 724 | } |
| 725 | return n == 0; |
| 726 | } |
| 727 | |
| 728 | static int check_id(X509_STORE_CTX *ctx) |
| 729 | { |
| 730 | X509_VERIFY_PARAM *vpm = ctx->param; |
| 731 | X509 *x = ctx->cert; |
| 732 | if (vpm->hosts && check_hosts(x, vpm) <= 0) { |
| 733 | if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) |
| 734 | return 0; |
| 735 | } |
| 736 | if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { |
| 737 | if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) |
| 738 | return 0; |
| 739 | } |
| 740 | if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { |
| 741 | if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) |
| 742 | return 0; |
| 743 | } |
| 744 | return 1; |
| 745 | } |
| 746 | |
| 747 | static int check_trust(X509_STORE_CTX *ctx, int num_untrusted) |
| 748 | { |
| 749 | int i; |
| 750 | X509 *x = NULL; |
| 751 | X509 *mx; |
| 752 | SSL_DANE *dane = ctx->dane; |
| 753 | int num = sk_X509_num(ctx->chain); |
| 754 | int trust; |
| 755 | |
| 756 | /* |
| 757 | * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2) |
| 758 | * match, we're done, otherwise we'll merely record the match depth. |
| 759 | */ |
| 760 | if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) { |
| 761 | switch (trust = check_dane_issuer(ctx, num_untrusted)) { |
| 762 | case X509_TRUST_TRUSTED: |
| 763 | case X509_TRUST_REJECTED: |
| 764 | return trust; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /* |
| 769 | * Check trusted certificates in chain at depth num_untrusted and up. |
| 770 | * Note, that depths 0..num_untrusted-1 may also contain trusted |
| 771 | * certificates, but the caller is expected to have already checked those, |
| 772 | * and wants to incrementally check just any added since. |
| 773 | */ |
| 774 | for (i = num_untrusted; i < num; i++) { |
| 775 | x = sk_X509_value(ctx->chain, i); |
| 776 | trust = X509_check_trust(x, ctx->param->trust, 0); |
| 777 | /* If explicitly trusted return trusted */ |
| 778 | if (trust == X509_TRUST_TRUSTED) |
| 779 | goto trusted; |
| 780 | if (trust == X509_TRUST_REJECTED) |
| 781 | goto rejected; |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * If we are looking at a trusted certificate, and accept partial chains, |
| 786 | * the chain is PKIX trusted. |
| 787 | */ |
| 788 | if (num_untrusted < num) { |
| 789 | if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) |
| 790 | goto trusted; |
| 791 | return X509_TRUST_UNTRUSTED; |
| 792 | } |
| 793 | |
| 794 | if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
| 795 | /* |
| 796 | * Last-resort call with no new trusted certificates, check the leaf |
| 797 | * for a direct trust store match. |
| 798 | */ |
| 799 | i = 0; |
| 800 | x = sk_X509_value(ctx->chain, i); |
| 801 | mx = lookup_cert_match(ctx, x); |
| 802 | if (!mx) |
| 803 | return X509_TRUST_UNTRUSTED; |
| 804 | |
| 805 | /* |
| 806 | * Check explicit auxiliary trust/reject settings. If none are set, |
| 807 | * we'll accept X509_TRUST_UNTRUSTED when not self-signed. |
| 808 | */ |
| 809 | trust = X509_check_trust(mx, ctx->param->trust, 0); |
| 810 | if (trust == X509_TRUST_REJECTED) { |
| 811 | X509_free(mx); |
| 812 | goto rejected; |
| 813 | } |
| 814 | |
| 815 | /* Replace leaf with trusted match */ |
| 816 | (void) sk_X509_set(ctx->chain, 0, mx); |
| 817 | X509_free(x); |
| 818 | ctx->num_untrusted = 0; |
| 819 | goto trusted; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * If no trusted certs in chain at all return untrusted and allow |
| 824 | * standard (no issuer cert) etc errors to be indicated. |
| 825 | */ |
| 826 | return X509_TRUST_UNTRUSTED; |
| 827 | |
| 828 | rejected: |
| 829 | if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED)) |
| 830 | return X509_TRUST_REJECTED; |
| 831 | return X509_TRUST_UNTRUSTED; |
| 832 | |
| 833 | trusted: |
| 834 | if (!DANETLS_ENABLED(dane)) |
| 835 | return X509_TRUST_TRUSTED; |
| 836 | if (dane->pdpth < 0) |
| 837 | dane->pdpth = num_untrusted; |
| 838 | /* With DANE, PKIX alone is not trusted until we have both */ |
| 839 | if (dane->mdpth >= 0) |
| 840 | return X509_TRUST_TRUSTED; |
| 841 | return X509_TRUST_UNTRUSTED; |
| 842 | } |
| 843 | |
| 844 | static int check_revocation(X509_STORE_CTX *ctx) |
| 845 | { |
| 846 | int i = 0, last = 0, ok = 0; |
| 847 | if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) |
| 848 | return 1; |
| 849 | if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) |
| 850 | last = sk_X509_num(ctx->chain) - 1; |
| 851 | else { |
| 852 | /* If checking CRL paths this isn't the EE certificate */ |
| 853 | if (ctx->parent) |
| 854 | return 1; |
| 855 | last = 0; |
| 856 | } |
| 857 | for (i = 0; i <= last; i++) { |
| 858 | ctx->error_depth = i; |
| 859 | ok = check_cert(ctx); |
| 860 | if (!ok) |
| 861 | return ok; |
| 862 | } |
| 863 | return 1; |
| 864 | } |
| 865 | |
| 866 | static int check_cert(X509_STORE_CTX *ctx) |
| 867 | { |
| 868 | X509_CRL *crl = NULL, *dcrl = NULL; |
| 869 | int ok = 0; |
| 870 | int cnum = ctx->error_depth; |
| 871 | X509 *x = sk_X509_value(ctx->chain, cnum); |
| 872 | |
| 873 | ctx->current_cert = x; |
| 874 | ctx->current_issuer = NULL; |
| 875 | ctx->current_crl_score = 0; |
| 876 | ctx->current_reasons = 0; |
| 877 | |
| 878 | if (x->ex_flags & EXFLAG_PROXY) |
| 879 | return 1; |
| 880 | |
| 881 | while (ctx->current_reasons != CRLDP_ALL_REASONS) { |
| 882 | unsigned int last_reasons = ctx->current_reasons; |
| 883 | |
| 884 | /* Try to retrieve relevant CRL */ |
| 885 | if (ctx->get_crl) |
| 886 | ok = ctx->get_crl(ctx, &crl, x); |
| 887 | else |
| 888 | ok = get_crl_delta(ctx, &crl, &dcrl, x); |
| 889 | /* |
| 890 | * If error looking up CRL, nothing we can do except notify callback |
| 891 | */ |
| 892 | if (!ok) { |
| 893 | ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); |
| 894 | goto done; |
| 895 | } |
| 896 | ctx->current_crl = crl; |
| 897 | ok = ctx->check_crl(ctx, crl); |
| 898 | if (!ok) |
| 899 | goto done; |
| 900 | |
| 901 | if (dcrl) { |
| 902 | ok = ctx->check_crl(ctx, dcrl); |
| 903 | if (!ok) |
| 904 | goto done; |
| 905 | ok = ctx->cert_crl(ctx, dcrl, x); |
| 906 | if (!ok) |
| 907 | goto done; |
| 908 | } else |
| 909 | ok = 1; |
| 910 | |
| 911 | /* Don't look in full CRL if delta reason is removefromCRL */ |
| 912 | if (ok != 2) { |
| 913 | ok = ctx->cert_crl(ctx, crl, x); |
| 914 | if (!ok) |
| 915 | goto done; |
| 916 | } |
| 917 | |
| 918 | X509_CRL_free(crl); |
| 919 | X509_CRL_free(dcrl); |
| 920 | crl = NULL; |
| 921 | dcrl = NULL; |
| 922 | /* |
| 923 | * If reasons not updated we won't get anywhere by another iteration, |
| 924 | * so exit loop. |
| 925 | */ |
| 926 | if (last_reasons == ctx->current_reasons) { |
| 927 | ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); |
| 928 | goto done; |
| 929 | } |
| 930 | } |
| 931 | done: |
| 932 | X509_CRL_free(crl); |
| 933 | X509_CRL_free(dcrl); |
| 934 | |
| 935 | ctx->current_crl = NULL; |
| 936 | return ok; |
| 937 | } |
| 938 | |
| 939 | /* Check CRL times against values in X509_STORE_CTX */ |
| 940 | |
| 941 | static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) |
| 942 | { |
| 943 | time_t *ptime; |
| 944 | int i; |
| 945 | |
| 946 | if (notify) |
| 947 | ctx->current_crl = crl; |
| 948 | if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) |
| 949 | ptime = &ctx->param->check_time; |
| 950 | else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) |
| 951 | return 1; |
| 952 | else |
| 953 | ptime = NULL; |
| 954 | |
| 955 | i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime); |
| 956 | if (i == 0) { |
| 957 | if (!notify) |
| 958 | return 0; |
| 959 | if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD)) |
| 960 | return 0; |
| 961 | } |
| 962 | |
| 963 | if (i > 0) { |
| 964 | if (!notify) |
| 965 | return 0; |
| 966 | if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID)) |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | if (X509_CRL_get0_nextUpdate(crl)) { |
| 971 | i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime); |
| 972 | |
| 973 | if (i == 0) { |
| 974 | if (!notify) |
| 975 | return 0; |
| 976 | if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD)) |
| 977 | return 0; |
| 978 | } |
| 979 | /* Ignore expiry of base CRL is delta is valid */ |
| 980 | if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) { |
| 981 | if (!notify) |
| 982 | return 0; |
| 983 | if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED)) |
| 984 | return 0; |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | if (notify) |
| 989 | ctx->current_crl = NULL; |
| 990 | |
| 991 | return 1; |
| 992 | } |
| 993 | |
| 994 | static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl, |
| 995 | X509 **pissuer, int *pscore, unsigned int *preasons, |
| 996 | STACK_OF(X509_CRL) *crls) |
| 997 | { |
| 998 | int i, crl_score, best_score = *pscore; |
| 999 | unsigned int reasons, best_reasons = 0; |
| 1000 | X509 *x = ctx->current_cert; |
| 1001 | X509_CRL *crl, *best_crl = NULL; |
| 1002 | X509 *crl_issuer = NULL, *best_crl_issuer = NULL; |
| 1003 | |
| 1004 | for (i = 0; i < sk_X509_CRL_num(crls); i++) { |
| 1005 | crl = sk_X509_CRL_value(crls, i); |
| 1006 | reasons = *preasons; |
| 1007 | crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x); |
| 1008 | if (crl_score < best_score || crl_score == 0) |
| 1009 | continue; |
| 1010 | /* If current CRL is equivalent use it if it is newer */ |
| 1011 | if (crl_score == best_score && best_crl != NULL) { |
| 1012 | int day, sec; |
| 1013 | if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), |
| 1014 | X509_CRL_get0_lastUpdate(crl)) == 0) |
| 1015 | continue; |
| 1016 | /* |
| 1017 | * ASN1_TIME_diff never returns inconsistent signs for |day| |
| 1018 | * and |sec|. |
| 1019 | */ |
| 1020 | if (day <= 0 && sec <= 0) |
| 1021 | continue; |
| 1022 | } |
| 1023 | best_crl = crl; |
| 1024 | best_crl_issuer = crl_issuer; |
| 1025 | best_score = crl_score; |
| 1026 | best_reasons = reasons; |
| 1027 | } |
| 1028 | |
| 1029 | if (best_crl) { |
| 1030 | X509_CRL_free(*pcrl); |
| 1031 | *pcrl = best_crl; |
| 1032 | *pissuer = best_crl_issuer; |
| 1033 | *pscore = best_score; |
| 1034 | *preasons = best_reasons; |
| 1035 | X509_CRL_up_ref(best_crl); |
| 1036 | X509_CRL_free(*pdcrl); |
| 1037 | *pdcrl = NULL; |
| 1038 | get_delta_sk(ctx, pdcrl, pscore, best_crl, crls); |
| 1039 | } |
| 1040 | |
| 1041 | if (best_score >= CRL_SCORE_VALID) |
| 1042 | return 1; |
| 1043 | |
| 1044 | return 0; |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Compare two CRL extensions for delta checking purposes. They should be |
| 1049 | * both present or both absent. If both present all fields must be identical. |
| 1050 | */ |
| 1051 | |
| 1052 | static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid) |
| 1053 | { |
| 1054 | ASN1_OCTET_STRING *exta, *extb; |
| 1055 | int i; |
| 1056 | i = X509_CRL_get_ext_by_NID(a, nid, -1); |
| 1057 | if (i >= 0) { |
| 1058 | /* Can't have multiple occurrences */ |
| 1059 | if (X509_CRL_get_ext_by_NID(a, nid, i) != -1) |
| 1060 | return 0; |
| 1061 | exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i)); |
| 1062 | } else |
| 1063 | exta = NULL; |
| 1064 | |
| 1065 | i = X509_CRL_get_ext_by_NID(b, nid, -1); |
| 1066 | |
| 1067 | if (i >= 0) { |
| 1068 | |
| 1069 | if (X509_CRL_get_ext_by_NID(b, nid, i) != -1) |
| 1070 | return 0; |
| 1071 | extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i)); |
| 1072 | } else |
| 1073 | extb = NULL; |
| 1074 | |
| 1075 | if (!exta && !extb) |
| 1076 | return 1; |
| 1077 | |
| 1078 | if (!exta || !extb) |
| 1079 | return 0; |
| 1080 | |
| 1081 | if (ASN1_OCTET_STRING_cmp(exta, extb)) |
| 1082 | return 0; |
