1 | /* |
2 | * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include <stdlib.h> |
11 | #include <stdarg.h> |
12 | #include <string.h> |
13 | #include <openssl/evp.h> |
14 | #include <openssl/kdf.h> |
15 | #include <openssl/err.h> |
16 | #include <openssl/core_names.h> |
17 | #include "crypto/evp.h" |
18 | #include "internal/numbers.h" |
19 | #include "prov/implementations.h" |
20 | #include "prov/provider_ctx.h" |
21 | #include "prov/providercommonerr.h" |
22 | #include "prov/implementations.h" |
23 | |
24 | #ifndef OPENSSL_NO_SCRYPT |
25 | |
26 | static OSSL_OP_kdf_newctx_fn kdf_scrypt_new; |
27 | static OSSL_OP_kdf_freectx_fn kdf_scrypt_free; |
28 | static OSSL_OP_kdf_reset_fn kdf_scrypt_reset; |
29 | static OSSL_OP_kdf_derive_fn kdf_scrypt_derive; |
30 | static OSSL_OP_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params; |
31 | static OSSL_OP_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params; |
32 | |
33 | static int scrypt_alg(const char *pass, size_t passlen, |
34 | const unsigned char *salt, size_t saltlen, |
35 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
36 | unsigned char *key, size_t keylen, EVP_MD *sha256); |
37 | |
38 | typedef struct { |
39 | void *provctx; |
40 | unsigned char *pass; |
41 | size_t pass_len; |
42 | unsigned char *salt; |
43 | size_t salt_len; |
44 | uint64_t N; |
45 | uint64_t r, p; |
46 | uint64_t maxmem_bytes; |
47 | EVP_MD *sha256; |
48 | } KDF_SCRYPT; |
49 | |
50 | static void kdf_scrypt_init(KDF_SCRYPT *ctx); |
51 | |
52 | static void *kdf_scrypt_new(void *provctx) |
53 | { |
54 | KDF_SCRYPT *ctx; |
55 | |
56 | ctx = OPENSSL_zalloc(sizeof(*ctx)); |
57 | if (ctx == NULL) { |
58 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
59 | return NULL; |
60 | } |
61 | ctx->provctx = provctx; |
62 | ctx->sha256 = EVP_MD_fetch(PROV_LIBRARY_CONTEXT_OF(provctx), |
63 | "sha256" , NULL); |
64 | if (ctx->sha256 == NULL) { |
65 | OPENSSL_free(ctx); |
66 | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256); |
67 | return NULL; |
68 | } |
69 | kdf_scrypt_init(ctx); |
70 | return ctx; |
71 | } |
72 | |
73 | static void kdf_scrypt_free(void *vctx) |
74 | { |
75 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
76 | |
77 | if (ctx != NULL) { |
78 | EVP_MD_meth_free(ctx->sha256); |
79 | kdf_scrypt_reset(ctx); |
80 | OPENSSL_free(ctx); |
81 | } |
82 | } |
83 | |
84 | static void kdf_scrypt_reset(void *vctx) |
85 | { |
86 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
87 | |
88 | OPENSSL_free(ctx->salt); |
89 | OPENSSL_clear_free(ctx->pass, ctx->pass_len); |
90 | kdf_scrypt_init(ctx); |
91 | } |
92 | |
93 | static void kdf_scrypt_init(KDF_SCRYPT *ctx) |
94 | { |
95 | /* Default values are the most conservative recommendation given in the |
96 | * original paper of C. Percival. Derivation uses roughly 1 GiB of memory |
97 | * for this parameter choice (approx. 128 * r * N * p bytes). |
98 | */ |
99 | ctx->N = 1 << 20; |
100 | ctx->r = 8; |
101 | ctx->p = 1; |
102 | ctx->maxmem_bytes = 1025 * 1024 * 1024; |
103 | } |
104 | |
105 | static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, |
106 | const OSSL_PARAM *p) |
107 | { |
108 | OPENSSL_clear_free(*buffer, *buflen); |
109 | if (p->data_size == 0) { |
110 | if ((*buffer = OPENSSL_malloc(1)) == NULL) { |
111 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
112 | return 0; |
113 | } |
114 | } else if (p->data != NULL) { |
115 | *buffer = NULL; |
116 | if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) |
117 | return 0; |
118 | } |
119 | return 1; |
120 | } |
121 | |
122 | static int kdf_scrypt_derive(void *vctx, unsigned char *key, |
123 | size_t keylen) |
124 | { |
