1 | /* |
2 | * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | /* Dispatch functions for gcm mode */ |
11 | |
12 | #include "prov/ciphercommon.h" |
13 | #include "prov/ciphercommon_gcm.h" |
14 | #include "prov/providercommonerr.h" |
15 | #include "crypto/rand.h" |
16 | #include "prov/provider_ctx.h" |
17 | |
18 | static int gcm_tls_init(PROV_GCM_CTX *dat, unsigned char *aad, size_t aad_len); |
19 | static int gcm_tls_iv_set_fixed(PROV_GCM_CTX *ctx, unsigned char *iv, |
20 | size_t len); |
21 | static int gcm_tls_cipher(PROV_GCM_CTX *ctx, unsigned char *out, size_t *padlen, |
22 | const unsigned char *in, size_t len); |
23 | static int gcm_cipher_internal(PROV_GCM_CTX *ctx, unsigned char *out, |
24 | size_t *padlen, const unsigned char *in, |
25 | size_t len); |
26 | |
27 | void gcm_initctx(void *provctx, PROV_GCM_CTX *ctx, size_t keybits, |
28 | const PROV_GCM_HW *hw, size_t ivlen_min) |
29 | { |
30 | ctx->pad = 1; |
31 | ctx->mode = EVP_CIPH_GCM_MODE; |
32 | ctx->taglen = UNINITIALISED_SIZET; |
33 | ctx->tls_aad_len = UNINITIALISED_SIZET; |
34 | ctx->ivlen_min = ivlen_min; |
35 | ctx->ivlen = (EVP_GCM_TLS_FIXED_IV_LEN + EVP_GCM_TLS_EXPLICIT_IV_LEN); |
36 | ctx->keylen = keybits / 8; |
37 | ctx->hw = hw; |
38 | ctx->libctx = PROV_LIBRARY_CONTEXT_OF(provctx); |
39 | } |
40 | |
41 | static int gcm_init(void *vctx, const unsigned char *key, size_t keylen, |
42 | const unsigned char *iv, size_t ivlen, int enc) |
43 | { |
44 | PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx; |
45 | |
46 | ctx->enc = enc; |
47 | |
48 | if (iv != NULL) { |
49 | if (ivlen < ctx->ivlen_min || ivlen > sizeof(ctx->iv)) { |
50 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_IV_LENGTH); |
51 | return 0; |
52 | } |
53 | ctx->ivlen = ivlen; |
54 | memcpy(ctx->iv, iv, ivlen); |
55 | ctx->iv_state = IV_STATE_BUFFERED; |
56 | } |
57 | |
58 | if (key != NULL) { |
59 | if (keylen != ctx->keylen) { |
60 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); |
61 | return 0; |
62 | } |
63 | return ctx->hw->setkey(ctx, key, ctx->keylen); |
64 | } |
65 | return 1; |
66 | } |
67 | |
68 | int gcm_einit(void *vctx, const unsigned char *key, size_t keylen, |
69 | const unsigned char *iv, size_t ivlen) |
70 | { |
71 | return gcm_init(vctx, key, keylen, iv, ivlen, 1); |
72 | } |
73 | |
74 | int gcm_dinit(void *vctx, const unsigned char *key, size_t keylen, |
75 | const unsigned char *iv, size_t ivlen) |
76 | { |
77 | return gcm_init(vctx, key, keylen, iv, ivlen, 0); |
78 | } |
79 | |
80 | int gcm_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
81 | { |
82 | PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx; |
83 | OSSL_PARAM *p; |
84 | size_t sz; |
85 | |
86 | p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN); |
87 | if (p != NULL && !OSSL_PARAM_set_size_t(p, ctx->ivlen)) { |
88 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER); |
89 | return 0; |
90 | } |
91 | p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_KEYLEN); |
92 | if (p != NULL && !OSSL_PARAM_set_size_t(p, ctx->keylen)) { |
93 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER); |
94 | return 0; |
95 | } |
96 | p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_AEAD_TAGLEN); |
97 | if (p != NULL) { |
98 | size_t taglen = (ctx->taglen != UNINITIALISED_SIZET) ? ctx->taglen : |
99 | GCM_TAG_MAX_SIZE; |
100 | |
101 | if (!OSSL_PARAM_set_size_t(p, taglen)) { |
102 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER); |
103 | return 0; |
104 | } |
105 | } |
106 | |
107 | p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IV); |
108 | if (p != NULL) { |
109 | if (ctx->iv_gen != 1 && ctx->iv_gen_rand != 1) |
110 | return 0; |
111 | if (ctx->ivlen != p->data_size) { |
112 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_IV_LENGTH); |
113 | return 0; |
114 | } |
115 | if (!OSSL_PARAM_set_octet_string(p, ctx->iv, ctx->ivlen)) { |
116 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER); |
117 | return 0; |
118 | } |
119 | } |
120 | |
