1 | /* |
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include <stdio.h> |
11 | #include "internal/cryptlib.h" |
12 | #include <openssl/asn1t.h> |
13 | #include <openssl/x509.h> |
14 | #include "crypto/asn1.h" |
15 | #include "crypto/evp.h" |
16 | #include "crypto/x509.h" |
17 | #include <openssl/rsa.h> |
18 | #include <openssl/dsa.h> |
19 | |
20 | struct X509_pubkey_st { |
21 | X509_ALGOR *algor; |
22 | ASN1_BIT_STRING *public_key; |
23 | EVP_PKEY *pkey; |
24 | }; |
25 | |
26 | static int x509_pubkey_decode(EVP_PKEY **pk, X509_PUBKEY *key); |
27 | |
28 | /* Minor tweak to operation: free up EVP_PKEY */ |
29 | static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
30 | void *exarg) |
31 | { |
32 | if (operation == ASN1_OP_FREE_POST) { |
33 | X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
34 | EVP_PKEY_free(pubkey->pkey); |
35 | } else if (operation == ASN1_OP_D2I_POST) { |
36 | /* Attempt to decode public key and cache in pubkey structure. */ |
37 | X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
38 | EVP_PKEY_free(pubkey->pkey); |
39 | pubkey->pkey = NULL; |
40 | /* |
41 | * Opportunistically decode the key but remove any non fatal errors |
42 | * from the queue. Subsequent explicit attempts to decode/use the key |
43 | * will return an appropriate error. |
44 | */ |
45 | ERR_set_mark(); |
46 | if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1) |
47 | return 0; |
48 | ERR_pop_to_mark(); |
49 | } |
50 | return 1; |
51 | } |
52 | |
53 | ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { |
54 | ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), |
55 | ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) |
56 | } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) |
57 | |
58 | IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) |
59 | IMPLEMENT_ASN1_DUP_FUNCTION(X509_PUBKEY) |
60 | |
61 | /* TODO should better be called X509_PUBKEY_set1 */ |
62 | int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) |
63 | { |
64 | X509_PUBKEY *pk = NULL; |
65 | |
66 | if (x == NULL) |
67 | return 0; |
68 | |
69 | if ((pk = X509_PUBKEY_new()) == NULL) |
70 | goto error; |
71 | |
72 | if (pkey != NULL && pkey->ameth) { |
73 | if (pkey->ameth->pub_encode) { |
74 | if (!pkey->ameth->pub_encode(pk, pkey)) { |
75 | X509err(X509_F_X509_PUBKEY_SET, |
76 | X509_R_PUBLIC_KEY_ENCODE_ERROR); |
77 | goto error; |
78 | } |
79 | } else { |
80 | X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED); |
81 | goto error; |
82 | } |
83 | } else { |
84 | X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM); |
85 | goto error; |
86 | } |
87 | |
88 | X509_PUBKEY_free(*x); |
89 | *x = pk; |
90 | pk->pkey = pkey; |
91 | return EVP_PKEY_up_ref(pkey); |
92 | |
93 | error: |
94 | X509_PUBKEY_free(pk); |
95 | return 0; |
96 | } |
97 | |
98 | /* |
99 | * Attempt to decode a public key. |
100 | * Returns 1 on success, 0 for a decode failure and -1 for a fatal |
101 | * error e.g. malloc failure. |
102 | */ |
103 | |
104 | |
105 | static int x509_pubkey_decode(EVP_PKEY **ppkey, X509_PUBKEY *key) |
106 | { |
107 | EVP_PKEY *pkey = EVP_PKEY_new(); |
108 | |
109 | if (pkey == NULL) { |
110 | X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE); |
111 | return -1; |
112 | } |
113 | |
114 | if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) { |
115 | X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM); |
116 | goto error; |
117 | } |
118 | |
119 | if (pkey->ameth->pub_decode) { |
120 | /* |
121 | * Treat any failure of pub_decode as a decode error. In |
122 | * future we could have different return codes for decode |
123 | * errors and fatal errors such as malloc failure. |