| 1083 | |
| 1084 | return 1; |
| 1085 | } |
| 1086 | |
| 1087 | /* See if a base and delta are compatible */ |
| 1088 | |
| 1089 | static int check_delta_base(X509_CRL *delta, X509_CRL *base) |
| 1090 | { |
| 1091 | /* Delta CRL must be a delta */ |
| 1092 | if (!delta->base_crl_number) |
| 1093 | return 0; |
| 1094 | /* Base must have a CRL number */ |
| 1095 | if (!base->crl_number) |
| 1096 | return 0; |
| 1097 | /* Issuer names must match */ |
| 1098 | if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta))) |
| 1099 | return 0; |
| 1100 | /* AKID and IDP must match */ |
| 1101 | if (!crl_extension_match(delta, base, NID_authority_key_identifier)) |
| 1102 | return 0; |
| 1103 | if (!crl_extension_match(delta, base, NID_issuing_distribution_point)) |
| 1104 | return 0; |
| 1105 | /* Delta CRL base number must not exceed Full CRL number. */ |
| 1106 | if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0) |
| 1107 | return 0; |
| 1108 | /* Delta CRL number must exceed full CRL number */ |
| 1109 | if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0) |
| 1110 | return 1; |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | /* |
| 1115 | * For a given base CRL find a delta... maybe extend to delta scoring or |
| 1116 | * retrieve a chain of deltas... |
| 1117 | */ |
| 1118 | |
| 1119 | static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore, |
| 1120 | X509_CRL *base, STACK_OF(X509_CRL) *crls) |
| 1121 | { |
| 1122 | X509_CRL *delta; |
| 1123 | int i; |
| 1124 | if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS)) |
| 1125 | return; |
| 1126 | if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST)) |
| 1127 | return; |
| 1128 | for (i = 0; i < sk_X509_CRL_num(crls); i++) { |
| 1129 | delta = sk_X509_CRL_value(crls, i); |
| 1130 | if (check_delta_base(delta, base)) { |
| 1131 | if (check_crl_time(ctx, delta, 0)) |
| 1132 | *pscore |= CRL_SCORE_TIME_DELTA; |
| 1133 | X509_CRL_up_ref(delta); |
| 1134 | *dcrl = delta; |
| 1135 | return; |
| 1136 | } |
| 1137 | } |
| 1138 | *dcrl = NULL; |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * For a given CRL return how suitable it is for the supplied certificate |
| 1143 | * 'x'. The return value is a mask of several criteria. If the issuer is not |
| 1144 | * the certificate issuer this is returned in *pissuer. The reasons mask is |
| 1145 | * also used to determine if the CRL is suitable: if no new reasons the CRL |
| 1146 | * is rejected, otherwise reasons is updated. |
| 1147 | */ |
| 1148 | |
| 1149 | static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, |
| 1150 | unsigned int *preasons, X509_CRL *crl, X509 *x) |
| 1151 | { |
| 1152 | |
| 1153 | int crl_score = 0; |
| 1154 | unsigned int tmp_reasons = *preasons, crl_reasons; |
| 1155 | |
| 1156 | /* First see if we can reject CRL straight away */ |
| 1157 | |
| 1158 | /* Invalid IDP cannot be processed */ |
| 1159 | if (crl->idp_flags & IDP_INVALID) |
| 1160 | return 0; |
| 1161 | /* Reason codes or indirect CRLs need extended CRL support */ |
| 1162 | if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) { |
| 1163 | if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) |
| 1164 | return 0; |
| 1165 | } else if (crl->idp_flags & IDP_REASONS) { |
| 1166 | /* If no new reasons reject */ |
| 1167 | if (!(crl->idp_reasons & ~tmp_reasons)) |
| 1168 | return 0; |
| 1169 | } |
| 1170 | /* Don't process deltas at this stage */ |
| 1171 | else if (crl->base_crl_number) |
| 1172 | return 0; |
| 1173 | /* If issuer name doesn't match certificate need indirect CRL */ |
| 1174 | if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { |
| 1175 | if (!(crl->idp_flags & IDP_INDIRECT)) |
| 1176 | return 0; |
| 1177 | } else |
| 1178 | crl_score |= CRL_SCORE_ISSUER_NAME; |
| 1179 | |
| 1180 | if (!(crl->flags & EXFLAG_CRITICAL)) |
| 1181 | crl_score |= CRL_SCORE_NOCRITICAL; |
| 1182 | |
| 1183 | /* Check expiry */ |
| 1184 | if (check_crl_time(ctx, crl, 0)) |
| 1185 | crl_score |= CRL_SCORE_TIME; |
| 1186 | |
| 1187 | /* Check authority key ID and locate certificate issuer */ |
| 1188 | crl_akid_check(ctx, crl, pissuer, &crl_score); |
| 1189 | |
| 1190 | /* If we can't locate certificate issuer at this point forget it */ |
| 1191 | |
| 1192 | if (!(crl_score & CRL_SCORE_AKID)) |
| 1193 | return 0; |
| 1194 | |
| 1195 | /* Check cert for matching CRL distribution points */ |
| 1196 | |
| 1197 | if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) { |
| 1198 | /* If no new reasons reject */ |
| 1199 | if (!(crl_reasons & ~tmp_reasons)) |
| 1200 | return 0; |
| 1201 | tmp_reasons |= crl_reasons; |
| 1202 | crl_score |= CRL_SCORE_SCOPE; |
| 1203 | } |
| 1204 | |
| 1205 | *preasons = tmp_reasons; |
| 1206 | |
| 1207 | return crl_score; |
| 1208 | |
| 1209 | } |
| 1210 | |
| 1211 | static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, |
| 1212 | X509 **pissuer, int *pcrl_score) |
| 1213 | { |
| 1214 | X509 *crl_issuer = NULL; |
| 1215 | X509_NAME *cnm = X509_CRL_get_issuer(crl); |
| 1216 | int cidx = ctx->error_depth; |
| 1217 | int i; |
| 1218 | |
| 1219 | if (cidx != sk_X509_num(ctx->chain) - 1) |
| 1220 | cidx++; |
| 1221 | |
| 1222 | crl_issuer = sk_X509_value(ctx->chain, cidx); |
| 1223 | |
| 1224 | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| 1225 | if (*pcrl_score & CRL_SCORE_ISSUER_NAME) { |
| 1226 | *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; |
| 1227 | *pissuer = crl_issuer; |
| 1228 | return; |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) { |
| 1233 | crl_issuer = sk_X509_value(ctx->chain, cidx); |
| 1234 | if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) |
| 1235 | continue; |
| 1236 | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| 1237 | *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; |
| 1238 | *pissuer = crl_issuer; |
| 1239 | return; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | /* Anything else needs extended CRL support */ |
| 1244 | |
| 1245 | if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) |
| 1246 | return; |
| 1247 | |
| 1248 | /* |
| 1249 | * Otherwise the CRL issuer is not on the path. Look for it in the set of |
| 1250 | * untrusted certificates. |
| 1251 | */ |
| 1252 | for (i = 0; i < sk_X509_num(ctx->untrusted); i++) { |
| 1253 | crl_issuer = sk_X509_value(ctx->untrusted, i); |
| 1254 | if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) |
| 1255 | continue; |
| 1256 | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| 1257 | *pissuer = crl_issuer; |
| 1258 | *pcrl_score |= CRL_SCORE_AKID; |
| 1259 | return; |
| 1260 | } |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * Check the path of a CRL issuer certificate. This creates a new |
| 1266 | * X509_STORE_CTX and populates it with most of the parameters from the |
| 1267 | * parent. This could be optimised somewhat since a lot of path checking will |
| 1268 | * be duplicated by the parent, but this will rarely be used in practice. |
| 1269 | */ |
| 1270 | |
| 1271 | static int check_crl_path(X509_STORE_CTX *ctx, X509 *x) |
| 1272 | { |
| 1273 | X509_STORE_CTX crl_ctx; |
| 1274 | int ret; |
| 1275 | |
| 1276 | /* Don't allow recursive CRL path validation */ |
| 1277 | if (ctx->parent) |
| 1278 | return 0; |
| 1279 | if (!X509_STORE_CTX_init(&crl_ctx, ctx->store, x, ctx->untrusted)) |
| 1280 | return -1; |
| 1281 | |
| 1282 | crl_ctx.crls = ctx->crls; |
| 1283 | /* Copy verify params across */ |
| 1284 | X509_STORE_CTX_set0_param(&crl_ctx, ctx->param); |
| 1285 | |
| 1286 | crl_ctx.parent = ctx; |
| 1287 | crl_ctx.verify_cb = ctx->verify_cb; |
| 1288 | |
| 1289 | /* Verify CRL issuer */ |
| 1290 | ret = X509_verify_cert(&crl_ctx); |
| 1291 | if (ret <= 0) |
| 1292 | goto err; |
| 1293 | |
| 1294 | /* Check chain is acceptable */ |
| 1295 | ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain); |
| 1296 | err: |
| 1297 | X509_STORE_CTX_cleanup(&crl_ctx); |
| 1298 | return ret; |
| 1299 | } |
| 1300 | |
| 1301 | /* |
| 1302 | * RFC3280 says nothing about the relationship between CRL path and |
| 1303 | * certificate path, which could lead to situations where a certificate could |
| 1304 | * be revoked or validated by a CA not authorised to do so. RFC5280 is more |
| 1305 | * strict and states that the two paths must end in the same trust anchor, |
| 1306 | * though some discussions remain... until this is resolved we use the |
| 1307 | * RFC5280 version |
| 1308 | */ |
| 1309 | |
| 1310 | static int check_crl_chain(X509_STORE_CTX *ctx, |
| 1311 | STACK_OF(X509) *cert_path, |
| 1312 | STACK_OF(X509) *crl_path) |
| 1313 | { |
| 1314 | X509 *cert_ta, *crl_ta; |
| 1315 | cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1); |
| 1316 | crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1); |
| 1317 | if (!X509_cmp(cert_ta, crl_ta)) |
| 1318 | return 1; |
| 1319 | return 0; |
| 1320 | } |
| 1321 | |
| 1322 | /*- |
| 1323 | * Check for match between two dist point names: three separate cases. |
| 1324 | * 1. Both are relative names and compare X509_NAME types. |
| 1325 | * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES. |
| 1326 | * 3. Both are full names and compare two GENERAL_NAMES. |
| 1327 | * 4. One is NULL: automatic match. |
| 1328 | */ |
| 1329 | |
| 1330 | static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) |
| 1331 | { |
| 1332 | X509_NAME *nm = NULL; |
| 1333 | GENERAL_NAMES *gens = NULL; |
| 1334 | GENERAL_NAME *gena, *genb; |
| 1335 | int i, j; |
| 1336 | if (!a || !b) |
| 1337 | return 1; |
| 1338 | if (a->type == 1) { |
| 1339 | if (!a->dpname) |
| 1340 | return 0; |
| 1341 | /* Case 1: two X509_NAME */ |
| 1342 | if (b->type == 1) { |
| 1343 | if (!b->dpname) |
| 1344 | return 0; |
| 1345 | if (!X509_NAME_cmp(a->dpname, b->dpname)) |
| 1346 | return 1; |
| 1347 | else |
| 1348 | return 0; |
| 1349 | } |
| 1350 | /* Case 2: set name and GENERAL_NAMES appropriately */ |
| 1351 | nm = a->dpname; |
| 1352 | gens = b->name.fullname; |
| 1353 | } else if (b->type == 1) { |
| 1354 | if (!b->dpname) |
| 1355 | return 0; |
| 1356 | /* Case 2: set name and GENERAL_NAMES appropriately */ |
| 1357 | gens = a->name.fullname; |
| 1358 | nm = b->dpname; |
| 1359 | } |
| 1360 | |
| 1361 | /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */ |
| 1362 | if (nm) { |
| 1363 | for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { |
| 1364 | gena = sk_GENERAL_NAME_value(gens, i); |
| 1365 | if (gena->type != GEN_DIRNAME) |
| 1366 | continue; |
| 1367 | if (!X509_NAME_cmp(nm, gena->d.directoryName)) |
| 1368 | return 1; |
| 1369 | } |
| 1370 | return 0; |
| 1371 | } |
| 1372 | |
| 1373 | /* Else case 3: two GENERAL_NAMES */ |
| 1374 | |
| 1375 | for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { |
| 1376 | gena = sk_GENERAL_NAME_value(a->name.fullname, i); |
| 1377 | for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { |
| 1378 | genb = sk_GENERAL_NAME_value(b->name.fullname, j); |
| 1379 | if (!GENERAL_NAME_cmp(gena, genb)) |
| 1380 | return 1; |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | return 0; |
| 1385 | |
| 1386 | } |
| 1387 | |
| 1388 | static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score) |
| 1389 | { |
| 1390 | int i; |
| 1391 | X509_NAME *nm = X509_CRL_get_issuer(crl); |
| 1392 | /* If no CRLissuer return is successful iff don't need a match */ |
| 1393 | if (!dp->CRLissuer) |
| 1394 | return ! !(crl_score & CRL_SCORE_ISSUER_NAME); |
| 1395 | for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { |
| 1396 | GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); |
| 1397 | if (gen->type != GEN_DIRNAME) |
| 1398 | continue; |
| 1399 | if (!X509_NAME_cmp(gen->d.directoryName, nm)) |
| 1400 | return 1; |
| 1401 | } |