121 | p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_AEAD_TLS1_AAD_PAD); |
122 | if (p != NULL && !OSSL_PARAM_set_size_t(p, ctx->tls_aad_pad_sz)) { |
123 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER); |
124 | return 0; |
125 | } |
126 | p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_AEAD_TAG); |
127 | if (p != NULL) { |
128 | sz = p->data_size; |
129 | if (sz == 0 |
130 | || sz > EVP_GCM_TLS_TAG_LEN |
131 | || !ctx->enc |
132 | || ctx->taglen == UNINITIALISED_SIZET) { |
133 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_TAG); |
134 | return 0; |
135 | } |
136 | if (!OSSL_PARAM_set_octet_string(p, ctx->buf, sz)) { |
137 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER); |
138 | return 0; |
139 | } |
140 | } |
141 | |
142 | return 1; |
143 | } |
144 | |
145 | int gcm_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
146 | { |
147 | PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx; |
148 | const OSSL_PARAM *p; |
149 | size_t sz; |
150 | void *vp; |
151 | |
152 | p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_TAG); |
153 | if (p != NULL) { |
154 | vp = ctx->buf; |
155 | if (!OSSL_PARAM_get_octet_string(p, &vp, EVP_GCM_TLS_TAG_LEN, &sz)) { |
156 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GET_PARAMETER); |
157 | return 0; |
158 | } |
159 | if (sz == 0 || ctx->enc) { |
160 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_TAG); |
161 | return 0; |
162 | } |
163 | ctx->taglen = sz; |
164 | } |
165 | |
166 | p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_IVLEN); |
167 | if (p != NULL) { |
168 | if (!OSSL_PARAM_get_size_t(p, &sz)) { |
169 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GET_PARAMETER); |
170 | return 0; |
171 | } |
172 | if (sz == 0 || sz > sizeof(ctx->iv)) { |
173 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_IV_LENGTH); |
174 | return 0; |
175 | } |
176 | ctx->ivlen = sz; |
177 | } |
178 | |
179 | p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_TLS1_AAD); |
180 | if (p != NULL) { |
181 | if (p->data_type != OSSL_PARAM_OCTET_STRING) { |
182 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GET_PARAMETER); |
183 | return 0; |
184 | } |
185 | sz = gcm_tls_init(ctx, p->data, p->data_size); |
186 | if (sz == 0) { |
187 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_AAD); |
188 | return 0; |
189 | } |
190 | ctx->tls_aad_pad_sz = sz; |
191 | } |
192 | |
193 | p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_TLS1_IV_FIXED); |
194 | if (p != NULL) { |
195 | if (p->data_type != OSSL_PARAM_OCTET_STRING) { |
196 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GET_PARAMETER); |
197 | return 0; |
198 | } |
199 | if (gcm_tls_iv_set_fixed(ctx, p->data, p->data_size) == 0) { |
200 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GET_PARAMETER); |
201 | return 0; |
202 | } |
203 | } |
204 | |
205 | return 1; |
206 | } |
207 | |
208 | int gcm_stream_update(void *vctx, unsigned char *out, size_t *outl, |
209 | size_t outsize, const unsigned char *in, size_t inl) |
210 | { |
211 | PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx; |
212 | |
213 | if (inl == 0) { |
214 | *outl = 0; |
215 | return 1; |
216 | } |
217 | |
218 | if (outsize < inl) { |
219 | ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL); |
220 | return -1; |
221 | } |
222 | |
223 | if (gcm_cipher_internal(ctx, out, outl, in, inl) <= 0) { |
224 | ERR_raise(ERR_LIB_PROV, PROV_R_CIPHER_OPERATION_FAILED); |
225 | return -1; |
226 | } |
227 | return 1; |
228 | } |
229 | |
230 | int gcm_stream_final(void *vctx, unsigned char *out, size_t *outl, |
231 | size_t outsize) |
232 | { |
233 | PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx; |
234 | int i; |
235 | |
236 | i = gcm_cipher_internal(ctx, out, outl, NULL, 0); |
237 | if (i <= 0) |
238 | return 0; |
239 | |
240 | *outl = 0; |
241 | return 1; |
242 | } |
243 | |
244 | int gcm_cipher(void *vctx, |
245 | unsigned char *out, size_t *outl, size_t outsize, |
246 | const unsigned char *in, size_t inl) |
247 | { |
