1 | /* |
2 | * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include <stdlib.h> |
11 | #include <stdarg.h> |
12 | #include <string.h> |
13 | #include <openssl/hmac.h> |
14 | #include <openssl/evp.h> |
15 | #include <openssl/kdf.h> |
16 | #include <openssl/core_names.h> |
17 | #include "internal/cryptlib.h" |
18 | #include "internal/numbers.h" |
19 | #include "crypto/evp.h" |
20 | #include "prov/provider_ctx.h" |
21 | #include "prov/providercommonerr.h" |
22 | #include "prov/implementations.h" |
23 | #include "prov/provider_util.h" |
24 | #include "e_os.h" |
25 | |
26 | #define HKDF_MAXBUF 1024 |
27 | |
28 | static OSSL_OP_kdf_newctx_fn kdf_hkdf_new; |
29 | static OSSL_OP_kdf_freectx_fn kdf_hkdf_free; |
30 | static OSSL_OP_kdf_reset_fn kdf_hkdf_reset; |
31 | static OSSL_OP_kdf_derive_fn kdf_hkdf_derive; |
32 | static OSSL_OP_kdf_settable_ctx_params_fn kdf_hkdf_settable_ctx_params; |
33 | static OSSL_OP_kdf_set_ctx_params_fn kdf_hkdf_set_ctx_params; |
34 | static OSSL_OP_kdf_gettable_ctx_params_fn kdf_hkdf_gettable_ctx_params; |
35 | static OSSL_OP_kdf_get_ctx_params_fn kdf_hkdf_get_ctx_params; |
36 | |
37 | static int HKDF(const EVP_MD *evp_md, |
38 | const unsigned char *salt, size_t salt_len, |
39 | const unsigned char *key, size_t key_len, |
40 | const unsigned char *info, size_t info_len, |
41 | unsigned char *okm, size_t okm_len); |
42 | static int HKDF_Extract(const EVP_MD *evp_md, |
43 | const unsigned char *salt, size_t salt_len, |
44 | const unsigned char *ikm, size_t ikm_len, |
45 | unsigned char *prk, size_t prk_len); |
46 | static int HKDF_Expand(const EVP_MD *evp_md, |
47 | const unsigned char *prk, size_t prk_len, |
48 | const unsigned char *info, size_t info_len, |
49 | unsigned char *okm, size_t okm_len); |
50 | |
51 | typedef struct { |
52 | void *provctx; |
53 | int mode; |
54 | PROV_DIGEST digest; |
55 | unsigned char *salt; |
56 | size_t salt_len; |
57 | unsigned char *key; |
58 | size_t key_len; |
59 | unsigned char info[HKDF_MAXBUF]; |
60 | size_t info_len; |
61 | } KDF_HKDF; |
62 | |
63 | static void *kdf_hkdf_new(void *provctx) |
64 | { |
65 | KDF_HKDF *ctx; |
66 | |
67 | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) |
68 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
69 | else |
70 | ctx->provctx = provctx; |
71 | return ctx; |
72 | } |
73 | |
74 | static void kdf_hkdf_free(void *vctx) |
75 | { |
76 | KDF_HKDF *ctx = (KDF_HKDF *)vctx; |
77 | |
78 | if (ctx != NULL) { |
79 | kdf_hkdf_reset(ctx); |
80 | OPENSSL_free(ctx); |
81 | } |
82 | } |
83 | |
84 | static void kdf_hkdf_reset(void *vctx) |
85 | { |
86 | KDF_HKDF *ctx = (KDF_HKDF *)vctx; |
87 | |
88 | ossl_prov_digest_reset(&ctx->digest); |
89 | OPENSSL_free(ctx->salt); |
90 | OPENSSL_clear_free(ctx->key, ctx->key_len); |
91 | OPENSSL_cleanse(ctx->info, ctx->info_len); |
92 | memset(ctx, 0, sizeof(*ctx)); |
93 | } |
94 | |
95 | static size_t kdf_hkdf_size(KDF_HKDF *ctx) |
96 | { |
97 | int sz; |
98 | const EVP_MD *md = ossl_prov_digest_md(&ctx->digest); |
99 | |
100 | if (ctx->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY) |
101 | return SIZE_MAX; |
102 | |
103 | if (md == NULL) { |
104 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
105 | return 0; |
106 | } |
107 | sz = EVP_MD_size(md); |
108 | if (sz < 0) |
109 | return 0; |
110 | |
111 | return sz; |
112 | } |
113 | |
114 | static int kdf_hkdf_derive(void *vctx, unsigned char *key, size_t keylen) |
115 | { |
116 | KDF_HKDF *ctx = (KDF_HKDF *)vctx; |
117 | const EVP_MD *md = ossl_prov_digest_md(&ctx->digest); |
118 | |
119 | if (md == NULL) { |
120 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
121 | return 0; |
122 | } |
123 | if (ctx->key == NULL) { |
124 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
125 | return 0; |
126 | } |
127 | |
128 | switch (ctx->mode) { |
129 | case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND: |