| 1402 | return 0; |
| 1403 | } |
| 1404 | |
| 1405 | /* Check CRLDP and IDP */ |
| 1406 | |
| 1407 | static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, |
| 1408 | unsigned int *preasons) |
| 1409 | { |
| 1410 | int i; |
| 1411 | if (crl->idp_flags & IDP_ONLYATTR) |
| 1412 | return 0; |
| 1413 | if (x->ex_flags & EXFLAG_CA) { |
| 1414 | if (crl->idp_flags & IDP_ONLYUSER) |
| 1415 | return 0; |
| 1416 | } else { |
| 1417 | if (crl->idp_flags & IDP_ONLYCA) |
| 1418 | return 0; |
| 1419 | } |
| 1420 | *preasons = crl->idp_reasons; |
| 1421 | for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { |
| 1422 | DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); |
| 1423 | if (crldp_check_crlissuer(dp, crl, crl_score)) { |
| 1424 | if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) { |
| 1425 | *preasons &= dp->dp_reasons; |
| 1426 | return 1; |
| 1427 | } |
| 1428 | } |
| 1429 | } |
| 1430 | if ((!crl->idp || !crl->idp->distpoint) |
| 1431 | && (crl_score & CRL_SCORE_ISSUER_NAME)) |
| 1432 | return 1; |
| 1433 | return 0; |
| 1434 | } |
| 1435 | |
| 1436 | /* |
| 1437 | * Retrieve CRL corresponding to current certificate. If deltas enabled try |
| 1438 | * to find a delta CRL too |
| 1439 | */ |
| 1440 | |
| 1441 | static int get_crl_delta(X509_STORE_CTX *ctx, |
| 1442 | X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x) |
| 1443 | { |
| 1444 | int ok; |
| 1445 | X509 *issuer = NULL; |
| 1446 | int crl_score = 0; |
| 1447 | unsigned int reasons; |
| 1448 | X509_CRL *crl = NULL, *dcrl = NULL; |
| 1449 | STACK_OF(X509_CRL) *skcrl; |
| 1450 | X509_NAME *nm = X509_get_issuer_name(x); |
| 1451 | |
| 1452 | reasons = ctx->current_reasons; |
| 1453 | ok = get_crl_sk(ctx, &crl, &dcrl, |
| 1454 | &issuer, &crl_score, &reasons, ctx->crls); |
| 1455 | if (ok) |
| 1456 | goto done; |
| 1457 | |
| 1458 | /* Lookup CRLs from store */ |
| 1459 | |
| 1460 | skcrl = ctx->lookup_crls(ctx, nm); |
| 1461 | |
| 1462 | /* If no CRLs found and a near match from get_crl_sk use that */ |
| 1463 | if (!skcrl && crl) |
| 1464 | goto done; |
| 1465 | |
| 1466 | get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl); |
| 1467 | |
| 1468 | sk_X509_CRL_pop_free(skcrl, X509_CRL_free); |
| 1469 | |
| 1470 | done: |
| 1471 | /* If we got any kind of CRL use it and return success */ |
| 1472 | if (crl) { |
| 1473 | ctx->current_issuer = issuer; |
| 1474 | ctx->current_crl_score = crl_score; |
| 1475 | ctx->current_reasons = reasons; |
| 1476 | *pcrl = crl; |
| 1477 | *pdcrl = dcrl; |
| 1478 | return 1; |
| 1479 | } |
| 1480 | return 0; |
| 1481 | } |
| 1482 | |
| 1483 | /* Check CRL validity */ |
| 1484 | static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) |
| 1485 | { |
| 1486 | X509 *issuer = NULL; |
| 1487 | EVP_PKEY *ikey = NULL; |
| 1488 | int cnum = ctx->error_depth; |
| 1489 | int chnum = sk_X509_num(ctx->chain) - 1; |
| 1490 | |
| 1491 | /* if we have an alternative CRL issuer cert use that */ |
| 1492 | if (ctx->current_issuer) |
| 1493 | issuer = ctx->current_issuer; |
| 1494 | /* |
| 1495 | * Else find CRL issuer: if not last certificate then issuer is next |
| 1496 | * certificate in chain. |
| 1497 | */ |
| 1498 | else if (cnum < chnum) |
| 1499 | issuer = sk_X509_value(ctx->chain, cnum + 1); |
| 1500 | else { |
| 1501 | issuer = sk_X509_value(ctx->chain, chnum); |
| 1502 | /* If not self signed, can't check signature */ |
| 1503 | if (!ctx->check_issued(ctx, issuer, issuer) && |
| 1504 | !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER)) |
| 1505 | return 0; |
| 1506 | } |
| 1507 | |
| 1508 | if (issuer == NULL) |
| 1509 | return 1; |
| 1510 | |
| 1511 | /* |
| 1512 | * Skip most tests for deltas because they have already been done |
| 1513 | */ |
| 1514 | if (!crl->base_crl_number) { |
| 1515 | /* Check for cRLSign bit if keyUsage present */ |
| 1516 | if ((issuer->ex_flags & EXFLAG_KUSAGE) && |
| 1517 | !(issuer->ex_kusage & KU_CRL_SIGN) && |
| 1518 | !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN)) |
| 1519 | return 0; |
| 1520 | |
| 1521 | if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) && |
| 1522 | !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE)) |
| 1523 | return 0; |
| 1524 | |
| 1525 | if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) && |
| 1526 | check_crl_path(ctx, ctx->current_issuer) <= 0 && |
| 1527 | !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR)) |
| 1528 | return 0; |
| 1529 | |
| 1530 | if ((crl->idp_flags & IDP_INVALID) && |
| 1531 | !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION)) |
| 1532 | return 0; |
| 1533 | } |
| 1534 | |
| 1535 | if (!(ctx->current_crl_score & CRL_SCORE_TIME) && |
| 1536 | !check_crl_time(ctx, crl, 1)) |
| 1537 | return 0; |
| 1538 | |
| 1539 | /* Attempt to get issuer certificate public key */ |
| 1540 | ikey = X509_get0_pubkey(issuer); |
| 1541 | |
| 1542 | if (!ikey && |
| 1543 | !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) |
| 1544 | return 0; |
| 1545 | |
| 1546 | if (ikey) { |
| 1547 | int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags); |
| 1548 | |
| 1549 | if (rv != X509_V_OK && !verify_cb_crl(ctx, rv)) |
| 1550 | return 0; |
| 1551 | /* Verify CRL signature */ |
| 1552 | if (X509_CRL_verify(crl, ikey) <= 0 && |
| 1553 | !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE)) |
| 1554 | return 0; |
| 1555 | } |
| 1556 | return 1; |
| 1557 | } |
| 1558 | |
| 1559 | /* Check certificate against CRL */ |
| 1560 | static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) |
| 1561 | { |
| 1562 | X509_REVOKED *rev; |
| 1563 | |
| 1564 | /* |
| 1565 | * The rules changed for this... previously if a CRL contained unhandled |
| 1566 | * critical extensions it could still be used to indicate a certificate |
| 1567 | * was revoked. This has since been changed since critical extensions can |
| 1568 | * change the meaning of CRL entries. |
| 1569 | */ |
| 1570 | if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) |
| 1571 | && (crl->flags & EXFLAG_CRITICAL) && |
| 1572 | !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION)) |
| 1573 | return 0; |
| 1574 | /* |
| 1575 | * Look for serial number of certificate in CRL. If found, make sure |
| 1576 | * reason is not removeFromCRL. |
| 1577 | */ |
| 1578 | if (X509_CRL_get0_by_cert(crl, &rev, x)) { |
| 1579 | if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) |
| 1580 | return 2; |
| 1581 | if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED)) |
| 1582 | return 0; |
| 1583 | } |
| 1584 | |
| 1585 | return 1; |
| 1586 | } |
| 1587 | |
| 1588 | static int check_policy(X509_STORE_CTX *ctx) |
| 1589 | { |
| 1590 | int ret; |
| 1591 | |
| 1592 | if (ctx->parent) |
| 1593 | return 1; |
| 1594 | /* |
| 1595 | * With DANE, the trust anchor might be a bare public key, not a |
| 1596 | * certificate! In that case our chain does not have the trust anchor |
| 1597 | * certificate as a top-most element. This comports well with RFC5280 |
| 1598 | * chain verification, since there too, the trust anchor is not part of the |
| 1599 | * chain to be verified. In particular, X509_policy_check() does not look |
| 1600 | * at the TA cert, but assumes that it is present as the top-most chain |
| 1601 | * element. We therefore temporarily push a NULL cert onto the chain if it |
| 1602 | * was verified via a bare public key, and pop it off right after the |
| 1603 | * X509_policy_check() call. |
| 1604 | */ |
| 1605 | if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) { |
| 1606 | X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); |
| 1607 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 1608 | return 0; |
| 1609 | } |
| 1610 | ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain, |
| 1611 | ctx->param->policies, ctx->param->flags); |
| 1612 | if (ctx->bare_ta_signed) |
| 1613 | sk_X509_pop(ctx->chain); |
| 1614 | |
| 1615 | if (ret == X509_PCY_TREE_INTERNAL) { |
| 1616 | X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); |
| 1617 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 1618 | return 0; |
| 1619 | } |
| 1620 | /* Invalid or inconsistent extensions */ |
| 1621 | if (ret == X509_PCY_TREE_INVALID) { |
| 1622 | int i; |
| 1623 | |
| 1624 | /* Locate certificates with bad extensions and notify callback. */ |
| 1625 | for (i = 1; i < sk_X509_num(ctx->chain); i++) { |
| 1626 | X509 *x = sk_X509_value(ctx->chain, i); |
| 1627 | |
| 1628 | if (!(x->ex_flags & EXFLAG_INVALID_POLICY)) |
| 1629 | continue; |
| 1630 | if (!verify_cb_cert(ctx, x, i, |
| 1631 | X509_V_ERR_INVALID_POLICY_EXTENSION)) |
| 1632 | return 0; |
| 1633 | } |
| 1634 | return 1; |
| 1635 | } |
| 1636 | if (ret == X509_PCY_TREE_FAILURE) { |
| 1637 | ctx->current_cert = NULL; |
| 1638 | ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY; |
| 1639 | return ctx->verify_cb(0, ctx); |
| 1640 | } |
| 1641 | if (ret != X509_PCY_TREE_VALID) { |
| 1642 | X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR); |
| 1643 | return 0; |
| 1644 | } |
| 1645 | |
| 1646 | if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) { |
| 1647 | ctx->current_cert = NULL; |
| 1648 | /* |
| 1649 | * Verification errors need to be "sticky", a callback may have allowed |
| 1650 | * an SSL handshake to continue despite an error, and we must then |
| 1651 | * remain in an error state. Therefore, we MUST NOT clear earlier |
| 1652 | * verification errors by setting the error to X509_V_OK. |
| 1653 | */ |
| 1654 | if (!ctx->verify_cb(2, ctx)) |
| 1655 | return 0; |
| 1656 | } |
| 1657 | |
| 1658 | return 1; |
| 1659 | } |
| 1660 | |
| 1661 | /*- |
| 1662 | * Check certificate validity times. |
| 1663 | * If depth >= 0, invoke verification callbacks on error, otherwise just return |
| 1664 | * the validation status. |
| 1665 | * |
| 1666 | * Return 1 on success, 0 otherwise. |
| 1667 | */ |
| 1668 | int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth) |
| 1669 | { |
| 1670 | time_t *ptime; |
| 1671 | int i; |
| 1672 | |
| 1673 | if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) |
| 1674 | ptime = &ctx->param->check_time; |
| 1675 | else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) |
| 1676 | return 1; |
| 1677 | else |
| 1678 | ptime = NULL; |
| 1679 | |
| 1680 | i = X509_cmp_time(X509_get0_notBefore(x), ptime); |
| 1681 | if (i >= 0 && depth < 0) |
| 1682 | return 0; |
| 1683 | if (i == 0 && !verify_cb_cert(ctx, x, depth, |
| 1684 | X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD)) |
| 1685 | return 0; |
| 1686 | if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID)) |
| 1687 | return 0; |
| 1688 | |
| 1689 | i = X509_cmp_time(X509_get0_notAfter(x), ptime); |
| 1690 | if (i <= 0 && depth < 0) |
| 1691 | return 0; |
| 1692 | if (i == 0 && !verify_cb_cert(ctx, x, depth, |
| 1693 | X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD)) |
| 1694 | return 0; |
| 1695 | if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED)) |
| 1696 | return 0; |
| 1697 | return 1; |
| 1698 | } |
| 1699 | |
| 1700 | static int internal_verify(X509_STORE_CTX *ctx) |
| 1701 | { |
| 1702 | int n = sk_X509_num(ctx->chain) - 1; |
| 1703 | X509 *xi = sk_X509_value(ctx->chain, n); |
| 1704 | X509 *xs; |
| 1705 | |
| 1706 | /* |
| 1707 | * With DANE-verified bare public key TA signatures, it remains only to |
| 1708 | * check the timestamps of the top certificate. We report the issuer as |
| 1709 | * NULL, since all we have is a bare key. |
| 1710 | */ |
| 1711 | if (ctx->bare_ta_signed) { |
| 1712 | xs = xi; |
| 1713 | xi = NULL; |
| 1714 | goto check_cert; |
| 1715 | } |
| 1716 | |
| 1717 | if (ctx->check_issued(ctx, xi, xi)) |
| 1718 | xs = xi; |
| 1719 | else { |
| 1720 | if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
