| 1 | /* |
| 2 | * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdlib.h> |
| 11 | #include <stdarg.h> |
| 12 | #include <string.h> |
| 13 | #include <openssl/evp.h> |
| 14 | #include <openssl/kdf.h> |
| 15 | #include <openssl/err.h> |
| 16 | #include <openssl/core_names.h> |
| 17 | #include "crypto/evp.h" |
| 18 | #include "internal/numbers.h" |
| 19 | #include "prov/implementations.h" |
| 20 | #include "prov/provider_ctx.h" |
| 21 | #include "prov/providercommonerr.h" |
| 22 | #include "prov/implementations.h" |
| 23 | |
| 24 | #ifndef OPENSSL_NO_SCRYPT |
| 25 | |
| 26 | static OSSL_OP_kdf_newctx_fn kdf_scrypt_new; |
| 27 | static OSSL_OP_kdf_freectx_fn kdf_scrypt_free; |
| 28 | static OSSL_OP_kdf_reset_fn kdf_scrypt_reset; |
| 29 | static OSSL_OP_kdf_derive_fn kdf_scrypt_derive; |
| 30 | static OSSL_OP_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params; |
| 31 | static OSSL_OP_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params; |
| 32 | |
| 33 | static int scrypt_alg(const char *pass, size_t passlen, |
| 34 | const unsigned char *salt, size_t saltlen, |
| 35 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| 36 | unsigned char *key, size_t keylen, EVP_MD *sha256); |
| 37 | |
| 38 | typedef struct { |
| 39 | void *provctx; |
| 40 | unsigned char *pass; |
| 41 | size_t pass_len; |
| 42 | unsigned char *salt; |
| 43 | size_t salt_len; |
| 44 | uint64_t N; |
| 45 | uint64_t r, p; |
| 46 | uint64_t maxmem_bytes; |
| 47 | EVP_MD *sha256; |
| 48 | } KDF_SCRYPT; |
| 49 | |
| 50 | static void kdf_scrypt_init(KDF_SCRYPT *ctx); |
| 51 | |
| 52 | static void *kdf_scrypt_new(void *provctx) |
| 53 | { |
| 54 | KDF_SCRYPT *ctx; |
| 55 | |
| 56 | ctx = OPENSSL_zalloc(sizeof(*ctx)); |
| 57 | if (ctx == NULL) { |
| 58 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| 59 | return NULL; |
| 60 | } |
| 61 | ctx->provctx = provctx; |
| 62 | ctx->sha256 = EVP_MD_fetch(PROV_LIBRARY_CONTEXT_OF(provctx), |
| 63 | "sha256" , NULL); |
| 64 | if (ctx->sha256 == NULL) { |
| 65 | OPENSSL_free(ctx); |
| 66 | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256); |
| 67 | return NULL; |
| 68 | } |
| 69 | kdf_scrypt_init(ctx); |
| 70 | return ctx; |
| 71 | } |
| 72 | |
| 73 | static void kdf_scrypt_free(void *vctx) |
| 74 | { |
| 75 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
| 76 | |
| 77 | if (ctx != NULL) { |
| 78 | EVP_MD_meth_free(ctx->sha256); |
| 79 | kdf_scrypt_reset(ctx); |
| 80 | OPENSSL_free(ctx); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | static void kdf_scrypt_reset(void *vctx) |
| 85 | { |
| 86 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
| 87 | |
| 88 | OPENSSL_free(ctx->salt); |
| 89 | OPENSSL_clear_free(ctx->pass, ctx->pass_len); |
| 90 | kdf_scrypt_init(ctx); |
| 91 | } |
| 92 | |
| 93 | static void kdf_scrypt_init(KDF_SCRYPT *ctx) |
| 94 | { |
| 95 | /* Default values are the most conservative recommendation given in the |
| 96 | * original paper of C. Percival. Derivation uses roughly 1 GiB of memory |
| 97 | * for this parameter choice (approx. 128 * r * N * p bytes). |
| 98 | */ |
| 99 | ctx->N = 1 << 20; |
| 100 | ctx->r = 8; |
| 101 | ctx->p = 1; |
| 102 | ctx->maxmem_bytes = 1025 * 1024 * 1024; |
| 103 | } |
| 104 | |
| 105 | static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, |
| 106 | const OSSL_PARAM *p) |
| 107 | { |
| 108 | OPENSSL_clear_free(*buffer, *buflen); |
| 109 | if (p->data_size == 0) { |
| 110 | if ((*buffer = OPENSSL_malloc(1)) == NULL) { |
| 111 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| 112 | return 0; |
| 113 | } |
| 114 | } else if (p->data != NULL) { |
| 115 | *buffer = NULL; |
| 116 | if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) |
| 117 | return 0; |
| 118 | } |
| 119 | return 1; |
| 120 | } |
| 121 | |