130 | return HKDF(md, ctx->salt, ctx->salt_len, ctx->key, |
131 | ctx->key_len, ctx->info, ctx->info_len, key, |
132 | keylen); |
133 | |
134 | case EVP_KDF_HKDF_MODE_EXTRACT_ONLY: |
135 | return HKDF_Extract(md, ctx->salt, ctx->salt_len, ctx->key, |
136 | ctx->key_len, key, keylen); |
137 | |
138 | case EVP_KDF_HKDF_MODE_EXPAND_ONLY: |
139 | return HKDF_Expand(md, ctx->key, ctx->key_len, ctx->info, |
140 | ctx->info_len, key, keylen); |
141 | |
142 | default: |
143 | return 0; |
144 | } |
145 | } |
146 | |
147 | static int kdf_hkdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
148 | { |
149 | const OSSL_PARAM *p; |
150 | KDF_HKDF *ctx = vctx; |
151 | OPENSSL_CTX *provctx = PROV_LIBRARY_CONTEXT_OF(ctx->provctx); |
152 | int n; |
153 | |
154 | if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx)) |
155 | return 0; |
156 | |
157 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_MODE)) != NULL) { |
158 | if (p->data_type == OSSL_PARAM_UTF8_STRING) { |
159 | if (strcasecmp(p->data, "EXTRACT_AND_EXPAND" ) == 0) { |
160 | ctx->mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND; |
161 | } else if (strcasecmp(p->data, "EXTRACT_ONLY" ) == 0) { |
162 | ctx->mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY; |
163 | } else if (strcasecmp(p->data, "EXPAND_ONLY" ) == 0) { |
164 | ctx->mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY; |
165 | } else { |
166 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
167 | return 0; |
168 | } |
169 | } else if (OSSL_PARAM_get_int(p, &n)) { |
170 | if (n != EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND |
171 | && n != EVP_KDF_HKDF_MODE_EXTRACT_ONLY |
172 | && n != EVP_KDF_HKDF_MODE_EXPAND_ONLY) { |
173 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
174 | return 0; |
175 | } |
176 | ctx->mode = n; |
177 | } else { |
178 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
179 | return 0; |
180 | } |
181 | } |
182 | |
183 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_KEY)) != NULL) { |
184 | OPENSSL_clear_free(ctx->key, ctx->key_len); |
185 | ctx->key = NULL; |
186 | if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->key, 0, |
187 | &ctx->key_len)) |
188 | return 0; |
189 | } |
190 | |
191 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) { |
192 | if (p->data_size != 0 && p->data != NULL) { |
193 | OPENSSL_free(ctx->salt); |
194 | ctx->salt = NULL; |
195 | if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0, |
196 | &ctx->salt_len)) |
197 | return 0; |
198 | } |
199 | } |
200 | /* The info fields concatenate, so process them all */ |
201 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_INFO)) != NULL) { |
202 | ctx->info_len = 0; |
203 | for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, |
204 | OSSL_KDF_PARAM_INFO)) { |
205 | const void *q = ctx->info + ctx->info_len; |
206 | size_t sz = 0; |
207 | |
208 | if (p->data_size != 0 |
209 | && p->data != NULL |
210 | && !OSSL_PARAM_get_octet_string(p, (void **)&q, |
211 | HKDF_MAXBUF - ctx->info_len, |
212 | &sz)) |
213 | return 0; |
214 | ctx->info_len += sz; |
215 | } |
216 | } |
217 | return 1; |
218 | } |
219 | |
220 | static const OSSL_PARAM *kdf_hkdf_settable_ctx_params(void) |
221 | { |
222 | static const OSSL_PARAM known_settable_ctx_params[] = { |
223 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_MODE, NULL, 0), |
224 | OSSL_PARAM_int(OSSL_KDF_PARAM_MODE, NULL), |
225 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
226 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), |
227 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), |
228 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_KEY, NULL, 0), |
229 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_INFO, NULL, 0), |
230 | OSSL_PARAM_END |
231 | }; |
232 | return known_settable_ctx_params; |
233 | } |
234 | |