| 1721 | xs = xi; |
| 1722 | goto check_cert; |
| 1723 | } |
| 1724 | if (n <= 0) |
| 1725 | return verify_cb_cert(ctx, xi, 0, |
| 1726 | X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE); |
| 1727 | n--; |
| 1728 | ctx->error_depth = n; |
| 1729 | xs = sk_X509_value(ctx->chain, n); |
| 1730 | } |
| 1731 | |
| 1732 | /* |
| 1733 | * Do not clear ctx->error=0, it must be "sticky", only the user's callback |
| 1734 | * is allowed to reset errors (at its own peril). |
| 1735 | */ |
| 1736 | while (n >= 0) { |
| 1737 | EVP_PKEY *pkey; |
| 1738 | |
| 1739 | /* |
| 1740 | * Skip signature check for self signed certificates unless explicitly |
| 1741 | * asked for. It doesn't add any security and just wastes time. If |
| 1742 | * the issuer's public key is unusable, report the issuer certificate |
| 1743 | * and its depth (rather than the depth of the subject). |
| 1744 | */ |
| 1745 | if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) { |
| 1746 | if ((pkey = X509_get0_pubkey(xi)) == NULL) { |
| 1747 | if (!verify_cb_cert(ctx, xi, xi != xs ? n+1 : n, |
| 1748 | X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) |
| 1749 | return 0; |
| 1750 | } else if (X509_verify(xs, pkey) <= 0) { |
| 1751 | if (!verify_cb_cert(ctx, xs, n, |
| 1752 | X509_V_ERR_CERT_SIGNATURE_FAILURE)) |
| 1753 | return 0; |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | check_cert: |
| 1758 | /* Calls verify callback as needed */ |
| 1759 | if (!x509_check_cert_time(ctx, xs, n)) |
| 1760 | return 0; |
| 1761 | |
| 1762 | /* |
| 1763 | * Signal success at this depth. However, the previous error (if any) |
| 1764 | * is retained. |
| 1765 | */ |
| 1766 | ctx->current_issuer = xi; |
| 1767 | ctx->current_cert = xs; |
| 1768 | ctx->error_depth = n; |
| 1769 | if (!ctx->verify_cb(1, ctx)) |
| 1770 | return 0; |
| 1771 | |
| 1772 | if (--n >= 0) { |
| 1773 | xi = xs; |
| 1774 | xs = sk_X509_value(ctx->chain, n); |
| 1775 | } |
| 1776 | } |
| 1777 | return 1; |
| 1778 | } |
| 1779 | |
| 1780 | int X509_cmp_current_time(const ASN1_TIME *ctm) |
| 1781 | { |
| 1782 | return X509_cmp_time(ctm, NULL); |
| 1783 | } |
| 1784 | |
| 1785 | int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time) |
| 1786 | { |
| 1787 | static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ" ) - 1; |
| 1788 | static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ" ) - 1; |
| 1789 | ASN1_TIME *asn1_cmp_time = NULL; |
| 1790 | int i, day, sec, ret = 0; |
| 1791 | #ifdef CHARSET_EBCDIC |
| 1792 | const char upper_z = 0x5A; |
| 1793 | #else |
| 1794 | const char upper_z = 'Z'; |
| 1795 | #endif |
| 1796 | /* |
| 1797 | * Note that ASN.1 allows much more slack in the time format than RFC5280. |
| 1798 | * In RFC5280, the representation is fixed: |
| 1799 | * UTCTime: YYMMDDHHMMSSZ |
| 1800 | * GeneralizedTime: YYYYMMDDHHMMSSZ |
| 1801 | * |
| 1802 | * We do NOT currently enforce the following RFC 5280 requirement: |
| 1803 | * "CAs conforming to this profile MUST always encode certificate |
| 1804 | * validity dates through the year 2049 as UTCTime; certificate validity |
| 1805 | * dates in 2050 or later MUST be encoded as GeneralizedTime." |
| 1806 | */ |
| 1807 | switch (ctm->type) { |
| 1808 | case V_ASN1_UTCTIME: |
| 1809 | if (ctm->length != (int)(utctime_length)) |
| 1810 | return 0; |
| 1811 | break; |
| 1812 | case V_ASN1_GENERALIZEDTIME: |
| 1813 | if (ctm->length != (int)(generalizedtime_length)) |
| 1814 | return 0; |
| 1815 | break; |
| 1816 | default: |
| 1817 | return 0; |
| 1818 | } |
| 1819 | |
| 1820 | /** |
| 1821 | * Verify the format: the ASN.1 functions we use below allow a more |
| 1822 | * flexible format than what's mandated by RFC 5280. |
| 1823 | * Digit and date ranges will be verified in the conversion methods. |
| 1824 | */ |
| 1825 | for (i = 0; i < ctm->length - 1; i++) { |
| 1826 | if (!ascii_isdigit(ctm->data[i])) |
| 1827 | return 0; |
| 1828 | } |
| 1829 | if (ctm->data[ctm->length - 1] != upper_z) |
| 1830 | return 0; |
| 1831 | |
| 1832 | /* |
| 1833 | * There is ASN1_UTCTIME_cmp_time_t but no |
| 1834 | * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t, |
| 1835 | * so we go through ASN.1 |
| 1836 | */ |
| 1837 | asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time); |
| 1838 | if (asn1_cmp_time == NULL) |
| 1839 | goto err; |
| 1840 | if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time)) |
| 1841 | goto err; |
| 1842 | |
| 1843 | /* |
| 1844 | * X509_cmp_time comparison is <=. |
| 1845 | * The return value 0 is reserved for errors. |
| 1846 | */ |
| 1847 | ret = (day >= 0 && sec >= 0) ? -1 : 1; |
| 1848 | |
| 1849 | err: |
| 1850 | ASN1_TIME_free(asn1_cmp_time); |
| 1851 | return ret; |
| 1852 | } |
| 1853 | |
| 1854 | /* |
| 1855 | * Return 0 if time should not be checked or reference time is in range, |
| 1856 | * or else 1 if it is past the end, or -1 if it is before the start |
| 1857 | */ |
| 1858 | int X509_cmp_timeframe(const X509_VERIFY_PARAM *vpm, |
| 1859 | const ASN1_TIME *start, const ASN1_TIME *end) |
| 1860 | { |
| 1861 | time_t ref_time; |
| 1862 | time_t *time = NULL; |
| 1863 | unsigned long flags = vpm == NULL ? 0 : X509_VERIFY_PARAM_get_flags(vpm); |
| 1864 | |
| 1865 | if ((flags & X509_V_FLAG_USE_CHECK_TIME) != 0) { |
| 1866 | ref_time = X509_VERIFY_PARAM_get_time(vpm); |
| 1867 | time = &ref_time; |
| 1868 | } else if ((flags & X509_V_FLAG_NO_CHECK_TIME) != 0) { |
| 1869 | return 0; /* this means ok */ |
| 1870 | } /* else reference time is the current time */ |
| 1871 | |
| 1872 | if (end != NULL && X509_cmp_time(end, time) < 0) |
| 1873 | return 1; |
| 1874 | if (start != NULL && X509_cmp_time(start, time) > 0) |
| 1875 | return -1; |
| 1876 | return 0; |
| 1877 | } |
| 1878 | |
| 1879 | ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj) |
| 1880 | { |
| 1881 | return X509_time_adj(s, adj, NULL); |
| 1882 | } |
| 1883 | |
| 1884 | ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm) |
| 1885 | { |
| 1886 | return X509_time_adj_ex(s, 0, offset_sec, in_tm); |
| 1887 | } |
| 1888 | |
| 1889 | ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, |
| 1890 | int offset_day, long offset_sec, time_t *in_tm) |
| 1891 | { |
| 1892 | time_t t; |
| 1893 | |
| 1894 | if (in_tm) |
| 1895 | t = *in_tm; |
| 1896 | else |
| 1897 | time(&t); |
| 1898 | |
| 1899 | if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) { |
| 1900 | if (s->type == V_ASN1_UTCTIME) |
| 1901 | return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec); |
| 1902 | if (s->type == V_ASN1_GENERALIZEDTIME) |
| 1903 | return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec); |
| 1904 | } |
| 1905 | return ASN1_TIME_adj(s, t, offset_day, offset_sec); |
| 1906 | } |
| 1907 | |
| 1908 | int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain) |
| 1909 | { |
| 1910 | EVP_PKEY *ktmp = NULL, *ktmp2; |
| 1911 | int i, j; |
| 1912 | |
| 1913 | if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey)) |
| 1914 | return 1; |
| 1915 | |
| 1916 | for (i = 0; i < sk_X509_num(chain); i++) { |
| 1917 | ktmp = X509_get0_pubkey(sk_X509_value(chain, i)); |
| 1918 | if (ktmp == NULL) { |
| 1919 | X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, |
| 1920 | X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY); |
| 1921 | return 0; |
| 1922 | } |
| 1923 | if (!EVP_PKEY_missing_parameters(ktmp)) |
| 1924 | break; |
| 1925 | } |
| 1926 | if (ktmp == NULL) { |
| 1927 | X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, |
| 1928 | X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN); |
| 1929 | return 0; |
| 1930 | } |
| 1931 | |
| 1932 | /* first, populate the other certs */ |
| 1933 | for (j = i - 1; j >= 0; j--) { |
| 1934 | ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j)); |
| 1935 | EVP_PKEY_copy_parameters(ktmp2, ktmp); |
| 1936 | } |
| 1937 | |
| 1938 | if (pkey != NULL) |
| 1939 | EVP_PKEY_copy_parameters(pkey, ktmp); |
| 1940 | return 1; |
| 1941 | } |
| 1942 | |
| 1943 | /* Make a delta CRL as the diff between two full CRLs */ |
| 1944 | |
| 1945 | X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer, |
| 1946 | EVP_PKEY *skey, const EVP_MD *md, unsigned int flags) |
| 1947 | { |
| 1948 | X509_CRL *crl = NULL; |
| 1949 | int i; |
| 1950 | STACK_OF(X509_REVOKED) *revs = NULL; |
| 1951 | /* CRLs can't be delta already */ |
| 1952 | if (base->base_crl_number || newer->base_crl_number) { |
| 1953 | X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA); |
| 1954 | return NULL; |
| 1955 | } |
| 1956 | /* Base and new CRL must have a CRL number */ |
| 1957 | if (!base->crl_number || !newer->crl_number) { |
| 1958 | X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER); |
| 1959 | return NULL; |
| 1960 | } |
| 1961 | /* Issuer names must match */ |
| 1962 | if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) { |
| 1963 | X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH); |
| 1964 | return NULL; |
| 1965 | } |
| 1966 | /* AKID and IDP must match */ |
| 1967 | if (!crl_extension_match(base, newer, NID_authority_key_identifier)) { |
| 1968 | X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH); |
| 1969 | return NULL; |
| 1970 | } |
| 1971 | if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) { |
| 1972 | X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH); |
| 1973 | return NULL; |
| 1974 | } |
| 1975 | /* Newer CRL number must exceed full CRL number */ |
| 1976 | if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) { |
| 1977 | X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER); |
| 1978 | return NULL; |
| 1979 | } |
| 1980 | /* CRLs must verify */ |
| 1981 | if (skey && (X509_CRL_verify(base, skey) <= 0 || |
| 1982 | X509_CRL_verify(newer, skey) <= 0)) { |
| 1983 | X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE); |
| 1984 | return NULL; |
| 1985 | } |
| 1986 | /* Create new CRL */ |
| 1987 | crl = X509_CRL_new(); |
| 1988 | if (crl == NULL || !X509_CRL_set_version(crl, 1)) |
| 1989 | goto memerr; |
| 1990 | /* Set issuer name */ |
| 1991 | if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer))) |
| 1992 | goto memerr; |
| 1993 | |
| 1994 | if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer))) |
| 1995 | goto memerr; |
| 1996 | if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer))) |
| 1997 | goto memerr; |
| 1998 | |
| 1999 | /* Set base CRL number: must be critical */ |
| 2000 | |
| 2001 | if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0)) |
| 2002 | goto memerr; |
| 2003 | |
| 2004 | /* |
| 2005 | * Copy extensions across from newest CRL to delta: this will set CRL |
| 2006 | * number to correct value too. |
| 2007 | */ |
| 2008 | |
| 2009 | for (i = 0; i < X509_CRL_get_ext_count(newer); i++) { |
| 2010 | X509_EXTENSION *ext; |
| 2011 | ext = X509_CRL_get_ext(newer, i); |
| 2012 | if (!X509_CRL_add_ext(crl, ext, -1)) |
| 2013 | goto memerr; |
| 2014 | } |
| 2015 | |
| 2016 | /* Go through revoked entries, copying as needed */ |
| 2017 | |
| 2018 | revs = X509_CRL_get_REVOKED(newer); |
| 2019 | |
| 2020 | for (i = 0; i < sk_X509_REVOKED_num(revs); i++) { |
| 2021 | X509_REVOKED *rvn, *rvtmp; |
| 2022 | rvn = sk_X509_REVOKED_value(revs, i); |
| 2023 | /* |
| 2024 | * Add only if not also in base. TODO: need something cleverer here |
| 2025 | * for some more complex CRLs covering multiple CAs. |
| 2026 | */ |
| 2027 | if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) { |
| 2028 | rvtmp = X509_REVOKED_dup(rvn); |
| 2029 | if (!rvtmp) |
| 2030 | goto memerr; |
| 2031 | if (!X509_CRL_add0_revoked(crl, rvtmp)) { |
| 2032 | X509_REVOKED_free(rvtmp); |
| 2033 | goto memerr; |
| 2034 | } |
| 2035 | } |
| 2036 | } |