125 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
126 | |
127 | if (ctx->pass == NULL) { |
128 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); |
129 | return 0; |
130 | } |
131 | |
132 | if (ctx->salt == NULL) { |
133 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); |
134 | return 0; |
135 | } |
136 | |
137 | return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt, |
138 | ctx->salt_len, ctx->N, ctx->r, ctx->p, |
139 | ctx->maxmem_bytes, key, keylen, ctx->sha256); |
140 | } |
141 | |
142 | static int is_power_of_two(uint64_t value) |
143 | { |
144 | return (value != 0) && ((value & (value - 1)) == 0); |
145 | } |
146 | |
147 | static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
148 | { |
149 | const OSSL_PARAM *p; |
150 | KDF_SCRYPT *ctx = vctx; |
151 | uint64_t u64_value; |
152 | |
153 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) |
154 | if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p)) |
155 | return 0; |
156 | |
157 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) |
158 | if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p)) |
159 | return 0; |
160 | |
161 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N)) |
162 | != NULL) { |
163 | if (!OSSL_PARAM_get_uint64(p, &u64_value) |
164 | || u64_value <= 1 |
165 | || !is_power_of_two(u64_value)) |
166 | return 0; |
167 | ctx->N = u64_value; |
168 | } |
169 | |
170 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R)) |
171 | != NULL) { |
172 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
173 | return 0; |
174 | ctx->r = u64_value; |
175 | } |
176 | |
177 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P)) |
178 | != NULL) { |
179 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
180 | return 0; |
181 | ctx->p = u64_value; |
182 | } |
183 | |
184 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM)) |
185 | != NULL) { |
186 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
187 | return 0; |
188 | ctx->maxmem_bytes = u64_value; |
189 | } |
190 | return 1; |
191 | } |
192 | |
193 | static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(void) |
194 | { |
195 | static const OSSL_PARAM known_settable_ctx_params[] = { |
196 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), |
197 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), |
198 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL), |
199 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL), |
200 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL), |
201 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL), |
202 | OSSL_PARAM_END |
203 | }; |
204 | return known_settable_ctx_params; |
205 | } |
206 | |
207 | static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
208 | { |
209 | OSSL_PARAM *p; |
210 | |
211 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
212 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
213 | return -2; |
214 | } |
215 | |
216 | static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(void) |
217 | { |
218 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
219 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
220 | OSSL_PARAM_END |
221 | }; |
222 | return known_gettable_ctx_params; |
223 | } |
224 | |
225 | const OSSL_DISPATCH kdf_scrypt_functions[] = { |
226 | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new }, |
227 | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free }, |
228 | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset }, |
229 | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive }, |
230 | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
231 | (void(*)(void))kdf_scrypt_settable_ctx_params }, |