| 122 | static int kdf_scrypt_derive(void *vctx, unsigned char *key, |
| 123 | size_t keylen) |
| 124 | { |
| 125 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
| 126 | |
| 127 | if (ctx->pass == NULL) { |
| 128 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | if (ctx->salt == NULL) { |
| 133 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt, |
| 138 | ctx->salt_len, ctx->N, ctx->r, ctx->p, |
| 139 | ctx->maxmem_bytes, key, keylen, ctx->sha256); |
| 140 | } |
| 141 | |
| 142 | static int is_power_of_two(uint64_t value) |
| 143 | { |
| 144 | return (value != 0) && ((value & (value - 1)) == 0); |
| 145 | } |
| 146 | |
| 147 | static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
| 148 | { |
| 149 | const OSSL_PARAM *p; |
| 150 | KDF_SCRYPT *ctx = vctx; |
| 151 | uint64_t u64_value; |
| 152 | |
| 153 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) |
| 154 | if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p)) |
| 155 | return 0; |
| 156 | |
| 157 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) |
| 158 | if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p)) |
| 159 | return 0; |
| 160 | |
| 161 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N)) |
| 162 | != NULL) { |
| 163 | if (!OSSL_PARAM_get_uint64(p, &u64_value) |
| 164 | || u64_value <= 1 |
| 165 | || !is_power_of_two(u64_value)) |
| 166 | return 0; |
| 167 | ctx->N = u64_value; |
| 168 | } |
| 169 | |
| 170 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R)) |
| 171 | != NULL) { |
| 172 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
| 173 | return 0; |
| 174 | ctx->r = u64_value; |
| 175 | } |
| 176 | |
| 177 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P)) |
| 178 | != NULL) { |
| 179 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
| 180 | return 0; |
| 181 | ctx->p = u64_value; |
| 182 | } |
| 183 | |
| 184 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM)) |
| 185 | != NULL) { |
| 186 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
| 187 | return 0; |
| 188 | ctx->maxmem_bytes = u64_value; |
| 189 | } |
| 190 | return 1; |
| 191 | } |
| 192 | |
| 193 | static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(void) |
| 194 | { |
| 195 | static const OSSL_PARAM known_settable_ctx_params[] = { |
| 196 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), |
| 197 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), |
| 198 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL), |
| 199 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL), |
| 200 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL), |
| 201 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL), |
| 202 | OSSL_PARAM_END |
| 203 | }; |
| 204 | return known_settable_ctx_params; |
| 205 | } |
| 206 | |
| 207 | static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
| 208 | { |
| 209 | OSSL_PARAM *p; |
| 210 | |
| 211 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
| 212 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
| 213 | return -2; |
| 214 | } |
| 215 | |
| 216 | static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(void) |
| 217 | { |
| 218 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
| 219 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
| 220 | OSSL_PARAM_END |
| 221 | }; |
| 222 | return known_gettable_ctx_params; |
| 223 | } |
| 224 | |
| 225 | const OSSL_DISPATCH kdf_scrypt_functions[] = { |
| 226 | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new }, |
| 227 | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free }, |
| 228 | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset }, |
| 229 | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive }, |
| 230 | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
| 231 | (void(*)(void))kdf_scrypt_settable_ctx_params }, |