| 2037 | /* TODO: optionally prune deleted entries */ |
| 2038 | |
| 2039 | if (skey && md && !X509_CRL_sign(crl, skey, md)) |
| 2040 | goto memerr; |
| 2041 | |
| 2042 | return crl; |
| 2043 | |
| 2044 | memerr: |
| 2045 | X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE); |
| 2046 | X509_CRL_free(crl); |
| 2047 | return NULL; |
| 2048 | } |
| 2049 | |
| 2050 | int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) |
| 2051 | { |
| 2052 | return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); |
| 2053 | } |
| 2054 | |
| 2055 | void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) |
| 2056 | { |
| 2057 | return CRYPTO_get_ex_data(&ctx->ex_data, idx); |
| 2058 | } |
| 2059 | |
| 2060 | int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx) |
| 2061 | { |
| 2062 | return ctx->error; |
| 2063 | } |
| 2064 | |
| 2065 | void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) |
| 2066 | { |
| 2067 | ctx->error = err; |
| 2068 | } |
| 2069 | |
| 2070 | int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx) |
| 2071 | { |
| 2072 | return ctx->error_depth; |
| 2073 | } |
| 2074 | |
| 2075 | void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth) |
| 2076 | { |
| 2077 | ctx->error_depth = depth; |
| 2078 | } |
| 2079 | |
| 2080 | X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx) |
| 2081 | { |
| 2082 | return ctx->current_cert; |
| 2083 | } |
| 2084 | |
| 2085 | void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x) |
| 2086 | { |
| 2087 | ctx->current_cert = x; |
| 2088 | } |
| 2089 | |
| 2090 | STACK_OF(X509) *X509_STORE_CTX_get0_chain(X509_STORE_CTX *ctx) |
| 2091 | { |
| 2092 | return ctx->chain; |
| 2093 | } |
| 2094 | |
| 2095 | STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx) |
| 2096 | { |
| 2097 | if (!ctx->chain) |
| 2098 | return NULL; |
| 2099 | return X509_chain_up_ref(ctx->chain); |
| 2100 | } |
| 2101 | |
| 2102 | X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx) |
| 2103 | { |
| 2104 | return ctx->current_issuer; |
| 2105 | } |
| 2106 | |
| 2107 | X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx) |
| 2108 | { |
| 2109 | return ctx->current_crl; |
| 2110 | } |
| 2111 | |
| 2112 | X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx) |
| 2113 | { |
| 2114 | return ctx->parent; |
| 2115 | } |
| 2116 | |
| 2117 | void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x) |
| 2118 | { |
| 2119 | ctx->cert = x; |
| 2120 | } |
| 2121 | |
| 2122 | void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) |
| 2123 | { |
| 2124 | ctx->crls = sk; |
| 2125 | } |
| 2126 | |
| 2127 | int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) |
| 2128 | { |
| 2129 | /* |
| 2130 | * XXX: Why isn't this function always used to set the associated trust? |
| 2131 | * Should there even be a VPM->trust field at all? Or should the trust |
| 2132 | * always be inferred from the purpose by X509_STORE_CTX_init(). |
| 2133 | */ |
| 2134 | return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0); |
| 2135 | } |
| 2136 | |
| 2137 | int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) |
| 2138 | { |
| 2139 | /* |
| 2140 | * XXX: See above, this function would only be needed when the default |
| 2141 | * trust for the purpose needs an override in a corner case. |
| 2142 | */ |
| 2143 | return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust); |
| 2144 | } |
| 2145 | |
| 2146 | /* |
| 2147 | * This function is used to set the X509_STORE_CTX purpose and trust values. |
| 2148 | * This is intended to be used when another structure has its own trust and |
| 2149 | * purpose values which (if set) will be inherited by the ctx. If they aren't |
| 2150 | * set then we will usually have a default purpose in mind which should then |
| 2151 | * be used to set the trust value. An example of this is SSL use: an SSL |
| 2152 | * structure will have its own purpose and trust settings which the |
| 2153 | * application can set: if they aren't set then we use the default of SSL |
| 2154 | * client/server. |
| 2155 | */ |
| 2156 | |
| 2157 | int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose, |
| 2158 | int purpose, int trust) |
| 2159 | { |
| 2160 | int idx; |
| 2161 | /* If purpose not set use default */ |
| 2162 | if (purpose == 0) |
| 2163 | purpose = def_purpose; |
| 2164 | /* If we have a purpose then check it is valid */ |
| 2165 | if (purpose != 0) { |
| 2166 | X509_PURPOSE *ptmp; |
| 2167 | idx = X509_PURPOSE_get_by_id(purpose); |
| 2168 | if (idx == -1) { |
| 2169 | X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
| 2170 | X509_R_UNKNOWN_PURPOSE_ID); |
| 2171 | return 0; |
| 2172 | } |
| 2173 | ptmp = X509_PURPOSE_get0(idx); |
| 2174 | if (ptmp->trust == X509_TRUST_DEFAULT) { |
| 2175 | idx = X509_PURPOSE_get_by_id(def_purpose); |
| 2176 | /* |
| 2177 | * XXX: In the two callers above def_purpose is always 0, which is |
| 2178 | * not a known value, so idx will always be -1. How is the |
| 2179 | * X509_TRUST_DEFAULT case actually supposed to be handled? |
| 2180 | */ |
| 2181 | if (idx == -1) { |
| 2182 | X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
| 2183 | X509_R_UNKNOWN_PURPOSE_ID); |
| 2184 | return 0; |
| 2185 | } |
| 2186 | ptmp = X509_PURPOSE_get0(idx); |
| 2187 | } |
| 2188 | /* If trust not set then get from purpose default */ |
| 2189 | if (!trust) |
| 2190 | trust = ptmp->trust; |
| 2191 | } |
| 2192 | if (trust) { |
| 2193 | idx = X509_TRUST_get_by_id(trust); |
| 2194 | if (idx == -1) { |
| 2195 | X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
| 2196 | X509_R_UNKNOWN_TRUST_ID); |
| 2197 | return 0; |
| 2198 | } |
| 2199 | } |
| 2200 | |
| 2201 | if (purpose && !ctx->param->purpose) |
| 2202 | ctx->param->purpose = purpose; |
| 2203 | if (trust && !ctx->param->trust) |
| 2204 | ctx->param->trust = trust; |
| 2205 | return 1; |
| 2206 | } |
| 2207 | |
| 2208 | X509_STORE_CTX *X509_STORE_CTX_new(void) |
| 2209 | { |
| 2210 | X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); |
| 2211 | |
| 2212 | if (ctx == NULL) { |
| 2213 | X509err(X509_F_X509_STORE_CTX_NEW, ERR_R_MALLOC_FAILURE); |
| 2214 | return NULL; |
| 2215 | } |
| 2216 | return ctx; |
| 2217 | } |
| 2218 | |
| 2219 | void X509_STORE_CTX_free(X509_STORE_CTX *ctx) |
| 2220 | { |
| 2221 | if (ctx == NULL) |
| 2222 | return; |
| 2223 | |
| 2224 | X509_STORE_CTX_cleanup(ctx); |
| 2225 | OPENSSL_free(ctx); |
| 2226 | } |
| 2227 | |
| 2228 | int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, |
| 2229 | STACK_OF(X509) *chain) |
| 2230 | { |
| 2231 | int ret = 1; |
| 2232 | |
| 2233 | ctx->store = store; |
| 2234 | ctx->cert = x509; |
| 2235 | ctx->untrusted = chain; |
| 2236 | ctx->crls = NULL; |
| 2237 | ctx->num_untrusted = 0; |
| 2238 | ctx->other_ctx = NULL; |
| 2239 | ctx->valid = 0; |
| 2240 | ctx->chain = NULL; |
| 2241 | ctx->error = 0; |
| 2242 | ctx->explicit_policy = 0; |
| 2243 | ctx->error_depth = 0; |
| 2244 | ctx->current_cert = NULL; |
| 2245 | ctx->current_issuer = NULL; |
| 2246 | ctx->current_crl = NULL; |
| 2247 | ctx->current_crl_score = 0; |
| 2248 | ctx->current_reasons = 0; |
| 2249 | ctx->tree = NULL; |
| 2250 | ctx->parent = NULL; |
| 2251 | ctx->dane = NULL; |
| 2252 | ctx->bare_ta_signed = 0; |
| 2253 | /* Zero ex_data to make sure we're cleanup-safe */ |
| 2254 | memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); |
| 2255 | |
| 2256 | /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */ |
| 2257 | if (store) |
| 2258 | ctx->cleanup = store->cleanup; |
| 2259 | else |
| 2260 | ctx->cleanup = 0; |
| 2261 | |
| 2262 | if (store && store->check_issued) |
| 2263 | ctx->check_issued = store->check_issued; |
| 2264 | else |
| 2265 | ctx->check_issued = check_issued; |
| 2266 | |
| 2267 | if (store && store->get_issuer) |
| 2268 | ctx->get_issuer = store->get_issuer; |
| 2269 | else |
| 2270 | ctx->get_issuer = X509_STORE_CTX_get1_issuer; |
| 2271 | |
| 2272 | if (store && store->verify_cb) |
| 2273 | ctx->verify_cb = store->verify_cb; |
| 2274 | else |
| 2275 | ctx->verify_cb = null_callback; |
| 2276 | |
| 2277 | if (store && store->verify) |
| 2278 | ctx->verify = store->verify; |
| 2279 | else |
| 2280 | ctx->verify = internal_verify; |
| 2281 | |
| 2282 | if (store && store->check_revocation) |
| 2283 | ctx->check_revocation = store->check_revocation; |
| 2284 | else |
| 2285 | ctx->check_revocation = check_revocation; |
| 2286 | |
| 2287 | if (store && store->get_crl) |
| 2288 | ctx->get_crl = store->get_crl; |
| 2289 | else |
| 2290 | ctx->get_crl = NULL; |
| 2291 | |
| 2292 | if (store && store->check_crl) |
| 2293 | ctx->check_crl = store->check_crl; |
| 2294 | else |
| 2295 | ctx->check_crl = check_crl; |
| 2296 | |
| 2297 | if (store && store->cert_crl) |
| 2298 | ctx->cert_crl = store->cert_crl; |
| 2299 | else |
| 2300 | ctx->cert_crl = cert_crl; |
| 2301 | |
| 2302 | if (store && store->check_policy) |
| 2303 | ctx->check_policy = store->check_policy; |
| 2304 | else |
| 2305 | ctx->check_policy = check_policy; |
| 2306 | |
| 2307 | if (store && store->lookup_certs) |
| 2308 | ctx->lookup_certs = store->lookup_certs; |
| 2309 | else |
| 2310 | ctx->lookup_certs = X509_STORE_CTX_get1_certs; |
| 2311 | |
| 2312 | if (store && store->lookup_crls) |
| 2313 | ctx->lookup_crls = store->lookup_crls; |
| 2314 | else |
| 2315 | ctx->lookup_crls = X509_STORE_CTX_get1_crls; |
| 2316 | |
| 2317 | ctx->param = X509_VERIFY_PARAM_new(); |
| 2318 | if (ctx->param == NULL) { |
| 2319 | X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
| 2320 | goto err; |
| 2321 | } |
| 2322 | |
| 2323 | /* |
| 2324 | * Inherit callbacks and flags from X509_STORE if not set use defaults. |
| 2325 | */ |
| 2326 | if (store) |
| 2327 | ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param); |
| 2328 | else |
| 2329 | ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE; |
| 2330 | |
| 2331 | if (ret) |
| 2332 | ret = X509_VERIFY_PARAM_inherit(ctx->param, |
| 2333 | X509_VERIFY_PARAM_lookup("default" )); |
| 2334 | |
| 2335 | if (ret == 0) { |
| 2336 | X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
| 2337 | goto err; |
| 2338 | } |
| 2339 | |
| 2340 | /* |
| 2341 | * XXX: For now, continue to inherit trust from VPM, but infer from the |
| 2342 | * purpose if this still yields the default value. |
| 2343 | */ |
| 2344 | if (ctx->param->trust == X509_TRUST_DEFAULT) { |
| 2345 | int idx = X509_PURPOSE_get_by_id(ctx->param->purpose); |
| 2346 | X509_PURPOSE *xp = X509_PURPOSE_get0(idx); |
| 2347 | |
| 2348 | if (xp != NULL) |
| 2349 | ctx->param->trust = X509_PURPOSE_get_trust(xp); |
| 2350 | } |
| 2351 | |
| 2352 | if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, |
| 2353 | &ctx->ex_data)) |
| 2354 | return 1; |
| 2355 | X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
| 2356 | |
| 2357 | err: |
| 2358 | /* |
| 2359 | * On error clean up allocated storage, if the store context was not |
| 2360 | * allocated with X509_STORE_CTX_new() this is our last chance to do so. |
| 2361 | */ |
| 2362 | X509_STORE_CTX_cleanup(ctx); |
| 2363 | return 0; |
| 2364 | } |
| 2365 | |
| 2366 | /* |
| 2367 | * Set alternative lookup method: just a STACK of trusted certificates. This |
| 2368 | * avoids X509_STORE nastiness where it isn't needed. |
| 2369 | */ |
| 2370 | void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
| 2371 | { |
| 2372 | ctx->other_ctx = sk; |
| 2373 | ctx->get_issuer = get_issuer_sk; |
| 2374 | ctx->lookup_certs = lookup_certs_sk; |
| 2375 | } |
| 2376 | |
| 2377 | void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) |
| 2378 | { |
| 2379 | /* |
| 2380 | * We need to be idempotent because, unfortunately, free() also calls |
| 2381 | * cleanup(), so the natural call sequence new(), init(), cleanup(), free() |