248 | PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx; |
249 | |
250 | if (outsize < inl) { |
251 | ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL); |
252 | return 0; |
253 | } |
254 | |
255 | if (gcm_cipher_internal(ctx, out, outl, in, inl) <= 0) |
256 | return 0; |
257 | |
258 | *outl = inl; |
259 | return 1; |
260 | } |
261 | |
262 | /* |
263 | * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys" |
264 | * |
265 | * See also 8.2.2 RBG-based construction. |
266 | * Random construction consists of a free field (which can be NULL) and a |
267 | * random field which will use a DRBG that can return at least 96 bits of |
268 | * entropy strength. (The DRBG must be seeded by the FIPS module). |
269 | */ |
270 | static int gcm_iv_generate(PROV_GCM_CTX *ctx, int offset) |
271 | { |
272 | int sz = ctx->ivlen - offset; |
273 | |
274 | /* Must be at least 96 bits */ |
275 | if (sz <= 0 || ctx->ivlen < GCM_IV_DEFAULT_SIZE) |
276 | return 0; |
277 | |
278 | /* Use DRBG to generate random iv */ |
279 | if (rand_bytes_ex(ctx->libctx, ctx->iv + offset, sz) <= 0) |
280 | return 0; |
281 | ctx->iv_state = IV_STATE_BUFFERED; |
282 | ctx->iv_gen_rand = 1; |
283 | return 1; |
284 | } |
285 | |
286 | static int gcm_cipher_internal(PROV_GCM_CTX *ctx, unsigned char *out, |
287 | size_t *padlen, const unsigned char *in, |
288 | size_t len) |
289 | { |
290 | size_t olen = 0; |
291 | int rv = 0; |
292 | const PROV_GCM_HW *hw = ctx->hw; |
293 | |
294 | if (ctx->tls_aad_len != UNINITIALISED_SIZET) |
295 | return gcm_tls_cipher(ctx, out, padlen, in, len); |
296 | |
297 | if (!ctx->key_set || ctx->iv_state == IV_STATE_FINISHED) |
298 | goto err; |
299 | |
300 | /* |
301 | * FIPS requires generation of AES-GCM IV's inside the FIPS module. |
302 | * The IV can still be set externally (the security policy will state that |
303 | * this is not FIPS compliant). There are some applications |
304 | * where setting the IV externally is the only option available. |
305 | */ |
306 | if (ctx->iv_state == IV_STATE_UNINITIALISED) { |
307 | if (!ctx->enc || !gcm_iv_generate(ctx, 0)) |
308 | goto err; |
309 | } |
310 | |
311 | if (ctx->iv_state == IV_STATE_BUFFERED) { |
312 | if (!hw->setiv(ctx, ctx->iv, ctx->ivlen)) |
313 | goto err; |
314 | ctx->iv_state = IV_STATE_COPIED; |
315 | } |
316 | |
317 | if (in != NULL) { |
318 | /* The input is AAD if out is NULL */ |
319 | if (out == NULL) { |
320 | if (!hw->aadupdate(ctx, in, len)) |
321 | goto err; |
322 | } else { |
323 | /* The input is ciphertext OR plaintext */ |
324 | if (!hw->cipherupdate(ctx, in, len, out)) |
325 | goto err; |
326 | } |
327 | } else { |
328 | /* The tag must be set before actually decrypting data */ |
329 | if (!ctx->enc && ctx->taglen == UNINITIALISED_SIZET) |
330 | goto err; |
331 | if (!hw->cipherfinal(ctx, ctx->buf)) |
332 | goto err; |
333 | ctx->iv_state = IV_STATE_FINISHED; /* Don't reuse the IV */ |
334 | goto finish; |
335 | } |
336 | olen = len; |
337 | finish: |
338 | rv = 1; |
339 | err: |
340 | *padlen = olen; |
341 | return rv; |
342 | } |
343 | |
344 | static int gcm_tls_init(PROV_GCM_CTX *dat, unsigned char *aad, size_t aad_len) |
345 | { |
346 | unsigned char *buf; |
347 | size_t len; |
348 | |
349 | if (aad_len != EVP_AEAD_TLS1_AAD_LEN) |
350 | return 0; |
351 | |
352 | /* Save the aad for later use. */ |
353 | buf = dat->buf; |
354 | memcpy(buf, aad, aad_len); |
355 | dat->tls_aad_len = aad_len; |
356 | dat->tls_enc_records = 0; |
357 | |
358 | len = buf[aad_len - 2] << 8 | buf[aad_len - 1]; |
359 | /* Correct length for explicit iv. */ |
360 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
361 | return 0; |
362 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
363 | |
364 | /* If decrypting correct for tag too. */ |
365 | if (!dat->enc) { |
366 | if (len < EVP_GCM_TLS_TAG_LEN) |
367 | return 0; |
368 | len -= EVP_GCM_TLS_TAG_LEN; |
369 | } |
370 | buf[aad_len - 2] = (unsigned char)(len >> 8); |
371 | buf[aad_len - 1] = (unsigned char)(len & 0xff); |