| 232 | { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params }, |
| 233 | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
| 234 | (void(*)(void))kdf_scrypt_gettable_ctx_params }, |
| 235 | { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params }, |
| 236 | { 0, NULL } |
| 237 | }; |
| 238 | |
| 239 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| 240 | static void salsa208_word_specification(uint32_t inout[16]) |
| 241 | { |
| 242 | int i; |
| 243 | uint32_t x[16]; |
| 244 | |
| 245 | memcpy(x, inout, sizeof(x)); |
| 246 | for (i = 8; i > 0; i -= 2) { |
| 247 | x[4] ^= R(x[0] + x[12], 7); |
| 248 | x[8] ^= R(x[4] + x[0], 9); |
| 249 | x[12] ^= R(x[8] + x[4], 13); |
| 250 | x[0] ^= R(x[12] + x[8], 18); |
| 251 | x[9] ^= R(x[5] + x[1], 7); |
| 252 | x[13] ^= R(x[9] + x[5], 9); |
| 253 | x[1] ^= R(x[13] + x[9], 13); |
| 254 | x[5] ^= R(x[1] + x[13], 18); |
| 255 | x[14] ^= R(x[10] + x[6], 7); |
| 256 | x[2] ^= R(x[14] + x[10], 9); |
| 257 | x[6] ^= R(x[2] + x[14], 13); |
| 258 | x[10] ^= R(x[6] + x[2], 18); |
| 259 | x[3] ^= R(x[15] + x[11], 7); |
| 260 | x[7] ^= R(x[3] + x[15], 9); |
| 261 | x[11] ^= R(x[7] + x[3], 13); |
| 262 | x[15] ^= R(x[11] + x[7], 18); |
| 263 | x[1] ^= R(x[0] + x[3], 7); |
| 264 | x[2] ^= R(x[1] + x[0], 9); |
| 265 | x[3] ^= R(x[2] + x[1], 13); |
| 266 | x[0] ^= R(x[3] + x[2], 18); |
| 267 | x[6] ^= R(x[5] + x[4], 7); |
| 268 | x[7] ^= R(x[6] + x[5], 9); |
| 269 | x[4] ^= R(x[7] + x[6], 13); |
| 270 | x[5] ^= R(x[4] + x[7], 18); |
| 271 | x[11] ^= R(x[10] + x[9], 7); |
| 272 | x[8] ^= R(x[11] + x[10], 9); |
| 273 | x[9] ^= R(x[8] + x[11], 13); |
| 274 | x[10] ^= R(x[9] + x[8], 18); |
| 275 | x[12] ^= R(x[15] + x[14], 7); |
| 276 | x[13] ^= R(x[12] + x[15], 9); |
| 277 | x[14] ^= R(x[13] + x[12], 13); |
| 278 | x[15] ^= R(x[14] + x[13], 18); |
| 279 | } |
| 280 | for (i = 0; i < 16; ++i) |
| 281 | inout[i] += x[i]; |
| 282 | OPENSSL_cleanse(x, sizeof(x)); |
| 283 | } |
| 284 | |
| 285 | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
| 286 | { |
| 287 | uint64_t i, j; |
| 288 | uint32_t X[16], *pB; |
| 289 | |
| 290 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
| 291 | pB = B; |
| 292 | for (i = 0; i < r * 2; i++) { |
| 293 | for (j = 0; j < 16; j++) |
| 294 | X[j] ^= *pB++; |
| 295 | salsa208_word_specification(X); |
| 296 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
| 297 | } |
| 298 | OPENSSL_cleanse(X, sizeof(X)); |
| 299 | } |
| 300 | |
| 301 | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
| 302 | uint32_t *X, uint32_t *T, uint32_t *V) |
| 303 | { |
| 304 | unsigned char *pB; |
| 305 | uint32_t *pV; |
| 306 | uint64_t i, k; |
| 307 | |
| 308 | /* Convert from little endian input */ |
| 309 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
| 310 | *pV = *pB++; |
| 311 | *pV |= *pB++ << 8; |
| 312 | *pV |= *pB++ << 16; |
| 313 | *pV |= (uint32_t)*pB++ << 24; |
| 314 | } |
| 315 | |
| 316 | for (i = 1; i < N; i++, pV += 32 * r) |
| 317 | scryptBlockMix(pV, pV - 32 * r, r); |
| 318 | |
| 319 | scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
| 320 | |
| 321 | for (i = 0; i < N; i++) { |
| 322 | uint32_t j; |
| 323 | j = X[16 * (2 * r - 1)] % N; |
| 324 | pV = V + 32 * r * j; |
| 325 | for (k = 0; k < 32 * r; k++) |
| 326 | T[k] = X[k] ^ *pV++; |
| 327 | scryptBlockMix(X, T, r); |
| 328 | } |
| 329 | /* Convert output to little endian */ |
| 330 | for (i = 0, pB = B; i < 32 * r; i++) { |
| 331 | uint32_t xtmp = X[i]; |
| 332 | *pB++ = xtmp & 0xff; |
| 333 | *pB++ = (xtmp >> 8) & 0xff; |
| 334 | *pB++ = (xtmp >> 16) & 0xff; |
| 335 | *pB++ = (xtmp >> 24) & 0xff; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | #ifndef SIZE_MAX |
| 340 | # define SIZE_MAX ((size_t)-1) |
| 341 | #endif |
| 342 | |
| 343 | /* |