| 2382 | * calls cleanup() for the same object twice! Thus we must zero the |
| 2383 | * pointers below after they're freed! |
| 2384 | */ |
| 2385 | /* Seems to always be 0 in OpenSSL, do this at most once. */ |
| 2386 | if (ctx->cleanup != NULL) { |
| 2387 | ctx->cleanup(ctx); |
| 2388 | ctx->cleanup = NULL; |
| 2389 | } |
| 2390 | if (ctx->param != NULL) { |
| 2391 | if (ctx->parent == NULL) |
| 2392 | X509_VERIFY_PARAM_free(ctx->param); |
| 2393 | ctx->param = NULL; |
| 2394 | } |
| 2395 | X509_policy_tree_free(ctx->tree); |
| 2396 | ctx->tree = NULL; |
| 2397 | sk_X509_pop_free(ctx->chain, X509_free); |
| 2398 | ctx->chain = NULL; |
| 2399 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data)); |
| 2400 | memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); |
| 2401 | } |
| 2402 | |
| 2403 | void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) |
| 2404 | { |
| 2405 | X509_VERIFY_PARAM_set_depth(ctx->param, depth); |
| 2406 | } |
| 2407 | |
| 2408 | void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) |
| 2409 | { |
| 2410 | X509_VERIFY_PARAM_set_flags(ctx->param, flags); |
| 2411 | } |
| 2412 | |
| 2413 | void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, |
| 2414 | time_t t) |
| 2415 | { |
| 2416 | X509_VERIFY_PARAM_set_time(ctx->param, t); |
| 2417 | } |
| 2418 | |
| 2419 | X509 *X509_STORE_CTX_get0_cert(X509_STORE_CTX *ctx) |
| 2420 | { |
| 2421 | return ctx->cert; |
| 2422 | } |
| 2423 | |
| 2424 | STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(X509_STORE_CTX *ctx) |
| 2425 | { |
| 2426 | return ctx->untrusted; |
| 2427 | } |
| 2428 | |
| 2429 | void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
| 2430 | { |
| 2431 | ctx->untrusted = sk; |
| 2432 | } |
| 2433 | |
| 2434 | void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
| 2435 | { |
| 2436 | sk_X509_pop_free(ctx->chain, X509_free); |
| 2437 | ctx->chain = sk; |
| 2438 | } |
| 2439 | |
| 2440 | void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, |
| 2441 | X509_STORE_CTX_verify_cb verify_cb) |
| 2442 | { |
| 2443 | ctx->verify_cb = verify_cb; |
| 2444 | } |
| 2445 | |
| 2446 | X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(X509_STORE_CTX *ctx) |
| 2447 | { |
| 2448 | return ctx->verify_cb; |
| 2449 | } |
| 2450 | |
| 2451 | void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx, |
| 2452 | X509_STORE_CTX_verify_fn verify) |
| 2453 | { |
| 2454 | ctx->verify = verify; |
| 2455 | } |
| 2456 | |
| 2457 | X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(X509_STORE_CTX *ctx) |
| 2458 | { |
| 2459 | return ctx->verify; |
| 2460 | } |
| 2461 | |
| 2462 | X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(X509_STORE_CTX *ctx) |
| 2463 | { |
| 2464 | return ctx->get_issuer; |
| 2465 | } |
| 2466 | |
| 2467 | X509_STORE_CTX_check_issued_fn X509_STORE_CTX_get_check_issued(X509_STORE_CTX *ctx) |
| 2468 | { |
| 2469 | return ctx->check_issued; |
| 2470 | } |
| 2471 | |
| 2472 | X509_STORE_CTX_check_revocation_fn X509_STORE_CTX_get_check_revocation(X509_STORE_CTX *ctx) |
| 2473 | { |
| 2474 | return ctx->check_revocation; |
| 2475 | } |
| 2476 | |
| 2477 | X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(X509_STORE_CTX *ctx) |
| 2478 | { |
| 2479 | return ctx->get_crl; |
| 2480 | } |
| 2481 | |
| 2482 | X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(X509_STORE_CTX *ctx) |
| 2483 | { |
| 2484 | return ctx->check_crl; |
| 2485 | } |
| 2486 | |
| 2487 | X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(X509_STORE_CTX *ctx) |
| 2488 | { |
| 2489 | return ctx->cert_crl; |
| 2490 | } |
| 2491 | |
| 2492 | X509_STORE_CTX_check_policy_fn X509_STORE_CTX_get_check_policy(X509_STORE_CTX *ctx) |
| 2493 | { |
| 2494 | return ctx->check_policy; |
| 2495 | } |
| 2496 | |
| 2497 | X509_STORE_CTX_lookup_certs_fn X509_STORE_CTX_get_lookup_certs(X509_STORE_CTX *ctx) |
| 2498 | { |
| 2499 | return ctx->lookup_certs; |
| 2500 | } |
| 2501 | |
| 2502 | X509_STORE_CTX_lookup_crls_fn X509_STORE_CTX_get_lookup_crls(X509_STORE_CTX *ctx) |
| 2503 | { |
| 2504 | return ctx->lookup_crls; |
| 2505 | } |
| 2506 | |
| 2507 | X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(X509_STORE_CTX *ctx) |
| 2508 | { |
| 2509 | return ctx->cleanup; |
| 2510 | } |
| 2511 | |
| 2512 | X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx) |
| 2513 | { |
| 2514 | return ctx->tree; |
| 2515 | } |
| 2516 | |
| 2517 | int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx) |
| 2518 | { |
| 2519 | return ctx->explicit_policy; |
| 2520 | } |
| 2521 | |
| 2522 | int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx) |
| 2523 | { |
| 2524 | return ctx->num_untrusted; |
| 2525 | } |
| 2526 | |
| 2527 | int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) |
| 2528 | { |
| 2529 | const X509_VERIFY_PARAM *param; |
| 2530 | |
| 2531 | param = X509_VERIFY_PARAM_lookup(name); |
| 2532 | if (param == NULL) |
| 2533 | return 0; |
| 2534 | return X509_VERIFY_PARAM_inherit(ctx->param, param); |
| 2535 | } |
| 2536 | |
| 2537 | X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) |
| 2538 | { |
| 2539 | return ctx->param; |
| 2540 | } |
| 2541 | |
| 2542 | void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) |
| 2543 | { |
| 2544 | X509_VERIFY_PARAM_free(ctx->param); |
| 2545 | ctx->param = param; |
| 2546 | } |
| 2547 | |
| 2548 | void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane) |
| 2549 | { |
| 2550 | ctx->dane = dane; |
| 2551 | } |
| 2552 | |
| 2553 | static unsigned char *dane_i2d( |
| 2554 | X509 *cert, |
| 2555 | uint8_t selector, |
| 2556 | unsigned int *i2dlen) |
| 2557 | { |
| 2558 | unsigned char *buf = NULL; |
| 2559 | int len; |
| 2560 | |
| 2561 | /* |
| 2562 | * Extract ASN.1 DER form of certificate or public key. |
| 2563 | */ |
| 2564 | switch (selector) { |
| 2565 | case DANETLS_SELECTOR_CERT: |
| 2566 | len = i2d_X509(cert, &buf); |
| 2567 | break; |
| 2568 | case DANETLS_SELECTOR_SPKI: |
| 2569 | len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf); |
| 2570 | break; |
| 2571 | default: |
| 2572 | X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR); |
| 2573 | return NULL; |
| 2574 | } |
| 2575 | |
| 2576 | if (len < 0 || buf == NULL) { |
| 2577 | X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE); |
| 2578 | return NULL; |
| 2579 | } |
| 2580 | |
| 2581 | *i2dlen = (unsigned int)len; |
| 2582 | return buf; |
| 2583 | } |
| 2584 | |
| 2585 | #define DANETLS_NONE 256 /* impossible uint8_t */ |
| 2586 | |
| 2587 | static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth) |
| 2588 | { |
| 2589 | SSL_DANE *dane = ctx->dane; |
| 2590 | unsigned usage = DANETLS_NONE; |
| 2591 | unsigned selector = DANETLS_NONE; |
| 2592 | unsigned ordinal = DANETLS_NONE; |
| 2593 | unsigned mtype = DANETLS_NONE; |
| 2594 | unsigned char *i2dbuf = NULL; |
| 2595 | unsigned int i2dlen = 0; |
| 2596 | unsigned char mdbuf[EVP_MAX_MD_SIZE]; |
| 2597 | unsigned char *cmpbuf = NULL; |
| 2598 | unsigned int cmplen = 0; |
| 2599 | int i; |
| 2600 | int recnum; |
| 2601 | int matched = 0; |
| 2602 | danetls_record *t = NULL; |
| 2603 | uint32_t mask; |
| 2604 | |
| 2605 | mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK; |
| 2606 | |
| 2607 | /* |
| 2608 | * The trust store is not applicable with DANE-TA(2) |
| 2609 | */ |
| 2610 | if (depth >= ctx->num_untrusted) |
| 2611 | mask &= DANETLS_PKIX_MASK; |
| 2612 | |
| 2613 | /* |
| 2614 | * If we've previously matched a PKIX-?? record, no need to test any |
| 2615 | * further PKIX-?? records, it remains to just build the PKIX chain. |
| 2616 | * Had the match been a DANE-?? record, we'd be done already. |
| 2617 | */ |
| 2618 | if (dane->mdpth >= 0) |
| 2619 | mask &= ~DANETLS_PKIX_MASK; |
| 2620 | |
| 2621 | /*- |
| 2622 | * https://tools.ietf.org/html/rfc7671#section-5.1 |
| 2623 | * https://tools.ietf.org/html/rfc7671#section-5.2 |
| 2624 | * https://tools.ietf.org/html/rfc7671#section-5.3 |
| 2625 | * https://tools.ietf.org/html/rfc7671#section-5.4 |
| 2626 | * |
| 2627 | * We handle DANE-EE(3) records first as they require no chain building |
| 2628 | * and no expiration or hostname checks. We also process digests with |
| 2629 | * higher ordinals first and ignore lower priorities except Full(0) which |
| 2630 | * is always processed (last). If none match, we then process PKIX-EE(1). |
| 2631 | * |
| 2632 | * NOTE: This relies on DANE usages sorting before the corresponding PKIX |
| 2633 | * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest |
| 2634 | * priorities. See twin comment in ssl/ssl_lib.c. |
| 2635 | * |
| 2636 | * We expect that most TLSA RRsets will have just a single usage, so we |
| 2637 | * don't go out of our way to cache multiple selector-specific i2d buffers |
| 2638 | * across usages, but if the selector happens to remain the same as switch |
| 2639 | * usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1", |
| 2640 | * records would result in us generating each of the certificate and public |
| 2641 | * key DER forms twice, but more typically we'd just see multiple "3 1 1" |
| 2642 | * or multiple "3 0 1" records. |
| 2643 | * |
| 2644 | * As soon as we find a match at any given depth, we stop, because either |
| 2645 | * we've matched a DANE-?? record and the peer is authenticated, or, after |
| 2646 | * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is |
| 2647 | * sufficient for DANE, and what remains to do is ordinary PKIX validation. |
| 2648 | */ |
| 2649 | recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0; |
| 2650 | for (i = 0; matched == 0 && i < recnum; ++i) { |
| 2651 | t = sk_danetls_record_value(dane->trecs, i); |
| 2652 | if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0) |
| 2653 | continue; |
| 2654 | if (t->usage != usage) { |
| 2655 | usage = t->usage; |
| 2656 | |
| 2657 | /* Reset digest agility for each usage/selector pair */ |
| 2658 | mtype = DANETLS_NONE; |
| 2659 | ordinal = dane->dctx->mdord[t->mtype]; |
| 2660 | } |
| 2661 | if (t->selector != selector) { |
| 2662 | selector = t->selector; |
| 2663 | |
| 2664 | /* Update per-selector state */ |
| 2665 | OPENSSL_free(i2dbuf); |
| 2666 | i2dbuf = dane_i2d(cert, selector, &i2dlen); |
| 2667 | if (i2dbuf == NULL) |
| 2668 | return -1; |
| 2669 | |
| 2670 | /* Reset digest agility for each usage/selector pair */ |
| 2671 | mtype = DANETLS_NONE; |
| 2672 | ordinal = dane->dctx->mdord[t->mtype]; |
| 2673 | } else if (t->mtype != DANETLS_MATCHING_FULL) { |
| 2674 | /*- |
| 2675 | * Digest agility: |
| 2676 | * |
| 2677 | * <https://tools.ietf.org/html/rfc7671#section-9> |
| 2678 | * |
| 2679 | * For a fixed selector, after processing all records with the |
| 2680 | * highest mtype ordinal, ignore all mtypes with lower ordinals |
| 2681 | * other than "Full". |
| 2682 | */ |
| 2683 | if (dane->dctx->mdord[t->mtype] < ordinal) |
| 2684 | continue; |
| 2685 | } |
| 2686 | |
| 2687 | /* |
| 2688 | * Each time we hit a (new selector or) mtype, re-compute the relevant |
| 2689 | * digest, more complex caching is not worth the code space. |
| 2690 | */ |
| 2691 | if (t->mtype != mtype) { |
| 2692 | const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype]; |
| 2693 | cmpbuf = i2dbuf; |
| 2694 | cmplen = i2dlen; |
| 2695 | |
| 2696 | if (md != NULL) { |
| 2697 | cmpbuf = mdbuf; |
| 2698 | if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) { |
| 2699 | matched = -1; |
| 2700 | break; |
| 2701 | } |
| 2702 | } |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * Squirrel away the certificate and depth if we have a match. Any |
| 2707 | * DANE match is dispositive, but with PKIX we still need to build a |
| 2708 | * full chain. |