235 | static int kdf_hkdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
236 | { |
237 | KDF_HKDF *ctx = (KDF_HKDF *)vctx; |
238 | OSSL_PARAM *p; |
239 | |
240 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
241 | return OSSL_PARAM_set_size_t(p, kdf_hkdf_size(ctx)); |
242 | return -2; |
243 | } |
244 | |
245 | static const OSSL_PARAM *kdf_hkdf_gettable_ctx_params(void) |
246 | { |
247 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
248 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
249 | OSSL_PARAM_END |
250 | }; |
251 | return known_gettable_ctx_params; |
252 | } |
253 | |
254 | const OSSL_DISPATCH kdf_hkdf_functions[] = { |
255 | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_hkdf_new }, |
256 | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_hkdf_free }, |
257 | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_hkdf_reset }, |
258 | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_hkdf_derive }, |
259 | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
260 | (void(*)(void))kdf_hkdf_settable_ctx_params }, |
261 | { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_hkdf_set_ctx_params }, |
262 | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
263 | (void(*)(void))kdf_hkdf_gettable_ctx_params }, |
264 | { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_hkdf_get_ctx_params }, |
265 | { 0, NULL } |
266 | }; |
267 | |
268 | /* |
269 | * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" |
270 | * Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and |
271 | * "Cryptographic Extraction and Key Derivation: The HKDF Scheme" |
272 | * Section 4.2 (https://eprint.iacr.org/2010/264.pdf). |
273 | * |
274 | * From the paper: |
275 | * The scheme HKDF is specified as: |
276 | * HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t) |
277 | * |
278 | * where: |
279 | * SKM is source key material |
280 | * XTS is extractor salt (which may be null or constant) |
281 | * CTXinfo is context information (may be null) |
282 | * L is the number of key bits to be produced by KDF |
283 | * k is the output length in bits of the hash function used with HMAC |
284 | * t = ceil(L/k) |
285 | * the value K(t) is truncated to its first d = L mod k bits. |
286 | * |
287 | * From RFC 5869: |
288 | * 2.2. Step 1: Extract |
289 | * HKDF-Extract(salt, IKM) -> PRK |
290 | * 2.3. Step 2: Expand |
291 | * HKDF-Expand(PRK, info, L) -> OKM |
292 | */ |
293 | static int HKDF(const EVP_MD *evp_md, |
294 | const unsigned char *salt, size_t salt_len, |
295 | const unsigned char *ikm, size_t ikm_len, |
296 | const unsigned char *info, size_t info_len, |
297 | unsigned char *okm, size_t okm_len) |
298 | { |
299 | unsigned char prk[EVP_MAX_MD_SIZE]; |
300 | int ret, sz; |
301 | size_t prk_len; |
302 | |
303 | sz = EVP_MD_size(evp_md); |
304 | if (sz < 0) |
305 | return 0; |
306 | prk_len = (size_t)sz; |
307 | |
308 | /* Step 1: HKDF-Extract(salt, IKM) -> PRK */ |
309 | if (!HKDF_Extract(evp_md, salt, salt_len, ikm, ikm_len, prk, prk_len)) |
310 | return 0; |
311 | |
312 | /* Step 2: HKDF-Expand(PRK, info, L) -> OKM */ |
313 | ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len); |
314 | OPENSSL_cleanse(prk, sizeof(prk)); |
315 | |
316 | return ret; |
317 | } |
318 | |
319 | /* |
320 | * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" |
321 | * Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2). |
322 | * |
323 | * 2.2. Step 1: Extract |
324 | * |
325 | * HKDF-Extract(salt, IKM) -> PRK |
326 | * |
327 | * Options: |
328 | * Hash a hash function; HashLen denotes the length of the |
329 | * hash function output in octets |
330 | * |
331 | * Inputs: |
332 | * salt optional salt value (a non-secret random value); |
333 | * if not provided, it is set to a string of HashLen zeros. |
334 | * IKM input keying material |
335 | * |
336 | * Output: |