124 | */ |
125 | if (!pkey->ameth->pub_decode(pkey, key)) { |
126 | X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR); |
127 | goto error; |
128 | } |
129 | } else { |
130 | X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED); |
131 | goto error; |
132 | } |
133 | |
134 | *ppkey = pkey; |
135 | return 1; |
136 | |
137 | error: |
138 | EVP_PKEY_free(pkey); |
139 | return 0; |
140 | } |
141 | |
142 | EVP_PKEY *X509_PUBKEY_get0(X509_PUBKEY *key) |
143 | { |
144 | EVP_PKEY *ret = NULL; |
145 | |
146 | if (key == NULL || key->public_key == NULL) |
147 | return NULL; |
148 | |
149 | if (key->pkey != NULL) |
150 | return key->pkey; |
151 | |
152 | /* |
153 | * When the key ASN.1 is initially parsed an attempt is made to |
154 | * decode the public key and cache the EVP_PKEY structure. If this |
155 | * operation fails the cached value will be NULL. Parsing continues |
156 | * to allow parsing of unknown key types or unsupported forms. |
157 | * We repeat the decode operation so the appropriate errors are left |
158 | * in the queue. |
159 | */ |
160 | x509_pubkey_decode(&ret, key); |
161 | /* If decode doesn't fail something bad happened */ |
162 | if (ret != NULL) { |
163 | X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR); |
164 | EVP_PKEY_free(ret); |
165 | } |
166 | |
167 | return NULL; |
168 | } |
169 | |
170 | EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key) |
171 | { |
172 | EVP_PKEY *ret = X509_PUBKEY_get0(key); |
173 | if (ret != NULL) |
174 | EVP_PKEY_up_ref(ret); |
175 | return ret; |
176 | } |
177 | |
178 | /* |
179 | * Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or |
180 | * decode as X509_PUBKEY |
181 | */ |
182 | |
183 | EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) |
184 | { |
185 | X509_PUBKEY *xpk; |
186 | EVP_PKEY *pktmp; |
187 | const unsigned char *q; |
188 | |
189 | q = *pp; |
190 | xpk = d2i_X509_PUBKEY(NULL, &q, length); |
191 | if (xpk == NULL) |
192 | return NULL; |
193 | pktmp = X509_PUBKEY_get(xpk); |
194 | X509_PUBKEY_free(xpk); |
195 | if (pktmp == NULL) |
196 | return NULL; |
197 | *pp = q; |
198 | if (a != NULL) { |
199 | EVP_PKEY_free(*a); |
200 | *a = pktmp; |
201 | } |
202 | return pktmp; |
203 | } |
204 | |
205 | int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) |
206 | { |
207 | X509_PUBKEY *xpk = NULL; |
208 | int ret = -1; |
209 | |
210 | if (a == NULL) |
211 | return 0; |
212 | if ((xpk = X509_PUBKEY_new()) == NULL) |
213 | return -1; |
214 | if (a->ameth != NULL && a->ameth->pub_encode != NULL |
215 | && !a->ameth->pub_encode(xpk, a)) |
216 | goto error; |
217 | xpk->pkey = (EVP_PKEY *)a; |
218 | ret = i2d_X509_PUBKEY(xpk, pp); |
219 | xpk->pkey = NULL; |
220 | error: |
221 | X509_PUBKEY_free(xpk); |
222 | return ret; |
223 | } |
224 | |
225 | /* |
226 | * The following are equivalents but which return RSA and DSA keys |
227 | */ |
228 | #ifndef OPENSSL_NO_RSA |
229 | RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) |
230 | { |
231 | EVP_PKEY *pkey; |
232 | RSA *key; |
233 | const unsigned char *q; |
234 | |
235 | q = *pp; |
236 | pkey = d2i_PUBKEY(NULL, &q, length); |
237 | if (pkey == NULL) |
238 | return NULL; |
239 | key = EVP_PKEY_get1_RSA(pkey); |
240 | EVP_PKEY_free(pkey); |
241 | if (key == NULL) |
242 | return NULL; |
243 | *pp = q; |
244 | if (a != NULL) { |
245 | RSA_free(*a); |
246 | *a = key; |
247 | } |
248 | return key; |
249 | } |
250 | |
251 | int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) |
252 | { |
253 | EVP_PKEY *pktmp; |
254 | int ret; |
255 | if (!a) |
256 | return 0; |
257 | pktmp = EVP_PKEY_new(); |
258 | if (pktmp == NULL) { |