232 | { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params }, |
233 | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
234 | (void(*)(void))kdf_scrypt_gettable_ctx_params }, |
235 | { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params }, |
236 | { 0, NULL } |
237 | }; |
238 | |
239 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
240 | static void salsa208_word_specification(uint32_t inout[16]) |
241 | { |
242 | int i; |
243 | uint32_t x[16]; |
244 | |
245 | memcpy(x, inout, sizeof(x)); |
246 | for (i = 8; i > 0; i -= 2) { |
247 | x[4] ^= R(x[0] + x[12], 7); |
248 | x[8] ^= R(x[4] + x[0], 9); |
249 | x[12] ^= R(x[8] + x[4], 13); |
250 | x[0] ^= R(x[12] + x[8], 18); |
251 | x[9] ^= R(x[5] + x[1], 7); |
252 | x[13] ^= R(x[9] + x[5], 9); |
253 | x[1] ^= R(x[13] + x[9], 13); |
254 | x[5] ^= R(x[1] + x[13], 18); |
255 | x[14] ^= R(x[10] + x[6], 7); |
256 | x[2] ^= R(x[14] + x[10], 9); |
257 | x[6] ^= R(x[2] + x[14], 13); |
258 | x[10] ^= R(x[6] + x[2], 18); |
259 | x[3] ^= R(x[15] + x[11], 7); |
260 | x[7] ^= R(x[3] + x[15], 9); |
261 | x[11] ^= R(x[7] + x[3], 13); |
262 | x[15] ^= R(x[11] + x[7], 18); |
263 | x[1] ^= R(x[0] + x[3], 7); |
264 | x[2] ^= R(x[1] + x[0], 9); |
265 | x[3] ^= R(x[2] + x[1], 13); |
266 | x[0] ^= R(x[3] + x[2], 18); |
267 | x[6] ^= R(x[5] + x[4], 7); |
268 | x[7] ^= R(x[6] + x[5], 9); |
269 | x[4] ^= R(x[7] + x[6], 13); |
270 | x[5] ^= R(x[4] + x[7], 18); |
271 | x[11] ^= R(x[10] + x[9], 7); |
272 | x[8] ^= R(x[11] + x[10], 9); |
273 | x[9] ^= R(x[8] + x[11], 13); |
274 | x[10] ^= R(x[9] + x[8], 18); |
275 | x[12] ^= R(x[15] + x[14], 7); |
276 | x[13] ^= R(x[12] + x[15], 9); |
277 | x[14] ^= R(x[13] + x[12], 13); |
278 | x[15] ^= R(x[14] + x[13], 18); |
279 | } |
280 | for (i = 0; i < 16; ++i) |
281 | inout[i] += x[i]; |
282 | OPENSSL_cleanse(x, sizeof(x)); |
283 | } |
284 | |
285 | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
286 | { |
287 | uint64_t i, j; |
288 | uint32_t X[16], *pB; |
289 | |
290 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
291 | pB = B; |
292 | for (i = 0; i < r * 2; i++) { |
293 | for (j = 0; j < 16; j++) |
294 | X[j] ^= *pB++; |
295 | salsa208_word_specification(X); |
296 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
297 | } |
298 | OPENSSL_cleanse(X, sizeof(X)); |
299 | } |
300 | |
301 | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
302 | uint32_t *X, uint32_t *T, uint32_t *V) |
303 | { |
304 | unsigned char *pB; |
305 | uint32_t *pV; |
306 | uint64_t i, k; |
307 | |
308 | /* Convert from little endian input */ |
309 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
310 | *pV = *pB++; |
311 | *pV |= *pB++ << 8; |
312 | *pV |= *pB++ << 16; |
313 | *pV |= (uint32_t)*pB++ << 24; |
314 | } |
315 | |
316 | for (i = 1; i < N; i++, pV += 32 * r) |
317 | scryptBlockMix(pV, pV - 32 * r, r); |
318 | |
319 | scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
320 | |
321 | for (i = 0; i < N; i++) { |
322 | uint32_t j; |
323 | j = X[16 * (2 * r - 1)] % N; |
324 | pV = V + 32 * r * j; |
325 | for (k = 0; k < 32 * r; k++) |
326 | T[k] = X[k] ^ *pV++; |
327 | scryptBlockMix(X, T, r); |
328 | } |
329 | /* Convert output to little endian */ |
330 | for (i = 0, pB = B; i < 32 * r; i++) { |
331 | uint32_t xtmp = X[i]; |
332 | *pB++ = xtmp & 0xff; |
333 | *pB++ = (xtmp >> 8) & 0xff; |
334 | *pB++ = (xtmp >> 16) & 0xff; |
335 | *pB++ = (xtmp >> 24) & 0xff; |
336 | } |
337 | } |
338 | |
339 | #ifndef SIZE_MAX |
340 | # define SIZE_MAX ((size_t)-1) |
341 | #endif |
342 | |
343 | /* |
344 | * Maximum power of two that will fit in uint64_t: this should work on |
345 | * most (all?) platforms. |
346 | */ |
347 | |
348 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