337 | * PRK a pseudorandom key (of HashLen octets) |
338 | * |
339 | * The output PRK is calculated as follows: |
340 | * |
341 | * PRK = HMAC-Hash(salt, IKM) |
342 | */ |
343 | static int (const EVP_MD *evp_md, |
344 | const unsigned char *salt, size_t salt_len, |
345 | const unsigned char *ikm, size_t ikm_len, |
346 | unsigned char *prk, size_t prk_len) |
347 | { |
348 | int sz = EVP_MD_size(evp_md); |
349 | |
350 | if (sz < 0) |
351 | return 0; |
352 | if (prk_len != (size_t)sz) { |
353 | ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_OUTPUT_BUFFER_SIZE); |
354 | return 0; |
355 | } |
356 | /* calc: PRK = HMAC-Hash(salt, IKM) */ |
357 | return HMAC(evp_md, salt, salt_len, ikm, ikm_len, prk, NULL) != NULL; |
358 | } |
359 | |
360 | /* |
361 | * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" |
362 | * Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3). |
363 | * |
364 | * 2.3. Step 2: Expand |
365 | * |
366 | * HKDF-Expand(PRK, info, L) -> OKM |
367 | * |
368 | * Options: |
369 | * Hash a hash function; HashLen denotes the length of the |
370 | * hash function output in octets |
371 | * |
372 | * Inputs: |
373 | * PRK a pseudorandom key of at least HashLen octets |
374 | * (usually, the output from the extract step) |
375 | * info optional context and application specific information |
376 | * (can be a zero-length string) |
377 | * L length of output keying material in octets |
378 | * (<= 255*HashLen) |
379 | * |
380 | * Output: |
381 | * OKM output keying material (of L octets) |
382 | * |
383 | * The output OKM is calculated as follows: |
384 | * |
385 | * N = ceil(L/HashLen) |
386 | * T = T(1) | T(2) | T(3) | ... | T(N) |
387 | * OKM = first L octets of T |
388 | * |
389 | * where: |
390 | * T(0) = empty string (zero length) |
391 | * T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) |
392 | * T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) |
393 | * T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) |
394 | * ... |
395 | * |
396 | * (where the constant concatenated to the end of each T(n) is a |
397 | * single octet.) |
398 | */ |
399 | static int HKDF_Expand(const EVP_MD *evp_md, |
400 | const unsigned char *prk, size_t prk_len, |
401 | const unsigned char *info, size_t info_len, |
402 | unsigned char *okm, size_t okm_len) |
403 | { |
404 | HMAC_CTX *hmac; |
405 | int ret = 0, sz; |
406 | unsigned int i; |
407 | unsigned char prev[EVP_MAX_MD_SIZE]; |
408 | size_t done_len = 0, dig_len, n; |
409 | |
410 | sz = EVP_MD_size(evp_md); |
411 | if (sz <= 0) |
412 | return 0; |
413 | dig_len = (size_t)sz; |
414 | |
415 | /* calc: N = ceil(L/HashLen) */ |
416 | n = okm_len / dig_len; |
417 | if (okm_len % dig_len) |
418 | n++; |
419 | |
420 | if (n > 255 || okm == NULL) |
421 | return 0; |
422 | |
423 | if ((hmac = HMAC_CTX_new()) == NULL) |
424 | return 0; |
425 | |
426 | if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL)) |
427 | goto err; |
428 | |
429 | for (i = 1; i <= n; i++) { |
430 | size_t copy_len; |
431 | const unsigned char ctr = i; |
432 | |
433 | /* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */ |
434 | if (i > 1) { |
435 | if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL)) |
436 | goto err; |
437 | |
438 | if (!HMAC_Update(hmac, prev, dig_len)) |
439 | goto err; |
440 | } |
441 | |
442 | if (!HMAC_Update(hmac, info, info_len)) |
443 | goto err; |
444 | |
445 | if (!HMAC_Update(hmac, &ctr, 1)) |
446 | goto err; |
447 | |
448 | if (!HMAC_Final(hmac, prev, NULL)) |
449 | goto err; |
450 | |
451 | copy_len = (done_len + dig_len > okm_len) ? |
452 | okm_len - done_len : |
453 | dig_len; |
454 | |
455 | memcpy(okm + done_len, prev, copy_len); |
456 | |
457 | done_len += copy_len; |
458 | } |
459 | ret = 1; |
460 | |
461 | err: |
462 | OPENSSL_cleanse(prev, sizeof(prev)); |
463 | HMAC_CTX_free(hmac); |
464 | return ret; |
465 | } |
466 | |