259 | ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE); |
260 | return -1; |
261 | } |
262 | (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); |
263 | ret = i2d_PUBKEY(pktmp, pp); |
264 | pktmp->pkey.ptr = NULL; |
265 | EVP_PKEY_free(pktmp); |
266 | return ret; |
267 | } |
268 | #endif |
269 | |
270 | #ifndef OPENSSL_NO_DSA |
271 | DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) |
272 | { |
273 | EVP_PKEY *pkey; |
274 | DSA *key; |
275 | const unsigned char *q; |
276 | |
277 | q = *pp; |
278 | pkey = d2i_PUBKEY(NULL, &q, length); |
279 | if (pkey == NULL) |
280 | return NULL; |
281 | key = EVP_PKEY_get1_DSA(pkey); |
282 | EVP_PKEY_free(pkey); |
283 | if (key == NULL) |
284 | return NULL; |
285 | *pp = q; |
286 | if (a != NULL) { |
287 | DSA_free(*a); |
288 | *a = key; |
289 | } |
290 | return key; |
291 | } |
292 | |
293 | int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) |
294 | { |
295 | EVP_PKEY *pktmp; |
296 | int ret; |
297 | if (!a) |
298 | return 0; |
299 | pktmp = EVP_PKEY_new(); |
300 | if (pktmp == NULL) { |
301 | ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE); |
302 | return -1; |
303 | } |
304 | (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); |
305 | ret = i2d_PUBKEY(pktmp, pp); |
306 | pktmp->pkey.ptr = NULL; |
307 | EVP_PKEY_free(pktmp); |
308 | return ret; |
309 | } |
310 | #endif |
311 | |
312 | #ifndef OPENSSL_NO_EC |
313 | EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) |
314 | { |
315 | EVP_PKEY *pkey; |
316 | EC_KEY *key; |
317 | const unsigned char *q; |
318 | |
319 | q = *pp; |
320 | pkey = d2i_PUBKEY(NULL, &q, length); |
321 | if (pkey == NULL) |
322 | return NULL; |
323 | key = EVP_PKEY_get1_EC_KEY(pkey); |
324 | EVP_PKEY_free(pkey); |
325 | if (key == NULL) |
326 | return NULL; |
327 | *pp = q; |
328 | if (a != NULL) { |
329 | EC_KEY_free(*a); |
330 | *a = key; |
331 | } |
332 | return key; |
333 | } |
334 | |
335 | int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) |
336 | { |
337 | EVP_PKEY *pktmp; |
338 | int ret; |
339 | |
340 | if (a == NULL) |
341 | return 0; |
342 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
343 | ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE); |
344 | return -1; |
345 | } |
346 | (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); |
347 | ret = i2d_PUBKEY(pktmp, pp); |
348 | pktmp->pkey.ptr = NULL; |
349 | EVP_PKEY_free(pktmp); |
350 | return ret; |
351 | } |
352 | #endif |
353 | |
354 | int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, |
355 | int ptype, void *pval, |
356 | unsigned char *penc, int penclen) |
357 | { |
358 | if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) |
359 | return 0; |
360 | if (penc) { |
361 | OPENSSL_free(pub->public_key->data); |
362 | pub->public_key->data = penc; |
363 | pub->public_key->length = penclen; |
364 | /* Set number of unused bits to zero */ |
365 | pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); |
366 | pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
367 | } |
368 | return 1; |
369 | } |
370 | |
371 | int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, |
372 | const unsigned char **pk, int *ppklen, |
373 | X509_ALGOR **pa, X509_PUBKEY *pub) |
374 | { |
375 | if (ppkalg) |
376 | *ppkalg = pub->algor->algorithm; |
377 | if (pk) { |
378 | *pk = pub->public_key->data; |
379 | *ppklen = pub->public_key->length; |
380 | } |
381 | if (pa) |
382 | *pa = pub->algor; |
383 | return 1; |
384 | } |
385 | |
386 | ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) |
387 | { |
388 | if (x == NULL) |
389 | return NULL; |
390 | return x->cert_info.key->public_key; |
391 | } |
392 | |