| 344 | * Maximum power of two that will fit in uint64_t: this should work on |
| 345 | * most (all?) platforms. |
| 346 | */ |
| 347 | |
| 348 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
| 349 | |
| 350 | /* |
| 351 | * Maximum value of p * r: |
| 352 | * p <= ((2^32-1) * hLen) / MFLen => |
| 353 | * p <= ((2^32-1) * 32) / (128 * r) => |
| 354 | * p * r <= (2^30-1) |
| 355 | */ |
| 356 | |
| 357 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| 358 | |
| 359 | static int scrypt_alg(const char *pass, size_t passlen, |
| 360 | const unsigned char *salt, size_t saltlen, |
| 361 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| 362 | unsigned char *key, size_t keylen, EVP_MD *sha256) |
| 363 | { |
| 364 | int rv = 0; |
| 365 | unsigned char *B; |
| 366 | uint32_t *X, *V, *T; |
| 367 | uint64_t i, Blen, Vlen; |
| 368 | |
| 369 | /* Sanity check parameters */ |
| 370 | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
| 371 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
| 372 | return 0; |
| 373 | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
| 374 | if (p > SCRYPT_PR_MAX / r) { |
| 375 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * Need to check N: if 2^(128 * r / 8) overflows limit this is |
| 381 | * automatically satisfied since N <= UINT64_MAX. |
| 382 | */ |
| 383 | |
| 384 | if (16 * r <= LOG2_UINT64_MAX) { |
| 385 | if (N >= (((uint64_t)1) << (16 * r))) { |
| 386 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 387 | return 0; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | /* Memory checks: check total allocated buffer size fits in uint64_t */ |
| 392 | |
| 393 | /* |
| 394 | * B size in section 5 step 1.S |
| 395 | * Note: we know p * 128 * r < UINT64_MAX because we already checked |
| 396 | * p * r < SCRYPT_PR_MAX |
| 397 | */ |
| 398 | Blen = p * 128 * r; |
| 399 | /* |
| 400 | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would |
| 401 | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] |
| 402 | */ |
| 403 | if (Blen > INT_MAX) { |
| 404 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t |
| 410 | * This is combined size V, X and T (section 4) |
| 411 | */ |
| 412 | i = UINT64_MAX / (32 * sizeof(uint32_t)); |
| 413 | if (N + 2 > i / r) { |
| 414 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 415 | return 0; |
| 416 | } |
| 417 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
| 418 | |
| 419 | /* check total allocated size fits in uint64_t */ |
| 420 | if (Blen > UINT64_MAX - Vlen) { |
| 421 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | /* Check that the maximum memory doesn't exceed a size_t limits */ |
| 426 | if (maxmem > SIZE_MAX) |
| 427 | maxmem = SIZE_MAX; |
| 428 | |
| 429 | if (Blen + Vlen > maxmem) { |
| 430 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | /* If no key return to indicate parameters are OK */ |
| 435 | if (key == NULL) |
| 436 | return 1; |
| 437 | |
| 438 | B = OPENSSL_malloc((size_t)(Blen + Vlen)); |
| 439 | if (B == NULL) { |
| 440 | EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE); |
| 441 | return 0; |
| 442 | } |
| 443 | X = (uint32_t *)(B + Blen); |
| 444 | T = X + 32 * r; |
| 445 | V = T + 32 * r; |
| 446 | if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, sha256, |
| 447 | (int)Blen, B) == 0) |
| 448 | goto err; |
| 449 | |
| 450 | for (i = 0; i < p; i++) |
| 451 | scryptROMix(B + 128 * r * i, r, N, X, T, V); |
| 452 | |
| 453 | if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, sha256, |
| 454 | keylen, key) == 0) |
| 455 | goto err; |
| 456 | rv = 1; |
| 457 | err: |
| 458 | if (rv == 0) |
| 459 | EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR); |
| 460 | |
| 461 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); |
| 462 | return rv; |
| 463 | } |
| 464 | |
| 465 | #endif |
| 466 | |