| 2709 | */ |
| 2710 | if (cmplen == t->dlen && |
| 2711 | memcmp(cmpbuf, t->data, cmplen) == 0) { |
| 2712 | if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK) |
| 2713 | matched = 1; |
| 2714 | if (matched || dane->mdpth < 0) { |
| 2715 | dane->mdpth = depth; |
| 2716 | dane->mtlsa = t; |
| 2717 | OPENSSL_free(dane->mcert); |
| 2718 | dane->mcert = cert; |
| 2719 | X509_up_ref(cert); |
| 2720 | } |
| 2721 | break; |
| 2722 | } |
| 2723 | } |
| 2724 | |
| 2725 | /* Clear the one-element DER cache */ |
| 2726 | OPENSSL_free(i2dbuf); |
| 2727 | return matched; |
| 2728 | } |
| 2729 | |
| 2730 | static int check_dane_issuer(X509_STORE_CTX *ctx, int depth) |
| 2731 | { |
| 2732 | SSL_DANE *dane = ctx->dane; |
| 2733 | int matched = 0; |
| 2734 | X509 *cert; |
| 2735 | |
| 2736 | if (!DANETLS_HAS_TA(dane) || depth == 0) |
| 2737 | return X509_TRUST_UNTRUSTED; |
| 2738 | |
| 2739 | /* |
| 2740 | * Record any DANE trust-anchor matches, for the first depth to test, if |
| 2741 | * there's one at that depth. (This'll be false for length 1 chains looking |
| 2742 | * for an exact match for the leaf certificate). |
| 2743 | */ |
| 2744 | cert = sk_X509_value(ctx->chain, depth); |
| 2745 | if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0) |
| 2746 | return X509_TRUST_REJECTED; |
| 2747 | if (matched > 0) { |
| 2748 | ctx->num_untrusted = depth - 1; |
| 2749 | return X509_TRUST_TRUSTED; |
| 2750 | } |
| 2751 | |
| 2752 | return X509_TRUST_UNTRUSTED; |
| 2753 | } |
| 2754 | |
| 2755 | static int check_dane_pkeys(X509_STORE_CTX *ctx) |
| 2756 | { |
| 2757 | SSL_DANE *dane = ctx->dane; |
| 2758 | danetls_record *t; |
| 2759 | int num = ctx->num_untrusted; |
| 2760 | X509 *cert = sk_X509_value(ctx->chain, num - 1); |
| 2761 | int recnum = sk_danetls_record_num(dane->trecs); |
| 2762 | int i; |
| 2763 | |
| 2764 | for (i = 0; i < recnum; ++i) { |
| 2765 | t = sk_danetls_record_value(dane->trecs, i); |
| 2766 | if (t->usage != DANETLS_USAGE_DANE_TA || |
| 2767 | t->selector != DANETLS_SELECTOR_SPKI || |
| 2768 | t->mtype != DANETLS_MATCHING_FULL || |
| 2769 | X509_verify(cert, t->spki) <= 0) |
| 2770 | continue; |
| 2771 | |
| 2772 | /* Clear any PKIX-?? matches that failed to extend to a full chain */ |
| 2773 | X509_free(dane->mcert); |
| 2774 | dane->mcert = NULL; |
| 2775 | |
| 2776 | /* Record match via a bare TA public key */ |
| 2777 | ctx->bare_ta_signed = 1; |
| 2778 | dane->mdpth = num - 1; |
| 2779 | dane->mtlsa = t; |
| 2780 | |
| 2781 | /* Prune any excess chain certificates */ |
| 2782 | num = sk_X509_num(ctx->chain); |
| 2783 | for (; num > ctx->num_untrusted; --num) |
| 2784 | X509_free(sk_X509_pop(ctx->chain)); |
| 2785 | |
| 2786 | return X509_TRUST_TRUSTED; |
| 2787 | } |
| 2788 | |
| 2789 | return X509_TRUST_UNTRUSTED; |
| 2790 | } |
| 2791 | |
| 2792 | static void dane_reset(SSL_DANE *dane) |
| 2793 | { |
| 2794 | /* |
| 2795 | * Reset state to verify another chain, or clear after failure. |
| 2796 | */ |
| 2797 | X509_free(dane->mcert); |
| 2798 | dane->mcert = NULL; |
| 2799 | dane->mtlsa = NULL; |
| 2800 | dane->mdpth = -1; |
| 2801 | dane->pdpth = -1; |
| 2802 | } |
| 2803 | |
| 2804 | static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert) |
| 2805 | { |
| 2806 | int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags); |
| 2807 | |
| 2808 | if (err == X509_V_OK) |
| 2809 | return 1; |
| 2810 | return verify_cb_cert(ctx, cert, 0, err); |
| 2811 | } |
| 2812 | |
| 2813 | static int dane_verify(X509_STORE_CTX *ctx) |
| 2814 | { |
| 2815 | X509 *cert = ctx->cert; |
| 2816 | SSL_DANE *dane = ctx->dane; |
| 2817 | int matched; |
| 2818 | int done; |
| 2819 | |
| 2820 | dane_reset(dane); |
| 2821 | |
| 2822 | /*- |
| 2823 | * When testing the leaf certificate, if we match a DANE-EE(3) record, |
| 2824 | * dane_match() returns 1 and we're done. If however we match a PKIX-EE(1) |
| 2825 | * record, the match depth and matching TLSA record are recorded, but the |
| 2826 | * return value is 0, because we still need to find a PKIX trust-anchor. |
| 2827 | * Therefore, when DANE authentication is enabled (required), we're done |
| 2828 | * if: |
| 2829 | * + matched < 0, internal error. |
| 2830 | * + matched == 1, we matched a DANE-EE(3) record |
| 2831 | * + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no |
| 2832 | * DANE-TA(2) or PKIX-TA(0) to test. |
| 2833 | */ |
| 2834 | matched = dane_match(ctx, ctx->cert, 0); |
| 2835 | done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0); |
| 2836 | |
| 2837 | if (done) |
| 2838 | X509_get_pubkey_parameters(NULL, ctx->chain); |
| 2839 | |
| 2840 | if (matched > 0) { |
| 2841 | /* Callback invoked as needed */ |
| 2842 | if (!check_leaf_suiteb(ctx, cert)) |
| 2843 | return 0; |
| 2844 | /* Callback invoked as needed */ |
| 2845 | if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 && |
| 2846 | !check_id(ctx)) |
| 2847 | return 0; |
| 2848 | /* Bypass internal_verify(), issue depth 0 success callback */ |
| 2849 | ctx->error_depth = 0; |
| 2850 | ctx->current_cert = cert; |
| 2851 | return ctx->verify_cb(1, ctx); |
| 2852 | } |
| 2853 | |
| 2854 | if (matched < 0) { |
| 2855 | ctx->error_depth = 0; |
| 2856 | ctx->current_cert = cert; |
| 2857 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 2858 | return -1; |
| 2859 | } |
| 2860 | |
| 2861 | if (done) { |
| 2862 | /* Fail early, TA-based success is not possible */ |
| 2863 | if (!check_leaf_suiteb(ctx, cert)) |
| 2864 | return 0; |
| 2865 | return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH); |
| 2866 | } |
| 2867 | |
| 2868 | /* |
| 2869 | * Chain verification for usages 0/1/2. TLSA record matching of depth > 0 |
| 2870 | * certificates happens in-line with building the rest of the chain. |
| 2871 | */ |
| 2872 | return verify_chain(ctx); |
| 2873 | } |
| 2874 | |
| 2875 | /* Get issuer, without duplicate suppression */ |
| 2876 | static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert) |
| 2877 | { |
| 2878 | STACK_OF(X509) *saved_chain = ctx->chain; |
| 2879 | int ok; |
| 2880 | |
| 2881 | ctx->chain = NULL; |
| 2882 | ok = ctx->get_issuer(issuer, ctx, cert); |
| 2883 | ctx->chain = saved_chain; |
| 2884 | |
| 2885 | return ok; |
| 2886 | } |
| 2887 | |
| 2888 | static int build_chain(X509_STORE_CTX *ctx) |
| 2889 | { |
| 2890 | SSL_DANE *dane = ctx->dane; |
| 2891 | int num = sk_X509_num(ctx->chain); |
| 2892 | X509 *cert = sk_X509_value(ctx->chain, num - 1); |
| 2893 | int ss = cert_self_signed(cert); |
| 2894 | STACK_OF(X509) *sktmp = NULL; |
| 2895 | unsigned int search; |
| 2896 | int may_trusted = 0; |
| 2897 | int may_alternate = 0; |
| 2898 | int trust = X509_TRUST_UNTRUSTED; |
| 2899 | int alt_untrusted = 0; |
| 2900 | int depth; |
| 2901 | int ok = 0; |
| 2902 | int i; |
| 2903 | |
| 2904 | /* Our chain starts with a single untrusted element. */ |
| 2905 | if (!ossl_assert(num == 1 && ctx->num_untrusted == num)) { |
| 2906 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| 2907 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 2908 | return 0; |
| 2909 | } |
| 2910 | |
| 2911 | #define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */ |
| 2912 | #define S_DOTRUSTED (1 << 1) /* Search trusted store */ |
| 2913 | #define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */ |
| 2914 | /* |
| 2915 | * Set up search policy, untrusted if possible, trusted-first if enabled. |
| 2916 | * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the |
| 2917 | * trust_store, otherwise we might look there first. If not trusted-first, |
| 2918 | * and alternate chains are not disabled, try building an alternate chain |
| 2919 | * if no luck with untrusted first. |
| 2920 | */ |
| 2921 | search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0; |
| 2922 | if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) { |
| 2923 | if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) |
| 2924 | search |= S_DOTRUSTED; |
| 2925 | else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) |
| 2926 | may_alternate = 1; |
| 2927 | may_trusted = 1; |
| 2928 | } |
| 2929 | |
| 2930 | /* |
| 2931 | * Shallow-copy the stack of untrusted certificates (with TLS, this is |
| 2932 | * typically the content of the peer's certificate message) so can make |
| 2933 | * multiple passes over it, while free to remove elements as we go. |
| 2934 | */ |
| 2935 | if (ctx->untrusted && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) { |
| 2936 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| 2937 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 2938 | return 0; |
| 2939 | } |
| 2940 | |
| 2941 | /* |
| 2942 | * If we got any "DANE-TA(2) Cert(0) Full(0)" trust-anchors from DNS, add |
| 2943 | * them to our working copy of the untrusted certificate stack. Since the |
| 2944 | * caller of X509_STORE_CTX_init() may have provided only a leaf cert with |
| 2945 | * no corresponding stack of untrusted certificates, we may need to create |
| 2946 | * an empty stack first. [ At present only the ssl library provides DANE |
| 2947 | * support, and ssl_verify_cert_chain() always provides a non-null stack |
| 2948 | * containing at least the leaf certificate, but we must be prepared for |
| 2949 | * this to change. ] |
| 2950 | */ |
| 2951 | if (DANETLS_ENABLED(dane) && dane->certs != NULL) { |
| 2952 | if (sktmp == NULL && (sktmp = sk_X509_new_null()) == NULL) { |
| 2953 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| 2954 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 2955 | return 0; |
| 2956 | } |
| 2957 | for (i = 0; i < sk_X509_num(dane->certs); ++i) { |
| 2958 | if (!sk_X509_push(sktmp, sk_X509_value(dane->certs, i))) { |
| 2959 | sk_X509_free(sktmp); |
| 2960 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| 2961 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 2962 | return 0; |
| 2963 | } |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | /* |
| 2968 | * Still absurdly large, but arithmetically safe, a lower hard upper bound |
| 2969 | * might be reasonable. |
| 2970 | */ |
| 2971 | if (ctx->param->depth > INT_MAX/2) |
| 2972 | ctx->param->depth = INT_MAX/2; |
| 2973 | |
| 2974 | /* |
| 2975 | * Try to Extend the chain until we reach an ultimately trusted issuer. |
| 2976 | * Build chains up to one longer the limit, later fail if we hit the limit, |
| 2977 | * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code. |
| 2978 | */ |
| 2979 | depth = ctx->param->depth + 1; |
| 2980 | |
| 2981 | while (search != 0) { |
| 2982 | X509 *x; |
| 2983 | X509 *xtmp = NULL; |
| 2984 | |
| 2985 | /* |
| 2986 | * Look in the trust store if enabled for first lookup, or we've run |
| 2987 | * out of untrusted issuers and search here is not disabled. When we |
| 2988 | * reach the depth limit, we stop extending the chain, if by that point |
| 2989 | * we've not found a trust-anchor, any trusted chain would be too long. |
| 2990 | * |
| 2991 | * The error reported to the application verify callback is at the |
| 2992 | * maximal valid depth with the current certificate equal to the last |
| 2993 | * not ultimately-trusted issuer. For example, with verify_depth = 0, |
| 2994 | * the callback will report errors at depth=1 when the immediate issuer |
| 2995 | * of the leaf certificate is not a trust anchor. No attempt will be |
| 2996 | * made to locate an issuer for that certificate, since such a chain |
| 2997 | * would be a-priori too long. |
| 2998 | */ |
| 2999 | if ((search & S_DOTRUSTED) != 0) { |
| 3000 | i = num = sk_X509_num(ctx->chain); |
| 3001 | if ((search & S_DOALTERNATE) != 0) { |
| 3002 | /* |
| 3003 | * As high up the chain as we can, look for an alternative |