349 | |
350 | /* |
351 | * Maximum value of p * r: |
352 | * p <= ((2^32-1) * hLen) / MFLen => |
353 | * p <= ((2^32-1) * 32) / (128 * r) => |
354 | * p * r <= (2^30-1) |
355 | */ |
356 | |
357 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
358 | |
359 | static int scrypt_alg(const char *pass, size_t passlen, |
360 | const unsigned char *salt, size_t saltlen, |
361 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
362 | unsigned char *key, size_t keylen, EVP_MD *sha256) |
363 | { |
364 | int rv = 0; |
365 | unsigned char *B; |
366 | uint32_t *X, *V, *T; |
367 | uint64_t i, Blen, Vlen; |
368 | |
369 | /* Sanity check parameters */ |
370 | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
371 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
372 | return 0; |
373 | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
374 | if (p > SCRYPT_PR_MAX / r) { |
375 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
376 | return 0; |
377 | } |
378 | |
379 | /* |
380 | * Need to check N: if 2^(128 * r / 8) overflows limit this is |
381 | * automatically satisfied since N <= UINT64_MAX. |
382 | */ |
383 | |
384 | if (16 * r <= LOG2_UINT64_MAX) { |
385 | if (N >= (((uint64_t)1) << (16 * r))) { |
386 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
387 | return 0; |
388 | } |
389 | } |
390 | |
391 | /* Memory checks: check total allocated buffer size fits in uint64_t */ |
392 | |
393 | /* |
394 | * B size in section 5 step 1.S |
395 | * Note: we know p * 128 * r < UINT64_MAX because we already checked |
396 | * p * r < SCRYPT_PR_MAX |
397 | */ |
398 | Blen = p * 128 * r; |
399 | /* |
400 | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would |
401 | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] |
402 | */ |
403 | if (Blen > INT_MAX) { |
404 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
405 | return 0; |
406 | } |
407 | |
408 | /* |
409 | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t |
410 | * This is combined size V, X and T (section 4) |
411 | */ |
412 | i = UINT64_MAX / (32 * sizeof(uint32_t)); |
413 | if (N + 2 > i / r) { |
414 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
415 | return 0; |
416 | } |
417 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
418 | |
419 | /* check total allocated size fits in uint64_t */ |
420 | if (Blen > UINT64_MAX - Vlen) { |
421 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
422 | return 0; |
423 | } |
424 | |
425 | /* Check that the maximum memory doesn't exceed a size_t limits */ |
426 | if (maxmem > SIZE_MAX) |
427 | maxmem = SIZE_MAX; |
428 | |
429 | if (Blen + Vlen > maxmem) { |
430 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
431 | return 0; |
432 | } |
433 | |
434 | /* If no key return to indicate parameters are OK */ |
435 | if (key == NULL) |
436 | return 1; |
437 | |
438 | B = OPENSSL_malloc((size_t)(Blen + Vlen)); |
439 | if (B == NULL) { |
440 | EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE); |
441 | return 0; |
442 | } |
443 | X = (uint32_t *)(B + Blen); |
444 | T = X + 32 * r; |
445 | V = T + 32 * r; |
446 | if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, sha256, |
447 | (int)Blen, B) == 0) |
448 | goto err; |
449 | |
450 | for (i = 0; i < p; i++) |
451 | scryptROMix(B + 128 * r * i, r, N, X, T, V); |
452 | |
453 | if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, sha256, |
454 | keylen, key) == 0) |
455 | goto err; |
456 | rv = 1; |
457 | err: |
458 | if (rv == 0) |
459 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR); |
460 | |
461 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); |
462 | return rv; |
463 | } |
464 | |
465 | #endif |
466 | |