372 | /* Extra padding: tag appended to record. */ |
373 | return EVP_GCM_TLS_TAG_LEN; |
374 | } |
375 | |
376 | static int gcm_tls_iv_set_fixed(PROV_GCM_CTX *ctx, unsigned char *iv, |
377 | size_t len) |
378 | { |
379 | /* Special case: -1 length restores whole IV */ |
380 | if (len == (size_t)-1) { |
381 | memcpy(ctx->iv, iv, ctx->ivlen); |
382 | ctx->iv_gen = 1; |
383 | ctx->iv_state = IV_STATE_BUFFERED; |
384 | return 1; |
385 | } |
386 | /* Fixed field must be at least 4 bytes and invocation field at least 8 */ |
387 | if ((len < EVP_GCM_TLS_FIXED_IV_LEN) |
388 | || (ctx->ivlen - (int)len) < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
389 | return 0; |
390 | if (len > 0) |
391 | memcpy(ctx->iv, iv, len); |
392 | if (ctx->enc |
393 | && rand_bytes_ex(ctx->libctx, ctx->iv + len, ctx->ivlen - len) <= 0) |
394 | return 0; |
395 | ctx->iv_gen = 1; |
396 | ctx->iv_state = IV_STATE_BUFFERED; |
397 | return 1; |
398 | } |
399 | |
400 | /* increment counter (64-bit int) by 1 */ |
401 | static void ctr64_inc(unsigned char *counter) |
402 | { |
403 | int n = 8; |
404 | unsigned char c; |
405 | |
406 | do { |
407 | --n; |
408 | c = counter[n]; |
409 | ++c; |
410 | counter[n] = c; |
411 | if (c > 0) |
412 | return; |
413 | } while (n > 0); |
414 | } |
415 | |
416 | /* |
417 | * Handle TLS GCM packet format. This consists of the last portion of the IV |
418 | * followed by the payload and finally the tag. On encrypt generate IV, |
419 | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload |
420 | * and verify tag. |
421 | */ |
422 | static int gcm_tls_cipher(PROV_GCM_CTX *ctx, unsigned char *out, size_t *padlen, |
423 | const unsigned char *in, size_t len) |
424 | { |
425 | int rv = 0; |
426 | size_t arg = EVP_GCM_TLS_EXPLICIT_IV_LEN; |
427 | size_t plen = 0; |
428 | unsigned char *tag = NULL; |
429 | |
430 | if (!ctx->key_set) |
431 | goto err; |
432 | |
433 | /* Encrypt/decrypt must be performed in place */ |
434 | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
435 | goto err; |
436 | |
437 | /* |
438 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness |
439 | * Requirements from SP 800-38D". The requirements is for one party to the |
440 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting |
441 | * side only. |
442 | */ |
443 | if (ctx->enc && ++ctx->tls_enc_records == 0) { |
444 | ERR_raise(ERR_LIB_PROV, EVP_R_TOO_MANY_RECORDS); |
445 | goto err; |
446 | } |
447 | |
448 | if (ctx->iv_gen == 0) |
449 | goto err; |
450 | /* |
451 | * Set IV from start of buffer or generate IV and write to start of |
452 | * buffer. |
453 | */ |
454 | if (ctx->enc) { |
455 | if (!ctx->hw->setiv(ctx, ctx->iv, ctx->ivlen)) |
456 | goto err; |
457 | if (arg > ctx->ivlen) |
458 | arg = ctx->ivlen; |
459 | memcpy(out, ctx->iv + ctx->ivlen - arg, arg); |
460 | /* |
461 | * Invocation field will be at least 8 bytes in size and so no need |
462 | * to check wrap around or increment more than last 8 bytes. |
463 | */ |
464 | ctr64_inc(ctx->iv + ctx->ivlen - 8); |
465 | } else { |
466 | memcpy(ctx->iv + ctx->ivlen - arg, out, arg); |
467 | if (!ctx->hw->setiv(ctx, ctx->iv, ctx->ivlen)) |
468 | goto err; |
469 | } |
470 | ctx->iv_state = IV_STATE_COPIED; |
471 | |
472 | /* Fix buffer and length to point to payload */ |
473 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
474 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
475 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
476 | |
477 | tag = ctx->enc ? out + len : (unsigned char *)in + len; |
478 | if (!ctx->hw->oneshot(ctx, ctx->buf, ctx->tls_aad_len, in, len, out, tag, |
479 | EVP_GCM_TLS_TAG_LEN)) { |
480 | if (!ctx->enc) |
481 | OPENSSL_cleanse(out, len); |
482 | goto err; |
483 | } |
484 | if (ctx->enc) |
485 | plen = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
486 | else |
487 | plen = len; |
488 | |
489 | rv = 1; |
490 | err: |
491 | ctx->iv_state = IV_STATE_FINISHED; |
492 | ctx->tls_aad_len = UNINITIALISED_SIZET; |
493 | *padlen = plen; |
494 | return rv; |
495 | } |
496 | |