| 3004 | * trusted issuer of an untrusted certificate that currently |
| 3005 | * has an untrusted issuer. We use the alt_untrusted variable |
| 3006 | * to track how far up the chain we find the first match. It |
| 3007 | * is only if and when we find a match, that we prune the chain |
| 3008 | * and reset ctx->num_untrusted to the reduced count of |
| 3009 | * untrusted certificates. While we're searching for such a |
| 3010 | * match (which may never be found), it is neither safe nor |
| 3011 | * wise to preemptively modify either the chain or |
| 3012 | * ctx->num_untrusted. |
| 3013 | * |
| 3014 | * Note, like ctx->num_untrusted, alt_untrusted is a count of |
| 3015 | * untrusted certificates, not a "depth". |
| 3016 | */ |
| 3017 | i = alt_untrusted; |
| 3018 | } |
| 3019 | x = sk_X509_value(ctx->chain, i-1); |
| 3020 | |
| 3021 | ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x); |
| 3022 | |
| 3023 | if (ok < 0) { |
| 3024 | trust = X509_TRUST_REJECTED; |
| 3025 | ctx->error = X509_V_ERR_STORE_LOOKUP; |
| 3026 | search = 0; |
| 3027 | continue; |
| 3028 | } |
| 3029 | |
| 3030 | if (ok > 0) { |
| 3031 | /* |
| 3032 | * Alternative trusted issuer for a mid-chain untrusted cert? |
| 3033 | * Pop the untrusted cert's successors and retry. We might now |
| 3034 | * be able to complete a valid chain via the trust store. Note |
| 3035 | * that despite the current trust-store match we might still |
| 3036 | * fail complete the chain to a suitable trust-anchor, in which |
| 3037 | * case we may prune some more untrusted certificates and try |
| 3038 | * again. Thus the S_DOALTERNATE bit may yet be turned on |
| 3039 | * again with an even shorter untrusted chain! |
| 3040 | * |
| 3041 | * If in the process we threw away our matching PKIX-TA trust |
| 3042 | * anchor, reset DANE trust. We might find a suitable trusted |
| 3043 | * certificate among the ones from the trust store. |
| 3044 | */ |
| 3045 | if ((search & S_DOALTERNATE) != 0) { |
| 3046 | if (!ossl_assert(num > i && i > 0 && ss == 0)) { |
| 3047 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| 3048 | X509_free(xtmp); |
| 3049 | trust = X509_TRUST_REJECTED; |
| 3050 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 3051 | search = 0; |
| 3052 | continue; |
| 3053 | } |
| 3054 | search &= ~S_DOALTERNATE; |
| 3055 | for (; num > i; --num) |
| 3056 | X509_free(sk_X509_pop(ctx->chain)); |
| 3057 | ctx->num_untrusted = num; |
| 3058 | |
| 3059 | if (DANETLS_ENABLED(dane) && |
| 3060 | dane->mdpth >= ctx->num_untrusted) { |
| 3061 | dane->mdpth = -1; |
| 3062 | X509_free(dane->mcert); |
| 3063 | dane->mcert = NULL; |
| 3064 | } |
| 3065 | if (DANETLS_ENABLED(dane) && |
| 3066 | dane->pdpth >= ctx->num_untrusted) |
| 3067 | dane->pdpth = -1; |
| 3068 | } |
| 3069 | |
| 3070 | /* |
| 3071 | * Self-signed untrusted certificates get replaced by their |
| 3072 | * trusted matching issuer. Otherwise, grow the chain. |
| 3073 | */ |
| 3074 | if (ss == 0) { |
| 3075 | if (!sk_X509_push(ctx->chain, x = xtmp)) { |
| 3076 | X509_free(xtmp); |
| 3077 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| 3078 | trust = X509_TRUST_REJECTED; |
| 3079 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 3080 | search = 0; |
| 3081 | continue; |
| 3082 | } |
| 3083 | ss = cert_self_signed(x); |
| 3084 | } else if (num == ctx->num_untrusted) { |
| 3085 | /* |
| 3086 | * We have a self-signed certificate that has the same |
| 3087 | * subject name (and perhaps keyid and/or serial number) as |
| 3088 | * a trust-anchor. We must have an exact match to avoid |
| 3089 | * possible impersonation via key substitution etc. |
| 3090 | */ |
| 3091 | if (X509_cmp(x, xtmp) != 0) { |
| 3092 | /* Self-signed untrusted mimic. */ |
| 3093 | X509_free(xtmp); |
| 3094 | ok = 0; |
| 3095 | } else { |
| 3096 | X509_free(x); |
| 3097 | ctx->num_untrusted = --num; |
| 3098 | (void) sk_X509_set(ctx->chain, num, x = xtmp); |
| 3099 | } |
| 3100 | } |
| 3101 | |
| 3102 | /* |
| 3103 | * We've added a new trusted certificate to the chain, recheck |
| 3104 | * trust. If not done, and not self-signed look deeper. |
| 3105 | * Whether or not we're doing "trusted first", we no longer |
| 3106 | * look for untrusted certificates from the peer's chain. |
| 3107 | * |
| 3108 | * At this point ctx->num_trusted and num must reflect the |
| 3109 | * correct number of untrusted certificates, since the DANE |
| 3110 | * logic in check_trust() depends on distinguishing CAs from |
| 3111 | * "the wire" from CAs from the trust store. In particular, the |
| 3112 | * certificate at depth "num" should be the new trusted |
| 3113 | * certificate with ctx->num_untrusted <= num. |
| 3114 | */ |
| 3115 | if (ok) { |
| 3116 | if (!ossl_assert(ctx->num_untrusted <= num)) { |
| 3117 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| 3118 | trust = X509_TRUST_REJECTED; |
| 3119 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 3120 | search = 0; |
| 3121 | continue; |
| 3122 | } |
| 3123 | search &= ~S_DOUNTRUSTED; |
| 3124 | switch (trust = check_trust(ctx, num)) { |
| 3125 | case X509_TRUST_TRUSTED: |
| 3126 | case X509_TRUST_REJECTED: |
| 3127 | search = 0; |
| 3128 | continue; |
| 3129 | } |
| 3130 | if (ss == 0) |
| 3131 | continue; |
| 3132 | } |
| 3133 | } |
| 3134 | |
| 3135 | /* |
| 3136 | * No dispositive decision, and either self-signed or no match, if |
| 3137 | * we were doing untrusted-first, and alt-chains are not disabled, |
| 3138 | * do that, by repeatedly losing one untrusted element at a time, |
| 3139 | * and trying to extend the shorted chain. |
| 3140 | */ |
| 3141 | if ((search & S_DOUNTRUSTED) == 0) { |
| 3142 | /* Continue search for a trusted issuer of a shorter chain? */ |
| 3143 | if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0) |
| 3144 | continue; |
| 3145 | /* Still no luck and no fallbacks left? */ |
| 3146 | if (!may_alternate || (search & S_DOALTERNATE) != 0 || |
| 3147 | ctx->num_untrusted < 2) |
| 3148 | break; |
| 3149 | /* Search for a trusted issuer of a shorter chain */ |
| 3150 | search |= S_DOALTERNATE; |
| 3151 | alt_untrusted = ctx->num_untrusted - 1; |
| 3152 | ss = 0; |
| 3153 | } |
| 3154 | } |
| 3155 | |
| 3156 | /* |
| 3157 | * Extend chain with peer-provided certificates |
| 3158 | */ |
| 3159 | if ((search & S_DOUNTRUSTED) != 0) { |
| 3160 | num = sk_X509_num(ctx->chain); |
| 3161 | if (!ossl_assert(num == ctx->num_untrusted)) { |
| 3162 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| 3163 | trust = X509_TRUST_REJECTED; |
| 3164 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 3165 | search = 0; |
| 3166 | continue; |
| 3167 | } |
| 3168 | x = sk_X509_value(ctx->chain, num-1); |
| 3169 | |
| 3170 | /* |
| 3171 | * Once we run out of untrusted issuers, we stop looking for more |
| 3172 | * and start looking only in the trust store if enabled. |
| 3173 | */ |
| 3174 | xtmp = (ss || depth < num) ? NULL : find_issuer(ctx, sktmp, x); |
| 3175 | if (xtmp == NULL) { |
| 3176 | search &= ~S_DOUNTRUSTED; |
| 3177 | if (may_trusted) |
| 3178 | search |= S_DOTRUSTED; |
| 3179 | continue; |
| 3180 | } |
| 3181 | |
| 3182 | /* Drop this issuer from future consideration */ |
| 3183 | (void) sk_X509_delete_ptr(sktmp, xtmp); |
| 3184 | |
| 3185 | if (!sk_X509_push(ctx->chain, xtmp)) { |
| 3186 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| 3187 | trust = X509_TRUST_REJECTED; |
| 3188 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 3189 | search = 0; |
| 3190 | continue; |
| 3191 | } |
| 3192 | |
| 3193 | X509_up_ref(x = xtmp); |
| 3194 | ++ctx->num_untrusted; |
| 3195 | ss = cert_self_signed(xtmp); |
| 3196 | |
| 3197 | /* |
| 3198 | * Check for DANE-TA trust of the topmost untrusted certificate. |
| 3199 | */ |
| 3200 | switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) { |
| 3201 | case X509_TRUST_TRUSTED: |
| 3202 | case X509_TRUST_REJECTED: |
| 3203 | search = 0; |
| 3204 | continue; |
| 3205 | } |
| 3206 | } |
| 3207 | } |
| 3208 | sk_X509_free(sktmp); |
| 3209 | |
| 3210 | /* |
| 3211 | * Last chance to make a trusted chain, either bare DANE-TA public-key |
| 3212 | * signers, or else direct leaf PKIX trust. |
| 3213 | */ |
| 3214 | num = sk_X509_num(ctx->chain); |
| 3215 | if (num <= depth) { |
| 3216 | if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane)) |
| 3217 | trust = check_dane_pkeys(ctx); |
| 3218 | if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted) |
| 3219 | trust = check_trust(ctx, num); |
| 3220 | } |
| 3221 | |
| 3222 | switch (trust) { |
| 3223 | case X509_TRUST_TRUSTED: |
| 3224 | return 1; |
| 3225 | case X509_TRUST_REJECTED: |
| 3226 | /* Callback already issued */ |
| 3227 | return 0; |
| 3228 | case X509_TRUST_UNTRUSTED: |
| 3229 | default: |
| 3230 | num = sk_X509_num(ctx->chain); |
| 3231 | if (num > depth) |
| 3232 | return verify_cb_cert(ctx, NULL, num-1, |
| 3233 | X509_V_ERR_CERT_CHAIN_TOO_LONG); |
| 3234 | if (DANETLS_ENABLED(dane) && |
| 3235 | (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0)) |
| 3236 | return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH); |
| 3237 | if (ss && sk_X509_num(ctx->chain) == 1) |
| 3238 | return verify_cb_cert(ctx, NULL, num-1, |
| 3239 | X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT); |
| 3240 | if (ss) |
| 3241 | return verify_cb_cert(ctx, NULL, num-1, |
| 3242 | X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN); |
| 3243 | if (ctx->num_untrusted < num) |
| 3244 | return verify_cb_cert(ctx, NULL, num-1, |
| 3245 | X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT); |
| 3246 | return verify_cb_cert(ctx, NULL, num-1, |
| 3247 | X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY); |
| 3248 | } |
| 3249 | } |
| 3250 | |
| 3251 | static const int minbits_table[] = { 80, 112, 128, 192, 256 }; |
| 3252 | static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table); |
| 3253 | |
| 3254 | /* |
| 3255 | * Check whether the public key of ``cert`` meets the security level of |
| 3256 | * ``ctx``. |
| 3257 | * |
| 3258 | * Returns 1 on success, 0 otherwise. |
| 3259 | */ |
| 3260 | static int check_key_level(X509_STORE_CTX *ctx, X509 *cert) |
| 3261 | { |
| 3262 | EVP_PKEY *pkey = X509_get0_pubkey(cert); |
| 3263 | int level = ctx->param->auth_level; |
| 3264 | |
| 3265 | /* |
| 3266 | * At security level zero, return without checking for a supported public |
| 3267 | * key type. Some engines support key types not understood outside the |
| 3268 | * engine, and we only need to understand the key when enforcing a security |
| 3269 | * floor. |
| 3270 | */ |
| 3271 | if (level <= 0) |
| 3272 | return 1; |
| 3273 | |
| 3274 | /* Unsupported or malformed keys are not secure */ |
| 3275 | if (pkey == NULL) |
| 3276 | return 0; |
| 3277 | |
| 3278 | if (level > NUM_AUTH_LEVELS) |
| 3279 | level = NUM_AUTH_LEVELS; |
| 3280 | |
| 3281 | return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1]; |
| 3282 | } |
| 3283 | |
| 3284 | /* |
| 3285 | * Check whether the signature digest algorithm of ``cert`` meets the security |
| 3286 | * level of ``ctx``. Should not be checked for trust anchors (whether |
| 3287 | * self-signed or otherwise). |
| 3288 | * |
| 3289 | * Returns 1 on success, 0 otherwise. |
| 3290 | */ |
| 3291 | static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert) |
| 3292 | { |
| 3293 | int secbits = -1; |
| 3294 | int level = ctx->param->auth_level; |
| 3295 | |
| 3296 | if (level <= 0) |
| 3297 | return 1; |
| 3298 | if (level > NUM_AUTH_LEVELS) |
| 3299 | level = NUM_AUTH_LEVELS; |
| 3300 | |
| 3301 | if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL)) |
| 3302 | return 0; |
| 3303 | |
| 3304 | return secbits >= minbits_table[level - 1]; |
| 3305 | } |
| 3306 | |